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Abstract

One of the important tasks in the field of software engineering is software verification.
The tasks of software verification are specifying the system and analyzing whether the
system ensures the required properties. To do a software verification, there is an alter-
native approach that is called formal specification, which specifies the system by using
a mathematical syntax. At this moment, there are many specification languages that
help users to specify system by formal specification, which each one uses different ap-
proaches of specification and analysis. One of the interesting specification languages is
Alloy specification language that uses a new approach for software verification.

This research aims to survey Alloy specification in deeply details about specification
and analysis techniques. This report presents the descriptions of relational logic, which
is the logic behind specification approach of Alloy, the syntax of Alloy when applying
the logic, and the analysis technique, which based on instance finding that relies on SAT
solver. So, there are many simple examples in each section of the report, which make the
descriptions of Alloy become easier to understand. Moreover, the report also presents an
approach of specifying and analyzing the state transition system of concurrent system,
which is the case study, in Alloy.

By the way, there are other specification languages that uses the approach of formal
specification. One of the other interesting languages is an algebraic specification language
that is one of the widely used approaches. Exactly, Alloy specification language and an
algebraic specification language use the different specification and analysis approaches,
which make them have different advantages and disadvantages, and the appropriateness
specification in different types of system. So, the comparison of the two different specifi-
cation languages is the another purpose of this research.

For this research, the algebraic specification language is represented by Maude specifi-
cation language. In the report, there are some descriptions about Maude such as rewriting
logic, which is the logic behind specification approach of Maude, and an analysis approach
that is a search command. In addition, the report also presents about Real-Time Maude
that is an extension of Standard Maude and a tool for specifying and analyzing real-time
and hybrid systems.

Comparison of Alloy and Maude is experimented through a non-trivial case study. The
selected case study of this research is the hospital problem, which is one type of the
concurrent system that each process uses the shared resources. This report presents the
approaches of specifying and solving hospital problem in both Alloy and Maude (including
Standard Maude and Real-Time Maude).

From the experimental results that include experiences of using Alloy and Maude, the
report presents the description of comparison of Alloy and Maude in many topics, which
including advantages and disadvantages of each one. Moreover, there are some rough
guidelines for selecting the specification languages between Alloy and Maude that which
one is more appropriate to specify each type of system.
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Chapter 1

Introduction

Software engineering is the application of engineering to the design, development, and
maintenance of software. Moreover, the field of software engineering has produced an
enormous body of work known collectively as software verification [BBF+10], whose goal
is to assure that software fully satisfies all the expected requirements or properties. The
process of software verification should be straightforward. First, we use a specification
technique to specify the underlying ideas and the essence of software or system to create
a model. Then from the model, we can use it to verify the properties of the system by
using a technique that is called an analysis technique. Unlike the testing technique, the
space of cases examined in the analysis technique is usually huge and it therefore offers a
degree of coverage unattainable in testing. Moreover, the analysis requires no test cases.
The user instead provides a property to be checked, which can usually be expressed as
succinctly as a single test case.

The model that is created by using the specification technique and is used to analyze
properties is called software abstraction. The software abstraction is not a module, or
an interface, class, or method; it is a structure, pure and simple - a system reduced
to its essential form. The good software abstraction should capture their underlying
ideas so naturally and convincingly that they seem more like discoveries. To create the
good abstractions, there is an alternative approach that is called formal specification
[Lam00]. It is an approach that specifies the abstractions by using a mathematical syntax
to define a notation, which chosen for ease of expression and exploration. There are many
specification languages that use the approach of formal specification to specify and analyze
systems such as CafeOBJ [DFO03], Promela (the modeling language of the model-checker
Spin), Maude, and Alloy. So, each specification language has a different technique to
specify systems and analyze properties. Furthermore, they have different advantages and
disadvantages. Depending on their techniques and efficiency, each language is appropriate
for specifying different types of system. However, a recent survey on the use of formal
methods [WLBF09] found that it is nearly impossible for a potential user to decide that
which one best matches the system at hand because it depends on the nuances of the
system, and prior experience in using these approaches, which can take years to master.

The goal of this research is learning Alloy specification language [Jac12], which uses a
new approach for software verification, and is used in many projects such as [GCKP08],
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[SyF08], and [LXLZ09]. Alloy is a lightweight formal method [Jac01]. It was inspired
by the Z specification language [zsp06] and also strongly influenced by object modeling
notations. It takes from formal specification the idea of a precise and expressive notation
based on a tiny core of simple and robust concepts. The specification technique of Alloy is
based on relational logic, which combines the first-order logic [Smu68] with the relational
calculus [Mai83]. For the analysis technique of Alloy, there is the Alloy Analyzer that
bears little resemblance to model checking, its original inspiration. Instead, it relies on
recent advances in SAT (boolean satisfiability) technology [GKSS08]. The Alloy Analyzer
translates constraints to be solved from Alloy into boolean constraints, which are fed to
an off-the shelf SAT solver. As solvers get faster, so Alloy’s analysis gets faster and scales
to larger problems. For more descriptions of the techniques of Alloy, they are presented
in Chapter 3.

By the way, there are other approaches for software verification. One of the approaches
is an algebraic specification [EM11]. So, these two different approaches (Alloy specification
and algebraic specification) must have their own advantages and appropriate with different
types of system. For the another purpose of this research, we decide to compare the two
approaches in many topics.

In this research, the algebraic specification language is represented by Maude specifi-
cation language. Maude [CDE+11] is one of the famous specification languages that is
widely used in many projects such as [DMT98], [PPZ01], and [RV07]. It is a language
that supports both equational and rewriting logic computation [ND90] for a wide range
of applications. Maude has been influenced in important ways by OBJ3 [GKK+88]; in
particular, Maude’s equational logic sublanguage essentially contains OBJ3 as a sublan-
guage. The specification technique of Maude is based on rewriting logic that includes as
a sub-logic membership equational logic (an extension of order-sorted equational logic).
Moreover, Maude is equipped with model checking facilities: the invariants through search
and LTL model checker [CDE+07]. By the way, in this research, only the model checking
invariants through search is used. For more descriptions of the techniques of Maude, they
are presented in Chapter 2.

To compare between Alloy and Maude, we use a non-trivial case study for specifying
and analyzing in both languages. The non-trivial case study that we select is a problem
in hospital. In this problem, there are two groups of patients. In each group, there three
patients. Each patient needs to do a list of activities, which each one require different
amount of time and number of nurses. A question of this problem is to find the number
of nurses that is sufficient for all patients to do all activities in the given limited time. For
more descriptions of the case study, we describe in Chapter 4. At this moment, there is no
one who specifies this problem by using Maude and Alloy. So, it is worth specifying this
problem in Maude and Alloy for more understanding about them. For the approaches
of specifying and solving the hospital problem in Alloy and Maude, they are presented
in Chapter 5. Furthermore, the results and comparisons between both languages are
presented in Chapter 6.

One potential limitation of this research is that the same person applied both speci-
fication languages, one after the other. This means that subjective judgments such as
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”intuitive”, ”natural”, or ”easy to use” would be biased.
In addition to suggestions for improving research methods, Chapter 7 also discuss the

conclusion of this research, its adoption, and the future improvement.
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Chapter 2

Maude Specification Language

2.1 Standard Maude

Maude is an algebraic specification language that was developed by a team led by Jose
Meseguer at the SRI International and University of Illinois at Urbana-Champaign. Maude
is a specification and programming language based on rewriting logic that includes as a
sub-logic membership equational logic (an extension of order-sorted equational logic).
State machines (or state transition systems) are specified in rewriting logic. Data used in
state machines are specified in membership equational logic. States of state machines are
expressed as data such as tuples and associative-commutative collections (called soups),
and state transitions are described in rewrite rules.

The rewrite rule has the form l : t → t′, where t, t′ are terms of the same kind, which
may contain variables, and l is the label of the rule. Intuitively, a rule describes a local
concurrent transition in a system: anywhere in the distributed state where a substitution
instance σ(t) of the lefthand side t is found, a local transition of that state fragment to
the new local state σ(t′) can take place. And if many instances of the same or of several
rules can be matched in different nonoverlapping parts of the distributed state, then all
of them can fire concurrently. An unconditional rule is introduced in Maude with the
syntax: rl [<Label>] : <Term-1> => <Term-2>.

Basic units of Maude specifications are modules. Some built-in modules are provided
such as BOOL and NAT for Boolean values and natural numbers. The Boolean values
are denoted as true and false, and natural numbers as 0, 1, 2, . . . as usual. The
corresponding sorts are Bool and Nat. Precisely, there are three sorts for natural numbers
Zero, NzNat, and Nat that are for zero, non-zero natural numbers, and natural numbers
that may be zero or non-zero, respectively. Sort Nat is the super-sort of Zero and NzNat.

Let us consider a simple system as an example. The system is the mutual exclusion
protocol. In the system, there are two processes p and q and one lock (which is used to
manage the critical section). The type of value of lock is Boolean value. Each process has
three sections - remainder section (RS), enter section (ES), and critical section (CS).
For any moment, there exists at most one process in the critical section. Initially, each
process is in the remainder section and the value of lock is false. From the remainder
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section, any process can move to the enter section if the value of lock is false. Otherwise,
it must wait in the remainder section. When any process is in the enter section, it will
enter the critical section and the value of lock is changed to be true. When any process
exits from the critical section, the value of locked is changed to be false and the process
must go to the remainder section again. Let us specify this system, precisely a state
machine modeling this system, in Maude.

States of current section of each process and the lock are expressed as pc[i]: l,
and locked: b, respectively, where i is a process identifier (the corresponding sort
is Pid), l is a label of current section (the corresponding sort is Label) and b is a
Boolean value. pc[p]: l, pc[q]: l, and locked: b are called observable components.
A state of the system is expressed as a soup of those observable components, which is
expressed as (pc[p]: l) (pc[q]: l) (locked: b). The initial state is expressed as
(pc[p]: RS) (pc[q]: RS) (locked: false). Let init be the initial state.

Let I be a Maude variable of sort Pid, and B be Maude variable of sort Bool.
For any process that the current section is remainder section (RS), the action is de-

scribed in the following rewrite rule:
crl[try] : (pc[I]: RS) (locked: B) => (pc[I]: ES) (locked: B) if B == false .

where try is the label of the rewrite rule, and this rewrite rule is conditional. The con-
dition is B == false. If a given term contains an instance of (pc[I]: RS) (locked: B)

and the condition holds, the instance is replaced with the corresponding instance of
(pc[I]: ES) (locked: B).

For any process that the current section is enter section (ES), the action is described
in the following rewrite rule:

rl[enter] : (pc[I]: ES) (locked: B) => (pc[I]: CS) (locked: true) .

This rewrite rule is unconditional.
For any process that the current section is critical section (CS), the action is described

in the following rewrite rule:
rl[exit] : (pc[I]: CS) (locked: B) => (pc[I]: RS) (locked: false) .

The Maude system is equipped with model checking facilities: the search command and
the LTL model checker. In this research, the search command is used. Given a state s, a
state pattern p and an optional condition c, the search command searches the reachable
state space from s in a breadth-first manner for all states that match p such that c holds.
Such states are called solutions. The syntax is as follows:
search in M : s =>* p such that c.

where M is a module in which the specification of the state transition system concerned is
described or available. A rewrite expression t => t′ can be used in the optional condition
c. This checks if t′ is reachable from t by zero or more rewrite steps with rewrite rules.

The following search finds all states such that they reachable from init and there exists
two processes are in the critical section at the same time:
search in EXPERIMENT : init =>* (pc[I:Pid]: cs) (pc[J:Pid]: cs) CONFIG .

where EXPERIMENT is the module in which the specification of the system we have been
discussing is available. The search finds 2 solutions, namely a counterexample for the
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property. It means that this mutual exclusion protocol cannot guarantee the mutual
exclusion property.

Note that although the reachable state space from init is bounded, the whole state
space is unbounded. The search command can be given as options the maximum number
of solutions and the maximum depth of search. If the maximum number n of solutions
is given, the search terminates when it finds n solutions. Therefore, even if the reachable
state from a given state is unbounded, the search command can be used and may termi-
nate. If the maximum depth d of search is given, only the bounded reachable state space
from a given state up to depth d is searched. Hence, the search command can be used as
a bounded model checker. These options are not used in this research.

2.2 Real-Time Maude

Real-Time Maude [Olv07], that was developed by Peter Csaba Olveczky from Department
of Informatics, University of Oslo, extends Maude and Full Maude languages, and is a
tool for the high-level formal specification, simulation, and formal analysis of real-time
and hybrid systems. Real-Time Maude emphasizes ease and generality of specification,
including support for real-time object-based systems that can be distributed, and where
the number of objects and messages can change dynamically.

Real-Time Maude specifies the real-time system by using real-time rewrite theories. A
real-time rewrite theory is a rewrite theory containing:

· A specification of data sort Time specifying the time domain, which may be discrete or
dense. The sort Time should satisfy the axioms of the theory TIME which defines
time abstractly as an ordered commutative monoid (Time,0,+,<) with additional
operators.

· A designed sort GlobalSystem with no subsorts or supersorts, and a free constructor
{_} : System -> GlobalSystem

(for System the sort of the state of the system) with the intended meaning that {t}
denotes the whole system in state t. The specification should contain no non-trivial
equations involving terms of sort GlobalSystem, and the sort GlobalSystem should
not appear in the arity of any other function symbol in the specification.

· Instantaneous rewrite rules, which are ordinary rewrite rules that model instantaneous
change and are assumed to take zero time.

· Tick rules, that model elapse of time in a system. Tick rules ave the form
l : t

τl−→ t′ if cond,
where τl is a term (possibly containing variables) of sort Time denoting the duration
of the tick rule. The tick rules advance time the system. The global state of the
system should always have the form {t}, in which case the form of the tick rules
ensure that time advances uniformly in all parts of the system.
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For the tick rule l : t
τl−→ t′ if cond, it is written in Real-Time Maude with syntax

crl[l] : {t} => {t’} in time τl if cond .

The syntax for unconditional tick rule is
rl[l] : {t} => {t’} in time τl .
Let us consider a simple system as an example. The system is a system of clock that

counts hours. In the system, the clock is a discrete clock where the time always advances
by one time unit in each tick step. Moreover, since the clock counts hours, when the clock
reaches 24 it should instead show 0. Let us specify this system in Real-Time-Maude.

A state of the system consist of only one observable component, clock(h), where h is
the current hour (the corresponding sort is Time). Let N be a Real-Time Maude variable
of sort Time. For increasing the value of hours, the action is described in the following
tick rule:
rl [tick] : {clock(N)} => {clock((N + 1) rem 24)} in time 1 .

where the system advances time by 1 in each step, with the result that the clock value
increases by 1, but if the clock reaches 24 it instead shows 0.

Similar as Standard Maude, Real-Time Maude system is equipped with model checking
facilities: timed search command and time-bounded LTL model checker. By the way,
in this research, the timed search command is used. The timed search command uses
Standard Maude’s search capabilities and allows the user to search for states that are
reachable in a certain time interval from the initial state. The syntax are the following:
(search in M: s =>* p such that c with no time limit.)

(search in M: s =>* p such that c in time ∼ t.)

(search in M: s =>* p such that c in time-interval between ∼ t and ∼′ t′.)

where ∼ and ∼′ are either <,<=, >, or >=, and t and t′ are ground terms of sort Time.
The following timed search finds all states such that they reachable from state {clock(0)},

and there exists the counted hours is 24.
(tsearch in EXPERIMENT : {clock(0)} =>* {clock(24)} in time < 1000 .)

So, the timed search does not find any state that has the value clock(24).
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Chapter 3

Alloy Specification Language

Alloy is a specification language that was developed by a team led by Daniel Jackson at
the Massachusetts Institute of Technology in the United States in 1997. It was inspired
by the Z specification language and also strongly influenced by object modeling notations.
The specification technique of Alloy is based on relational logic. Moreover, there is a tool,
Alloy Analyzer, that is used to analyze the model of Alloy.

This chapter describes the approach of Alloy with three key elements: a logic, a lan-
guage, and an analysis:

• Logic provides the building blocks of the language. All structures are represented as
relations, and structural properties are expressed with a few simple but powerful
operators. States and executions are both describing using constraints, allowing an
incremental approach in which behavior can be refined by adding new constraints.

• Language adds a small amount of syntax to the logic for structuring descriptions.
The language helps to build larger models from smaller ones, and to factor out
components that can be used more than once.

• Analysis is a form of constraint solving. It offers simulation that finds instances of
states that satisfy a given property, and checking that has a counterexample that
violates a given property. The search for instances is conducted in a space whose
dimensions are specified by a scope, which assigns a bound to the number of objects
of each type.

3.1 Relational Logic

At the core of every specification language is a logic that provides the fundamental con-
cepts. It must be small, simple, and expressive. The specification technique of Alloy is
based on relational logic that combines the quantifiers of first-order logic with the opera-
tors of the relational calculus.

9



3.1.1 Atoms and Relations

By using the relational logic, all structures in the models of Alloy will be built from atoms
and relations, corresponding to the basic entities and the relationships between them.

Atoms

An atom is a primitive entity that is

· indivisible : it can’t be broken down into smaller parts;

· immutable : its properties don’t change over time; and

· uninterpreted : it doesn’t have any built-in properties.

Relations

A relation is a structure that relates atoms. It consists of a set of tuples, each tuple being
a sequence of atoms. We can think that a whole model of Alloy is in a relational database
system that has only tables, which each entry in tables is an atom. To represent a set
of atoms, we use a table with one column. Moreover, we use a table with two or more
columns to represent a relation. A relation can have any number of rows, called its size.
Any size is possible, including zero. The number of column in a relation is called its arity,
and must be one or more.

Example 3.1.1.1 . A set of names, a set of addresses, each of size 3, and a binary
relation from names to addresses with size 2 are represented as:
Name = {(N0), (N1), (N2)}

Addr = {(A0), (A1), (A2)}

address = {(N0,A1), (N1,A2)}

3.1.2 Operators

As in a relational database, relational logic uses operators of the relational calculus for
querying atoms or relations from the structural tables to create a new temporary table.
There are two categories of operators, set operators and relational operators.

Constants

In relational logic, there are three constants:

· none : empty set

· univ : universal set

· iden : identity

Note that none and univ, representing the set containing no atom and every atom,
respectively, are unary. The identity relation is binary, and contains a tuple relating
every atom to itself.
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Set Operators

For the set operators, the tuple structure of a relation is irrelevant; the tuples might as
well be regarded as atoms. The set operators are:

· + (union) : a tuple is in p+ q when it is in p or in q (or both);

· & (intersection) : a tuple is in p&q when it is in p and in q;

· − (difference) : a tuple is in p− q when it is in p but not in q;

· in (subset) : p in q is true when every tuple of p is also a tuple of q;

· = (equality) : p = q is true when p and q have the same tuples.

These operators can be applied to any pair of relations so long as they have the same
arity.

Relational Operators

For the relational operators, the tuple structure is essential: these are the operators that
make relations powerful. These operators can be applied to any pair of relations whenever
they have the different arity. The relational operators are:

· → (arrow product)

The arrow product p→ q of two relations p and q is the relation we get by taking every
combination of a tuple from p and a tuple from q and concatenating them.

Example 3.1.2.1 . Given the following sets of names and addresses
Name = {(N0), (N1)}

Addr = {(A0), (A1)}

We have: Name → Addr = {(N0,A0), (N0,A1), (N1,A0), (N1,A1)}.

· . (dot join)

The quintessential relational operator is composition, or join. To join two tuples
s1 → ... → sm and t1 → ... → tn, we first check that the last atom of the first tuple
(that is, sm) matches the first atom of the second tuple (that is, tn). If they are the same
atom, the result of joining is the tuple that starts with the atoms of the first tuple, and
finishes with the atoms of the second, omitting just the matching atom. If not, the result
is empty.

The dot join p.q of relations p and q is the relation we get by joining every combination
of a tuple in p and a tuple in q.

Example 3.1.2.2 . Given two following relations A and B

A = {(A0,N0), (A0,N2), (A1,N1)}

B = {(N0,B0), (N0,B1), (N1,B1)}

We have: A.B = {(A0,B0), (A0,B1), (A1,B1)}.
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· [ ] (box join)

The box operator is semantically identical to dot join, but takes its arguments in a
different order, and has different precedence. The expression e1[e2] has the same meaning
as e2.e1.

· ∼ (transpose)

The transpose ∼r of a binary relation r takes its mirror image, forming a new relation
by reversing the order of atoms in each tuple.

· ∧ (transitive closure)

A binary relation is transitive if, whenever it contains the tuples a → b and b → c, it
also contains a→ c, or more succinctly as a relational constraint: r.r in r.

The transitive closure ∧r of a binary relation r is the smallest relation that contains r
and is transitive. We can compute the transitive closure by taking the relation, adding
the join of the relation with itself, then adding the join the relation with that, and so on:
∧r = r + r.r + r.r.r + ...

The reflexive-transitive closure ∗r is the smallest relation that contains r and is both
transitive and reflexive, and is obtained by adding the identity relation to the transitive
closure: ∗r = ∧r + iden.

Example 3.1.2.3 . Given a following relation A

A = {(A0,N0), (A0,N1), (N0,B1), (B1, C2)}

We have:
∧A = {(A0,N0), (A0,N1), (N0,B1), (B1, C2), (A0,B1), (N0,C2), (A0,C2)}.
∗A = {(A0,N0), (A0,N1), (N0,B1), (B1, C2), (A0,B1), (N0,C2), (A0,C2),

(A0,A0), (N0,N0), (N1,N1), (B1,B1), (C2,C2)}.

· :> and <: (domain and range restrictions)

The restriction operators are used to filter relations to a given domain or range. The
expression s <: r, formed from a set s and a relation r, contains those tuples of r that
start with an element in s. Similarly, r :> s contains the tuples of r that end with an
element in s.

· ++ (override)

The override p ++ q of relation p by relation q is like the union, except that the tuples
of q can replace the tuples of p rather than just augmenting them. Any tuple in p that
matches a tuple in q by starting with the same element is dropped. The relation p and q
can have any matching arity of two or more.
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3.1.3 Constraints

We can use the temporary tables, which are queried by using set operators or relational
operators, to define constraints of the model of Alloy. To define larger constraints of the
model, relational logic uses logical operators and quantifying constraints of the first-order
logic to combine the small constraints.

Logical Operators

The logical operators that are used in relational logic are similar with the operators used
in boolean expressions in programming language. The logical operators are:

· not (negation)

· and (conjunction)

· or (disjunction)

· implies (implication)

· iff (bi-implication)

Moreover, there is an else keyword that can be used with the implication operator;
C1 implies F1
else C2 implies F2
else F3

says that under condition C1, F1 holds, and if not, then under condition C2, F2 holds,
and if not, F3 holds.

Quantification

A quantified constraint takes the form
Q x: e | F

where F is a constraint that contains the variable x, e is an expression bounding x and Q
is a quantifier.

The forms of quantification in Alloy are:

· all x: e | F (F holds for every x in e);

· some x: e | F (F holds for some x in e);

· no x: e | F (F holds for no x in e);

· lone x: e | F (F holds for at most one x in e);

· one x: e | F (F holds for exactly one x in e).
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Moreover, there is a disj keyword that can restrict the binding only to include ones
which the bound variables are disjoint from one another by using the keyword disj before
the declaration. So,
all disj x, y: e | F

means that F is true for any distinct combination of values for x and y.
In addition, quantifiers can be applied to expressions too:

· some e (e has some tuples);

· no e (e has no tuples);

· lone e (e has at most one tuple);

· one e (e has exactly one tuple).

Let Expressions

When an expression appears repeatedly, or is a subexpression of a larger, complicated
expression, we can factor it out. The form
let x = e | A

is short for A with each occurrence of the variable x replaced by the expression e.

3.1.4 Declarations and Multiplicity Constraints

Declarations

A declaration introduces a relation name. A constraint of the form
relation−name : expression

is called a declaration, and says that the relation named on the left has a value that is a
subset of the value of the bounding expression on the right. The bounding expression is
usually formed with unary relations and the arrow operator, but any expression can be
used.

Set Multiplicities

A declaration can include multiplicity constraints, which are sometimes implicit. Mul-
tiplicities are expressed with the multiplicity keywords:

· set e (any number);

· one e (exactly one);

· lone e (zero or one);

· some e (one or more).

From the form x: m e, it constrains the size of x according to m. For a set-valued
bounding expression, omitting the keyword is the same as writing one keyword.
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Relation Multiplicities

When the bounding expression is a relation and is constructed with the arrow operator,
multiplicities can be appear inside it. Suppose the declaration looks like this:
r: A m → n B

where m and n are multiplicity keywords. Then the relation r is constrained to map each
member of A to n members of B, and to map m members of A to each member of B.

Example 3.1.4.1 Given two sets A and B.

· r: A→ B
says that the relation r maps a set A to a set B;

· r: some A
says that r is a nonempty subset of A;

· r: A lone→ some B
says that the relation r maps a set A to a set B such that each member of B belongs
to at most one member of A, and each member of A maps to at least one member
of B.

3.1.5 Integers and Arithmatic

To create the integer expressions, we need to use the operators of integer. The following
operators can be used to combine integers:

· plus (addition);

· minus (subtraction);

· mul (multiplication);

· div (division);

· rem (remainder).

And the following to compare them:

· = (equals);

· < (less than);

· > (greater than);

· =< (less than or equal to);

· >= (greater than or equal to).

Moreover, there is an operator # that applied to a relation gives the number of tuples it
contains. The #e is an integer representing the number of tuples in the relation denoted
by e, and that such expressions can be combined with addition and subtraction, and
compared.
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3.2 Language

A language for describing software abstractions is more than just a logic. To organize a
model, language builds larger models from smaller ones, and to factor out components
that can be used more than once. There are also small syntactic details that make a
language usable in practice. Finally, there’s the need to communicate with an analysis
tool, by indicating which analyses are to performed.

3.2.1 Signatures and Fields

Signatures

A signature introduces a set of atoms. The declaration
sig A { }

introduces a set named A. A signature is actually more than just a set, because it can
include declarations of relations, and can introduce a new type implicitly.

A set can be introduced as a subset of another set by using the command extends or
in. The forms
sig A1 extends A { }, and
sig B1 in B { }

introduce sets named A1 and B1 that are subsets of A and B, respectively. The signatures
A1 and B1 are called subsignature of A and B, respectively. Moreover, the signatures
A and B are called top−level signature. The difference between the commands extends
and in is the mutually disjoint property. By using the command extends, the two subsets
of the same set are mutually disjoint. However, by using the command in, the two subsets
are not necessarily mutually disjoint.

Example 3.2.1.1 Given the following sets
sig A1 extends A { }

sig A2 extends A { }

sig B1 in B { }

sig B2 in B { }

The subset A1 and A2 are disjoint, but the subset B1 and B2 may intersect.

A multiplicity keyword placed before a signature declaration constrains the number of
elements in the signature’s set. The form
m sig A { }

says that set A has m elements.
Furthermore, there is an abstract signature that has no element except those belonging

to its extensions. To declare an abstract signature, the form abstract sig A { } is
used.

Example 3.2.1.2 Given the following sets
abstract sig T { }

one sig A, B, C extends T { }

says that the set T has only threes elements, A, B, and C.
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Fields

Relations are declared as fields of signatures. The form
sig A {f: e}

introduces a relation f whose domain is A, and whose range is given by the expression e,
as if a fact included the declaration formula f in A -> e.

The expression e can denote a set with a set multiplicity, and can denote a relation
(that is, its arity is two or more) with a relation multiplicity.

Example 3.2.1.3 Given the following sets
sig A {r: B some -> C}

sig B { }

sig C { }

says that the relation r is a ternary relation that each of set A has a field of set B
associates with set C, which each member of C belongs to at least one member of B.

3.2.2 Facts, Predicates, Functions, and Assertions

The constraints of a model are organized into paragraphs. Assumptions are placed in
fact paragraphs; implications to be checked are placed in assertions; constraints to be
used in different contexts are packed as predicates; and reusable expressions are packaged
as functions.

Facts

Constraints that are assumed always to hold are recorded as facts. A model can have
any number of facts labeled by using the keyword fact with the syntax
fact "name" { "expressions" }

where “name” is the name of the fact, and “expressions” is the list of expressions that
define constraints of a model.

Functions and Predicates

There are constraints that we don’t want to record as facts. We might want to analyze the
model with a constraint included and excluded; check whether a constraint follows from
some other constraints; or declare a constraint so it can be reused in different contexts.
Predicates package expressions for such purposes. Functions package expressions for reuse.

A function is a named expression, with zero or more declarations for arguments, and
an expression bounding for the result. When the function is used, an expression must
be provided for each argument; its meaning is just the function’s expression, with each
argument replaced by its instantiating expression. Functions are defined by using the
keyword fun with the syntax
fun "name" ("parameters"): "returning expression" { "expression" }
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where “name” is the name of the function, “parameters” are the list of parameters,
“returning expression” is the expression that bounds returning value, and “expression”
is the expression of the function.

A predicate is a named constraints, with zero or more declarations for arguments. When
the predicate is used, an expression must be provided for each argument; its meaning is
just the predicate’s constraint with each argument replaced by its instantiating expression.
Predicates are always used to define operators of the models. Predicates are defined by
using the keyword pred with the syntax
pred "name" ("parameters") { "expressions" }

where “name” is the name of the predicate, “parameters” are the list of parameters, and
“expressions” is the list of expressions that define constraints of the predicate.

Assertions

An assertion is a constraint that is intended to follow from the facts of the model. The
analyzer checks assertions. If an assertion does not follow from the facts, then either a
design flaw has been exposed, or a misformulation. Assertions are defined by using the
keyword assert with the syntax
assert "name" { "expressions" }

where “name” is the name of the assertion, and “expressions” is the list of expressions
that define constraints of the assertion.

3.2.3 Commands and Scope

To analyze a model, we write a command and instruct the tool to execute it. A run
command tells the tool to search for an instance of a predicate. A check command tells
it to search for a counterexample of an assertion. The forms
run "predicate’s name"

check "assertion’s name"

are used to define the run and check commands, respectively.
In addition to naming the predicate or assertion, we may also give a scope that bounds

of the instances or counterexamples that will be considered. If we omit the scope, the tool
will use the default scope in which each top-level signature is limited to three elements.

To specify a scope explicitly, we can give a bound for each signature that corresponds
to a basic type. We can give bounds on top-level signatures, or on extension signatures, or
even on a mixture of the two, so long as whenever a signature has been given a bound, the
bounds of its parent and of any other extensions of the same parent can be determined.

Example 3.2.3.1 Given these declarations of sets
abstract sig B { }

sig B1 extends B { }

sig B2 extends B { }

sig C extends B2 { }

and an assertion A, the following commands are well formed:
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check A for 5 B

check A for 4 B1, 3 B2

but this command is ill-formed
check A for 3 B1, 3 C

because it leaves the bound on B2 unspecified.

Note that a scope declaration only gives an upper bound on the size of each set. If we
want to prescribe the exact size, we can use the keyword exactly

3.2.4 Modules

Module Declarations and Imports

The first line of every module is an optional module header of the syntax
module "modulePathName"

Every external module that is used must have an explicitly import following the optional
header and before any signatures, paragraphs or commands, whose the syntax is
open "modulePathName"

Parametric Modules

A module can be parameterized by one or more signature parameters, given as a list of
identifiers in brackets after the module name. Any importing module must then instanti-
ate each parameter with the name of a signature. To import the parametterized modules,
the following syntax is used:
open "modulePathName" [ "parameters" ]

The most common use of parameterized modules is for generic data structures, such
as orderings, queues, lists, and trees. The type parameters represent the types of the
elements held in the data structure.

Module Ordering

The module Ordering is one of the useful modules in Alloy. It is a generic built-in module,
which is a parameterized module. It sets the properties between each atom in the set that
is a parameter to have an ordering. To use the module Ordering, we must import:
open util/ordering["Name of Signature"]

Moreover, there are useful functions in module Ordering. The functions are

· first (gives the first element in the order);

· next (gives the element following a given element);

· last (gives the last element in the order);

· prevs (gives the set of all elements that are before a given element).
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Example 3.2.4.1 . Given the signature A that is a parameter of module Ordering
open util/ordering[A]

sig A { }

And given the assertion AST that is executed by defining the bound of 3 for signature A
assert AST { }

check AST for 3 A

In this case, there are 3 atoms in the set A that each one has an order. For example, if
the set A has members {a1, a2, a3,}, one possible order is that a1 comes before a2 and
a2 comes before a3. From this order, the result of the following functions are:
first = {(a1)};
last = {(a4)};
a2.next = {(a3)};
a3.prevs = {(a1), (a2)}.

3.3 Analysis

For Alloy specification language, there is a tool for analyzing properties of models of Alloy,
that is called Alloy Analyzer. The analysis underlying Alloy Analyzer is instance finding,
which relies on SAT solver.

3.3.1 Instance Finding

Checking an assertion and running a predicate reduce to the same analysis problem:
finding some assignment of relations to variables that makes a constraint true. So rather
than referring to both problems, we’ll refer just to the problem of checking assertions.

The instance finding is an analysis technique that looks for a refutation, by checking the
assertion against a huge set of test cases, each being a possible assignment of relations to
variables. If the assertion is found not to hold for a particular case, that case is reported as
a counterexample. If no counterexample is found, it’s still possible that the assertion does
not hold, and has a counterexample that is larger than any of the test cases considered.

Moreover, the instance finding is well suited to analyzing invalid assertions because it
generates counterexamples, which can usually be easily traced back to the problem in the
description, and because invalid assertions tend to be analyzed much more quickly than
valid ones (since a valid assertion requires the entire space of possible instances to be
covered, whereas, for an invalid assertion, the analysis can stop when the first instance
has been found).

3.3.2 The Notion of Scope

To make instance finding feasible, a scope is defined that limits the size of instances con-
sidered by specifying the number of atoms in each set. The analysis effectively examines
every instance within the scope, and an invalid assertion will only not be found if its
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smallest counterexample is outside the scope. A richer notion of scope turns out to be
more useful , in which each signature is bounded separately, under the user’s control.

The scope thus defines a multidimensional space of test cases, each dimension corre-
sponding to the bound on a particular signature. Even a small scope usually defines a
huge space. In the default scope of 3, for example, which assign a bound of three to each
signature, each binary relation contributes 9 bits to the state (since each three elements
of the domain may or may not be associated with each three elements of the range) - that
is, a factor of 512. So a tiny model with only four relations has a space of over a billion
cases.

Instance finding has far more extensive coverage than traditional testing, so it tends to
be much more effective at finding bugs. In short: Most bugs have small counterexamples.
That is, if an assertion is invalid, it probably has a small counterexample. It is called the
”small scope hypothesis” by Daniel Jackson [JV00], and it has an encouraging implication:
if we examine all small cases, we are likely to find a counterexample.

3.3.3 Analysis Constraints and Variables

When we run a predicate or check an assertion, the analyzer searches for an instance of an
analysis constraint: an assignment of values to the variables of the constraint for which
the constraint evaluates to true.

In the case of a predicate, the analysis constraint is the predicate’s constraint conjoined
with the facts of the model. An instance is an example: a scenario in which both the
facts and the predicate hold.

In the case of an assertion, the analysis constraint is the negation of the assertion’s
constraint conjoined with the facts of the model. An instance is a counterexample: a
scenario in which the facts hold but the assertion does not (or, equivalently, a scenario in
which the assertion fails to follow from the facts).

The variables that are assigned in an instance comprise:

· the sets associated with the signatures;

· the relations associated with the fields;

· for a predicate, its arguments.

3.3.4 Outputs of Alloy Analyzer

When executing the run command or check command, if Alloy Analyzer can find an
instance or a counterexample, it will show only one possible instance. The tool’s selection
of instances is arbitrary, and depending on the preferences we have set, may even change
from run to run. In practice, though, the first instance generated does intend to be a
small one. This is useful, because the small instances are often pathological, and thus
more likely to expose subtle problems.

Moreover, outputs from Alloy Analyzer can be shown in a variety of forms, textual and
graphical, that makes it easy to understand the results.
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Chapter 4

A Case Study: Hospital Problem

The hospital problem is one of the non-trivial case studies that were not specified and
solved by using Alloy and Maude before. So, we decide to use the hospital problem as a
case study to compare between Alloy and Maude. Let us describe the case study in more
details.

In the hospital problem, there are two groups of patients, G1 and G2, and each group
consists of three patients. Moreover, in the hospital, there are six rooms as follows:

· Room 1 (R1) : the room for patients in the group G1;

· Room 2 (R2) : the room for patients in the group G2;

· Rehabilitation Room (RR) : the room for patients to do a rehabilitation;

· Bath Room (BR) : the room for patients to take a bath.

For each patient, he needs to do activities that each one requires the different number
of nurses to help, and limitation of time to do. The patients from the same group need
to do the same activities with the same requirements. However, for the patients from the
different groups, they need to do the different activities and different requirements to do
each activity.

For each patient in the group G1, he starts with having a meal in the room R1, moving
to the rehabilitation room RR, doing a rehabilitation, and finally, coming back to the
room R1. So, there are the constraints for doing activities as follows:

· For each patient to have a meal in room R1, it takes time 30 to 60 minutes and requires
1 nurse supporting his meal.

· For each patient to move from room R1 to the rehabilitation room RR, it takes time 3
to 5 minutes and requires 1 nurse helping to move.

· For each patient to do a rehabilitation in room RR, it takes time 30 to 45 minutes and
requires no nurse.
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· For each patient to come back from the rehabilitation room RR to the room R1, it takes
time 3 to 5 minutes and requires 1 nurse helping to move back.

· For the rehabilitation room RR, at most 2 patients can do a rehabilitation at the same
time.

For each patient in the group G2, he starts with having a meal in the room R2, moving
to the bath room BR, taking a bath, and finally, coming back to the room R2. So, there
are the constraints for doing activities as follows:

· For each patient to have a meal in room R2, it takes time 30 to 60 minutes and requires
no nurse.

· For each patient to move from room R2 to the bath room BR, it takes time 1 to 5
minutes and requires 2 nurses helping to move.

· For each patient to take a bath in room BR, it takes time 15 to 30 minutes and requires
1 nurse helping to take a bath.

· For each patient to come back from the bath room BR to the room R2, it takes time 1
to 5 minutes and requires 2 nurses helping to move back.

· For the bath room BR, at most 2 patients can take a bath at the same time.

Figure 4.1 and Figure 4.2 represent the sequence of activities, and the requirements of
nurses and time of each activity for the patients from groups G1 and G2, respectively.

The question of the hospital problem is that when the six patients can start having
meals at a same time, how many nurses that are sufficient for finishing the aforementioned
activities, which satisfy the following requirements:

· Those activities should be done in 180 minutes;

· Each patient from group G2 should start moving back to room R2 from the bath room
BR in 5 minutes (inclusive) after finish taking a bath (says that we should not keep
them waiting in bath room BR more than 5 minutes after finish taking a bath).

Note that there are two assumptions for the hospital problem. The assumptions are

· It does not take any time for a nurse alone to move from one place to another;

· The times are discrete, which can be expressed as integers or natural numbers.

By the way, we can think that the whole system of hospital problem is the concurrent
system that has shared resources [Bac93]. We can see the six patients as six processes
that concurrently execute in the system. For nurses, spaces in rehabilitation room RR,
and spaces in bath room BR, we can see them as the shared resources that all processes
use.
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Have a meal Walk toRR Rehabilitation Walk backG1

MinTime: 30mins
MaxTime: 60mins
Requires: 1 nurse

MinTime: 3mins
MaxTime: 5mins
Requires: 1 nurse

MinTime: 30mins
MaxTime: 45mins
Requires: 1 RR

MinTime: 3mins
MaxTime: 5mins
Requires: 1 nurse

Figure 4.1: Diagram represents activities that each patient in group G1 needs to do.

Have a meal Walk toBR Take a bath Walk backG2

MinTime: 30mins
MaxTime: 60mins

MinTime: 1mins
MaxTime: 5mins
Requires: 2 nurses

MinTime: 15mins
MaxTime: 30mins
Requires: 1 BR,
and 1 nurse

MinTime: 1mins
MaxTime: 5mins
Requires: 2 nurses

Figure 4.2: Diagram represents activities that each patient in group G2 needs to do.
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Chapter 5

Specification and Solving Hospital
Problem

In this research, we specify the hospital problem in both specification languages, Alloy
and Maude.

5.1 Designing State Transitions of Each Patient

To specify the hospital problem, first, we need to design the state transitions that represent
the steps of doing activities for each patient in two groups. The steps of doing activities
for patients in groups G1 and G2 are represented with the same state transitions (just
some parts are difference). So rather than referring to both groups of patients, we’ll refer
just to each patient in group G1.

Figure 5.1 shows the state transition that represents steps of doing activities for each
patient in group G1. There are 9 states, which can be separated into two groups. The first
group, we call group of Doing states, consists of Meal state, WalkToRR state, InRR
state and WalkBackR1 state. The group of Doing states represents the states that refers
to the main activities, that each patient needs to do. For the second group, we call group
of Waiting states, consists of Remain state, WaitForWalkToRR state, WaitForInRR
state, WaitForWalkBackR1 state and Fin state. The group ofWaiting states represents
the states that each patient are waiting for doing the main activities when the resources
are not sufficient to do. Each patient may or may not be in the states in the group of
Waiting states, but they must be in all states of the group of Doing state.

In the initial step, each patient is in the Remain state and has a state transition as
follows:

· In the Remain state : patient must change state to Meal state for having a meal.
However, before changing state, it needs to check that can the patient has a meal?
The condition to check is that the number of remaining nurses must suffice to help.
If so, the patient must move to Meal state. Otherwise, he must wait in Remain
state until the condition holds.
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· In the Meal state : patient must take time to have a meal at least 30 minutes, but
at most 60 minutes before changing state to WalkToRR state. However, before
changing state, it needs to check that can the patient walks? The condition to
check is that the number of remaining nurses must suffice. If so, the patient must
change to WalkToRR state. Otherwise, he must wait in WaitForWalkToRR state
until the number of nurses suffices.

· In the WaitForWalkToRR state : patient must always try to change state to
WalkToRR state. If the condition to change the state holds, the patient must
change the state immediately.

· In the WalkToRR state : patient must take time to walk at least 3 minutes, but
at most 5 minutes before changing state to InRR state. However, before changing
state, it needs to check that can the patient do a rehabilitation? The condition
to check is that there is a free space in the rehabilitation room. If so, the patient
must change to InRR state. Otherwise, he must wait in WaitRR state until the
condition holds.

· In the WaitForInRR state : patient must always try to change state to InRR state.
If the condition to change the state holds, the patient must change the state imme-
diately.

· In the InRR state : patient must take time to do a rehabilitation at least 30 minutes,
but at most 45 minutes before changing state to WalkBackR1 state. However, be-
fore changing state, it needs to check that can the patient walks back? The condition
to check is that the number of remaining nurses must suffice. If so, the patient must
change to WalkBackR1 state. Otherwise, he must wait in WaitForWalkBackR1
state until the number of nurses suffices.

· In the WaitForWalkBackR1 state : patient must always try to change state to
WalkBackR1 state. If the condition to change the state holds, the patient must
change the state immediately.

· In the WalkBackR1 state : patient must take time to walk back at least 3 minutes,
but at most 5 minutes before changing state to Fin state.

· In the Fin state : if the patient is in the Fin state, it means that the patient has
already done all activities, and he must not change state anymore.

Note that when each patient changes the state, he must release all acquired resources
before trying to change the state. For example, if the patient is in the Meal state and
wants to change the state to WalkToRR state, he must release the resource of one nurse
to the system before changing.

For the patients in group G2, we use the same state transition to represent their steps
of doing activities. However, there are some different points between the state transitions
of patients in group G1 and G2, which are:
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· the names of states, which represent the different activities, in state transitions;

· the conditions, which are used to check that can patients change states?;

· the limitation of time that patients must take to do each activity; and

· the resource of spaces in the bath room BR that is used instead of spaces in the reha-
bilitation room RR.

5.2 Specification and Solving Problem in Alloy

5.2.1 Specification in Alloy

To specify the hospital problem in Alloy, we specify the whole system with atoms and rela-
tions that are represented by signatures and fields. Moreover, we describe the constraints
and state transitions with facts.

Specification of Atoms and Relations of Hospital Problem

For the hospital problem, there are 3 abstract signatures, 23 signatures, and 3 fields.
The signatures are:

· Patient : we specify the signatures of patients as in Program 5.1, from line 4 to line
11. The signature Patient is an abstract signature, which consists of three subsig-
natures. The three subsignatures are:

· Patient1 : represents a set of atoms of patients in group G1,

· Patient2 : represents a set of atoms of patients in group G2,

· NoPatient : represents an atom of a dummy patient that does not refer to any
patient in the system. This atom is used to associate with nurses that are not
helping any patient in each time.

· Nurse : we specify the signature of nurses as in Program 5.1, from line 13 to line 15.
The signature Nurse represents a set of atoms of nurses.

· Activity1 : we specify the signature of activity1 as in Program 5.1, from line 17 to
line 26. The signature Activity1 represents the set of all states that refers to steps
of doing activities for each patient in group G1. It is an abstract signature that
consists of 9 subsignatures. Each subsignature represents each state of activity, and
each one consists of only one atom.

· Activity2 : we specify the signature of activity2 as in Program 5.1, from line 28 to line
37. The signature Activity2 represents the set of all states that refers to steps of
doing activities for each patient in group G2. Same as Activity1, it is an abstract
signature that consists of 9 subsignatures.
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Figure 5.1: Diagram represents state transition of each patient in group G1.

28



· Time : we specify the signature of time as in Program 5.1, from line 1 to line 2. Since
the signature Time is defined as a parameter of module Ordering, the atoms in its
set have an order. Each atom in set Time is used to represent each minute of the
system.

The fields are:

· doActivity1 : we specify the field doActivity1 in the signature Patient1. The field
doActivity1 is a ternary relation that associating each atom of Patient1 with relation
from Activity1 to Time, which each atom of Time belongs to exactly one atom of
Activity1. This relation represents the activity that each patient in group G1 does in
each minute. Moreover, for each minute, each patient in group G1 must do exactly
one activity.

· doActivity2 : we specify the field doActivity2 in the signature Patient2. The field
doActivity2 is a ternary relation that associating each atom of Patient2 with relation
from Activity2 to Time, which each atom of Time belongs to exactly one atom of
Activity2. This relation represents the activity that each patient in group G2 does in
each minute. Moreover, for each minute, each patient in group G2 must do exactly
one activity.

· help : we specify the field help in the signature Nurse. The field help is a ternary
relation that associating each atom of Nurse with relation from Patient to Time,
which each atom of Time belongs to exactly one atom of Patient. This relation rep-
resents the patient that each nurse helps in each minute. Moreover, for each minute,
each nurse must help exactly one patient. However, in the case of nurse that does
not help any patient, the nurse must associate with the dummy patient,NoPatient,
in that minute.

Note that the relations of the system are used to represent the states of system, which
record that in each minute, each patient does which activity and each nurse helps which
patient?

Example 5.2.1.1 . Given following sets of Patient1, Nurse, and Time:
Patient1 = {(P0), (P1), (P2)}

Nurse = {(N0), (N1)}

Time = {(T0), (T1), (T2)}

If in the relation doAcitivity1 consists of a tuple (P0,Meal, T2), it means that at the
minute T2, patient P0 has a meal. Moreover, if in the relation help consists of a tuple
(N0, P0, T2), it means that at the minute T2, Nurse N0 helps patient P0.

Program 5.1: Specification of signatures and fields of Hospital Problem

1 open u t i l / o rde r ing [ Time ]
2 s i g Time {}
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3
4 abstract s i g Pat ient {}
5 s i g Pat ient1 extends Pat ient {
6 doAct iv i ty1 : Act iv i ty1 one −> Time
7 }
8 s i g Pat ient2 extends Pat ient {
9 doAct iv i ty2 : Act iv i ty2 one −> Time

10 }
11 one s i g NoPatient extends Pat ient {}
12
13 s i g Nurse {
14 help : Pat ient one −> Time
15 }
16
17 abstract s i g Act iv i ty1 {}
18 one s i g Remain extends Act iv i ty1 {}
19 one s i g Meal extends Act iv i ty1 {}
20 one s i g WaitForWalkToRR extends Act iv i ty1 {}
21 one s i g WalkToRR extends Act iv i ty1 {}
22 one s i g WaitForInRR extends Act iv i ty1 {}
23 one s i g InRR extends Act iv i ty1 {}
24 one s i g WaitForWalkBackR1 extends Act iv i ty1 {}
25 one s i g WalkBackR1 extends Act iv i ty1 {}
26 one s i g Fin extends Act iv i ty1 {}
27
28 abstract s i g Act iv i ty2 {}
29 one s i g Remain2 extends Act iv i ty2 {}
30 one s i g Meal2 extends Act iv i ty2 {}
31 one s i g WaitForWalkToBR extends Act iv i ty2 {}
32 one s i g WalkToBR extends Act iv i ty2 {}
33 one s i g WaitForInBR extends Act iv i ty2 {}
34 one s i g InBR extends Act iv i ty2 {}
35 one s i g WaitForWalkBackR2 extends Act iv i ty2 {}
36 one s i g WalkBackR2 extends Act iv i ty2 {}
37 one s i g Fin2 extends Act iv i ty2 {}

Specification of State Transitions

The state of Alloy is recorded as a tuple in the relations. We use fact to define state
transitions as the constraints that are assumed always to hold. Moreover, we use predicate
to define operators that are used to assign the values of variables in the state when
changing minutes of time. As we described in the section 5.1, the state transitions that
represent step of doing activities of patients in group G1 and G2 are the same (just the
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names and some conditions are difference). So, we’ll refer just to the specification of state
transitions of each patient in group G1.

Program 5.2 represents the specification of state transitions of hospital problem in Alloy.
We use predicate as operators to assign the values of variables in the states (values of
atoms in the tuples in each relation). In this system, there are two roles of predicate.

The roles of predicate are:

· Assigning the initial state to all patients : we specify the predicate that is used
to assign the values of initial state as in Program 5.2, from line 1 to line 4.

The predicate is named init, and it has one parameter. The parameter is a given
minute of time t, that is set to be an initial minute of the system. In the predicate,
it assigns the tuples, which associate each patient in group G1 with a relation from
atom Remain to a given minute t (and each patient in group G2 with a relation from
atom Remain2 to a given minute t), to the relation doActivity1 (and doActivity2).
It represents that in the initial state of the system, all patients must be in the
Remain state.

· Assigning the state to a given patient and minute : in the system, there are 9
predicate paragraphs of this type of predicate for each group of patients (18 predicate
paragraphs for two groups of patients). Each one is used to assign each state of doing
activity to a given patient at a given minute. Since all 18 predicates are the same
(just changes the names of predicates and names of states), we’ll show only one
predicate paragraph that is specified as in Program 5.2, from line 6 to line 8.

The predicate is named haveMeal, and has two parameters. The parameters are
a given minute of time t′, and a given patient p in group G1. In the predicate, it
assigns the tuple, which associate the patient p with a relation from atom Meal to
a given time t′, to the relation doActivity1. It represents that at the given time t′,
the given patient p must be in the Meal state.

Moreover, we use fact, is named Traces, to define state transitions as in Program 5.2,
from line 10 to line 31.

At first, in line 11, we call the predicate init to assign the initial state by parsing the
return value of operator first as a parameter. The operator first returns the first atom
of order in the set Time. And then, we define the constraint for state transition, as from
line 12 to 30, that for each minute t, each patient p in group G1 must be assigned the
next state of activity in the next minute t′, which depends on the current state (where t
represent a current minute and t′ represents a next minute that follows t from the order
in set Time). To check the current states of activities of each patient in group G1, we
check the tuples in the relation doActivity1 by using dot join operator. Moreover, to
assign the next states of activities of each patient in group G1, we use the predicate that
are described above, by parsing the next time t′ and each patient p as parameters.

We assign the next states of activities for each patient in state transition depends on
the current states. There are 9 cases of the current states as following:
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· Remain state (p.doActivity1.t = Remain) : the next state can be Meal state, or
the same state (Remain state).

· Meal state (p.doActivity1.t = Meal) : the next state can be WaitForWalkToRR
state, WalkToRR state, or the same state (Meal state).

· WaitForWalkToRR state (p.doActivity1.t = WaitForWalkToRR) : the next
state can be WalkToRR state, or the same state (WaitForWalkToRR state).

· WalkToRR state (p.doActivity1.t = WalkToRR) : the next state can be InRR
state, WaitForInRR state, or the same state (WalkToRR state).

· WaitForInRR state (p.doActivity1.t = WaitForInRR) : the next state can be
InRR state, or the same state (WaitForInRR state).

· InRR state (p.doActivity1.t = InRR) : the next state can beWaitForWalkBackR1
state, WalkBackR1 state, or the same state (InRR state).

· WaitForWalkBackR1 state (p.doActivity1.t = WaitForWalkBackR1) : the next
state can be WalkBackR1 state, or the same state (WaitForWalkBackR1 state).

· WalkBackR1 state (p.doActivity1.t = WalkBackR1) : the next state can be Fin
state, or the same state (WalkBackR1 state).

· Fin state (p.doActivity1.t = Fin) : the next state can be only Fin state (it will
not change the state anymore).

Program 5.2: Some Parts of Specification of State Transitions in Alloy

1 pred i n i t ( t : Time) {
2 a l l p : Pat ient1 | p . doAct iv i ty1 . t = Remain
3 a l l q : Pat ient2 | q . doAct iv i ty2 . t = Remain2
4 }
5
6 pred haveMeal ( t ’ : Time , p : Pat ient1 ) {
7 p . doAct iv i ty1 . t ’ = Meal
8 }
9

10 f a c t Traces {
11 f i r s t . i n i t
12 a l l t : Time − l a s t | l e t t ’ = t . next |
13 a l l p : Pat ient1 |
14 p . doAct iv i ty1 . t = Remain i m p l i e s
15 ( haveMeal [ t ’ , p ] or notDo [ t ’ , p ] )
16 e l s e p . doAct iv i ty1 . t = Meal i m p l i e s
17 (walkRR [ t ’ ,p ] or waitForWalkRR [ t ’ ,p ] or haveMeal [ t ’ , p ] )
18 else p . doAct iv i ty1 . t = WaitForWalkToRR i m p l i e s
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19 (walkRR [ t ’ ,p ] or waitForWalkRR [ t ’ ,p ] )
20 else p . doAct iv i ty1 . t = WalkToRR i m p l i e s
21 (RR[ t ’ ,p ] or waitForRR [ t ’ ,p ] or walkRR [ t ’ ,p ] )
22 e l s e p . doAct iv i ty1 . t = WaitForInRR i m p l i e s
23 (RR[ t ’ ,p ] or waitForRR [ t ’ ,p ] )
24 e l s e p . doAct iv i ty1 . t = InRR i m p l i e s
25 ( walkBack [ t ’ , p ] or waitForWalkBack [ t ’ , p ] or RR[ t ’ ,p ] )
26 else p . doAct iv i ty1 . t = WaitForWalkBackR1 i m p l i e s
27 ( walkBack [ t ’ , p ] or waitForWalkBack [ t ’ , p ] )
28 else p . doAct iv i ty1 . t = WalkBackR1 i m p l i e s
29 ( done [ t ’ , p ] or walkBack [ t ’ , p ] )
30 else done [ t ’ , p ]
31 }

By using only fact Traces to define state transitions, each patient can do any activ-
ity without any constraint of time and any requirement. So, we need to specify more
constraints of the system that are described in the next section.

Specification of Constraints

We specify the constraints of hospital problem by using fact, names SetConstraints,
that is showed some parts in Program 5.3. For the constraints of hospital problem, there
are four types of constraints. The types of constraints are:

· Constraints of limit of time for doing activity : this type of constraint is used to
specify the minimum and the maximum minutes that each patient must take to do
each activity.

To specify the constraint, we set the minimum and the maximum numbers of
tuples in the relations doAcitivity1 and doActivity2 by using the operator # to
count the number of tuples of each state of activities. Since the approach that is
used to specify for all states of activities are the same (just change the minimum
and the maximum minutes, and names of states of activities), we’ll show just to the
constraint of state InRR of patients in group G1, which is specified as in Program
5.3, from line 2 to line 3. The constraint says that for any patient p in group G1,
the number of tuples, that consist of the atom InRR, in the relation doActivity1
must be at least 30 tuples and at most 45 tuples.

Note that the states of activities in the group of Waiting states do not need to
specify this type of constraint, because there is no limit of time for waiting.

· Constraints of requiring nurses for doing activity : this type of constraint is used
to specify the number of nurses that is required for helping each patient to do each
activity.

To specify the constraint, we set the number of tuples in the relation help by using
the operator #. Since the approach that is used to specify for all states of activities
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are the same (just change the number of nurses, and names of states of activities),
we’ll show just to the constraint of state Meal of patients in group G1, which is
specified as in Program 5.3, from line 5 to line 6. The constraint says that for any
patient p, if he is in the Meal state at any minute t, then at the same minute t, the
number of nurses that helps the patient p must be 1.

Note that for the state in the group of Waiting states, the number of required
nurse is 0.

· Constraints of the number of patients that can enter the rooms : In the hos-
pital problem, there are two rooms, a rehabilitation room (RR) and a bath room
(BR). For each room, at most two patients can enter in the same minute.

To specify the constraint, we set the maximum numbers of tuples, that consists of
the InRR (or InBR), in the relation doActivity1 (or doActivity2) at any time by
using the operator #. The constraints are described as in Program 5.3, from line 8
to line 9. It says that for any minute t, the number of tuples, that consists of atom
InRR (and InBR), in the relation doActivity1 (and doActivity2) must be less than
3 tuples.

· Constraints of the states in the group of Waiting state : Because there is no
constraint of limit of time of the states in the group of Waiting states, each patient
can stay in the Waiting states all the time, and it enables the flaw of the specifica-
tion. So, we need to specify this type of constraint. This type of constraint is used
to specify that each patient can be in the states of the group of Waiting state only
when he cannot do the main activities.

Since the approach that is used to specify for all Waiting states are the same
(just change conditions, and names of states of activities), we’ll show just to the
constraint of state WaitForWalkToRR and WaitForInRR, which are specified as
in Program 5.3, from line 11 to line 13, and from line 14 to line 16, respectively.

The constraint of WaitForWalkToRR state says that for any patient p in group
G1, if he is in the WaitForWalkToRR state at any minute t, then at the same
minute t the number of available nurses must be less than 1 nurse. Because to walk
to the rehabilitation room RR, the patient p requires 1 nurse to help.

The constraint of WaitForInRR state says that for any patient p in group G1, if
he is in the WaitForInRR state at any minute t, then at the same minute t the
number of free spaces in a rehabilitation room RR must be more than or equal 2.
Because at most 2 patients can enter the rehabilitation room RR at the same time.

Note that the Fin state and Fin2 state do not need to specify this type of
constraint, because each patient in group G1 and group G2 must stay in the Fin
state and Fin2 state, respectively, after finishing all main activities.

Program 5.3: Some Parts of Specification of Constraints of Hospital Problem in Alloy

1 f a c t Se tCons t ra in t s {
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2 a l l p : Pat ient1 | #(InRR . ( p . doAct iv i ty1 ) ) > 29 and
3 #(InRR . ( p . doAct iv i ty1 ) ) < 46
4
5 a l l p : Pat ient1 | a l l t : Time | p . doAct iv i ty1 . t = Meal
6 i m p l i e s #(( he lp . t ) . p ) = 1
7
8 a l l t : Time | #(( doAct iv i ty1 . t ) . InRR) < 3
9 a l l t : Time | #(( doAct iv i ty2 . t ) . InBR) < 3

10
11 a l l p : Pat ient1 | a l l t : Time − f i r s t |
12 (p . doAct iv i ty1 . t = WaitForWalkToRR) i m p l i e s
13 (#(( he lp . t ) . NoPatient ) < 1)
14 a l l p : Pat ient1 | a l l t : Time − f i r s t |
15 (p . doAct iv i ty1 . t = WaitForInRR ) i m p l i e s
16 (#(( doAct iv i ty1 . t ) . InRR) >= 2)
17 .
18 .
19 .
20 }

5.2.2 Solving Problem in Alloy

To solve the hospital problem in Alloy, we specify the requirements with assertion, and
execute it with the check command by using Alloy Analyzer.

Specifying the Requirements with Assertion

The requirements of patients in group G1 are that each patient must be done all activities
in a given time. From our specification of state transitions, any patient p in group G1 has
already done all activities, if the patient p is in the Fin state. We specify the requirement
of patient in group G1 as in Program 5.4, in line 2. The assertion says that for each
patient p in group G1, there must be the tuple, that consists of an atom Fin, in the
relation doActivity1 at least one tuple.

For the patients in group G2, there are two requirements. The first requirement is that
each patient must be done all activities in a given time. The another one is that each
patient must start moving back to room R2 from the bath room in 5 minutes (inclusive)
after finish taking a bath. From our specification of state transitions, any patient q in
group G2 has already done all activities, if the patient q is in the Fin2 state. Moreover,
any patient q start moving back in 5 minutes after finish taking a bath, if the patient q
is in the WaitForWalkBackR2 state at most 5 minutes. We specify the requirement of
patient in group G2 as in Program 5.4, from line 3 to line 4. The assertion says that:

· for each patient q in group G2, there must be the tuple, that consists of an atom Fin2,
in the relation doActivity2 at least one tuple, and
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· for each patient q in group G2, the number of tuples, that consists of an atom
WaitForWalkBackR2, in the relation doActivity2 must be less than 6 tuples.

Program 5.4: Assertion that represents the requirements of hospital problem

1 a s s e r t Requirements {
2 a l l p : Pat ient1 | Fin in p . doAct iv i ty1 . Time
3 a l l q : Pat ient2 | ( Fin2 in q . doAct iv i ty2 . Time) and
4 (#(WaitForWalkBackR2 . ( q . doAct iv i ty2 ) ) < 6)
5 }

Setting Scope and Checking the Assertion

To solve the problem, we use the check command for finding the counterexample of the
assertion Requirements. Before executing the command, we need to set the scope of
each signature. Program 5.5 represents the example of using check command and setting
scope for solving hospital problem.

The scope of each signature should be set as following:

· Patient1 : since there are exactly 3 patients in group G1, we need to set the scope of
signature Patient1 with exactly 3.

· Patient2 : since there are exactly 3 patients in group G2, we need to set the scope of
signature Patient2 with exactly 3.

· Time : since the requirements say that all patients should be done all activities in 180
minutes, we should set the scope of signature Time with exactly 180. However, we
set the scope of Time with exactly 182 because in our specification, we have two
additional states, Remain state (or Remain2 state) and Fin state (or Fin2 state).

· Nurse : the scope of signature Nurse represents the number of nurses in the hospital
problem. To solve the problem, we need to find the sufficient scope of Nurse.

Since our specification of state transitions is the non-deterministic state transitions
(from one current state, the patient can change to the two or more next states), we need
to consider in the all possible situation of the system. By the way, Alloy Analyzer can
generate all possible situations automatically. So that, to solve the problem (finding the
number of nurses that is sufficient for the requirements), we just set the scope of signature
Nurse and execute check command. If there is a counterexample, it means that the
number of nurses is not sufficient. So, we need to change the scope of Nurse from the
scope exactly 2 until we find the scope that the tool cannot find any counterexample. If
we find the smallest number of nurses that there is no counterexample, it means that the
number is the sufficient number of nurses.
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Program 5.5: Example of Checking the Assertion and Setting Scope

1 check Requirements for exac t l y 3 Patient1 ,
2 exac t l y 3 Patient2 ,
3 exac t l y 7 Nurse ,
4 exac t l y 182 Time

5.3 Specification and Solving Problem in Maude

5.3.1 Specification in Maude

To specify the hospital problem in Maude, we specify the whole system with state tran-
sition system that states are expressed as soups, and the state transitions are specified
with rewrite rules.

In the hospital problem, there is a limit of time for all patients to finish all activities.
So, in each period of time (one minute), each patient can do only one activity (can move
to only one state). Figure 5.2 represents the whole picture of state transitions of hospital
problem in Maude. From the figure, there are two steps for the system to execute in one
period of time. The first step is the Checking Change step. In this step, we set that
will each patient changes states (or changes activities)? For the second step, it is the
Doing Activity step. In this step, we let each patient to do one activity. Depending on
the results from the Checking Change step, if any patient p does not want to change
states, the patient p will be in the same state. Otherwise, he will change to the new states
depends on the available resources. After done two steps, the system will decrease the
minute by one for counting the period of time. If the minute equals zero, it means that
the time is up, and the system must go to the Finish step.

For the state transition of hospital problem, there are one main state transition, and
two sub-state transitions that represent the Checking Change step and Doing Activity
step, respectively.

Specification of States

The states are expressed as a soup of observable components. Since there are three state
transitions, there are three types of states for each state transition. The three types of
states are:

· State of main state transition : there are 9 observable components that are de-
scribed as following:

· (pc: l) represents the current step of the system in each period of time, where l
is a label of current step (the corresponding sort is Label).

· (DoAct[p][a]:n) represents the number of minutes that each patient has already
taken to do the current activity, where p is a patient identifier (the correspond-
ing sort is Pat), a is an activity identifier (the corresponding sort is Act), and
n is a natural number of minutes that has already used.
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Figure 5.2: Diagram represents the whole picture of state transition in Maude
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· (Time: t) represents the current period of time, where t is a natural number.

· (Nurse: n) represents the number of available nurses in the current period of
time, where n is a natural number.

· (RR: n) represents the number of free spaces in the rehabilitation room in the
current period of time, where n is a natural number.

· (BR: n) represents the number of free spaces in the bath room in the current
period of time, where n is a natural number.

· (change[p]: b) represents the requirements of each patient that he want or does
not want to change the state of activities, where p is a patient identifier, and
b is a Boolean value. If b is true, the patient p wants to change the state.
Otherwise, he does not want to change.

· (waitingTime[p]: n) represents the number of minutes that each patient in
group G2 has used to wait after finish taking a bath, where p is a patient
identifier, and n is a natural number.

· (allPatients: s) represents the set of patient identifiers of each patient, where
s is a set that is expressed as a soup (the corresponding sort is PatSet).

· State of sub-state transition of Checking Change step : there are 6 observable
components. The observable components are (DoActC[p][a]: n), (changeC[p]: b),
(NurseC: n), (RRC: n) and (BRC: n), which represents the same things as
(DoAct[p][a]: n), (change[p]: b), (Nurse: n), (RR: n) and (BR: n), respec-
tively. However, for this type of state, the period of time is irrelevant. Moreover,
there is another observable component that is (remainPatientC: s). It represents
the set of patients who is not set the requirement of changing state yet.

· State of sub-state transition of Doing Activity step : there are 7 observable com-
ponents. The observable components are (DoActD[p][a]: n), (changeD[p]: b),
(NurseD: n), (RRD: n), (BRD: n) and (waitingTimeD: n), which represents the
same things as (DoAct[p][a]: n), (change[p]: b), (Nurse: n), (RR: n), (BR: n)

and (waitingTime: n), respectively. However, for this type of state, the period
of time is irrelevant. Moreover, there is another observable component that is
(remainPatientD: s). It represents the set of patients who have not done one
activity yet.

Specification of State Transitions

We use rewrite rules to specify the state transition in Maude. As we described in the
previous section, there are one main state transition and two sub-state transitions. Note
that since the state transitions of step of doing activities of patient in group G1 and G2
are the same, we’ll refer just to the specification of state transitions of patients in group
G1. The description of each state transition are described as following:
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Program 5.6: Example of Specification of Main State Transitions

1 c r l [ change ] : ( pc : change ) ( a l l P a t i e n t : PS) CONFIG1
2 => ( pc : do) ( a l l P a t i e n t : PS) CONFIG2
3 i f ( remainPatientC : PS) CONFIG1
4 => ( remainPatientC : patEmpty ) CONFIG2 .
5
6 c r l [ do ] : ( pc : do) (Time : N) ( a l l P a t i e n t : PS) CONFIG2
7 => ( pc : check ) (Time : sd (N, 1 ) )
8 ( a l l P a t i e n t : PS) CONFIG3
9 i f ( remainPatientD : PS) CONFIG2

10 => ( remainPatientD : patEmpty ) CONFIG3 .
11
12 r l [ check ] : ( pc : check ) (Time : N)
13 => ( pc : ( i f (N == 0) then f i n i s h else change f i ) )
14 (Time : N) .

· Main state transitions : As we described in Figure 5.2, for each period of time, the
system must execute two steps. First, the system must check whether does each
patient want to change state by sending values of some observable components to the
sub-state transitions of Checking Change. The sub-state transitions will execute
and return one possible result from the given initial values. For the second step, the
system must let each patient moves to the next states depends on the result values
from Checking Change step. To do the second step, the system sends values of
some observable components to the sub-state transitions of Doing Activity. The
sub-state transition will execute and return one possible result to the main state
transitions. After that, the system will decrease the value of observable component
(Time) by 1. If the value of (Time) equals 0, the system will move to the Finish
step. Otherwise, it will go back to the Checking Change step and execute the state
transitions again.

To specify the main state transitions in Maude, we specify as in Program 5.6. In
the Program 5.6, there are three rewrite rules, which each one is represented by
different labels of (pc).

· In case of (pc: change) : represents the system in the Checking Change step,
where CONFIG1 is the values of other observable components. The sys-
tem can change to the do state, and the values CONFIG1 can change to
CONFIG2, if there are the values CONFIG2 that are the results of sub-
state transition of Checking Change step, which execute with the initial values
CONFIG1, and execute from the set remainPatientC consists of all patients
until the set remainPatientC is empty.

· In case of (pc: do) : represents the system in the Doing Activity step, where
CONFIG2 is the values of other observable components. The system can
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change to the check state, the value of Time can be decreased by 1, and the val-
ues CONFIG2 can change to CONFIG3, if there are the values CONFIG3
that are the results of sub-state transition of Doing Activity step, which exe-
cute with the initial values CONFIG2, and execute from the set remainPatientD
consists of all patients until the set remainPatientD is empty.

· In case of (pc: check) : in this state, the system checks the value of Time. If
the value of Time equals 0, the system will go to the finish state. Otherwise,
it will go back to the change state and execute the state transitions again.

· State transition of Checking Change step : Figure 5.3 (a) represents the state
transition of Checking Change step. This type of state transition is executed
one time for each period of time by using the initial values that it receives from
main state transition. In each execution, it checks whether will each patient want
to change state by depending on the current state of activities of each patient, and
the constraints of time to do each activity. After any patient p was checked, the
patient p must be removed from the set remainPatientC.

Since the rewrite rules of state transitions for each state of activities are the same,
we’ll show just the rewrite rules of Meal state and WaitForWalkToRR state.

The rewrite rules of Meal state are described as in Program 5.7, from line 1 to line
18. For any patient p that the current state is Meal state, there are three conditions
for patient p to change or do not change the state. The conditions are:

· if any patient p has already taken time less than 30 minutes to have a meal, the
patient p must not change the state (the value of changeC[p] must be false).

· if any patient p has already taken time more than or equals 60 minutes to have a
meal, the patient p must change the state (the value of changeC[p] must be
true).

· if any patient p has already taken time between 30 minutes to 60 minutes to have
a meal, the patient p may or may not want to change the state (the value of
changeC[p] is true or false).

Note that if any patient p want to change states, the patient p must release all
the acquired resources of the current state before changing the states. For the case
of current state is Meal state, the patient p must release a resource nurse before
changing the states by adding the number of available nurses with 1.

The rewrite rule of WaitForWalkToRR state as is described in Program 5.7, from
line 20 to line 23. For any patient p that the current state is WaitForWalkToRR
state, the patient p must always try to change the state (the value of changeC[p]
must always be true).

Program 5.7: Some Parts of Specification of Sub-State Transitions Checking Change
1 c r l [ mealC1 ] : ( remainPatientC : (P PS ) ) (DoActC [P ] [ meal ] : N1) ( changeC [P ] : B)
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2 => ( remainPatientC : PS) (DoActC [P ] [ meal ] : N1)
3 ( changeC [P ] : fa l se )
4 i f (N1 < 30) .
5 c r l [ mealC2 ] : ( remainPatientC : (P PS) ) (DoActC [P ] [ meal ] : N1)
6 ( changeC [P ] : B) (NurseC : NN)
7 => ( remainPatientC : PS) (DoActC [P ] [ meal ] : N1)
8 ( changeC [P ] : true ) (NurseC : (NN + 1))
9 i f (N1 >= 60) .
10 c r l [ mealC3 ] : ( remainPatientC : (P PS) ) (DoActC [P ] [ meal ] : N1)
11 ( changeC [P ] : B) (NurseC : NN)
12 => ( remainPatientC : PS) (DoActC [P ] [ meal ] : N1)
13 ( changeC [P ] : true ) (NurseC : (NN + 1))
14 i f (N1 >= 30 and N1 < 60) .
15 c r l [ mealC4 ] : ( remainPatientC : (P PS) ) (DoActC [P ] [ meal ] : N1) ( changeC [P ] : B)
16 => ( remainPatientC : PS) (DoActC [P ] [ meal ] : N1)
17 ( changeC [P ] : fa l se )
18 i f (N1 >= 30 and N1 < 60) .
19
20 r l [ waitForWalkToRRC ] : ( remainPatientC : (P PS) ) (DoActC [P ] [ waitWalkRR ] : N1)
21 ( changeC [P ] : B)
22 => ( remainPatientC : PS) (DoActC [P ] [ waitWalkRR ] : N1)
23 ( changeC [P ] : true ) .

· State transition of Doing Activity step : Figure 5.3 (b) represents the state tran-
sition ofDoing Activity step. Similar with the Checking Change step, it is executed
one time for each period of time by using the initial values that it receives from main
state transition. In each execution, it assigns the next states for each patient by
depending on the result from Checking Change step, and the available resources.
After any patient p was assigned the next state, the patient p must be removed from
the set remainPatientD.

Since the rewrite rules of state transitions for each state of activities are the same
(just names of states and conditions are difference), we’ll show just the rewrite rules
of Meal state, WaitForWalkToRR state and WaitForWalkBackR2 state.

The rewrite rules of Meal state are described as in Program 5.8, from line 1 to line
12. For any patient p, in the set remainPatientD, that the current state is Meal
state, if he does not want to change the state (the value of changeD[p] is false),
the next state of the patient p must be the same state (Meal state). However, if
the patient p wants to change the state (the value of changeD[p] is true), the next
state is depending on the number of available nurses. If the number of available
nurses is more than or equal 1, the next state must be walkToRR state. Otherwise,
the next state must be waitForWalkToRR state.

The rewrite rule of WaitForWalkToRR state is described as in Program 5.8, from
line 14 to line 22. For any patient p, in the set remainPatientD, that the current
state is WaitForWalkToRR state, he must always want to change the state (the
value of changeD[p] must always true). So, the next state of patient p is depending
on the number of available nurses only. If the number of available nurses is more

42



than or equal 1, the next state must be walkToRR state. Otherwise, the next state
must be the same state (waitForWalkToRR state).

The rewrite rule of WaitForWalkBackR2 state is described as in Program 5.8,
from line 24 to line 33. This rewrite rule is the same as the rewrite rule of
WaitForWalkToRR state. However, in this rewrite rule, we must consider the
value of observable component (waitingTimeD[p]). If any patient p can change
the state to WalkBackR2 state, the system must record the time that patient p has
taken to stay in theWaitForWalkBackR2 state in the component (waitingTimeD[p]).

Note that when any patient p can move to the new states, the patient p must
acquire the available resources that he needs before changing states.

Program 5.8: Some Parts of Specification of Sub-State Transitions Doing Activity
1 c r l [ meal1 ] : (DoActD [P ] [ meal ] : N1) ( changeD [P ] : fa l se ) ( usedPatientD : PS)
2 => (DoActD [P ] [ meal ] : (N1 + 1) ) ( changeD [P ] : fa l se )
3 ( usedPatientD : delPat (P,PS) )
4 i f ( havePat (P,PS) ) .
5 c r l [ meal2 ] : (DoActD [P ] [ meal ] : N1) ( changeD [P ] : true ) (NurseD : NN)
6 ( usedPatientD : PS)
7 => (DoActD [P ] [ ( i f (NN >= 1) then walkToRR
8 else waitForWalkToRR f i ) ] : 1)
9 ( changeR [P ] : fa l se )
10 (NurseR : ( i f (NN >= 1) then sd (NN, 1 ) else NN f i ) )
11 ( usedPatientD : delPat (P,PS) )
12 i f ( havePat (P,PS) ) .
13
14 c r l [ waitWalkRR ] : (DoActD [P ] [ waitForWalkToRR ] : N1) ( changeD [P ] : true )
15 (NurseD : NN) ( usedPatientD : PS)
16 => (DoActD [P ] [ ( i f (NN >= 1) then walkToRR
17 else waitForWalkToRR f i ) ] :
18 ( i f (NN >= 1) then 1 else (N1 + 1) f i ) )
19 ( changeD [P ] : true )
20 (NurseD : ( i f (NN >= 1) then sd (NN, 1 ) else NN f i ) )
21 ( usedPatientD : delPat (P,PS) )
22 i f ( havePat (P,PS) ) .
23
24 c r l [ waitBackR2 ] : (DoActD [P ] [ waitForWalkBackR2 ] : N1) ( changeD [P ] : true )
25 (NurseD : NN) ( waitingTimeD [P ] : WT) ( usedPatientD : PS)
26 => (DoActD [P ] [ ( i f (NN >= 2) then walkBackR2
27 else waitForWalkBackR2 f i ) ] :
28 ( i f (NN >= 2) then 1 else (N1 + 1) f i ) )
29 ( changeD [P ] : true )
30 (NurseD : ( i f (NN >= 2) then sd (NN, 2 ) else NN f i ) )
31 ( waitingTimeD [P ] : ( i f (NN >= 2) then N1 else WT f i ) )
32 ( usedPatientD : delPat (P,PS) )
33 i f ( havePat (P,PS) ) .
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Set remainPatientC
:= allPatient

Select one patient p from
the remainPatientC set

Check that patient p
will change state or not

Remove patient p from
the remainPatientC set

Is remain
PatientC
empty?

Set remainPatientD
:= allPatient

Select one patient p from
the remainPatientD set

Let patient pmove to the next
state, or stay in the same state

Remove patient p from
the remainPatientD set

Is remain
PatientC
empty?

yes

no

yes

no

a b

Figure 5.3: Diagram represents the state transition of Checking Change step (a), and
the state transition of Doing Activity step (b)

5.3.2 Solving Problem in Maude

To solve the hospital problem in Maude, we consider the observable components when the
system is in the finish state. If the observable components hold the requirements, the
system will move to the correct state. Otherwise, it will move to the fail state. Moreover,
we use the search command to search from an initial state to the state that the system
is in the fail state. If the search command cannot find an instance, it means that the
number of nurses is sufficient for the requirements.

Specifying the rewrite rule of Finish State

Program 5.9 represents the rewrite rule of finish state in the main state transition. When
the system is in the finish state, it will check the values of some observable components
that are they hold the requirements? There are two requirements of the hospital problem.
The requirements are:

· All patients must done all activities in a given time : to ensure this requirement,
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when the system is in the finish state, all patient in group G1 and G2 must be in
the Fin and Fin2 state, respectively.

· All patients must not wait after taking a bath more than 5 minutes : to en-
sure this requirements, the values of observable components waitingTime(p), for
each patient p in group G2, must be less than 6.

If the observable components in the finish state hold both conditions, it means that the
current situation guarantees the requirements, and the system must move to the correct
state. Otherwise, it must move to the fail state.

Program 5.9: Specification of rewrite rule of finish state
1 r l [ f i n i s h ] : ( pc : f i n i s h ) (DoAct [ p [ 0 ] ] [ A0 ] : N0) (DoAct [ p [ 1 ] ] [ A1 ] : N1)
2 (DoAct [ p [ 2 ] ] [ A2 ] : N2) (DoAct [ p [ 3 ] ] [ A3 ] : N3)
3 (DoAct [ p [ 4 ] ] [ A4 ] : N4) (DoAct [ p [ 5 ] ] [ A5 ] : N5)
4 ( waitingTime [ p [ 3 ] ] : WT3) ( waitingTime [ p [ 4 ] ] : WT4)
5 ( waitingTime [ p [ 5 ] ] : WT5)
6 => ( pc : ( i f ( (A0 == f i n and A1 == f i n and A2 == f i n and
7 A3 == f i n 2 and A4 == f i n 2 and A5 == f i n 2 )
8 and ( (WT3 < 6) and (WT4 < 6) and (WT5 < 6 ) ) )
9 then c o r r e c t else f a i l f i ) )
10 (DoAct [ p [ 0 ] ] [ A0 ] : N0) (DoAct [ p [ 1 ] ] [ A1 ] : N1)
11 (DoAct [ p [ 0 ] ] [ A2 ] : N2) (DoAct [ p [ 0 ] ] [ A3 ] : N3)
12 (DoAct [ p [ 0 ] ] [ A4 ] : N4) (DoAct [ p [ 0 ] ] [ A5 ] : N5)
13 ( waitingTime [ p [ 3 ] ] : WT3) ( waitingTime [ p [ 4 ] ] : WT4)
14 ( waitingTime [ p [ 5 ] ] : WT5) .

Assigning the Initial State

Before executing the search command, we need to specify the values of observable com-
ponents in the initial state. Program 5.10 represents one example of assigning the values
of observable components in the initial state.

The values of each observable component should be as following:

· (pc): the initial state of the system must be the change state.

· (Time): same as solving problem in Alloy, we need to set the limit of time to be 182
periods of time (two more minutes for staying in Remain state and Fin state).

· (DoAct[p]): the initial state of activity of each patient in group G1 and G2 must be
Remain and Remain2 state, respectively. Moreover, each patient must have already
taken 1 minute. Note that for our specification, we represent the patients in group
G1 by using patient identifiers p[0], p[1] and p[2], and represent the patients in
group G2 by using patient identifiers p[3], p[4] and p[5].

· (Nurse): the initial value of Nurse represents the number of nurses in the system. To
solve the problem, we need to find the sufficient initial value of Nurse.
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· (change[p]): the initial values of the requirement to change states of each patient p
should be true because at the beginning, they must always try to change to the
Meal or Meal2 state.

· (waitingTime[p]): the initial values of the waiting time after finish taking a bath of
each patient p in group G1 must be 0.

· (allPatient): the initial value of set of all patients must be a set of all patient identi-
fiers.

Note that we let init be the initial state.

Program 5.10: Example of values of observable components in the initial state
1 (Time : 182) ( pc : change )
2 (DoAct [ p [ 0 ] ] [ r s ] : 1) (DoAct [ p [ 1 ] ] [ r s ] : 1) (DoAct [ p [ 2 ] ] [ r s ] : 1)
3 (DoAct [ p [ 3 ] ] [ r s2 ] : 1) (DoAct [ p [ 4 ] ] [ r s2 ] : 1) (DoAct [ p [ 5 ] ] [ r s2 ] : 1)
4 ( Nurse : 7) (RR: 2) (BR: 2)
5 ( change [ p [ 0 ] ] : true ) ( change [ p [ 1 ] ] : true ) ( change [ p [ 2 ] ] : true )
6 ( change [ p [ 3 ] ] : true ) ( change [ p [ 4 ] ] : true ) ( change [ p [ 5 ] ] : true )
7 ( waitingTime [ p [ 3 ] ] : 0) ( waitingTime [ p [ 4 ] ] : 0) ( waitingTime [ p [ 5 ] ] : 0)
8 ( a l l P a t i e n t : (p [ 0 ] p [ 1 ] p [ 2 ] p [ 3 ] p [ 4 ] p [ 5 ] ) )

Searching for Counterexamples

We use the search command to search in our state transitions for finding the counterex-
amples.

Since in each period of time, the different orders of patients to do one activity may
generate the different situations of the system, we need to search in all possible orders of
patients in each period. For example, in the system at the minute t, there are one patient
p in group G1 that is in the Meal state, one patient q in group G2 that is in the InBR
state, and the number of available nurses is 2. Assume that both patients want to change
to the new state. If the system let the patient p change to the new state first, the situation
at the next minute t′ will be that the patient p is in the WalkToRR state and the patient
q is in the WaitForWalkBackR2 state. However, if the system let the patient q change
to the new state first, the situation at the next minute t′ will be that the patient p is in
the WaitForWalkToRR state and the patient q is in the WalkBackR2 state. So that,
the different orders of patient to change states may generate different situations as in an
example.

Furthermore, our specification of state transitions has the non-deterministic rewrite
rules. The non-deterministic rules are in the case that when each patient may or may not
want to change to the new states. So that, we need to search in all possible situations of
requirements to change the state too.

By the way, the search command in Maude can search for finding counterexamples in all
possible situations automatically. So that, we just assign the initial value of observable
component Nurse and execute search command. We execute the search command as
in Program 5.11. The search command will search from the given initial state to find
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counterexamples, which are the situations that the system is in the fail state. If there
are counterexamples, it means that the number of nurses is not sufficient. So, we need to
change the initial value of Nurse from 2 nurses until we find the value that the search
command cannot find the counterexamples. If we find the smallest number of nurses that
there is no counterexample, it means that the number is the sufficient number of nurses.

Program 5.11: Execution of Search command to find counterexamples

1 search in EXPERIMENT : i n i t =>∗ ( pc : f a i l ) S : State .

5.3.3 Using Real-Time Maude

Besides specifying the hospital problem in Standard Maude, we also have specified it in
Real-Time Maude.

Specification in Real-Time Maude

The specification of hospital problem in Real-Time Maude is almost similar with speci-
fication in Standard Maude. There are just some differences in both specifications. The
differences are:

· In the state of main state transition, there is no the observable component (Time)

because we can use the tick rule and timed search command to count the period of
time.

· In the main state transition, there are only 2 state of the system, change and do state.
We do not need the check state and finish state anymore, since we can use the tick
rule and timed search command to count the period of time.

· We change the rewrite rule of do state of the system to be the tick rule of 1 Time for
counting the period of time after each patient has done one activity. For the other
rewrite rules, we specified them to be the instantaneous rewrite rules.

· Since Real-Time Maude is based on Full Maude language, there are some different
syntax that we need to change in our specification such as parenthesis.

Solving Problem in Real-Time Maude

To solve the hospital problem in Real-Time Maude, we do the same tasks as in Maude but
we instead use the timed search command. To search, we assign the values of observable
components in the initial state, which same as searching in Standard Maude (but there
is no the observable component (Time)).

Program 5.12 represents the execution of timed search command for finding counterex-
amples from the given initial state. The timed search command will find the states of
counterexamples. The states of counterexamples are the states that there are some pa-
tients in group G2, who have waited after finish taking a bath more than or equal 6
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minutes, or there are some patients, who do not done all activities in the 182 periods of
time. If it can find such state, it will show the counterexamples, and it means that the
number of nurses is not sufficient. Same as in Standard Maude, we need to assign the value
of Nurse from 2 nurses until the timed search command cannot find the counterexamples.

Program 5.12: Execution of Timed Search command to find counterexamples
1 ( t s ea r ch in EXPERIMENT: { i n i t }
2 =>∗ {(DoAct (p (0 ) ,A0 : Act ,N0 : Nat ) ) (DoAct (p (1 ) ,A1 : Act ,N1 : Nat ) )
3 (DoAct (p (2 ) ,A2 : Act ,N2 : Nat ) ) (DoAct (p (3 ) ,A3 : Act ,N3 : Nat ) )
4 (DoAct (p (4 ) ,A4 : Act ,N4 : Nat ) ) (DoAct (p (5 ) ,A5 : Act ,N5 : Nat ) )
5 ( waitingTime (p (3 ) ,WT3: Nat ) ) ( waitingTime (p (4 ) ,WT4: Nat ) )
6 ( waitingTime (p (5 ) ,WT5: Nat ) ) S : State }
7 such that ( not (A0 : Act == f i n ) or not (A1 : Act == f i n ) or
8 not (A2 : Act == f i n ) or not (A3 : Act == f i n 2 ) or
9 not (A4 : Act == f i n 2 ) or not (A5 : Act == f i n 2 ) or
10 (WT3 >= 6) or (WT4 >= 6) or (WT5 >= 6))
11 in time−i n t e r v a l between >= 182 and < 183 . )
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Chapter 6

Results and Comparisons

6.1 Results from Alloy

When we do the experiments by executing the check command from the scope exactly 2
Nurse to exactly 7 Nurse, the results are that Alloy Analyzer always find a counterex-
ample. The counterexample, which Alloy Analyzer finds for each number of nurses, shows
the path of situations from 1st minute to 182nd minute.

In this section, we will just show some parts of path of the counterexample for the case
of 7 nurses. Before showing the counterexample, we will assign the names to each patient
for easier to describe. Let the three patients in group G1 have names p1, p2 and p3, and
let the three patients in group G2 have names q1, q2 and q3.

The parts of path of the counterexample is the path from 46th minute to 53rd minute,
which represents a situation as follows:

· In the 46th minute

· the patient p1 is in the Meal state, and acquires 1 nurse.

· the patient p2 is in the Meal state, and acquires 1 nurse.

· the patient p3 is in the Meal state, and acquires 1 nurse.

· the patient q1 is in the Meal2 state.

· the patient q2 is in the InBR state, and acquires 1 nurse.

· the patient q3 is in the InBR state, and acquires 1 nurse.

· there are 2 available nurses, 2 free spaces in RR, and no free space in BR

· In the 47th minute

· the patient p1 is in the Meal state, and acquires 1 nurse.

· the patient p2 is in the Meal state, and acquires 1 nurse.

· the patient p3 is in the Meal state, and acquires 1 nurse.
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· the patient q1 wants to change state and he can change. So the patient q1 is in
the WalkToBR state, and acquires 2 nurses.

· the patient q2 wants to change state but he cannot change because the number of
available nurses is not sufficient. So the patient q2 is in theWaitForWalkBackR2
state.

· the patient q3 is in the InBR state, and acquires 1 nurse.

· there are 1 available nurse, 2 free spaces in RR, and 1 free space in BR

· In the 48th minute

· the patient p1 wants to change state and he can change. So the patient p1 is in
the WalkToRR state, and acquires 1 nurse.

· the patient p2 is in the Meal state, and acquires 1 nurse.

· the patient p3 is in the Meal state, and acquires 1 nurse.

· the patient q1 is in the WalkToBR state, and acquires 2 nurses.

· the patient q2 is also in the WaitForWalkBackR2 state.

· the patient q3 is in the InBR state, and acquires 1 nurse.

· there are 1 available nurse, 2 free spaces in RR, and 1 free space in BR

· In the 49th minute

· the patient p1 is in the WalkToRR state, and acquires 1 nurse.

· the patient p2 is in the Meal state, and acquires 1 nurse.

· the patient p3 wants to change state and he can change. So the patient p3 is in
the WalkToRR state, and acquires 1 nurse.

· the patient q1 is in the WalkToBR state, and acquires 2 nurses.

· the patient q2 is also in the WaitForWalkBackR2 state.

· the patient q3 is in the InBR state, and acquires 1 nurse.

· there are 1 available nurse, 2 free spaces in RR, and 1 free space in BR

· In the 50th minute

· the patient p1 is in the WalkToRR state, and acquires 1 nurse.

· the patient p2 is in the Meal state, and acquires 1 nurse.

· the patient p3 is in the WalkToRR state, and acquires 1 nurse.

· the patient q1 is in the WalkToBR state, and acquires 2 nurses.

· the patient q2 is also in the WaitForWalkBackR2 state.

· the patient q3 is in the InBR state, and acquires 1 nurse.
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· there are 1 available nurse, 2 free spaces in RR, and 1 free space in BR

· In the 51st minute

· the patient p1 is in the WalkToRR state, and acquires 1 nurse.

· the patient p2 is in the Meal state, and acquires 1 nurse.

· the patient p3 is in the WalkToRR state, and acquires 1 nurse.

· the patient q1 is in the WalkToBR state, and acquires 2 nurses.

· the patient q2 is also in the WaitForWalkBackR2 state.

· the patient q3 is in the InBR state, and acquires 1 nurse.

· there are 1 available nurse, 2 free spaces in RR, and 1 free space in BR

· In the 52nd minute

· the patient p1 is in the WalkToRR state, and acquires 1 nurse.

· the patient p2 wants to change state and he can change. So the patient p2 is in
the WalkToRR state, and acquires 1 nurse.

· the patient p3 is in the WalkToRR state, and acquires 1 nurse.

· the patient q1 wants to change state and he can change. So the patient q1 is in
the InBR state, releases 2 nurses, and acquires 1 nurse.

· the patient q2 is also in the WaitForWalkBackR2 state.

· the patient q3 wants to change state and he can change. So the patient q3 is in
the WalkBackR2 state, releases 1 nurse, and acquires 2 nurses.

· there are 1 available nurse, 2 free spaces in RR, and 1 free space in BR

· In the 53rd minute

· the patient p1 wants to change state and he can change. So the patient p1 is in
the InRR state, and releases 1 nurse.

· the patient p2 is in the WalkToRR state, and acquires 1 nurse.

· the patient p3 wants to change state and he can change. So the patient p3 is in
the InRR state, and releases 1 nurse.

· the patient q1 in the InBR state, and acquires 1 nurse.

· the patient q2 can change state. So the patient q2 is in the WalkBackR2 state,
and acquires 2 nurses.

· the patient q3 has already done all activities.

· there are 3 available nurses, no free space in RR, and 1 free space in BR
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Table 6.1: The results of execution in Alloy with different number of nurses
Number of Nurses Time (mins) Counterexample

2 10.11 Yes
3 12.23 Yes
4 13.62 Yes
5 20.78 Yes
6 24.44 Yes
7 45.39 Yes
8 51.54 No
9 53.11 No
10 58.09 No

From some parts of path of counterexample, it shows that the patient q2 must wait 6
minutes (from the 47th minute to the 52nd minute) after finish taking a bath (stay in the
WaitForWalkBackR2 state 6 periods of time), which against the requirement. It means
that the seven nurses are not sufficient for the system to hold the requirements.

However, when we execute the check command with the scope exactly 8 Nurse, Alloy
Analyzer cannot find any counterexample. Moreover, same as the case of 8 nurses, the
case of 9 and 10 nurses also do not have any counterexample. It means that by using
Alloy, the sufficient number of nurses of hospital problem is 8 nurses.

Table 6.1 shows the results and time of executing the check command in Alloy by setting
the different scope of Nurse. From the table, it shows that when executing with the scope
of 2 nurses to 7 nurses, Alloy Analyzer can find the counterexample. However, from the
scope of 8 nurses, there is no counterexample. Moreover, when the number of nurses
is increasing, the time to execute is increasing. Because in the case of more number of
nurses, it must use larger state spaces for finding the counterexample, so that takes more
time to search. In addition, in the cases that do not have any counterexample, it use more
time to execute than the cases that have counterexamples. Because when the tool found a
counterexample, it stops searching and shows the counterexample immediately. So that,
it searches in smaller state spaces than the cases that do not have counterexample, which
the tool must search in overall state spaces.

6.2 Results from Maude

When we do the experiments by executing the search command, Maude cannot show
any result, whenever in the case that just has only 2 nurses. Actually, Maude has taken
time more than 10 days to execute, which is a too long time, but it does not return any
result yet. So that, we cannot solve the hospital problem in the reasonable time by using
Maude. However, it doesn’t mean that Maude cannot solve the problem. If we let Maude
to take more time to execute, it is possible that Maude can show the results, or may be
it will execute until exceeding the limit of stack memory.
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Moreover, we do more experiments by using the timed search command in Real-Time
Maude. However, Real-Time Maude also cannot show any result because it exceeds the
limit of stack memory. There are two possible reasons why it exceeds the limit of memory
but Maude does not. The first reason is that Real-Time Maude may use more memory
for executing timed search command than Standard Maude uses for executing search
command. For the second reason, it is possible that Real-Time Maude can explore in the
state spaces by timed search command faster than Maude. By the way, we can conclude
that Real-Time Maude cannot be used to solve the hospital problem.

Besides using Maude to solve the hospital problem, we use it to recheck the results from
Alloy. Since the counterexample of Alloy shows the path of situations from 1st minute to
180th minute, we can use Maude to explore that the path of counterexample from Alloy can
be generated by using specification of Maude. So, the both languages (Standard Maude
and Real-Time Maude) can guarantee that the counterexamples of Alloy, which have the
number of nurses from 2 nurses to 7 nurses, can be generated by the models of Standard
Maude and Real-Time Maude. However, in the case that there is no counterexample, we
cannot use Maude to recheck the results from Alloy.

6.3 Comparisons of Alloy and Maude

From the experiment, which we specify the hospital problem in Alloy and Maude, we
found differences between the both specification languages in many topics. The topics of
differences are as following:

Specification techniques

Alloy: the specification technique of Alloy is based on relational logic. So, all structures
of models of system that are specified in Alloy must be built from only atoms and relations.
Moreover, the constraints of the system must be specified by using only the first-order
logic. By using relational logic for specification, users must have deeply understanding
about the system that they want to specify, because it is difficult to transform from the
designed abstract model of system to be the model that based on atoms and relations.
However, if the users can successfully specify the model of system, the model will small,
simple, and can capture the underlying idea naturally.

Maude: the specification technique of Maude is based on rewriting logic. So, the
models of system must be built from the rewrite rules. The rewrite rules are the relations
between any two states, which are the sets of observable components. To specify the
observable components, users can create any type of structures by defining the basic data
structures such as list, set, tree, and tuples. By using rewriting logic, the users can
straightforwardly specify the model from the designed abstract model. However, it is
possible that the model of system becomes large and complex, which can decrease the
efficiency of analyzer.
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The techniques to handle with state transition system

Alloy: since all structures of models in Alloy can have only atoms and relations, Alloy
cannot specify the state transition system directly. To specify the state transitions, users
must create one set of atoms that represents the label of each step of state in state
transition. So, this set must be one of the elements in tuples in all relations for telling
the values of components in each step of state transitions. In the specification of hospital
problem, for example, the signature Time is such the set. Moreover, the users must
use predicate and fact paragraphs to specify the transitions between states by using the
constraint implication. By using this technique, to specify the non-deterministic state
transitions, the users just use the constraints implication and disjunction, which are easy
to read and understand for other users.

Maude: since the specification technique of Maude is based on rewriting logic, the
users can straightforwardly specify the state transitions by using the rewrite rules. Each
rewrite rule can represent one transition from the current state to only one next state. So,
to specify the non-deterministic state transitions, the users must use many rewrite rules
that have the same current state but have different next states, which may be difficult to
read and understand for other users.

The ways of executing the commands for analyzing

Alloy: to analyze the properties in Alloy, users must use the assertion paragraph for
defining the properties, and use the check command for execute the assertion. Before
executing the check command, the users must specify the scope of number of atoms in
each set.

By the way, in the case of analyzing state transition system, the users whether or not
specify the initial state of state transitions. If the users specify the initial state, Alloy
Analyzer will start analyzing from the given initial state. Otherwise, it will generate
all possible initial states automatically and starts analyzing from all initial states. In
addition, the users must specify the scope of number of transitions in state transitions.
From the small scope hypothesis, which says that if we examine all small cases, we are
likely to find a counterexample, the users must select the appropriate scope that covers
all small cases. If the scope is too small, the analyzing will not cover all reachable states.
However, if the scope is too large, the analyzing will take too much time for executing.
So, the appropriate scope is a scope that large enough to cover all reachable states and
makes analyzing terminates quickly.

Maude: to analyze the properties in Maude, users can use the search command and
the LTL model checker. However, in this research, we consider only the search command.
Before executing the search command, the users must specify the initial state by assigning
values of all observable components in the state. The search command will start exploring
from the given initial state. However, the users do not need to specify the scope of number
of transitions in state transitions because the search command will explore in all possible
reachable states automatically. By the way, if the users want to bound the search, they
can set the maximum depth d of searching to let the search terminates when it reaches
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the depth d.

The ways of showing results

Alloy: after executing the check command, if Alloy Analyzer finds counterexamples,
it will show only one possible instance from all counterexamples. The instance that the
tool shows is a small case of counterexample, which users can understand and find the
flaws of the specifications easily. In the case of analyzing state transition system, since
all values in each step of states when applying transition rules in state transition (that
we call history) are recorded in the relations, the counterexample can show the path of
applying transition rules from the initial state to the end of scope. By showing the path,
the users can understand that how the counterexample might arise easily. Moreover, the
users can easily use the records of history to specify the constraints of the system. In
addition, the results from Alloy Analyzer can be shown in a variety form, textual and
graphical, that makes the users easily understand.

Maude: after executing the search command, if Maude finds counterexamples, it will
show all possible instances of counterexamples. By showing all counterexamples, the
users can see overall problems of specification easily, but the search must always explore
in all reachable states. So, it is possible that the search does not terminate in the case
of the reachable state space from the given initial state is infinite. Even if the users can
bound the maximum number n of solutions to let the search terminates when it finds n
counterexamples, but if there is no counterexample, the search also does not terminate. In
addition, each counterexample, that is showed, shows only the last state of each solution.
By the way, the users can use the set traces on command to let Maude shows each step
of applying rewrite rules. However, since the set traces on command does not record
the history, so the users cannot use the history directly. The results from Maude can be
shown in only textual form, which is difficult for the users to understand.

Analysis techniques

Alloy: the analysis technique of Alloy Analyzer is based on SAT (boolean satisfia-
bility) solver, which is one of the most efficient and widely used techniques. To analyze
system, Alloy Analyzer translates constraints of the system into boolean constraints by
using the negation of the assertion’s constraints, and then solving with the SAT solver
technique. If the SAT solver finds an assignment that makes the boolean constraints
become true, such assignment is the counterexample. Otherwise, there is no counterex-
ample. In the case of analyzing state transition system, Alloy Analyzer just translates all
states and state transitions into boolean constraints, and use the SAT solver for finding
the counterexample.

Maude: the analysis technique of the search command in Maude is based on breath-
first search strategy. To analyze state transition system, the search command explores
the counterexamples from the given initial state to all reachable states by applying all
rewrite rules step by step. So, if the system is large and has many rewrite rules, it easily
occurs the state explosion problem.
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The appropriate specification languages for each type of systems

· The concurrent system that is not too large : Maude is more appropriate to spec-
ify than Alloy because the specification technique of Maude is based on rewriting
logic, which is the best match for concurrent system. Moreover, by using the search
command, the users do not need to bound the search and it can analyze in all pos-
sible reachable states automatically (assume that the whole state space is finite).

However, if the users specify such system in Alloy, the users cannot straightfor-
wardly specify state transitions for the concurrent system. So, it is more difficult
to specify than using Maude. Furthermore, the users need to set the appropriate
scope of number of transitions. Normally, to know the appropriate scope, the users
get from their own experience and do some experiments, which are difficult and
cumbersome.

For example, the analysis of mutual exclusion property in a mutual exclusion
protocol. If the users use Maude to analyze, they just define the initial state and
execute the search command. And then the search command can automatically
search in all reachable states. However, if the users use Alloy to analyze, at first,
the user need to do some experiments for finding the appropriate scope of number
of transitions, and then execute the check command to analyze in the scope.

By the way, in the case of the whole state space is infinite, to analyze in both
specification languages, Alloy and Maude, the users need to specify the scope of
analyzing.

· The large and complex system : even if the system is the concurrent system, Alloy
is more appropriate to specify than Maude. Although, specifying the system in
Alloy is more difficult than in Maude, but the model from Alloy is smaller and more
simple than model from Maude because the model of Alloy is defined by using only
simple relational logic.
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Chapter 7

Conclusion and Future Works

7.1 Conclusion

In this research, we have surveyed Alloy specification language, which is the new approach
for software verification. We have described Alloy specification language with three key
elements: a logic, a language, and an analysis. The specification technique of Alloy
is based on relational logic, which combines the quantifiers of first-order logic with the
operators of the relational calculus. The model that is specified by Alloy must consist of
only atoms and relations. Moreover, there is Alloy Analyzer that is a tool for analyzing
the properties in model of Alloy. The Alloy Analyzer is based on instance finding, which
was inspired by SAT solver.

Furthermore, we have compared Alloy specification language with another specifica-
tion language that is Maude specification language, which is an algebraic specification
language. Maude specification language is one of the most famous and widely used spec-
ification languages. To compare between Alloy and Maude, we specify and analyze a
non-trivial case study in both specification languages. The case study is the hospital
problem, which were not specified by Alloy and Maude before. So, we have shown the
approaches of specification and solving hospital problem in Alloy and Maude.

For the result of solving hospital problem, Alloy can solve the problem and the answer
is that the sufficient number of nurses is 8 nurses, but Maude cannot solve the problem
in the reasonable time. Besides using Maude to solve the problem, we use Maude to
recheck the counterexamples from Alloy that are also generated by the model of Maude.
So, the result is that the model of Maude can generate the situations of hospital problem
that are the counterexample from Alloy. The reason why we use Maude to recheck the
counterexamples is that because in Maude, we can straightforwardly specify the model
from the designed abstract model. So, we can guarantee that if the counterexample can
be generated from model of Maude, it must always occur in the real system.

In conclusion, we have used the experimental results to compare between Alloy and
Maude. The experimental results that we use, are not just the result of solving hospital
problem, but include many other things such as our experiences of using both specifica-
tion languages to specify and solve the problem. So, we have analyzed all results and
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shown the differences between Alloy and Maude in many topics, which we have described
their advantages and disadvantages in each topic, such as the specification techniques,
the analysis techniques, and the outputs from analysis. Even if Alloy can solve the hos-
pital problem in the reasonable time but Maude cannot solve, it doesn’t mean that Alloy
is better than Maude because it depends on the nuances of each system. So, we have
described the rough guidelines about the appropriate types of system for each specifi-
cation language. However, the users should use our guidelines together with their prior
experience to select the appropriate specification language for each system.

7.2 Future Works

7.2.1 Solving Hospital Problem in automatic approach

To solve hospital problem in both languages (Alloy and Maude), we need to find the
sufficient number of nurses by specifying the number of nurses from 2 nurses until there
is no any counterexample, which we manually do the experiment. So, one of our future
works is that solving the hospital problem by automatic ways. We just ask the question
to the system that how many nurses are sufficient, and then the system can automatically
do the experiment and answers the sufficient number of nurses.

7.2.2 Comparing Alloy and Maude in other non-trivial case
studies

from our experiment, The hospital problem can be solved by Alloy but cannot be solved by
Maude in reasonable time. So, we should specify and analyze other nontrivial case studies
in both languages. The other case studies should be the system that can be analyzed by
Alloy and Maude in the reasonable time, which we can use the results to compare Alloy
and Maude in more details. For example, the other non-trivial case studies are some
consensus protocols that solve consensus problem in distributed system [Fis83], and some
concurrency control protocols [SX08].
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Appendix A

Specification of Hospital Problem in
Alloy

module project/hospital

open util/ordering[Time]

sig Time {}

abstract sig Activity1 {}

one sig Remain extends Activity1 {}

one sig Meal extends Activity1 {}

one sig WaitForWalkToRR extends Activity1 {}

one sig WalkToRR extends Activity1 {}

one sig WaitForInRR extends Activity1 {}

one sig InRR extends Activity1 {}

one sig WaitForWalkBackR1 extends Activity1 {}

one sig WalkBackR1 extends Activity1 {}

one sig Fin extends Activity1 {}

abstract sig Activity2 {}

one sig Remain2 extends Activity2 {}

one sig Meal2 extends Activity2 {}

one sig WaitForWalkToBR extends Activity2 {}

one sig WalkToBR extends Activity2 {}

one sig WaitForInBR extends Activity2 {}

one sig InBR extends Activity2 {}

one sig WaitForWalkBackR2 extends Activity2 {}

one sig WalkBackR2 extends Activity2 {}

one sig Fin2 extends Activity2 {}

abstract sig Patient {}

sig Patient1 extends Patient {

doActivity1: Activity1 one -> Time

}

sig Patient2 extends Patient {

doActivity2: Activity2 one -> Time

}

one sig NoPatient extends Patient {}
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sig Nurse {

help: Patient one -> Time

}

pred init (t: Time) {

all p: Patient1 | p.doActivity1.t = Remain

all q: Patient2 | q.doActivity2.t = Remain2

}

pred notDo (t, t’: Time, p: Patient1) {

p.doActivity1.t’ = Remain

}

pred haveMeal (t’: Time, p: Patient1) {

p.doActivity1.t’ = Meal

}

pred waitForWalkRR (t’: Time, p: Patient1) {

p.doActivity1.t’ = WaitForWalkToRR

}

pred walkRR (t’: Time, p: Patient1) {

p.doActivity1.t’ = WalkToRR

}

pred waitForRR (t’: Time, p: Patient1) {

p.doActivity1.t’ = WaitForInRR

}

pred RR (t’: Time, p: Patient1) {

p.doActivity1.t’ = InRR

}

pred waitForWalkBack (t’: Time, p: Patient1) {

p.doActivity1.t’ = WaitForWalkBackR1

}

pred walkBack (t’: Time, p: Patient1) {

p.doActivity1.t’ = WalkBackR1

}

pred done (t’: Time, p: Patient1) {

p.doActivity1.t’ = Fin

}

pred notDo2 (t’: Time, p: Patient2) {

p.doActivity2.t’ = Remain2

}

pred haveMeal2 (t’: Time, p: Patient2) {

p.doActivity2.t’ = Meal2

}
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pred waitForWalkBR (t’: Time, p: Patient2) {

p.doActivity2.t’ = WaitForWalkToBR

}

pred walkBR (t’: Time, p: Patient2) {

p.doActivity2.t’ = WalkToBR

}

pred waitForBR (t’: Time, p: Patient2) {

p.doActivity2.t’ = WaitForInBR

}

pred BR (t’: Time, p: Patient2) {

p.doActivity2.t’ = InBR

}

pred waitForWalkBack2 (t’: Time, p: Patient2) {

p.doActivity2.t’ = WaitForWalkBackR2

}

pred walkBack2 (t’: Time, p: Patient2) {

p.doActivity2.t’ = WalkBackR2

}

pred done2 (t’: Time, p: Patient2) {

p.doActivity2.t’ = Fin2

}

fact Traces {

first.init

all t: Time - last | let t’ = t.next |

all p: Patient1 |

p.doActivity1.t = Remain implies

(haveMeal[t’,p] or notDo[t’,p])

else p.doActivity1.t = Meal implies

(walkRR[t’,p] or waitForWalkRR[t’,p] or haveMeal[t’,p])

else p.doActivity1.t = WaitForWalkToRR implies

(walkRR[t’,p] or waitForWalkRR[t’,p])

else p.doActivity1.t = WalkToRR implies

(RR[t’,p] or waitForRR[t’,p] or walkRR[t’,p])

else p.doActivity1.t = WaitForInRR implies

(RR[t’,p] or waitForRR[t’,p])

else p.doActivity1.t = InRR implies

(walkBack[t’,p] or waitForWalkBack[t’,p] or RR[t’,p])

else p.doActivity1.t = WaitForWalkBackR1 implies

(walkBack[t’,p] or waitForWalkBack[t’,p])

else p.doActivity1.t = WalkBackR1 implies

(done[t’,p] or walkBack[t’,p])

else done[t’,p]

all t: Time - last | let t’ = t.next |
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all q: Patient2 |

q.doActivity2.t = Remain2 implies

(haveMeal2[t’,q])

else q.doActivity2.t = Meal2 implies

(walkBR[t’,q] or waitForWalkBR[t’,q] or haveMeal2[t’,q])

else q.doActivity2.t = WaitForWalkToBR implies

(walkBR[t’,q] or waitForWalkBR[t’,q])

else q.doActivity2.t = WalkToBR implies

(BR[t’,q] or waitForBR[t,t’,q] or walkBR[t’,q])

else q.doActivity2.t = WaitForInBR implies

(BR[t’,q] or waitForBR[t’,q])

else q.doActivity2.t = InBR implies

(walkBack2[t’,q] or waitForWalkBack2[t’,q] or BR[t’,q])

else q.doActivity2.t = WaitForWalkBackR2 implies

(walkBack2[t,t’,q] or waitForWalkBack2[t,t’,q])

else q.doActivity2.t = WalkBackR2 implies

(done2[t,t’,q] or walkBack2[t,t’,q])

else done2[t,t’,q]

}

fact SetConstraints {

all p: Patient1 | #(Meal.(p.doActivity1)) > 29 and

#(Meal.(p.doActivity1)) < 61

all p: Patient1 | #(WalkToRR.(p.doActivity1)) > 2 and

#(WalkToRR.(p.doActivity1)) < 6

all p: Patient1 | #(InRR.(p.doActivity1)) > 29 and

#(InRR.(p.doActivity1)) < 46

all p: Patient1 | #(WalkBackR1.(p.doActivity1)) > 2 and

#(WalkBackR1.(p.doActivity1)) < 6

all q: Patient2 | #(Meal2.(q.doActivity2)) > 29 and

#(Meal2.(q.doActivity2)) < 61

all q: Patient2 | #(WalkToBR.(q.doActivity2)) > 0 and

#(WalkToBR.(q.doActivity2)) < 6

all q: Patient2 | #(InBR.(q.doActivity2)) > 14 and

#(InBR.(q.doActivity2)) < 31

all q: Patient2 | #(WalkBackR2.(q.doActivity2)) > 0 and

#(WalkBackR2.(q.doActivity2)) < 6

all p: Patient1 | all t: Time |

p.doActivity1.t = Remain implies #((help.t).p) = 0

all p: Patient1 | all t: Time |

p.doActivity1.t = Meal implies #((help.t).p) = 1

all p: Patient1 | all t: Time |

p.doActivity1.t = WaitForWalkToRR implies #((help.t).p) = 0

all p: Patient1 | all t: Time |

p.doActivity1.t = WalkToRR implies #((help.t).p) = 1

all p: Patient1 | all t: Time |

p.doActivity1.t = WaitForInRR implies #((help.t).p) = 0

all p: Patient1 | all t: Time |

p.doActivity1.t = InRR implies #((help.t).p) = 0

all p: Patient1 | all t: Time |

p.doActivity1.t = WaitForWalkBackR1 implies #((help.t).p) = 0
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all p: Patient1 | all t: Time |

p.doActivity1.t = WalkBackR1 implies #((help.t).p) = 1

all p: Patient1 | all t: Time |

p.doActivity1.t = Fin implies #((help.t).p) = 0

all q: Patient2 | all t: Time |

q.doActivity2.t = Remain2 implies #((help.t).q) = 0

all q: Patient2 | all t: Time |

q.doActivity2.t = Meal2 implies #((help.t).q) = 0

all q: Patient2 | all t: Time |

q.doActivity2.t = WaitForWalkToBR implies #((help.t).q) = 0

all q: Patient2 | all t: Time |

q.doActivity2.t = WalkToBR implies #((help.t).q) = 2

all q: Patient2 | all t: Time |

q.doActivity2.t = WaitForInBR implies #((help.t).q) = 0

all q: Patient2 | all t: Time |

q.doActivity2.t = InBR implies #((help.t).q) = 1

all q: Patient2 | all t: Time |

q.doActivity2.t = WaitForWalkBackR2 implies #((help.t).q) = 0

all q: Patient2 | all t: Time |

q.doActivity2.t = WalkBackR2 implies #((help.t).q) = 2

all q: Patient2 | all t: Time |

q.doActivity2.t = Fin2 implies #((help.t).q) = 0

all t: Time | #((doActivity1.t).InRR) < 3

all t: Time | #((doActivity2.t).InBR) < 3

all p: Patient1 | all t: Time - first |

(p.doActivity1.t = Remain) implies (#((help.t).NoPatient) < 1)

all p: Patient1 | all t: Time - first |

(p.doActivity1.t = WaitForWalkToRR) implies (#((help.t).NoPatient) < 1)

all p: Patient1 | all t: Time - first |

(p.doActivity1.t = WaitForInRR) implies (#((doActivity1.t).InRR) >= 2)

all p: Patient1 | all t: Time - first |

(p.doActivity1.t = WaitForWalkBackR1) implies (#((help.t).NoPatient) < 1)

all q: Patient2 | all t: Time - first |

(q.doActivity2.t = WaitForWalkToBR) implies (#((help.t).NoPatient) < 2)

all q: Patient2 | all t: Time - first |

(q.doActivity2.t = WaitForInBR) implies (#((help.t).NoPatient) < 1) or

(#((doActivity2.t).InBR) >= 2)

all q: Patient2 | all t: Time - first |

(q.doActivity2.t = WaitForWalkBackR2) implies (#((help.t).NoPatient) < 2)

}

assert Requirements {

all p: Patient1 | Fin in p.doActivity1.Time

all q: Patient2 | (Fin2 in q.doActivity2.Time) and

(#(WaitForWalkBackR2.(q.doActivity2)) < 6)

}
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Appendix B

Specification of Hospital Problem in
Maude

fmod PATIENT is

pr NAT .

sort Pat .

op p[_] : Nat -> Pat [ctor] .

op equal : Pat Pat -> Bool .

vars N1 N2 : Nat .

eq equal(p[N1],p[N2]) = if (N1 == N2) then true else false fi .

endfm

fmod ACTIVITY is

sort Act .

ops rs meal waitWalkRR walkRR waitRR RR waitWalkBackR1 walkBackR1 fin : -> Act [ctor] .

ops rs2 meal2 waitWalkBR walkBR waitBR BR waitWalkBackR2 walkBackR2 fin2 : -> Act [ctor] .

endfm

fmod SET{M :: TRIV} is

pr NAT .

sort Set .

subsort M$Elt < Set .

op empty : -> Set [ctor] .

op _ _ : Set Set -> Set [ctor assoc comm id: empty] .

op count : Set -> Nat .

var N : M$Elt .

var S : Set .

eq N N = N .

endfm

view TrivToPatient from TRIV to PATIENT is

sort Elt to Pat .

endv

fmod PATIENT-SET is

pr SET{TrivToPatient} * (sort Set to PatSet, op empty : -> Set to patEmpty) .

op havePat : Pat PatSet -> Bool .
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op delPat : Pat PatSet -> PatSet .

vars P P1 : Pat .

vars PS PS1 : PatSet .

eq havePat(P,patEmpty) = false .

eq havePat(P,(P1 PS)) = if equal(P,P1) then true else havePat(P,PS) fi .

eq delPat(P,patEmpty) = patEmpty .

eq delPat(P,(P1 PS)) = if equal(P,P1) then PS else (P1 delPat(P,PS)) fi .

endfm

fmod LABEL is

sort Label .

ops change do check finish correct fail : -> Label [ctor] .

endfm

fmod STATE-CHECK is

pr BOOL .

pr PATIENT .

pr PATIENT-SET .

pr ACTIVITY .

sorts ObsC StateC .

subsorts ObsC < StateC .

op void : -> StateC [ctor] .

op _ _ : StateC StateC -> StateC [ctor assoc comm id: void] .

op (DoActC[_][_]:_) : Pat Act Nat -> ObsC [ctor] .

op (remainPatientC:_) : PatSet -> ObsC [ctor] .

op (changeC[_]:_) : Pat Bool -> ObsC [ctor] .

op (NurseC:_) : Nat -> ObsC [ctor] .

op (RRC:_) : Nat -> ObsC [ctor] .

op (BRC:_) : Nat -> ObsC [ctor] .

endfm

fmod STATE-DO is

pr BOOL .

pr PATIENT .

pr PATIENT-SET .

pr ACTIVITY .

pr LABEL .

sorts ObsR StateR .

subsorts ObsR < StateR .

op void : -> StateR [ctor] .

op _ _ : StateR StateR -> StateR [ctor assoc comm id: void] .

op (DoActD[_][_]:_) : Pat Act Nat -> ObsR [ctor] .

op (NurseD:_) : Nat -> ObsR [ctor] .

op (remainPatientD:_) : PatSet -> ObsR [ctor] .

op (changeD[_]:_) : Pat Bool -> ObsR [ctor] .
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op (RRD:_) : Nat -> ObsR [ctor] .

op (BRD:_) : Nat -> ObsR [ctor] .

op (waitingTimeD[_]:_) : Pat Nat -> ObsR [ctor] .

endfm

fmod STATE is

pr BOOL .

pr PATIENT .

pr PATIENT-SET .

pr ACTIVITY .

pr LABEL .

sorts Obs State .

subsorts Obs < State .

op void : -> State [ctor] .

op _ _ : State State -> State [ctor assoc comm id: void] .

op (pc:_) : Label -> Obs [ctor] .

op (DoAct[_][_]:_) : Pat Act Nat -> Obs [ctor] .

op (Time:_) : Nat -> Obs [ctor] .

op (Nurse:_) : Nat -> Obs [ctor] .

op (RR:_) : Nat -> Obs [ctor] .

op (BR:_) : Nat -> Obs [ctor] .

op (allPatient:_) : PatSet -> Obs [ctor] .

op (change[_]:_) : Pat Bool -> Obs [ctor] .

op (waitingTime[_]:_) : Pat Nat -> Obs [ctor] .

endfm

mod CHECK-CHANGE is

including STATE-CHECK .

vars P P1 : Pat .

vars PS PS1 : PatSet .

vars N N1 N2 NN NRR NBR : Nat .

var B : Bool .

vars A1 A2 : Act .

rl[rsC1] : (remainPatientC: (P PS)) (DoActC[P][rs]: N1) (changeC[P]: B)

=> (remainPatientC: delPat(P,PS)) (DoActC[P][rs]: N1) (changeC[P]: true) .

crl[mealC1-1] : (remainPatientC: (P PS)) (DoActC[P][meal]: N1) (changeC[P]: B)

=> (remainPatientC: delPat(P,PS)) (DoActC[P][meal]: N1) (changeC[P]: false)

if (N1 < 30) .

crl[mealC1-2] : (remainPatientC: (P PS)) (DoActC[P][meal]: N1) (changeC[P]: B)

(NurseC: NN)

=> (remainPatientC: delPat(P,PS)) (DoActC[P][meal]: N1) (changeC[P]: true)

(NurseC: (NN + 1))

if (N1 >= 60) .

crl[mealC1-3] : (remainPatientC: (P PS)) (DoActC[P][meal]: N1) (changeC[P]: B)

(NurseC: NN)

=> (remainPatientC: delPat(P,PS)) (DoActC[P][meal]: N1) (changeC[P]: true)

(NurseC: (NN + 1))
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if (N1 >= 30 and N1 < 60) .

crl[mealC1-4] : (remainPatientC: (P PS)) (DoActC[P][meal]: N1) (changeC[P]: B)

=> (remainPatientC: delPat(P,PS)) (DoActC[P][meal]: N1) (changeC[P]: false)

if (N1 >= 30 and N1 < 60) .

rl[waitWalkRRC1] : (remainPatientC: (P PS)) (DoActC[P][waitWalkRR]: N1) (changeC[P]: B)

=> (remainPatientC: delPat(P,PS)) (DoActC[P][waitWalkRR]: N1) (changeC[P]: true) .

crl[walkRRC1-1] : (remainPatientC: (P PS)) (DoActC[P][walkRR]: N1) (changeC[P]: B)

=> (remainPatientC: delPat(P,PS)) (DoActC[P][walkRR]: N1) (changeC[P]: false)

if (N1 < 3) .

crl[walkRRC1-2] : (remainPatientC: (P PS)) (DoActC[P][walkRR]: N1) (changeC[P]: B)

(NurseC: NN)

=> (remainPatientC: delPat(P,PS)) (DoActC[P][walkRR]: N1) (changeC[P]: true)

(NurseC: (NN + 1))

if (N1 >= 5) .

crl[walkRRC1-3] : (remainPatientC: (P PS)) (DoActC[P][walkRR]: N1) (changeC[P]: B)

(NurseC: NN)

=> (remainPatientC: delPat(P,PS)) (DoActC[P][walkRR]: N1) (changeC[P]: true)

(NurseC: (NN + 1))

if (N1 >= 3 and N1 < 5) .

crl[walkRRC1-4] : (remainPatientC: (P PS)) (DoActC[P][walkRR]: N1) (changeC[P]: B)

=> (remainPatientC: delPat(P,PS)) (DoActC[P][walkRR]: N1) (changeC[P]: false)

if (N1 >= 3 and N1 < 5) .

rl[waitRRC1] : (remainPatientC: (P PS)) (DoActC[P][waitRR]: N1) (changeC[P]: B)

=> (remainPatientC: delPat(P,PS)) (DoActC[P][waitRR]: N1) (changeC[P]: true) .

crl[RRC1-1] : (remainPatientC: (P PS)) (DoActC[P][RR]: N1) (changeC[P]: B)

=> (remainPatientC: delPat(P,PS)) (DoActC[P][RR]: N1) (changeC[P]: false)

if (N1 < 30) .

crl[RRC1-2] : (remainPatientC: (P PS)) (DoActC[P][RR]: N1) (changeC[P]: B)

(RRC: NRR)

=> (remainPatientC: delPat(P,PS)) (DoActC[P][RR]: N1) (changeC[P]: true)

(RRC: (NRR + 1))

if (N1 >= 45) .

crl[RRC1-3] : (remainPatientC: (P PS)) (DoActC[P][RR]: N1) (changeC[P]: B)

(RRC: NRR)

=> (remainPatientC: delPat(P,PS)) (DoActC[P][RR]: N1) (changeC[P]: true)

(RRC: (NRR + 1))

if (N1 >= 30 and N1 < 45) .

crl[RRC1-4] : (remainPatientC: (P PS)) (DoActC[P][RR]: N1) (changeC[P]: B)

=> (remainPatientC: delPat(P,PS)) (DoActC[P][RR]: N1) (changeC[P]: false)

if (N1 >= 30 and N1 < 45) .

rl[waitWalkBackR1C1] : (remainPatientC: (P PS)) (DoActC[P][waitWalkBackR1]: N1)

(changeC[P]: B)

=> (remainPatientC: delPat(P,PS)) (DoActC[P][waitWalkBackR1]: N1)

(changeC[P]: true) .

crl[walkBackR1C1-1] : (remainPatientC: (P PS)) (DoActC[P][walkBackR1]: N1)

(changeC[P]: B)
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=> (remainPatientC: delPat(P,PS)) (DoActC[P][walkBackR1]: N1)

(changeC[P]: false)

if (N1 < 3) .

crl[walkBackR1C1-2] : (remainPatientC: (P PS)) (DoActC[P][walkBackR1]: N1)

(changeC[P]: B) (NurseC: NN)

=> (remainPatientC: delPat(P,PS)) (DoActC[P][walkBackR1]: N1)

(changeC[P]: true) (NurseC: (NN + 1))

if (N1 >= 5) .

crl[walkBackR1C1-3] : (remainPatientC: (P PS)) (DoActC[P][walkBackR1]: N1)

(changeC[P]: B) (NurseC: NN)

=> (remainPatientC: delPat(P,PS)) (DoActC[P][walkBackR1]: N1)

(changeC[P]: true) (NurseC: (NN + 1))

if (N1 >= 3 and N1 < 5) .

crl[walkBackR1C1-4] : (remainPatientC: (P PS)) (DoActC[P][walkBackR1]: N1)

(changeC[P]: B)

=> (remainPatientC: delPat(P,PS)) (DoActC[P][walkBackR1]: N1)

(changeC[P]: false)

if (N1 >= 3 and N1 < 5) .

rl[finC1] : (remainPatientC: (P PS)) (DoActC[P][fin]: N1) (changeC[P]: B)

=> (remainPatientC: delPat(P,PS)) (DoActC[P][fin]: N1) (changeC[P]: false) .

rl[rsC2] : (remainPatientC: (P PS)) (DoActC[P][rs2]: N1) (changeC[P]: B)

=> (remainPatientC: delPat(P,PS)) (DoActC[P][rs2]: N1) (changeC[P]: true) .

crl[mealC2-1] : (remainPatientC: (P PS)) (DoActC[P][meal2]: N1) (changeC[P]: B)

=> (remainPatientC: delPat(P,PS)) (DoActC[P][meal2]: N1) (changeC[P]: false)

if (N1 < 30) .

crl[mealC2-2] : (remainPatientC: (P PS)) (DoActC[P][meal2]: N1) (changeC[P]: B)

=> (remainPatientC: delPat(P,PS)) (DoActC[P][meal2]: N1) (changeC[P]: true)

if (N1 >= 60) .

crl[mealC2-3] : (remainPatientC: (P PS)) (DoActC[P][meal2]: N1) (changeC[P]: B)

=> (remainPatientC: delPat(P,PS)) (DoActC[P][meal2]: N1) (changeC[P]: true)

if (N1 >= 30 and N1 < 60) .

crl[mealC2-4] : (remainPatientC: (P PS)) (DoActC[P][meal2]: N1) (changeC[P]: B)

=> (remainPatientC: delPat(P,PS)) (DoActC[P][meal2]: N1) (changeC[P]: false)

if (N1 >= 30 and N1 < 60) .

rl[waitWalkBRC2] : (remainPatientC: (P PS)) (DoActC[P][waitWalkBR]: N1) (changeC[P]: B)

=> (remainPatientC: delPat(P,PS)) (DoActC[P][waitWalkBR]: N1) (changeC[P]: true) .

crl[walkBRC2-1] : (remainPatientC: (P PS)) (DoActC[P][walkBR]: N1) (changeC[P]: B)

=> (remainPatientC: delPat(P,PS)) (DoActC[P][walkBR]: N1) (changeC[P]: false)

if (N1 < 1) .

crl[walkBRC2-2] : (remainPatientC: (P PS)) (DoActC[P][walkBR]: N1) (changeC[P]: B)

(NurseC: NN)

=> (remainPatientC: delPat(P,PS)) (DoActC[P][walkBR]: N1) (changeC[P]: true)

(NurseC: (NN + 2))

if (N1 >= 5) .

crl[walkBRC2-3] : (remainPatientC: (P PS)) (DoActC[P][walkBR]: N1) (changeC[P]: B)

(NurseC: NN)

=> (remainPatientC: delPat(P,PS)) (DoActC[P][walkBR]: N1) (changeC[P]: true)
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(NurseC: (NN + 2))

if (N1 >= 1 and N1 < 5) .

crl[walkBRC2-4] : (remainPatientC: (P PS)) (DoActC[P][walkBR]: N1) (changeC[P]: B)

=> (remainPatientC: delPat(P,PS)) (DoActC[P][walkBR]: N1) (changeC[P]: false)

if (N1 >= 1 and N1 < 5) .

rl[waitBRC2] : (remainPatientC: (P PS)) (DoActC[P][waitBR]: N1) (changeC[P]: B)

=> (remainPatientC: delPat(P,PS)) (DoActC[P][waitBR]: N1) (changeC[P]: true) .

crl[BRC2-1] : (remainPatientC: (P PS)) (DoActC[P][BR]: N1) (changeC[P]: B)

=> (remainPatientC: delPat(P,PS)) (DoActC[P][BR]: N1) (changeC[P]: false)

if (N1 < 15) .

crl[BRC2-2] : (remainPatientC: (P PS)) (DoActC[P][BR]: N1) (changeC[P]: B)

(BRC: NBR) (NurseC: NN)

=> (remainPatientC: delPat(P,PS)) (DoActC[P][BR]: N1) (changeC[P]: true)

(BRC: (NBR + 1)) (NurseC: (NN + 1))

if (N1 >= 30) .

crl[BRC2-3] : (remainPatientC: (P PS)) (DoActC[P][BR]: N1) (changeC[P]: B)

(BRC: NBR) (NurseC: NN)

=> (remainPatientC: delPat(P,PS)) (DoActC[P][BR]: N1) (changeC[P]: true)

(BRC: (NBR + 1)) (NurseC: (NN + 1))

if (N1 >= 15 and N1 < 30) .

crl[BRC2-4] : (remainPatientC: (P PS)) (DoActC[P][BR]: N1) (changeC[P]: B)

=> (remainPatientC: delPat(P,PS)) (DoActC[P][BR]: N1) (changeC[P]: false)

if (N1 >= 15 and N1 < 30) .

rl[waitWalkBackR2C2] : (remainPatientC: (P PS)) (DoActC[P][waitWalkBackR2]: N1)

(changeC[P]: B)

=> (remainPatientC: delPat(P,PS)) (DoActC[P][waitWalkBackR2]: N1)

(changeC[P]: true) .

crl[walkBackR2C2-1] : (remainPatientC: (P PS)) (DoActC[P][walkBackR2]: N1) (changeC[P]: B)

=> (remainPatientC: delPat(P,PS)) (DoActC[P][walkBackR2]: N1) (changeC[P]: false)

if (N1 < 1) .

crl[walkBackR2C2-2] : (remainPatientC: (P PS)) (DoActC[P][walkBackR2]: N1) (changeC[P]: B)

(NurseC: NN)

=> (remainPatientC: delPat(P,PS)) (DoActC[P][walkBackR2]: N1) (changeC[P]: true)

(NurseC: (NN + 2))

if (N1 >= 5) .

crl[walkBackR2C2-3] : (remainPatientC: (P PS)) (DoActC[P][walkBackR2]: N1) (changeC[P]: B)

(NurseC: NN)

=> (remainPatientC: delPat(P,PS)) (DoActC[P][walkBackR2]: N1) (changeC[P]: true)

(NurseC: (NN + 2))

if (N1 >= 1 and N1 < 5) .

crl[walkBackR2C2-4] : (remainPatientC: (P PS)) (DoActC[P][walkBackR2]: N1) (changeC[P]: B)

=> (remainPatientC: delPat(P,PS)) (DoActC[P][walkBackR2]: N1) (changeC[P]: false)

if (N1 >= 1 and N1 < 5) .

rl[finC2] : (remainPatientC: (P PS)) (DoActC[P][fin2]: N1) (changeC[P]: B)

=> (remainPatientC: delPat(P,PS)) (DoActC[P][fin2]: N1) (changeC[P]: false) .

endm

69



mod DO is

including STATE-DO .

vars P P1 : Pat .

vars PS PS1 : PatSet .

vars N N1 N2 NN WT NRR NBR : Nat .

var B : Bool .

vars A1 A2 : Act .

crl[rs1] : (DoActD[P][rs]: N1) (changeD[P]: true) (NurseD: NN) (remainPatientD: PS)

=> (DoActD[P][(if (NN >= 1) then meal else rs fi)]:

(if (NN >= 1) then 1 else (N1 + 1) fi))

(changeD[P]: true) (NurseD: (if (NN >= 1) then sd(NN,1) else NN fi))

(remainPatientD: delPat(P,PS))

if (havePat(P,PS)) .

crl[meal1-1] : (DoActD[P][meal]: N1) (changeD[P]: false) (remainPatientD: PS)

=> (DoActD[P][meal]: (N1 + 1)) (changeD[P]: false) (remainPatientD: delPat(P,PS))

if (havePat(P,PS)) .

crl[meal1-2] : (DoActD[P][meal]: N1) (changeD[P]: true) (NurseD: NN)

(remainPatientD: PS)

=> (DoActD[P][(if (NN >= 1) then walkRR else waitWalkRR fi)]: 1)

(changeD[P]: false) (NurseD: (if (NN >= 1) then sd(NN,1) else NN fi))

if (havePat(P,PS)) .

crl[waitWalkRR1] : (DoActD[P][waitWalkRR]: N1) (changeD[P]: true) (NurseD: NN)

(remainPatientD: PS)

=> (DoActD[P][(if (NN >= 1) then walkRR else waitWalkRR fi)]:

(if (NN >= 1) then 1 else (N1 + 1) fi))

(changeD[P]: true) (NurseD: (if (NN >= 1) then sd(NN,1) else NN fi))

(remainPatientD: delPat(P,PS))

if (havePat(P,PS)) .

crl[walkRR1-1] : (DoActD[P][walkRR]: N1) (changeD[P]: false) (remainPatientD: PS)

=> (DoActD[P][walkRR]: (N1 + 1)) (changeD[P]: false) (remainPatientD: delPat(P,PS))

if (havePat(P,PS)) .

crl[walkRR1-2] : (DoActD[P][walkRR]: N1) (changeD[P]: true) (RRD: NRR)

(remainPatientD: PS)

=> (DoActD[P][(if (NRR >= 1) then RR else waitRR fi)]: 1) (changeD[P]: false)

(RRD: (if (NRR >= 1) then sd(NRR,1) else NRR fi)) (remainPatientD: delPat(P,PS))

if (havePat(P,PS)) .

crl[waitRR1] : (DoActD[P][waitRR]: N1) (changeD[P]: true) (RRD: NRR) (remainPatientD: PS)

=> (DoActD[P][(if (NRR >= 1) then RR else waitRR fi)]:

(if (NRR >= 1) then 1 else (N1 + 1) fi))

(changeD[P]: true) (RRD: (if (NRR >= 1) then sd(NRR,1) else NRR fi))

(remainPatientD: delPat(P,PS))

if (havePat(P,PS)) .

crl[RR1-1] : (DoActD[P][RR]: N1) (changeD[P]: false) (remainPatientD: PS)

=> (DoActD[P][RR]: (N1 + 1)) (changeD[P]: false) (remainPatientD: delPat(P,PS))

if (havePat(P,PS)) .
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crl[RR1-2] : (DoActD[P][RR]: N1) (changeD[P]: true) (NurseD: NN) (remainPatientD: PS)

=> (DoActD[P][(if (NN >= 1) then walkBackR1 else waitWalkBackR1 fi)]: 1)

(changeD[P]: false) (NurseD: (if (NN >= 1) then sd(NN,1) else NN fi))

(remainPatientD: delPat(P,PS))

if (havePat(P,PS)) .

crl[waitWalkBackR1] : (DoActD[P][waitWalkBackR1]: N1) (changeD[P]: true) (NurseD: NN)

(remainPatientD: PS)

=> (DoActD[P][(if (NN >= 1) then walkBackR1 else waitWalkBackR1 fi)]:

(if (NN >= 1) then 1 else (N1 + 1) fi))

(changeD[P]: true) (NurseD: (if (NN >= 1) then sd(NN,1) else NN fi))

(remainPatientD: delPat(P,PS))

if (havePat(P,PS)) .

crl[walkBackR1-1] : (DoActD[P][walkBackR1]: N1) (changeD[P]: false) (remainPatientD: PS)

=> (DoActD[P][walkBackR1]: (N1 + 1)) (changeD[P]: false)

(remainPatientD: delPat(P,PS))

if (havePat(P,PS)) .

crl[walkBackR1-2] : (DoActD[P][walkBackR1]: N1) (changeD[P]: true) (remainPatientD: PS)

=> (DoActD[P][fin]: 1) (changeD[P]: false) (remainPatientD: delPat(P,PS))

if (havePat(P,PS)) .

crl[fin1] : (DoActD[P][fin]: N1) (remainPatientD: PS)

=> (DoActD[P][fin]: (N1 + 1)) (remainPatientD: delPat(P,PS))

if (havePat(P,PS)) .

crl[rs2] : (DoActD[P][rs2]: N1) (changeD[P]: true) (remainPatientD: PS)

=> (DoActD[P][meal2]: 1) (changeD[P]: true) (remainPatientD: delPat(P,PS))

if (havePat(P,PS)) .

crl[meal2-1] : (DoActD[P][meal2]: N1) (changeD[P]: false) (remainPatientD: PS)

=> (DoActD[P][meal2]: (N1 + 1)) (changeD[P]: false) (remainPatientD: delPat(P,PS))

if (havePat(P,PS)) .

crl[meal2-2] : (DoActD[P][meal2]: N1) (changeD[P]: true) (NurseD: NN) (remainPatientD: PS)

=> (DoActD[P][(if (NN >= 2) then walkBR else waitWalkBR fi)]: 1)

(changeD[P]: false) (NurseD: (if (NN >= 2) then sd(NN,2) else NN fi))

(remainPatientD: delPat(P,PS))

if (havePat(P,PS)) .

crl[waitWalkBR2] : (DoActD[P][waitWalkBR]: N1) (changeD[P]: true) (NurseD: NN)

(remainPatientD: PS)

=> (DoActD[P][(if (NN >= 2) then walkBR else waitWalkBR fi)]:

(if (NN >= 2) then 1 else (N1 + 1) fi))

(changeD[P]: true) (NurseD: (if (NN >= 2) then sd(NN,2) else NN fi))

(remainPatientD: delPat(P,PS))

if (havePat(P,PS)) .

crl[walkBR2-1] : (DoActD[P][walkBR]: N1) (changeD[P]: false) (remainPatientD: PS)

=> (DoActD[P][walkBR]: (N1 + 1)) (changeD[P]: false)

(remainPatientD: delPat(P,PS))

if (havePat(P,PS)) .

crl[walkBR2-2] : (DoActD[P][walkBR]: N1) (changeD[P]: true) (BRD: NBR) (NurseD: NN)
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(remainPatientD: PS)

=> (DoActD[P][(if (NBR >= 1 and NN >= 1) then BR else waitBR fi)]: 1)

(changeD[P]: false)

(BRD: (if (NBR >= 1 and NN >= 1) then sd(NBR,1) else NBR fi))

(NurseD: (if (NBR >= 1 and NN >= 1) then sd(NN,1) else NN fi))

(remainPatientD: delPat(P,PS))

if (havePat(P,PS)) .

crl[waitBR2] : (DoActD[P][waitBR]: N1) (changeD[P]: true) (BRD: NBR) (NurseD: NN)

(remainPatientD: PS)

=> (DoActD[P][(if (NBR >= 1 and NN >= 1) then BR else waitBR fi)]:

(if (NBR >= 1 and NN >= 1) then 1 else (N1 + 1) fi))

(changeD[P]: true)

(BRD: (if (NBR >= 1 and NN >= 1) then sd(NBR,1) else NBR fi))

(NurseD: (if (NBR >= 1 and NN >= 1) then sd(NN,1) else NN fi))

(remainPatientD: delPat(P,PS))

if (havePat(P,PS)) .

crl[BR2-1] : (DoActD[P][BR]: N1) (changeD[P]: false) (remainPatientD: PS)

=> (DoActD[P][BR]: (N1 + 1)) (changeD[P]: false) (remainPatientD: delPat(P,PS))

if (havePat(P,PS)) .

crl[BR2-2] : (DoActD[P][BR]: N1) (changeD[P]: true) (NurseD: NN) (remainPatientD: PS)

=> (DoActD[P][(if (NN >= 2) then walkBackR2 else waitWalkBackR2 fi)]: 1)

(changeD[P]: false) (NurseD: (if (NN >= 2) then sd(NN,2) else NN fi))

(remainPatientD: delPat(P,PS))

if (havePat(P,PS)) .

crl[waitWalkBackR2] : (DoActD[P][waitWalkBackR2]: N1) (changeD[P]: true) (NurseD: NN)

(waitingTimeD[P]: WT) (remainPatientD: PS)

=> (DoActD[P][(if (NN >= 2) then walkBackR2 else waitWalkBackR2 fi)]:

(if (NN >= 2) then 1 else (N1 + 1) fi))

(changeD[P]: true) (NurseD: (if (NN >= 2) then sd(NN,2) else NN fi))

(waitingTimeD[P]: (if (NN >= 2) then N1 else WT fi))

(remainPatientD: delPat(P,PS))

if (havePat(P,PS)) .

crl[walkBackR2-1] : (DoActD[P][walkBackR2]: N1) (changeD[P]: false) (remainPatientD: PS)

=> (DoActD[P][walkBackR2]: (N1 + 1)) (changeD[P]: false)

(remainPatientD: delPat(P,PS))

if (havePat(P,PS)) .

crl[walkBackR2-2] : (DoActD[P][walkBackR2]: N1) (changeD[P]: true) (remainPatientD: PS)

=> (DoActD[P][fin2]: 1) (changeD[P]: false) (remainPatientD: delPat(P,PS))

if (havePat(P,PS)) .

crl[fin2] : (DoActD[P][fin2]: N1) (remainPatientD: PS)

=> (DoActD[P][fin2]: (N1 + 1)) (remainPatientD: delPat(P,PS))

if (havePat(P,PS)) .

endm

mod EXPERIMENT is

including STATE .

including CHECK-CHANGE .
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including DO .

vars P P1 : Pat .

vars PS PS1 : PatSet .

vars N N0 N1 N2 N3 N4 N5 N02 N12 N22 N32 N42 N52 NN NRR NBR NN2 NRR2 NBR2

WT3 WT4 WT5 WT32 WT42 WT52 T : Nat .

vars A0 A1 A2 A3 A4 A5 A02 A12 A22 A32 A42 A52 : Act .

vars B B0 B1 B2 B3 B4 B5 B02 B12 B22 B32 B42 B52 : Bool .

crl[change] : (pc: change)

(DoAct[p[0]][A0]: N0) (DoAct[p[1]][A1]: N1) (DoAct[p[2]][A2]: N2)

(DoAct[p[3]][A3]: N3) (DoAct[p[4]][A4]: N4) (DoAct[p[5]][A5]: N5)

(change[p[0]]: B0) (change[p[1]]: B1) (change[p[2]]: B2)

(change[p[3]]: B3) (change[p[4]]: B4) (change[p[5]]: B5)

(Nurse: NN) (RR: NRR) (BR: NBR) (allPatient: PS)

=> (pc: do)

(DoAct[p[0]][A02]: N02) (DoAct[p[1]][A12]: N12) (DoAct[p[2]][A22]: N22)

(DoAct[p[3]][A32]: N32) (DoAct[p[4]][A42]: N42) (DoAct[p[5]][A52]: N52)

(change[p[0]]: B02) (change[p[1]]: B12) (change[p[2]]: B22)

(change[p[3]]: B32) (change[p[4]]: B42) (change[p[5]]: B52)

(Nurse: NN2) (RR: NRR2) (BR: NBR2) (allPatient: PS)

if (remainPatientC: PS)

(DoActC[p[0]][A0]: N0) (DoActC[p[1]][A1]: N1) (DoActC[p[2]][A2]: N2)

(DoActC[p[3]][A3]: N3) (DoActC[p[4]][A4]: N4) (DoActC[p[5]][A5]: N5)

(changeC[p[0]]: B0) (changeC[p[1]]: B1) (changeC[p[2]]: B2)

(changeC[p[3]]: B3) (changeC[p[4]]: B4) (changeC[p[5]]: B5)

(NurseC: NN) (RRC: NRR) (BRC: NBR)

=> (remainPatientC: patEmpty)

(DoActC[p[0]][A02]: N02) (DoActC[p[1]][A12]: N12) (DoActC[p[2]][A22]: N22)

(DoActC[p[3]][A32]: N32) (DoActC[p[4]][A42]: N42) (DoActC[p[5]][A52]: N52)

(changeC[p[0]]: B02) (changeC[p[1]]: B12) (changeC[p[2]]: B22)

(changeC[p[3]]: B32) (changeC[p[4]]: B42) (changeC[p[5]]: B52)

(NurseC: NN2) (RRC: NRR2) (BRC: NBR2) .

crl[do] : (pc: do) (Time: T)

(DoAct[p[0]][A0]: N0) (DoAct[p[1]][A1]: N1) (DoAct[p[2]][A2]: N2)

(DoAct[p[3]][A3]: N3) (DoAct[p[4]][A4]: N4) (DoAct[p[5]][A5]: N5)

(change[p[0]]: B0) (change[p[1]]: B1) (change[p[2]]: B2)

(change[p[3]]: B3) (change[p[4]]: B4) (change[p[5]]: B5)

(Nurse: NN) (RR: NRR) (BR: NBR)

(waitingTime[p[3]]: WT3) (waitingTime[p[4]]: WT4) (waitingTime[p[5]]: WT5)

(allPatient: PS)

=> (pc: check) (Time: (sd(T,1)))

(DoAct[p[0]][A02]: N02) (DoAct[p[1]][A12]: N12) (DoAct[p[2]][A22]: N22)

(DoAct[p[3]][A32]: N32) (DoAct[p[4]][A42]: N42) (DoAct[p[5]][A52]: N52)

(change[p[0]]: B02) (change[p[1]]: B12) (change[p[2]]: B22)

(change[p[3]]: B32) (change[p[4]]: B42) (change[p[5]]: B52)

(Nurse: NN2) (RR: NRR2) (BR: NBR2)

(waitingTime[p[3]]: WT32) (waitingTime[p[4]]: WT42) (waitingTime[p[5]]: WT52)

(allPatient: PS)

if (remainPatientD: PS)

(DoActD[p[0]][A0]: N0) (DoActD[p[1]][A1]: N1) (DoActD[p[2]][A2]: N2)
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(DoActD[p[3]][A3]: N3) (DoActD[p[4]][A4]: N4) (DoActD[p[5]][A5]: N5)

(changeD[p[0]]: B0) (changeD[p[1]]: B1) (changeD[p[2]]: B2)

(changeD[p[3]]: B3) (changeD[p[4]]: B4) (changeD[p[5]]: B5)

(NurseD: NN) (RRD: NRR) (BRD: NBR)

(waitingTimeD[p[3]]: WT3) (waitingTimeD[p[4]]: WT4) (

waitingTimeD[p[5]]: WT5)

=> (remainPatientD: patEmpty)

(DoActD[p[0]][A02]: N02) (DoActD[p[1]][A12]: N12) (DoActD[p[2]][A22]: N22)

(DoActD[p[3]][A32]: N32) (DoActD[p[4]][A42]: N42) (DoActD[p[5]][A52]: N52)

(changeD[p[0]]: B02) (changeD[p[1]]: B12) (changeD[p[2]]: B22)

(changeD[p[3]]: B32) (changeD[p[4]]: B42) (changeD[p[5]]: B52)

(NurseD: NN2) (RRD: NRR2) (BRD: NBR2)

(waitingTimeD[p[3]]: WT32) (waitingTimeD[p[4]]: WT42)

(waitingTimeD[p[5]]: WT52) .

rl[check] : (pc: check) (Time: N)

=> (pc: (if (N == 0) then finish else change fi)) (Time: N) .

rl[finish] : (pc: finish)

(DoAct[p[0]][A0]: N0) (DoAct[p[1]][A1]: N1) (DoAct[p[2]][A2]: N2)

(DoAct[p[3]][A3]: N3) (DoAct[p[4]][A4]: N4) (DoAct[p[5]][A5]: N5)

(waitingTime[p[3]]: WT3) (waitingTime[p[4]]: WT4) (waitingTime[p[5]]: WT5)

=> (pc: (if ((A0 == fin and A1 == fin and A2 == fin and

A3 == fin2 and A4 == fin2 and A5 == fin2) and

((WT3 < 6) and (WT4 < 6) and (WT5 < 6)))

then correct else fail fi))

(DoAct[p[0]][A0]: N0) (DoAct[p[1]][A1]: N1) (DoAct[p[0]][A2]: N2)

(DoAct[p[0]][A3]: N3) (DoAct[p[0]][A4]: N4) (DoAct[p[0]][A5]: N5)

(waitingTime[p[3]]: WT3) (waitingTime[p[4]]: WT4) (waitingTime[p[5]]: WT5) .

endm
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[CDE+07] Manuel Clavel, Francisco DurÃ¡n, Steven Eker, Patrick Lincoln, Narciso
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