
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Research on a Graph-based Method for Word sense

Induction

Author(s) 殷, 博

Citation

Issue Date 2014-09

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/12265

Rights

Description
Supervisor: Kiyoaki Shirai, School of Information

Science, Master



Research on a Graph-based Method for Word sense
Induction

By YIN BO

A thesis submitted to
School of Information Science,

Japan Advanced Institute of Science and Technology,
in partial fulfillment of the requirements

for the degree of
Master of Information Science

Graduate Program in Information Science

Written under the direction of
Associate Professor Kiyoaki Shirai

September, 2014



Research on a Graph-based Method for Word sense
Induction

By YIN BO (1210211)

A thesis submitted to
School of Information Science,

Japan Advanced Institute of Science and Technology,
in partial fulfillment of the requirements

for the degree of
Master of Information Science

Graduate Program in Information Science

Written under the direction of
Associate Professor Kiyoaki Shirai

and approved by
Associate Professor Kiyoaki Shirai

Professor Satoshi Tojo
Associate Professor Minh Le Nguyen

August, 2014 (Submitted)

Copyright c© 2014 by YIN BO



Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Overview of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Related Work 4
2.1 Clustering-based Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Graph based Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Introduction to HyperLex 8
3.1 Building Co-occurrence Graph . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1.1 Creating the Initial Graph . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.2 Weighting in Co-occurrence Graph . . . . . . . . . . . . . . . . . . 10

3.2 Detection of Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.1 Detection of Root Hubs . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Delineating Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.1 Minimum Spanning Tree (MST) . . . . . . . . . . . . . . . . . . . . 14
3.3.2 Dividing Graph by MST . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Disambiguation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Proposed Method 21
4.1 Optimization of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.1 Introduction of “Small World Graph” . . . . . . . . . . . . . . . . . 22
4.1.2 Tuning Parameters Considering Small World Properties . . . . . . 23

4.2 Finding Hubs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.1 Key Player Problem as Graph Connectivity Measure . . . . . . . . 26
4.2.2 Finding the Hubs using KPP . . . . . . . . . . . . . . . . . . . . . 29

4.3 Weighting Edges Considering Syntactic Relations . . . . . . . . . . . . . . 31
4.3.1 Syntactic Analysis with Standford Parser . . . . . . . . . . . . . . . 31
4.3.2 Weighting Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Evaluation 36
5.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 Evaluation Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

i



5.3 Setting of Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3.1 Range of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3.2 Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.4 Result of Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.5 Results of the Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . 44

5.5.1 Results of Optimization of Parameters . . . . . . . . . . . . . . . . 44
5.5.2 Results of Detection of Components Using KPP . . . . . . . . . . . 47
5.5.3 Results of Weighting Scheme Considering Syntactic Relation . . . . 51

6 Conclusion 55
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Acknowledge 57

Bibliography 58

ii



List of Figures

3.1 Co-occurrence Graph of Target Word ‘activate’ . . . . . . . . . . . . . . . 10
3.2 Example of Selection of a Hub . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Algorithm of Finding the Hubs . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 MST of Target Word ‘different’ . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 Algorithm of Delineating Components . . . . . . . . . . . . . . . . . . . . 16
3.6 Instance of ‘ask’ (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.7 Instance of ‘ask’ (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1 Algorithm of Parameter Optimization . . . . . . . . . . . . . . . . . . . . . 25
4.2 Flowchart of Choosing the Best Parameter Combination . . . . . . . . . . 26
4.3 An Example of a Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4 Example of Isolated Candidate of the Hub . . . . . . . . . . . . . . . . . . 30
4.5 Algorithm for Detecting Hubs using KPP . . . . . . . . . . . . . . . . . . 31
4.6 Basic Dependencies of a Sentence . . . . . . . . . . . . . . . . . . . . . . . 35

5.1 Distribution of the Size of Corpora . . . . . . . . . . . . . . . . . . . . . . 38
5.2 Results of HyperLex OP for Different T2. . . . . . . . . . . . . . . . . . . . 46
5.3 Results of all HyperLex OP+KPP . . . . . . . . . . . . . . . . . . . . . . . 50
5.4 Results of all HyperLex OP+KPP+SYN . . . . . . . . . . . . . . . . . . . 53

iii



List of Tables

3.1 Number of Co-occurrences of Two Words . . . . . . . . . . . . . . . . . . . 11
3.2 Nine components of ‘note’ . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Score Vector for the Instance ask.v.bnc.00006994 . . . . . . . . . . . . . . 19
3.4 Score Vector for the Instance ask.v.bnc.00008747 . . . . . . . . . . . . . . 20

4.1 Labels of Grammatical Relations in Stanford Parser . . . . . . . . . . . . . 32
4.2 Example Sentence and its Results of POS Tagging . . . . . . . . . . . . . . 33
4.3 List of Grammatical Dependencies for the Example Text . . . . . . . . . . 34

5.1 Number of Instances for Each Target Word . . . . . . . . . . . . . . . . . . 37
5.2 Range of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3 Range of Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.4 Results of HyperLex for All Target Words (1) . . . . . . . . . . . . . . . . 42
5.5 Results of HyperLex for All Target Words (2) . . . . . . . . . . . . . . . . 43
5.6 Results of HyperLex OP for All Target Words (1) . . . . . . . . . . . . . . 44
5.7 Results of HyperLex OP for All Target Words (2) . . . . . . . . . . . . . . 45
5.8 Number of Target Words for which No Graph is Obtained . . . . . . . . . 46
5.9 Comparison of Baseline and HyperLex OP . . . . . . . . . . . . . . . . . . 47
5.10 Results of HyperLex OP+KPP for All Target Words (1) . . . . . . . . . . 48
5.11 Results of HyperLex OP+KPP for All Target Words (2) . . . . . . . . . . 49
5.12 Comparison among Baseline, HyperLex OP and HyperLex OP+KPP . . . 50
5.13 Results of HyperLex OP+KPP+SYN for All Target Words (1) . . . . . . . 51
5.14 Results of HyperLex OP+KPP+SYN for All Target Words (2) . . . . . . . 52
5.15 Comparison of HyperLex OP+KPP+SYN and Other Systems . . . . . . . 53

iv



Chapter 1

Introduction

1.1 Background

In computational linguistics, Word Sense Induction (WSI) is an open problem of natural
language processing, which concerns automatic identification of senses of a word. The
senses of words are usually defined by a dictionary, but it might not compile all senses,
especially a new sense or a sense in a specific domain. Therefore, WSI is important to
recognize all the senses for a given word and indispensable for various NLP applications,
such as machine translation, information retrieval, text-to-speech synthesis and so on.

WSI is a task to construct clusters of contexts in which the target word occurs or to build
cluster of words related to the sense of the target word. Each obtained cluster corresponds
to one sense of the target word. In order to solve WSI problem, two major approaches
have been proposed, clustering based method and graph based method.

Clustering based method

Words are semantically similar if they appear in similar documents, in similar context
windows, or in similar syntactic contexts. Based on this idea, each occurrence of a target
word in a corpus is represented as a context vector. The contexts of the target word are
similar if many words in the contexts are overlapped. The vectors are then clustered into
groups. Finally, each cluster represents a sense of the target word.

Graph based method

Words are represented by a co-occurrence graph, whose vertices are words appearing in
the context of the target word and edges are co-occurrence relations. Then the graph is
divided into several sub-graphs. Each sub-graph represents an induced sense of the target
word.
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As we will discuss in Chapter 2, many papers have been devoted to the study of WSI.
However, there are much room to improve the WSI methods.

1.2 Goal

HyperLex is one of the graph-based word sense induction method proposed by Véronis [1].
As usual graph based WSI methods, HyperLex infers senses of a word in the following
procedures. First, the graph called ‘co-occurrence graph’ is built. In the co-occurrence
graph, words are represented as vertices, and edges are connected between words that
frequently co-occur in the corpus. The goal of HyperLex is to divide the graph into
several dense sub-graphs (or sub-trees) so that each sub-graph stands for a set of words
appearing in the same context of one sense of the target word. To divide the graph,
several nodes that might be a center of the dense sub-graph, called ‘hub’, are chosen.
Then the graph is split into sub-trees whose root nodes are hubs. Roughly saying, one
sub-tree represents one induced sense. Although Veronis reported promising results on
HyperLex, there are some problems on it.

The first problem concerns the way how to construct the co-occurrence graph. In Hyper-
Lex, there are several parameters to decide words to be added as vertices of the graph, or
pairs of words to be added as edges. Therefore, the structure of the co-occurrence graph
highly depends on these parameters. However, parameters are determined in ad-hoc man-
ner. Since the best parameter may be different for the target word or the corpus used for
WSI, a scheme to determine the optimum parameters should be investigated.

The second problem concerns how to choose the hub. In HyperLex, the frequent words
in the corpus are simply chosen as hubs. However, the structure of the graph should be
considered when we choose the hubs, since the hub should be the center of the dense
sub-graph.

The third problem concerns how to determine weights of edges. In a graph-based WSI,
edges in the co-occurrence graph are weighted so that the weight is small when two words
correlate each other. In HyperLex, only the co-occurrence frequency of two words is
considered to set weights of the edges. However, correlation between two words can be
measured from other points of views. Syntactic relation is one of them. If two words are
under a syntactic relation more frequently in the corpus, their relations might be strong
and the weight of the edge connecting them should be set small. Although it is well-known
that the syntactic relation is one of the useful features for word sense disambiguation, it
is not considered in HyperLex.

The goal of this thesis is to propose a method to tackle the above problems and improve
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the performance of HyperLex for WSI. Our goal can be summarized as follows:

• to propose a method for optimization of parameters

• to investigate a better way to find hubs

• to investigate a way to incorporate syntactic relations between two words into the
weights of the edges in the co-occurrence graph

1.3 Overview of the thesis

The thesis is organized as follows. Chapter 2 introduces previous work on WSI. Chapter 3
presents the detail algorithm of HyperLex. The proposed method to improve the original
HyperLex will be described in Chapter 4. Chapter 5 describes evaluation of the proposed
method. Finally, the conclusion and future work is presented in Chapter 6.
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Chapter 2

Related Work

As discussed in Chapter 1, there are two approaches for WSI: clustering based method
and graph based method. Following sections introduce previous work of two approaches.

2.1 Clustering-based Methods

In a clustering based method, all characteristics of a target word in a corpus are extracted
as a context vector. The characteristics mainly contain the co-occurrence words, parts of
speech, topic characteristics, N-grams, phrases, and so on. Then the senses of a target
word is induced by clustering algorithm.

Pinto et al. described a simple technique for unsupervised sense induction for ambiguous
words [2]. The method used the point wise mutual information for calculating a set of
co-occurrence terms which were used to expand the original context vector. Once the
expansion has been done, the unsupervised KStar clustering method was used to induce
the sense of each ambiguous word.

Purandare and Pedersen systematically compared several unsupervised word sense dis-
crimination techniques [3]. Four kinds of characteristics of the WSI methods were pre-
sented: clustering space, context vector, feature of context vector and clustering algo-
rithm. As for clustering space, vector and similarity space were considered. In the vector
space, a dimension of a context vector of an instance was a word appearing in the con-
text. On the other hand, in the similarity space, a dimension of a context vector was other
instances, and a value for each dimension was similarity between instances. As for the
context vector, the first and second order context vectors were considered. The first order
context vector was made directly from the context of the target word, while the second
order context vector was made by summing the first order context vector of surrounding
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words. Next, two kinds of features of the context vector were considered: uni-gram and
bi-gram of words. Finally, hierarchical, partitional and hybrid of them were considered as
clustering algorithm. Several WSI methods were implemented by combining the above 4
characteristics. They were empirically compared in the paper.

Elshamy et al. used topic features to cluster different word senses in their global context
topic space [4]. Using unlabeled data, this system trained a latent dirichlet allocation
(LDA) topic model then used it to infer the topic distribution of the test instances. The
instances of the target words were merged into several clusters according to the similarity
of the topic distribution. Their hypothesis was that closeness in topic space reflects
similarity between different word senses.

Cruys presented an extension of a dimensionality reduction algorithm called NONNEGA-
TIVE MATRIX FACTORIZATION (NMF), which combined both ‘bag of words’ data and
syntactic data to find semantic dimensions according to which both words and syntactic
relations can be classified [5]. They applied NMF to the three matrices. The first ma-
trix contained co-occurrence frequencies of nouns cross-classified by dependency relations.
The second matrix contained co-occurrence frequencies of nouns cross-classified by words
that appear in the noun’s context window, and the third matrix contained co-occurrence
frequencies of dependency relations cross-classified by co-occurring context words. The
use of three matrices allowed one to determine which dimensions were responsible for a
certain sense of a word, and adapted the corresponding feature vector accordingly, ‘sub-
tracting’ one sense to discover another one. The extended NMF was embedded in existing
clustering frameworks for word sense induction.

2.2 Graph based Methods

In graph based methods, elements and characteristics of clustering are defined in the
graph, then the senses are induced by using the graph based clustering algorithms. In the
graph, nodes can represent words in the context of the target word, or can represent the
instances1 of the target word, and edges represent the similarity between the nodes.

Véronis proposed the HyperLex algorithm using the co-occurrence graph [1]. Pairs of
words in the context were built in the form of co-occurrence graphs. A node in the graph
was a word appearing in the context of the target word. An edge was used to connect two
nodes that co-occurred in the same sentence. Next, the nodes connected with many other
nodes, called hubs, were identified. Finally, the graph was divided into several sub-trees
whose root node was the hub. Each sub-trees represented an induced sense of the target

1sentences including the target word.
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word. That is, the words in one sub-tree were words appearing in the context of the one
sense of the target word.

Agirre et. al. explored two sides of HyperLex: the optimization of 7 parameters in
HyperLex and the empirical comparison on a standard benchmark against other WSD
systems [6]. They used hand-tagged corpora to map the induced senses to WordNet senses
for comparison among WSD systems. The method allowed to fine-tune the parameters
automatically using another sense tagged corpus as a development data. However, it
requires much human labor to construct a sense tagged corpus for parameter tuning.
This thesis also proposes a method for parameter optimization of HyperLex. Our method
does not utilize hand-tagged sentences but choose the best parameters according to a
structure of a co-occurrence graph.

Agirre and Soroa proposed a graph-based unsupervised system for induction [7]. The way
of building a graph was similar to HyperLex. For each target word, a graph consisting of
words in the context was built. Vertices in the co-occurrence graph were words and two
vertices shared an edge whenever they co-occured in the same context. Besides, each edge
received a weight, which indicated how strong the nodes were related each other. Then
PageRank algorithm was used to identify the hubs in the graph. Each context (a sentence
including the target word) was represented by a hub score vector. Finally, clusters of
contexts were constructed by Markov clustering algorithm.

Dorow and Widdows proposed an algorithm which automatically discovered word senses
from free text and mapped them to the appropriate entries of existing dictionaries or
taxonomies [8]. The algorithm was based on a graph model representing words and
relationships between them. They assumed a co-occurrence word corresponded to a sense
of polysemous word, and used co-occurrence nouns (nouns occurring near the target word)
as nodes of the graph. If the number of co-occurrence of two nouns were more than a
given threshold, an edge between these two nodes was added. The weight of the edge was
set to the number of co-occurrence of them. Then, Markov clustering (MCL) algorithm
was used to construct clusters of contexts. Sense clusters were iteratively computed by
clustering the local graph of similar words around the target word. Discrimination against
previously extracted sense clusters enabled us to discover new senses. Finally, they used
the same data for both recognizing and resolving ambiguity of the senses.

Manandha and Klapaftis assumed that the collocation of two words corresponded to
a sense of the polysemous word [9]. The use of collocations instead of single words
can alleviate the problem of word sense induction. In the algorithm, the collocations
represented as nodes in the graph, and the weight in the edges was set up by a conditional
probability of the presence of the collocations. As the graph which was built by this
method is very sparse [10], the authors considered that two nodes in the graph which were
similar to each other should have the same neighbors, and obtain more edges by finding
the nodes, so that the smooth collocational graph was constructed. Finally, clusters of
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contexts were constructed by a clustering algorithm called “Chinese Whispers” (CW) [11].

As the graph using collocations as nodes led to sparseness, Klapaftis and Manandhar
proposed an unsupervised graph based method for automatic word sense induction and
disambiguation to solve this problem [12]. Their approach represented an unambiguous
unit as a vertex in a graph. The unambiguous unit was either a single word if it was judged
as unambiguous or a pair of words if not. Graph edges modeled the co-occurrences of
the content of the vertices. Hard-clustering of the graph induced a set of senses. In the
disambiguation stage, each induced cluster was scored according to the number of its
vertices found in the context of the target word.

Jurgens proposed a new graph-based method for WSI based on finding sense-specific word
communities within a co-occurrence graph [13]. This approach had two features: (1) the
impact of word frequency on community size and memberships and (2) identifying both
graph properties and semantic relations within hierarchical communities that distinguish
between sense granularities. He also proposed a method to distinguish the induced sense
of the target word in a new context. Software for the WSI model and link clustering is
available as a part of the S-Space Package.

Lau applied topic modeling to automatically induce word senses of a target word, and
demonstrated that their word sense induction method can be used to automatically de-
tect words with emergent novel senses, as well as token occurrences of those senses [14].
They explored a WSI method based on the utility of standard topic models, with a
pre-determined number of topics (=senses). This paper next demonstrated that a non-
parametric formulation that learned an appropriate number of senses per a word actually
performed better at the WSI task.

In the graph based methods, the selection of system parameters has an important influ-
ence to its performance, and the parameters are generally set up based on experience or
supervised learning. Korkontzelos et al. focused on the unsupervised estimation of the
free parameters of a graph-based WSI method, and explored the use of eight Graph Con-
nectivity Measures (GCM) that assessed the degree of connectivity in a graph [15]. Eight
graph connectivity measures used to find the parameters were Average Degree, Aver-
age Weighted Degree, Average Cluster Coeficient, Average Weighted Cluster Coeficient,
Graph Entropy, Weighted Graph Entropy, Edge Density and Weighted Edge Density.
Given a target word and a set of parameters, GCM evaluated the connectivity of the
produced clusters, which corresponded to sub-graphs of the initial (unclustered) graph.
Each parameter setting was assigned a score according to one of the GCM and then the
highest scoring setting was selected.
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Chapter 3

Introduction to HyperLex

HyperLex [1] is one of the excellent graph-based WSI methods. The proposed method
in this thesis is modification of HyperLex to overcome several problems in it. Before
describing our proposal, this chapter introduces the detail algorithm of HyperLex.

The goal of Word Sense Induction is to guess senses of a certain word, called ‘target word’.
HyperLex accepts a collection of sentences including the target word as an input. Then
it induces the senses of the target words as follows: (1) a co-occurrence graph whose
nodes are words in the context of the target word is constructed, (2) the nodes which
represents the sense, called ‘hub’, are identified, (3) the graph is subdivided into several
sub-trees whose root node are hub, (4) and finally a sense of a word in a new context
is disambiguated using the sub-trees. The detail of each step will be described in the
following sections.

3.1 Building Co-occurrence Graph

For each target word, a co-occurrence graph consisting of words appearing in the context
of the target word is built. Véronis shows that this kind of a graph fulfills the proper-
ties of small world graphs, and thus possess highly connected components. The centers
or prototypes of these components, called hubs, eventually identify the main word uses
(senses) of the target word.

3.1.1 Creating the Initial Graph

We start to build an initially-empty undirected graph G = (V,E), where V = E = ∅.

8



The graph is constructed from a corpus consisting of sentences including the target word.
At first, sentences containing fewer than 4 words were deleted from the corpus. The
threshold for removing the short sentences is called a parameter P1 in this thesis. (i.e.
P1 is set to 4 in HyperLex). A co-occurrence graph for the target word is built by the
following procedures.

Graph vertices ( V ): Words that occur less than 10 times in the entire corpus are
discarded. The threshold of the frequency of the word is called a parameter P2 in this
thesis (i.e. P2 is set to 10 in HyperLex). The remaining words become vertices in a graph
G.

Graph edges ( E ): It is said that two words ‘co-occur’ if they appear in the same
sentence in the corpus. If two vertices co-occur more than 5 times, they are connected
with an edge. The threshold of the number of co-occurrence for making the edge between
two words is called a parameter P3 in this thesis (i.e. P3 is set to 5 in HyperLex).

Finally, we have obtained the initial co-occurrence graph. Figure 3.1 shows the co-
occurrence graph of the target word ‘activate’. This example graph is obtained from
the corpus used for the evaluation. The details of the corpus will be described in Chapter
5.

9



Figure 3.1: Co-occurrence Graph of Target Word ‘activate’

3.1.2 Weighting in Co-occurrence Graph

Each edge is assigned with a weight which measures the relative frequency of the co-
occurrence of two words. Let wij be the weight of the edge connecting vertices ni and nj.
wij is defined by Equation (3.1):

10



wij = 1−max 〈p (ni| nj) , p (nj| ni)〉 (3.1)

In (3.1), p(ni|nj) is the conditional probability of observing ni in a given context, knowing
that that context contains nj, and inversely, p(nj|ni) is the probability of observing nj

in a given context, knowing that it contains ni. These probabilities are estimated from
frequencies in the corpus as Equation (3.2).

p (ni| nj) =
freq (ni, nj)

freq (nj)
p (nj| ni) =

freq (ni, nj)

freq (ni)
(3.2)

For example, let us consider how to calculate the weight between ‘know’ and ‘make’, and
the weight between ‘different’ and ‘make’. Table 3.2 shows the number of contexts in both
or each or none of words appear.

know ∼know Total make ∼make Total

make 5 49 54 different 0 35 35
∼make 14 844 858 ∼different 54 823 877

Total 19 893 912 Total 54 858 912

Table 3.1: Number of Co-occurrences of Two Words

From the statistics in Table 3.2, the weights are calculated as follows:

p (know |make) = 5/54 = 0.0926 p (make |know ) = 5/19 = 0.2632

p (make |different) = 0/35 = 0 p (different |make) = 0/54 = 0

w (know-make) = 1−max (0.0926 , 0.2632) = 0.7368

w (different-make) = 1−max (0 , 0) = 1

The weight of an edge reflects the magnitude of the semantic distance between words:
words which always occur together receive a weight of 0. Rarely co-occurring words
receive a weight close to 1.
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3.2 Detection of Components

Once the co-occurrence graph is built, a simple iterative algorithm is applied to obtain
its components. The basic assumption underlying the simple iterative algorithm is that
the different senses of a target word form highly interconnected ‘bundles’ in a small world
of co-occurrences, or in terms of graph theory, high-density components. For example,
the target french word ‘barrage’ have to co-occur frequently with ‘water’, ‘work’, ‘river’,
‘flood’, ‘irrigation’, ‘production’, ‘electricity’, etc.1, and these words themselves are likely
to be highly interconnected. So we can call these word as one bundle (component). In
addition, the target word ‘barrage’ have to co-occur frequently with ‘match’, ‘team’, ‘cup’,
‘world’, ‘soccer’, ‘victory’, etc., and these words themselves also are likely to be highly
interconnected. Similarly, we can call these words as the other bundle (component).
Intuitively, the first bundle corresponds to ‘dam’ sense of ‘barrage’, while the second
corresponds to ‘play-off’ sense.

Since, detecting the high-density components in the co-occurrence graph is NP-hard un-
fortunately, HyperLex detects the components by application specific heuristics. The
detail algorithm to detect the components in the graph will be described in the rest of
this section.

3.2.1 Detection of Root Hubs

In every high-density component, one of the nodes has a higher degree than the others.
Such a node is called the root hub of the component. All the hub nodes are identified
iteratively. For example, let us suppose that Figure 3.2 is the co-occurrence graph of the
target word ‘different’. The word ‘art’ is chosen as the first hub because it is the most
frequent word in the graph. Actually, the degree of the node ‘art’ (the number of edges
connected to ‘art’) is high. So the heuristic can choose the appropriate hub in this case.
After choosing the hub, we deleted the root hub along with all of its neighbors. Figure
3.2 also shows the hub and its neighboring nodes to be deleted.

1These are actually French words. English translations are written in the thesis for better readability.
Note that this example is introduced in the paper [1].
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Figure 3.2: Example of Selection of a Hub

Then the root hub of the next component is identified. The most frequent node in the
remained graph is chosen as the next hub. HyperLex continues this process until no node
is left.

Note that, instead of going through the nodes in decreasing order of the degree which
requires heavy computations at the node level, they are scanned in decreasing order of
frequency. It is supposed that the genuine degree and the frequency of the node are
highly correlated, and the selection of the hubs according to the frequency might be good
approximation.

A pseudocode of the algorithm for finding the hubs can be written in Figure 3.3:

Root Hubs(G) {
G: co-occurrence graph;
H: a set of hubs;
V ← nodes in G sorted in descending order of frequency;
H ← ∅
While (V 6=∅) {

v ← the first node in V ;
H←H∪{v};
N ← neighbors of v and v itself;
V ← V \ N ;

Return H; }
}

Figure 3.3: Algorithm of Finding the Hubs
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Table 3.2 shows hubs and its neighbors of a target word ‘note’. This example is excerpted
from the results of the experiment described in Chapter 5.

Hub Neighbors of Hubs

Time British, Mean
Conjurer Include, Conjurer, Form, Member, Case
Service Local, Form, Appear, Leave
Come Particularly, Public

Church Good
Social People, Use
Year Change, New
high Make

particular Group, State

Table 3.2: Nine components of ‘note’

3.3 Delineating Components

3.3.1 Minimum Spanning Tree (MST)

Given a connected, undirected graph, a spanning tree of that graph is a sub-graph that
is a tree and connects all the vertices together. A single graph can have many different
spanning trees. We can also assign a weight to each edge, which is a value representing
how unfavorable it is. Now the score of the spanning tree is defined as the sum of the
weights of the edges in it. A minimum spanning tree (MST) or minimum weight spanning
tree is a spanning tree whose score (sum of the weights) is minimum. More generally, any
undirected graph (not necessarily connected) has a minimum spanning forest, which is a
union of minimum spanning trees for its connected components.

Prim’s algorithm: This is a greedy algorithm that finds a minimum spanning tree for
a connected weighted undirected graph. It finds a subset of the edges that forms a tree
containing every vertex, where the total weights of all the edges in the tree is minimized.
The procedure of Prim’s algorithm is as follows:
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A. Input: A non-empty connected weighted graph with vertices V and edges E (the
weights can be negative).

B. Initialize: Vnew = {x}, where x is an arbitrary node (starting point) in V , Enew = ∅.

C. Repeat until Vnew = V :

i. Choose an edge {u, v} with minimal weight such that u is in Vnew and v is not
(if there are multiple edges with the same weight, any of them can be picked).

ii. Add v to Vnew, and {u, v} to Enew.

D. Output: Vnew and Enew describe a minimal spanning tree.

3.3.2 Dividing Graph by MST

Once the hubs that represent the senses of the word are selected, an expanded graph
is built. First, a dummy node representing the target word itself is added to the graph.
Then each hub is linked to the target word with 0 weights. To infer the sense of the target
word, a minimum spanning tree (MST) is computed over the expanded graph by taking
the target word as the starting node and making previously identified hubs as its first
level children. Finally, the target word is removed, causing that the graph is subdivided
into the sub-trees whose root nodes are hubs. Figure 3.4 shows an example of MST of
the target word ‘different’. By removing the node ‘different’, the graph can be divided
into 7 components. Now each component corresponds to an induced sense of the target
word. That is, the nodes in the sub-tree represent words appearing in the context of the
induced sense.
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Figure 3.4: MST of Target Word ‘different’

A pseudocode of this algorithm is described in Figure 3.5:

Components(G,H, T ) {
G: co-occurrence graph;
N : set of nodes in G;
E: set of edges in G;
H: set of root hub;
T : target word;
N←N∪T ;
for each h in H{

Add an edge < t, h > with weight 0 to E;
}
G′ ← an extended graph of {N,E};
Tree ← MST < G′, T >;
C ← set of trees obtained by removing T from Tree;
Return C;

}

Figure 3.5: Algorithm of Delineating Components
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3.4 Disambiguation

The components are then used to perform word sense disambiguation. For every in-
stance of the target word, the words surrounding it are examined and confronted with
the components.

Words in the co-occurrence graph are placed under exactly one component whose root
node is a hub. Each word in the context receives a set of scores Si of the hub hi. The
score Si is calculated as in Equation (3.3)

Si =


1

1+d(hi,v)
if v belongs to components i

0 otherwise

(3.3)

, where d(hi, v) is the distance between root hub hi and node v in the tree. Equation
(3.3) assigns a score of 1 to root hubs, whose distance from themselves is 0. The score
gradually approaches 0 as the nodes move away from their hub. Score vector consisting
of Si for all components is constructed. In the score vector, all values are 0 except for one
score corresponds to the component to which the word belongs. For a given context, the
score vectors of all words in the context is added, and the component that receives the
highest score is chosen.

Figure 3.6 and Figure 3.7 shows two instances of the target word ‘ask’ excerpted from the
corpus used for the evaluation in Chapter 5.
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Instance of ‘ask’: ask.v.bnc.00008747

Nowadays, nearly every young person has probably had some experience of basic
improvisation at their school or through the extensive TIE (Theatre in Educa-
tion) tours. In drama schools, improvisation is about finding a way of expanding
the imagination and liberating the senses, which can get too confined if students
work entirely from a text all the time. The use of impro in training has gone
through many phases; it still conjures up the traditional, hackneyed image of a
student being asked to be a tree or an ice cream. But it is possible to go way
beyond these limited, obvious exercises, and impro can be immensely exciting
for young actors, allowing them to grasp situations and emotions imaginatively,
perhaps for the first time. Here is an example of an impro exercise for two actors:
An actor is asked to assume the character of a close family friend who arrives at
the house with the news of the death of the wife ś husband in an accident.

Figure 3.6: Instance of ‘ask’ (1)

Instance of ‘ask’: ask.v.bnc.00006994

We will see that this mode of constructing monopoly Catholicism is alien to
the Concordat period of Roman catholic church state relations recognizable in
arrangements, for example, with Spain, Portugal, and Italy. A dislike by Irish
clerics for such an explicit and direct church state relationship has a long tradition
and comes out best in De Tocqueville ’s (1957) conversations with Irish clergy
on his visit to Ireland in 1834. When asked if they would like subventions from
the state to aid their stipends and church buildings, a move which was being
seriously considered by the British government at the time, priests and bishops
were united in rejecting the idea on the grounds that it would drive a wedge
between clergy and people, identifying clergy with the principal enemies of the
people. De Tocquevilleś notes reveal not only the conscious opposition to such
a mode of religious power but also how deep the solidarity between clergy and
people was, the degree to which the poor, half the catholic population at the
time, looked to the clergy for material and spiritual leadership, guidance, and
assistance, and how much they trusted them. However, with the emergence of
the Southern Irish state, it soon became clear that this secularization of the state
form was not to signify an absence of Roman catholic power in the construction
of public morality, but rather an indirect recognition of the sovereignty of the
church in most areas of moral concern besides education.

Figure 3.7: Instance of ‘ask’ (2)
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Table 3.3 and Table 3.4 show respectively the score vectors for the instances ask.v.bnc.00006994
and ask.v.bnc.00008747. In these tables, ‘Time’, ‘Man’, ‘Thing’, ‘Doctor’ and ‘Force’
stand for the hubs. For example, for the instance ask.v.bnc.00006994, the word ‘allow’
belongs to the component ‘Time’ and the score for ‘Time’ is 0.82; its score vector is
(0.42, 0, 0, 0). Similarly, ‘school’ belongs to the component ‘Man’ and the score for ‘Man’
is 1.54; its score vector is (0, 0.24, 0, 0). In addition, for the instance ask.v.bnc.00008747,
‘best’ belongs to the component ‘Man’ and the score for ‘Man’ is 0.28; its score vector is
(0, 0.28, 0, 0). Similarly, ‘idea’ belongs to the component ‘Time’ and the score for ‘Time’
is 0.62; its score vector is (0.62, 0, 0, 0). The sum of the score vectors for all words in the
context are obtained. Then the component with the highest score is chosen as the sense
of the target word. For the instance ask.v.bnc.00006994, the component ‘Time’ is chosen
since its score 3.68 is the highest. On the other hand, for the instance ask.v.bnc.00008747,
the component ‘Man’ is selected as its score 3.42 is the highest.

ask.v.bnc.00006994
Word Time Man Thing Doctor Force
allow 0.42 0 0 0 0
drama 0 0.24 0 0 0
family 0.65 0 0 0 0
house 0.65 0 0 0 0
school 0 0.22 0 0 0

situation 0 0.30 0 0 0
student 0.40 0 0 0 0
time 1 0 0 0 0
train 0.56 0 0 0 0
use 0 0 0 0.6 0
way 0 0.36 0 0 0
work 0 0.27 0 0 0
young 0 0.6 0 0 0
Total 3.68 1.99 0 0.6 0

Table 3.3: Score Vector for the Instance ask.v.bnc.00006994
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ask.v.bnc.00008747
Word Time Man Thing Doctor Force
best 0 0.24 0 0 0
come 0 0.48 0 0 0

conjurer 0.58 0 0 0 0
government 0.62 0 0 0 0

idea 0.62 0 0 0 0
long 0 0.37 0 0 0
look 0 0.35 0 0 0

people 0.58 0 0 0 0
time 1 0 0 0 0
Total 3.39 3.42 0 0 0

Table 3.4: Score Vector for the Instance ask.v.bnc.00008747
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Chapter 4

Proposed Method

In this chapter, we will introduce the proposed methods based the algorithm of HyperLex.
As already explained, our method is the revision of HyperLex in the following three ways:
(1) optimization of parameters, (2) a method to choose the hubs and (3) weighting scheme
of edges considering syntactic relations. The following sections explain our method one
by one.

4.1 Optimization of Parameters

In this section, we investigate the ways to choose parameter values. There are three
parameters in HyperLex, such as:

- A threshold of a length of a sentence to be used to make a graph (parameter P1)

- A threshold of a frequency of a word to be added as a node (parameter P2)

- A threshold of a co-occurrence frequency of a pair of words to be added as an edge
(parameter P3)

In HyperLex, these parameters are fixed. Since the structure of the co-occurrence graph
is highly dependent on these parameters, however, they play an important role in WSI.
It is essential to optimize the parameters to guess the senses of the target word more
precisely.

To address the issue of choosing parameter values, we will consider all combinations of
parameters so that the constructed graph meets the condition of small world properties.
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4.1.1 Introduction of “Small World Graph”

To optimize the parameters, we have to consider the properties of the “Small World
Graph” to build co-occurrence graph.

Véronis claims that the co-occurrence graph have the properties of the “Small World
Graph” , which is proposed by Watts and Strogatz [16], one of today’s key areas of
research in graph theory. While a large part of the graph-theory studies have dealt with
regular graphs or random graphs, Watts and Strogatz has shown that most real world
graphs and networks do not fall into either of these categories, but are in an intermediate
state somewhere between order and chaos. Roughly saying, “small world graph” stands
for a graph where several dense subsets of nodes (small world) are loosely connected. For
WSI, it is appropriate that the co-occurrence graph has a small world property, since the
small world in the graph may stand for each sense. In other words, to infer the senses of
the target word, it is necessary to construct a small world graph.

Watts and Strogatz defined two measures for characterizing small world graphs: the
characteristic path length (L) and the clustering coefficient (C). L is the mean length
of the shortest path between two nodes in the graph. Let dmin(i, j) be the length of the
shortest path between two nodes, i and j, and let N be the total number of node. L is
defined as Equation (4.1). The characteristic path length represents “closeness” of nodes
in the graph.

L =
1

N

N∑
i=1

dmin (i, j) (4.1)

While the clustering coefficient of a graph shows the extent to which nodes tend to form
connected groups that have many edges connecting each other in the group, and few edges
leading out of the group. For each node i, one can define a local clustering coefficient Ci

equal to the proportion of connection E (Γ (i)) between the neighbors Γ (i) of that node
where E stands for a set of edges connecting nodes in a given set of nodes. For a node i

with 4 neighbors, for instance, the maximum number of connections is

(
|Γ (i)|

2

)
= 6.

If 5 of these connections actually exist, Ci = 5/6 ≈ 0.83. The global coefficient C is the
mean of the local coefficient as shown in Equation (4.2).

C =
1

N

N∑
i=1

|E (Γ (i))|(
|Γ (i)|

2

) (4.2)

This coefficient ranges between 0 for a totally disconnected graph and 1 for a complete
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graph. When the edges are weighted, a weighted clustering coefficient Cweight can be
defined as in Equation (4.3).

Cweight =
1

N

N∑
i=1

|E(Γ(i))|∑
j=1

(1− wij)(
|Γ (i)|

2

) (4.3)

In the case of a random graph, Equation (4.4) is supposed to be fulfilled. N is a number
of nodes in the random graph. k is a mean of number of edges per a node, or E/N ,

Lrand ∼
log (N)

log (k)
Crand ∼

2k

N
(4.4)

For example, a random graph of 1000 nodes and 10000 edges will have a mean degree
k of 10, the characteristic path length Lrand is log(1000)/log(10) = 3 and the clustering
coefficient Crand is 10/1000 = 0.01.

Randomly built graphs exhibit low clustering coefficients and are believed to represent
something very close to the minimal possible average path length, at least in expectation.
Perfectly ordered graphs, on the other hand, show high clustering coefficients but also high
average path length. According to Watts and Strogatz, small world graphs lie between
these two extremes: they exhibit high clustering coefficients, but short average path
length, as shown in Equation (4.5).

L ∼ Lrand

C � Crand (Cweight � Crand)
(4.5)

This equation indicates the difference between a small world graph and a random graph:
in a small world graph, there might exists “bundles” or highly interconnected groups.
In this thesis, Equation (4.5) is called ‘small world property’. If a graph fulfills these
equations, it could be a small world graph.

4.1.2 Tuning Parameters Considering Small World Properties

Using different parameter combinations, we can build different structures of graphs. To
optimize parameters, we have to consider the properties of small world graph for every
set of parameter combination, then choose a graph that meets the small world properties
best.
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We modify the original requirement of small world property (Equation (4.5)) for opti-
mization of parameters. When a graph has the property of small world, the average path
length (L) should be almost equal to that of a random graph, while the clustering coeffi-
cient (C) should be great. These requirements can be represented as Equation (4.6) and
(4.7). ∣∣∣∣ L

Lrand

− 1

∣∣∣∣ ≤ T1 (4.6)

Csw =

∣∣∣∣Cweight

Crand

∣∣∣∣ (4.7)

Equation (4.6) means that the difference between L and Lrand should be almost equal.
T1 is a threshold to control how we strictly check if L and Lrand are same. The range of
T1 is set to [0,1). While Csw evaluates how Cwight is much greater than Crand. For the
small world graph, Csw should be greater than 1 at least. It is preferable if Csw is great.

If
∣∣∣ L
Lrand

− 1
∣∣∣ ≤ T1 and Csw is very large, the structure of this graph satisfied the property

of small world graph. On the other hand, if
∣∣∣ L
Lrand

− 1
∣∣∣ is great, or Csw is less than 1, the

structure of this graph does not satisfy the property of small world graph. The basic idea
of the parameter optimization is to choose a graph that fulfills Equation (4.6) and Csw is
the highest for various combination of parameters. In other words, we search the graph
that fulfills the small word property very well.

Although some graphs whose structures fulfill small world property, a large number of the
hubs are detected. In other words, a large number of senses are induced. However, a word
might not have an excessive number of senses. To choose the best parameter combination,
we also consider to limit the number of hubs (senses) as in Equation (4.8)

Hubs ≤ T2 (4.8)

, where Hubs is the number of hubs, and T2 is the other threshold for optimization of
parameters.

Now the procedure to choose the best parameter combination considering small world
property will be described. Firstly, we build the graphs for all parameter combinations.
Parameter combination means a triplet of P1, P2 and P3. Then, the parameter combi-

nations are filtered out, if
∣∣∣ L
Lrand

− 1
∣∣∣ is infinite1 or

∣∣∣Cweight

Crand

∣∣∣ is less than 1. Next, choose

the parameter combinations which fulfill that
∣∣∣ L
Lrand

− 1
∣∣∣ is not larger than T1. Next,

1Note that Lrand is sometimes 0. In this case, | L
Lrand

− 1| becomes infinite.
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in order to guarantee the validity of clusters (senses), we will filter the parameter triplet
where the number of the hubs is not greater than T2. Finally, among remaining parameter
combinations, we choose one where Csw is maximum.

A pseudocode of the above algorithm is shown in Figure 4.1:

Best Parameter(PC) {
PC: all parameter combinations;
CPC: candidate parameter combinations;
bpc: the best parameter combination;
CPL(pc): function to return |L/Lrand − 1| for pc;
CC(pc): function to return |C/Crand| for pc;
Hubs(pc): function to return number of hubs for pc;
CPC←∅;
bpc←empty;
for each pc in PC {

if (CPL(pc) <∞ and CC(pc) > 1 and CPL(pc) <= T1 and Hubs(pc) <= T2 ) {
CPC←(CPC∪pc); }};

for each pc in CPC {
if (CC(pc) > CC(bpc)) {
bpc←pc; }}

Return bpc;
}

Figure 4.1: Algorithm of Parameter Optimization

In order to more clearly understand this proposed method, we show a flowchart of it in
Figure 4.2.

25



Figure 4.2: Flowchart of Choosing the Best Parameter Combination

4.2 Finding Hubs

HyperLex finds a hub by simply considering the frequency of nodes. However, the connec-
tivity between nodes in the graph is not considered. In order to analyze the connectivity
in the co-occurrence graph and divide it into better sub-graphs, we used a graph connec-
tivity measure - Key Player Problem (KPP) to delineate components. The key idea is
that a node that are connected with many other nodes could be an appropriate hub.

4.2.1 Key Player Problem as Graph Connectivity Measure

In this subsection, we describe the graph connectivity measure that we apply for WSI.
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Although the graph connectivity measures can be applied to both directed and undirected
graphs, in the context of WSI, we assume that we are deal with undirected graphs. In an
undirected graph G, two vertices u and v are called connected if G contains a path from
u to v. Otherwise, they are called disconnected. If the two vertices are connected by a
path of length 1, i.e. by a single edge, the vertices are called adjacent. A graph is said to
be connected if every pair of vertices in the graph is connected. A connected component
is a maximum connected subgraph of G. Each vertex belongs to exactly one connected
component, as does each edge.

First, the distance between u and v is defined as:

d (u, v) =

{
length of the shortest path, if u→ v
K, otherwise

(4.9)

, where u→v indicates the existence of a path from u to v (u and v are connected), and
K is a conventional constant, when u and v is disconnected. We choose K= |V |, as the
length of any shortest path is smaller than V . The length of a path is calculated as the
number of edges in the path. In an example in Figure 4.3, d(a, i) = 5, d(c, g) = 4, and so
on.

Figure 4.3: An Example of a Graph

Local measures of graph connectivity determine the degree of relevance of a single vertex
v in a graph G. They can be viewed as measures of the influence of a node over the spread
of information through the network [17]. Formally, we define a local measure l as:
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l : V → [0, 1] (4.10)

A value close to one indicates that a vertex is important, whereas a value close to zero
indicates that the vertex is peripheral.

Several local measures of graph connectivity have been proposed in the literature. A large
number rely on the notion of centrality: a node is central if it is maximally connected to
all other nodes. Key Player Problem (KPP) that is local graph connectivity measure will
be considered to detect the components of the co-occurrence graph in this study.

The key player problem (KPP) consists of two separate sub-problems, which can be gen-
erally described as follows [18]2:

- (KPP-1 ) Given a social network, find a set of k nodes (called a kp-set of order k)
which, if removed, would maximally disrupt communication among the remaining
nodes.

- (KPP-2 ) Given a social network, find a kp-set of order k that is maximally connected
to all other nodes.

Of course, these introductory definitions leave out what is meant precisely by ‘maximally
disrupt communication’ and ‘maximally connected’. Part of the process of solving these
problems is providing definitions of these concepts that lead to feasible solutions and useful
outcomes. However, it would seem clear that KPP-1 involves fragmenting a network into
components, or, failing that, making distances between nodes so large as to be practically
disconnected. In contrast, KPP-2 involves finding nodes that can reach as many remaining
nodes as possible via direct links or perhaps short paths.

The first problem, KPP-1, arises in a number of contexts. A prime example in the public
health context is the immunization/quarantine problem. Given an infectious disease that
is transmitted from person to person, and given that it is not feasible to immunize and/or
quarantine an entire population, which subset of members should be immunized/quaran-
tined so as to maximally hinder the spread of the infection? An example in the military
context is target selection. Given a network of terrorists who must coordinate in order to
mount effective attaches, and given that only a small number can be intervened with (e.g.
by arresting or discrediting), which ones should be chosen in order to maximally disrupt
the network?

The second problem, KPP-2, arises in the public health context when a health agency

2The following explanation of KPP is quoted from the paper [18].
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needs to select a small set of population members to use as seeds for the diffusion of
practices or attitudes that promote health, such as using bleach to clean needles. In
the organizational management context, the problem occurs when management wants to
implement a change initiative and needs to get a small set of informal leaders on-board
first, perhaps by running a weekend intervention with them. In the military context, KPP-
2 translates to locating an efficient set of enemies to surveil, turn (into double-agents), or
feed misinformation to.

At first glance, both KPP-1 and KPP-2 would appear to be easily solved by either
employing some graph theoretic concepts such as cutpoints and cutsets, or via the methods
of social network analysis, such as measuring node centrality. It turns out, however, that
none of the existing methods are adequate. The paper [18] explains why and presents a
new approach specifically designed for the key player problem.

In a word, KPP is similar to the well known closeness centrality measure which is defined
as the reciprocal of the total shortest distance from a given node to all other nodes. With
KPP, as shown in Equation (4.11), a vertex v is considered important if it is relatively
close to all other vertices [19]:

KPP (v) =

∑
u∈V :u6=v

1
d(u,v)

|V | − 1
(4.11)

In (4.11), the numerator is the sum of the inverse shortest distances between v and all
other nodes and the denominator is the number of nodes in the graph (excluding v).
The KPP of a disconnected node is a small constant, given by 1

K
= 1

V
. For example,

the KPP for vertices a and f in Figure 4.3 are KPP (a) =
1+ 1

2
+ 1

2
+ 1

3
+ 1

4
+ 1

4
+ 1

5
+ 1

5

8−1
= 0.40,

KPP (f) =
1+1+ 1

2
+ 1

2
+ 1

3
+ 1

3
+ 1

3
+ 1

4

8−1
= 0.53, respectively.

4.2.2 Finding the Hubs using KPP

The value of KPP for each vertex in the co-occurrence graph fully considers the connec-
tivity in the graph, then the importance of vertices will be analyzed. If the valve of KPP
for a vertex is very large, it indicates that this vertex is important in the graph. It will
be considered as a candidate of a hub of a component.

Now the procedure to choose the hubs of the components using KPP will be described.
First, we obtain the value of KPP for each vertex in the graph, then choose the vertex
that have the largest KPP as the first hub. The chosen hub and its neighbors are removed
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from the graph. Next, we choose the vertex that have the greatest KPP in the remaining
graph as the next hub and remove it and its neighbors from the graph. Note that KPP
of nodes are calculated once and not re-evaluated during the iteration. We continue the
above iteration process until the graph have no vertex.

We found that a node with the highest KPP has sometimes no neighboring node in the
iterative procedure. Such hubs are obviously inappropriate since it is not a center of a
dense sub-graph. The reason is that KPP values of nodes are calculated on the original
graph. Even when KPP of a node is high, all neighbors of it can be removed if they are
also neighbors of previously chosen hubs. Let us suppose that h1, h2 and h3 have already
chosen as the hubs and h4 is selected as the next hub in an example graph in Figure 4.4.
Note that the node ‘a’, ‘b’, ‘c’ and ‘d’ are connected to both h3 and h4. Since the hub and
its neighboring nodes are removed from the graph in the iterative process, h4 becomes
isolated, even its KPP value is high in the original graph. h4 is inappropriate as the hub,
since it might belong to a component of the other hub. That is, h3, h4 and node ‘a’,
‘b’, ‘c’, ‘d’ seem to form one component. Therefore, we introduce a simple heuristics: in
each iteration for finding hubs, we don’t consider a node that have no neighboring in the
remaining graph as the hub, although its KPP value is high. Such a node is just removed
and a node with the highest KPP among the rest of nodes is chosen as the next hub.

Figure 4.4: Example of Isolated Candidate of the Hub

A pseudocode of the procedure for detecting the hubs using KPP is shown in Figure 4.5:
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Root Hubs(G) {
G: co-occurrence graph;
KPP : array of KPP of vertices in G;
V ← a set of nodes in G sorted in descending order of KPP ;
H←∅;
While (V 6=∅) {

N ← the first node in V ;
If (v have neighbors) {
H←H∪{v};
N ← the neighbors of v and v itself;
V←V \N ;
} else {
V←V \ {v};
}
return H;

}

Figure 4.5: Algorithm for Detecting Hubs using KPP

4.3 Weighting Edges Considering Syntactic Relations

In HyperLex, a weight of an edge in a graph is simply determined based on the co-
occurrence of two vertices (words), that is, the weight of the edge between two words only
reflects the number of co-occurrence of two words in the corpus. However, even when two
words appear in the same sentence, it is uncertain if they are strongly related each other.
Co-occurrence of two words may happen by accident.

To solve this problem, syntactic relations are considered in the weighting scheme. If two
words appear in a syntactic relation such as verb-(subject)-noun and verb-(object)-noun,
they seem to more correlate. Therefore, low weight is given for the edge between two
words when they appear under a syntactic relation many times in the corpus.

4.3.1 Syntactic Analysis with Standford Parser

To obtain the syntactic relation of two words on a sentence in the corpus including the
target word, we parse the sentence using the Stanford CoreNLP that generates a pars-
ing result in dependency relation format. Stanford CoreNLP provides a set of natural
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language analysis tools including Part-of Speech (POS) Tagger, Named Entity Recognizer
(NER), Stanford Parser, Coreference Resolution System, Sentiment Analysis, and Boot-
strapped Pattern Learning tools as well as model files for analysis of English. In this
research, the Stanford Parser was used to analyze grammatical relations for the instances
in the corpus. Stanford Parser provides 55 different grammatical dependency types as
shown in Table 4.1.

Label Grammatical Relations Label Grammatical Relations
abbrev abbreviation modifier npadvmod noun phrase as adverbial modifier
acomp adjectival complement nsubj nominal subject
advcl adverbial clause modifier nsubjpass passive nominal subject

advmod adverbial modifier num numeric modifier
agent agent number element of compound number
amod adjectival modifier parataxis parataxis: parataxis
appos appositional modifier partmod participial modifier
attr attributive pcomp prepositional complement
aux auxiliary pobj object of a preposition

auxpass passive auxiliary poss possession modifier
cc coordination possessive possessive modifier

ccomp clausal complement preconj preconjunct
complm complementizer predet predeterminer
conj conjunct prep prepositional modifier
cop copula prepc prepositional clausal modifier
csubj clausal subject prt phrasal verb particle

csubjpass clausal passive subject punct punctuation
dep dependent purpcl purpose clause modifier
det determiner quantmod quantifier phrase modifier
dobj direct object rcmod relative clause modifier
expl expletive ref referent

infmod infinitival modifier rel relative
iobj indirect object root root
mark marker tmod temporal modifier
mwe multi-word expression xcomp open clausal complement
neg negation modifier xsubj controlling subject
nn noun compound modifier

Table 4.1: Labels of Grammatical Relations in Stanford Parser

The parser can read various forms of plain text as input and can output various analysis
formats, including part-of-speech tagged text, phrase structured trees, and a grammatical
relations (typed dependency) format. Table 4.2 shows an example sentence and its POS-
tagged text.
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Text

The strongest rain ever recorded in India shut down the financial hub of Mumbai,
snapped communication lines, closed airports and forced thousands of people to
sleep in their offices or walk home during the night, officials said today.

Part-of-Speech Tagged Text

The/DT strongest/JJS rain/NN ever/RB recorded/VBN in/IN India/NNP
shut/VBD down/RP the/DT financial/JJ hub/NN of/IN Mumbai/NNP ,/,
snapped/VBD communication/NN lines/NNS ,/, closed/VBD airports/NNS
and/CC forced/VBD thousands/NNS of/IN people/NNS to/TO sleep/VB in-
/IN their/PRP$ offices/NNS or/CC walk/VB home/NN during/IN the/DT
night/NN ,/, officials/NNS said/VBD today/NN ./.

Table 4.2: Example Sentence and its Results of POS Tagging

If two words in a sentence appear in any grammatical relations, the parser will output a
table of typed dependencies. Table 4.3 shows the list of typed dependencies obtained for
the example sentence in Table 4.2. Grammatical relations are represented in a form of
relation(word1, word2), showing that the relation between word1 and word2 is ‘relation’.
Note that an index (a position in a sentence) of each word is also shown by Standford
Parser.
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typed dependencies typed dependencies
det(rain-3, The-1) cc(shut-8, and-22)
amod(rain-3, strongest-2) conj(shut-8, forced-23)
nsubj(shut-8, rain-3) dobj(forced-23, thousands-24)
advmod(recorded-5, ever-4) prep(thousands-24, of-25)
vmod(rain-3, recorded-5) pobj(of-25, people-26)
prep(recorded-5, in-6) aux(sleep-28, to-27)
pobj(in-6, India-7) xcomp(forced-23, sleep-28)
ccomp(said-40, shut-8) prep(sleep-28, in-29)
prt(shut-8, down-9) poss(offices-31, their-30)
det(hub-12, the-10) pobj(in-29, offices-31)
amod(hub-12, financial-11) cc(sleep-28, or-32)
dobj(shut-8, hub-12) conj(sleep-28, walk-33)
prep(hub-12, of-13) dobj(walk-33, home-34)
pobj(of-13, Mumbai-14) prep(walk-33, during-35)
conj(shut-8, snapped-16) det(night-37, the-36)
nn(lines-18, communication-17) pobj(during-35, night-37)
dobj(snapped-16, lines-18) nsubj(said-40, officials-39)
conj(shut-8, closed-20) root(ROOT-0, said-40)
dobj(closed-20, airports-21) tmod(said-40, today-41)

Table 4.3: List of Grammatical Dependencies for the Example Text

4.3.2 Weighting Scheme

In HyperLex, the weight of the edge in the co-occurrence graph represents the correlation
between two words. Although the weights are determined according to the co-occurrence
of two words in HyperLex, our weighting scheme considers both co-occurrence and syn-
tactic relation.

In order to more clearly understand the new weighting scheme under syntactic relation,
we consider an example sentence “we drink water and eat meat at the party.” Figure
4.6 shows the basic dependencies of this sentence. We observe two pairs of words in
this sentence, ‘drink-water’ and ‘drink-meat’. The weights of their edges may not be so
different in using the algorithm of HyperLex, however, ‘drink-meat’ do not appear in any
syntactic relation, and they seem less correlated than ‘drink-water’.
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Figure 4.6: Basic Dependencies of a Sentence

To consider syntactic relations in the weighting scheme, the weight assigned to each edge
is redefined as Equation (4.12).

wsyn
ij = wij ·

(
1− occursyn (ni, nj)

occur (ni, nj)

)
(4.12)

wsyn
ij stands for the new weight, while, wij represents the original weight in the HyperLex

(Equation (3.1)). occursyn (ni, nj) represents the number of sentences where ni and nj are
under some syntactic relations, while occur(ni, nj) is the number of sentences where ni

and nj cooccur. Note that occursyn(ni, nj) is the sum of 55 grammatical relations.

Equation (4.12) means that the weight of two words becomes small if two words ni and
nj more appear in the syntactic relations. The new weighting scheme enables us to make
components (or sub-graphs) consisting of words that are syntactically related each other.
Such components may more precisely represent the sense of the target word or the set of
words in the context of the sense.
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Chapter 5

Evaluation

This chapter reports the evaluation of the proposed method. First, the data used for
the evaluation is introduced. Then, measures to evaluate the performance of WSI are
described. Next, the setting of the experiment is explained. Finally, the results of WSI by
the original and revised HyperLex are compared to show the effectiveness of the proposed
method.

5.1 Data

In this research, the training data of Senseval-3 English Lexical Sample Task is used for
the evaluation. Senseval-3 is an evaluation workshop for Word Sense Disambiguation.
The data is a collection of documents where a correct sense of a target word is annotated.
In other words, it is a sense tagged corpus. The number of the target word is 57. The list
of the target words and the number of samples or instances for each target word is shown
in Table 5.1.
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Target Word No. of Instances Target Word No. of Instances

activate 228 miss 58
add 263 note 132

appear 265 operate 35
argument 221 organization 112

arm 266 paper 232
ask 261 party 230

atmosphere 161 performance 172
audience 200 plan 166

bank 262 play 104
begin 181 produce 186
climb 133 provide 136
decide 122 receive 52
degree 256 remain 139

difference 226 rule 59
different 98 shelter 196
difficulty 46 simple 36

disc 200 solid 108
eat 181 smell 58

encounter 130 sort 190
expect 156 source 64
express 110 suspend 128

hear 63 talk 146
hot 86 treat 112

image 146 use 26
important 36 wash 66

interest 185 watch 100
judgment 62 win 78

lose 71 write 44
mean 80

Table 5.1: Number of Instances for Each Target Word

In this experiment, instances for each target word are used as a corpus to infer the senses
of the target word. As shown in Table 5.1, the sizes of the corpora are different for the
target words. It is appropriate for the evaluation of the proposed method, since the co-
occurrence graph depends on the size of the corpus and our method focuses on how to
optimize parameters to construct a better graph. Figure 5.1 shows the distribution of
the size of the corpus. It indicates that the proportions of the small, medium and large
corpora are roughly equal.
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Figure 5.1: Distribution of the Size of Corpora

Context Preprocessing

Before applying HyperLex, two preprocessings are performed on the text: lemmatization
and removal of stop word.

Lemmatisation in linguistics is the process of grouping together the different inflected
forms of a word so they can be analyzed as a single item. In computational linguistics,
lemmatisation is the algorithmic process of determining the lemma for a given word. Since
the process may involve complex tasks such as understanding context and determining
parts of speech of words in a sentence. It is the process for reducing inflected (or sometimes
derived) words to their stems, base or root forms - generally a written word form. In our
research, we use the tool “European Languages Lemmatizer” for this task. It finds all
paradigms and their forms of a word and give morphological information - part of speech,
case, gender, tense, etc. The first step of lemmatization is to create a big dictionary that
maps words to their stems. The second step is to use a set of rules that extract stems
from words.

Stop word is a word that do not have a meaning and should be ignored in the most of
natural language processing. There are 3 kinds of stop words. The first is the verbs that
have just a general meaning such as ‘be’, ‘do’ and so on. The second is function words
(determiners, preposition, etc.). The last is some meaningless words in Senseval-3 corpus
(such as ‘85dbs’, ‘pp.’, ‘Fig.’ and so on). These non-informative words that are general
meaning verbs and function words are defined by a “stopword list”1. For each word in

1https://sites.google.com/site/kevinbouge/stopwords-lists
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the corpus, we search it in the stopword list one by one. When the word is found in the
list, it is removed. This process takes time O(n). For the meaningless words in Senseval-3
corpus, if the words are the combinations of numbers and letters (e.g.‘85dbs’) or the com-
binations of letters and symbols (e.g. ‘Fig.’) or not larger than two letters (e.g. ‘pp’), we
will filter out them.

5.2 Evaluation Measure

Word Sense Induction can be regarded as a kind of clustering. It is a task to construct
several clusters of instances of the target word where each cluster consists of instances of
the same meaning. In this experiment, the performance of WSI is measured from a point
of view of clustering. The gold standard is a set of clusters consisting of the instances
where the annotated sense in the corpus are same. While WSI method (HyperLex or our
proposed method) also produces clusters. If the generated clusters are same or similar to
the gold clusters, the WSI method can be regarded that it could infer the senses of the
target word. The most popular measures for clustering evaluation are Purity and Inverse
Purity. Purity focuses on the frequency of the most common category in each cluster,
and rewards the clustering solutions that introduce less noise in each cluster. Being C
the set of clusters to be evaluated, L the set of categories (manually annotated) and N
the number of clustered elements, purity [20] is computed by taking the weighted average
of maximal precision values as shown in Equation (5.1):

Purity =
∑
i

|Ci|
N

max
i

Precision (Ci, Lj) (5.1)

Precision(Ci, lj), the precision of a cluster Ci for a given category Lj, is defined as
Equation (5.2).

Precision (Ci, Lj) =
|Ci ∩ Lj|
|Ci|

(5.2)

Purity penalizes the noise in a cluster, but it does not reward grouping items from the
same category together. If we simply make one cluster per item, we reach trivially a
maximum purity value. Inverse Purity focuses on the cluster with maximum precision for
each category. Inverse Purity [20] is defined as Equation (5.3).

Inverse Purity =
∑
i

|Li|
N

max
i

Precision (Li, Cj) (5.3)
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Inverse Purity rewards grouping items together, but it does not penalize mixing items
from different categories. We can reach a maximum value for Inverse Purity by making a
single cluster with all items.

Purity and Inverse Purity is under trade-off. When Purity is high, Inverse Purity tends to
be low, and vice verse. To consider both Purity and Inverse Purity, we use the harmonic
mean of them, P -IP [21], as shown in (5.4). Equation (5.4) is similar to F -measure,
which is defined as the harmonic mean of precision and recall, used for evaluation of
Information Retrieval (IR).

P -IP =
2× Purity × InversePurity

Purity + InversePurity
(5.4)

5.3 Setting of Experiment

5.3.1 Range of Parameters

In our WSI method, we optimize three parameters to build the co-occurrence graph:

- A threshold of a length of a sentence to be used to make a graph (parameter P1)

- A threshold of a frequency of a word to be added as a node (parameter P2)

- A threshold of a co-occurrence frequency of a pair of words to be added as an edge
(parameter P3)

Table 5.2 shows ranges of the parameters considered in our optimization procedure. Note
that three parameters are integers. A value of each parameter is changed in the range
shown in Table 5.2. Thus we tried 14× 15× 15 = 3570 combinations of parameters, and
chose the best combination of parameters by considering the conditions of small world
properties.
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Parameter Range
P1 [3 , 16]
P2 [4 , 20]
P3 [2 , 16]

Table 5.2: Range of Parameters

5.3.2 Threshold

In our method that optimizes the parameters, we need to set two thresholds T1 and T2.

Recall that T1 and T2 are the upper bound of the index
∣∣∣ L
Lrand

− 1
∣∣∣ and the upper bound of

the number of the hubs, respectively. Table 5.3 shows how to set them in the experiment.

Threshold Range

T1 AV G(
∣∣∣ L
Lrand

− 1
∣∣∣)

T2 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, AV G(Hubs)

Table 5.3: Range of Thresholds

AV G(
∣∣∣ L
Lrand

− 1
∣∣∣) represents the average of

∣∣∣ L
Lrand

− 1
∣∣∣ of the graphs for all combination

of parameters. While AV G(Hubs) represents the average number of the hubs of all the
graph that the system can find components for various parameter combination. We will

evaluate our WSI methods for T1 = AV G(
∣∣∣ L
Lrand

− 1
∣∣∣) and various values of T2.

5.4 Result of Baseline

In this research, we considered the result of the original algorithm of HyperLex as the
baseline. Parameters are set as p1 = 4, p2 = 10 and p3 = 5, which are default parameters
in HyperLex. Clusters of the instances are made for 57 target words. Then Purity, Inverse
Purity and P -IP are measured. Table 5.4 and 5.5 show the results of HyperLex for each
target word.
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Target Word N E
∣∣∣ C
Crand

∣∣∣ ∣∣∣ L
Lrand

− 1
∣∣∣ Hub P IP P -IP

activate 109 284 12.506 0.458 41 0.807 0.421 0.553
add 114 201 22.412 0.673 46 0.616 0.437 0.511

appear 138 445 10.621 0.410 58 0.649 0.475 0.549
argument 146 345 18.178 0.505 63 0.611 0.362 0.455

arm 150 678 7.544 0.235 48 0.797 0.241 0.370
ask 69 145 9.540 0.567 28 0.487 0.579 0.529

atmosphere 52 108 6.994 0.506 19 0.540 0.280 0.368
audience 135 509 8.091 0.274 46 0.820 0.290 0.428

bank 203 958 9.152 0.281 91 0.813 0.302 0.440
begin 73 219 6.377 0.387 30 0.580 0.354 0.439
climb 29 35 7.195 0.826 10 0.617 0.286 0.390
decide 18 19 6.672 0.949 7 0.811 0.320 0.459
degree 181 576 15.507 0.420 69 0.734 0.422 0.536

difference 121 319 12.514 0.471 30 0.482 0.757 0.589
different 18 21 4.863 0.878 7 0.541 0.316 0.399
difficulty 9 10 2.878 0.917 3 0.522 0.543 0.532

disc 129 416 9.308 0.446 50 0.680 0.435 0.531
eat 53 112 7.428 0.570 21 0.856 0.481 0.616

encounter 37 62 6.514 0.657 11 0.631 0.431 0.512
expect 37 50 8.892 0.782 23 0.756 0.282 0.411
express 39 43 12.929 0.903 19 0.673 0.245 0.360

hear 2 1 1.333 2.000 1 0.762 0.587 0.663
hot 4 2 2.417 1.500 2 0.907 0.360 0.516

image 79 244 5.846 0.241 25 0.658 0.390 0.490
important 4 3 1.588 1.311 1 0.611 0.778 0.684

interest 102 188 16.678 0.630 46 0.486 0.351 0.408
judgment 11 18 2.036 0.642 3 0.484 0.806 0.605

lose 2 1 1.231 2.000 1 0.831 0.324 0.466

Table 5.4: Results of HyperLex for All Target Words (1)
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Target Word N E
∣∣∣ C
Crand

∣∣∣ ∣∣∣ L
Lrand

− 1
∣∣∣ Hub P IP P -IP

mean 18 20 5.216 0.895 7 0.650 0.438 0.523
miss 10 13 2.524 0.762 5 0.603 0.362 0.453
note 36 62 6.694 0.639 9 0.523 0.667 0.586

operate 0 0 NaN NaN 0 1.000 0.086 0.158
organization 59 114 8.774 0.512 21 0.857 0.223 0.354

paper 118 298 13.166 0.486 51 0.444 0.448 0.446
party 169 983 4.843 0.197 45 0.757 0.774 0.765

performance 76 189 8.210 0.492 31 0.465 0.372 0.413
plan 91 223 10.232 0.486 33 0.771 0.422 0.545
play 19 19 6.143 1.000 12 0.615 0.298 0.402

produce 83 146 16.550 0.654 37 0.677 0.306 0.422
provide 57 166 4.534 0.364 21 0.860 0.316 0.462
receive 16 16 5.172 1.000 5 0.846 0.558 0.672
remain 53 89 9.516 0.581 28 0.871 0.173 0.288

rule 16 21 3.467 0.781 8 0.814 0.576 0.675
shelter 84 167 12.425 0.528 37 0.582 0.148 0.236
simple 0 0 NaN NaN 0 1.000 0.139 0.244
solid 0 0 NaN NaN 0 1.000 0.207 0.343
smell 22 23 6.755 0.961 7 0.611 0.407 0.489
sort 75 185 10.217 0.494 31 0.642 0.479 0.549

source 7 5 3.850 1.173 3 0.734 0.375 0.496
suspend 51 83 10.837 0.699 14 0.445 0.766 0.563

talk 33 59 5.999 0.625 17 0.815 0.363 0.502
treat 21 19 7.591 1.093 11 0.580 0.393 0.469
use 0 0 NaN NaN 0 1.000 0.192 0.323

wash 3 2 2.059 1.492 1 0.758 0.515 0.613
watch 13 14 3.564 0.935 5 0.790 0.410 0.540
win 5 4 2.847 1.139 2 0.718 0.372 0.490

write 11 16 2.726 0.685 2 0.614 0.727 0.666

Table 5.5: Results of HyperLex for All Target Words (2)

In Table 5.4 and Table 5.5, N and E respectively represent the number of nodes and
edges in the graph, and Hub represents the number of hubs or induced senses. P , IP and
P -IP are Purity, Inverse Purity and the harmonic mean of them, respectively. We found
that we cannot detect any hubs for some target words (e.g. the target word ‘operate’,
‘use’) or some graphs did not fulfill the properties of small world graph for some target

words (namely,
∣∣∣ L
Lrand

− 1
∣∣∣≥1, e.g. the target word ‘hear’, ‘hot’). The former means that

a graph can not be constructed since no word is added as a node, while the latter means
that a graph is sparse. The reason is that HyperLex uses a fixed parameters to perform
WSI, but they are not adapted for the size of the corpus for some target words.
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5.5 Results of the Proposed Method

5.5.1 Results of Optimization of Parameters

The effectiveness of the optimization of parameters described in Section 4.1 is examined.
We call HyperLex using optimized parameters HyperLex OP. Table 5.6 and 5.7 reveal
that results of HyperLex OP for all target words. In this experiment, the threshold T2 is
set to AVG(Hub).

Target Word P1 P2 P3 N E
∣∣∣ C
Crand

∣∣∣ ∣∣∣ L
Lrand

− 1
∣∣∣ Hub P IP P -IP

activate 3 13 5 96 265 10.41 0.43 34 0.803 0.465 0.589
add 14 15 5 67 139 12.33 0.58 23 0.563 0.635 0.597

appear 3 4 7 61 118 10.24 0.57 26 0.657 0.257 0.369
argument 15 14 5 97 272 10.39 0.41 38 0.561 0.421 0.481

arm 16 12 7 73 216 5.87 0.33 26 0.793 0.267 0.399
ask 10 16 6 38 68 7.85 0.61 15 0.487 0.533 0.509

atmosphere 3 12 5 44 96 5.69 0.47 15 0.534 0.329 0.407
audience 3 12 7 62 134 7.82 0.49 25 0.755 0.315 0.445

bank 3 14 8 81 174 11.09 0.55 34 0.679 0.313 0.429
begin 3 9 6 45 116 5.26 0.44 14 0.575 0.337 0.425
climb 12 12 4 31 58 5.42 0.53 10 0.617 0.353 0.449
decide 15 9 4 38 73 6.18 0.53 15 0.779 0.295 0.428
degree 3 15 7 65 126 11.59 0.57 21 0.711 0.383 0.498

difference 3 12 6 80 156 11.87 0.55 20 0.496 0.681 0.574
different 12 10 4 27 54 3.93 0.51 7 0.541 0.316 0.399
difficulty 3 7 3 27 79 2.02 0.31 6 0.543 0.609 0.574

disc 3 14 8 49 90 7.84 0.64 18 0.660 0.425 0.517
eat 13 12 5 43 100 5.50 0.51 13 0.862 0.459 0.599

Table 5.6: Results of HyperLex OP for All Target Words (1)
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Target Word P1 P2 P3 N E
∣∣∣ C
Crand

∣∣∣ ∣∣∣ L
Lrand

− 1
∣∣∣ Hub P IP P -IP

encounter 3 12 5 30 54 5.15 0.60 7 0.615 0.462 0.527
expect 11 10 4 59 129 9.10 0.49 20 0.750 0.391 0.514
express 3 10 4 55 113 8.62 0.51 21 0.664 0.227 0.339

hear 3 7 3 18 34 3.09 0.54 4 0.524 0.730 0.610
hot 3 10 3 14 23 2.91 0.48 5 0.826 0.349 0.490

image 3 12 6 44 96 6.06 0.49 18 0.616 0.356 0.451
important 3 6 3 28 66 2.88 0.50 3 0.444 0.944 0.604

interest 3 13 5 63 140 9.05 0.51 23 0.449 0.378 0.411
judgment 3 9 4 16 32 2.76 0.55 3 0.484 0.855 0.618

lose 3 7 3 44 126 3.25 0.31 11 0.521 0.338 0.410
mean 11 11 4 26 49 3.73 0.47 7 0.650 0.513 0.573
miss 3 8 4 14 23 2.52 0.55 6 0.552 0.397 0.461
note 3 11 4 56 145 6.56 0.47 18 0.591 0.636 0.613

operate 3 6 2 18 42 1.85 0.34 5 0.800 0.571 0.667
organization 3 10 4 87 323 4.60 0.25 26 0.813 0.339 0.479

paper 3 13 6 63 145 8.57 0.51 23 0.401 0.565 0.469
party 3 9 8 80 248 5.09 0.44 13 0.713 0.809 0.758

performance 3 13 6 49 84 9.86 0.62 23 0.453 0.273 0.341
plan 15 13 5 61 170 6.09 0.40 19 0.747 0.416 0.534
play 14 7 4 53 113 5.12 0.39 15 0.538 0.327 0.407

produce 3 12 4 87 289 7.47 0.35 25 0.640 0.452 0.529
provide 3 13 5 39 134 2.68 0.33 10 0.831 0.485 0.613
receive 3 7 4 32 62 4.48 0.49 6 0.846 0.500 0.629
remain 3 12 5 41 73 7.47 0.49 22 0.863 0.144 0.247

rule 3 11 4 18 34 3.07 0.56 6 0.797 0.593 0.680
shelter 16 11 5 76 153 11.50 0.51 33 0.597 0.133 0.217
simple 3 7 2 10 18 1.96 0.54 3 0.694 0.556 0.617
solid 3 9 2 12 23 2.41 0.52 2 0.448 0.672 0.538
smell 3 13 4 19 31 4.75 0.62 5 0.574 0.417 0.483
sort 15 7 6 48 99 6.51 0.56 15 0.637 0.500 0.560

source 3 10 3 16 30 2.68 0.49 5 0.641 0.375 0.473
suspend 3 10 4 65 177 6.05 0.44 13 0.445 0.734 0.554

talk 3 11 4 39 98 4.60 0.46 14 0.808 0.486 0.607
treat 3 9 3 49 149 4.35 0.30 14 0.554 0.554 0.554
use 3 6 2 6 10 1.18 0.62 1 0.731 0.692 0.711

wash 12 8 3 24 45 4.16 0.52 8 0.591 0.500 0.542
watch 3 12 3 17 40 2.46 0.44 4 0.760 0.630 0.689
win 16 8 3 39 97 4.08 0.36 13 0.577 0.308 0.401

write 3 9 4 15 32 1.63 0.48 3 0.614 0.705 0.656

Table 5.7: Results of HyperLex OP for All Target Words (2)
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In Table 5.6 and 5.7, P1, P2, P3 are the best parameters for each target word. They are
quite different for target words. It indicates that the parameter optimization is significant
in HyperLex.

Figure 5.2: Results of HyperLex OP for Different T2.

Figure 5.2 compares the performance of HyperLex OP for different threshold T2. The
horizontal axis indicates T2, while the vertical axis indicates the average of P -IP for all
target words. The lower T2 is set, the higher P -IP is. When T2 is set to be low, however,
no graph fulfills the condition Hubs ≤ T2 (Equation (4.7)) for several target words. That
is, HyperLex OP fails to infer the senses. Table 5.8 shows the values of T2 and the number
of target words where no graph is obtained.

T2 5 6 7 8 9 10 15 20 25 30 AV G(Hubs)
No Graph 15 11 7 4 2 1 1 0 0 0 0

Table 5.8: Number of Target Words for which No Graph is Obtained

Obviously, such cases are meaningless. When T2 is set to 20, 25, 30 and AVG(Hubs),
HyperLex OP can infer the sense for all 57 target words. Among them, T2 = AV G(Hubs)
achieved the best P -IP .
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WSI Method Hub P IP P -IP
Baseline 21.8 0.698 0.410 0.482

HyperLex OP 14.6 0.639 0.469 0.513

Table 5.9: Comparison of Baseline and HyperLex OP

Table 5.9 shows the comparison of baseline and HyperLex OP (T2 = AV G(Hubs)). The
values of Hub, P, IP, P -IP are the average result of 57 target words. Optimization of
parameters improves Inverse Purity, but decreases Purity. However, HyperLex OP out-
performs the baseline in terms of P -IP . We can conclude that the parameter optimization
is effective. In addition, the number of Hubs in HyperLex OP is less than the Baseline.
That is, HyperLex OP infers less number of senses.

5.5.2 Results of Detection of Components Using KPP

In this subsection, our proposed method to choose the hub by KPP is evaluated. Hy-
perLex OP+KPP stands for the WSI method using KPP with parameter optimization.
Table 5.10 and 5.11 show the results of HyperLex OP+KPP for individual target words.
Note that T2 is set to AV G(Hubs).
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Target Word P1 P2 P3 N E
∣∣∣ C
Crand

∣∣∣ ∣∣∣ L
Lrand

− 1
∣∣∣ Hub P IP P -IP

activate 3 18 6 46 93 8.768 0.535 5 0.811 0.715 0.760
add 3 14 6 42 72 9.055 0.667 2 0.548 0.939 0.692

appear 3 9 6 92 215 11.836 0.506 5 0.592 0.581 0.587
argument 15 12 5 121 309 14.261 0.461 10 0.493 0.683 0.573

arm 3 12 6 107 365 6.974 0.309 8 0.774 0.500 0.608
ask 16 11 5 58 116 8.773 0.580 5 0.533 0.510 0.521

atmosphere 16 10 4 79 247 6.574 0.356 5 0.516 0.696 0.592
audience 3 4 7 67 139 8.504 0.522 5 0.740 0.685 0.711

bank 3 14 8 81 174 11.091 0.547 5 0.653 0.798 0.718
begin 3 14 7 29 60 4.426 0.534 2 0.514 0.702 0.593
climb 12 12 4 31 58 5.420 0.534 6 0.549 0.346 0.424
decide 15 9 4 38 73 6.177 0.527 4 0.779 0.541 0.638
degree 3 11 6 114 274 14.071 0.490 7 0.641 0.594 0.616

difference 3 7 5 134 336 14.002 0.502 7 0.465 0.854 0.602
different 3 7 4 43 75 7.352 0.616 2 0.520 0.939 0.670
difficulty 3 7 3 27 79 2.019 0.313 3 0.413 0.913 0.569

disc 3 4 7 77 149 10.106 0.651 2 0.410 0.965 0.575
eat 3 9 5 54 113 7.580 0.577 3 0.845 0.934 0.887

encounter 3 11 4 49 133 5.239 0.413 4 0.554 0.554 0.554
expect 11 11 4 45 111 5.947 0.457 5 0.744 0.801 0.771
express 3 12 4 42 94 5.698 0.457 8 0.655 0.364 0.468

hear 3 9 2 14 35 1.161 0.461 2 0.508 0.905 0.651
hot 3 10 3 14 23 2.907 0.477 3 0.826 0.523 0.641

image 3 7 5 105 304 7.550 0.279 5 0.589 0.603 0.596
important 3 6 3 28 66 2.882 0.501 1 0.417 0.972 0.583

interest 3 15 6 36 64 6.926 0.598 4 0.395 0.670 0.497
judgment 3 7 4 25 42 4.291 0.662 1 0.419 0.903 0.573

lose 3 8 3 34 90 2.789 0.334 4 0.507 0.577 0.540

Table 5.10: Results of HyperLex OP+KPP for All Target Words (1)
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Target Word P1 P2 P3 N E
∣∣∣ C
Crand

∣∣∣ ∣∣∣ L
Lrand

− 1
∣∣∣ Hub P IP P -IP

mean 3 7 4 35 63 5.180 0.524 3 0.613 0.650 0.631
miss 3 8 4 14 23 2.518 0.549 2 0.483 0.638 0.550
note 3 9 4 75 170 10.236 0.538 4 0.523 0.932 0.670

operate 3 5 2 29 81 1.995 0.212 3 0.629 0.600 0.614
organization 3 8 4 116 379 7.643 0.311 9 0.786 0.330 0.465

paper 3 6 5 136 323 15.280 0.515 5 0.315 0.841 0.458
party 16 10 7 102 379 5.299 0.340 3 0.704 0.865 0.777

performance 3 9 5 81 199 8.671 0.497 6 0.331 0.913 0.486
plan 3 11 5 80 209 8.223 0.445 6 0.735 0.428 0.541
play 14 7 4 53 113 5.119 0.394 6 0.490 0.433 0.460

produce 3 15 5 44 94 7.314 0.519 6 0.651 0.747 0.696
provide 3 10 6 39 87 4.068 0.480 3 0.824 0.728 0.773
receive 3 9 4 25 49 3.715 0.457 3 0.846 0.596 0.699
remain 3 12 5 41 73 7.470 0.486 5 0.856 0.338 0.485

rule 3 12 4 16 30 2.650 0.556 2 0.797 0.797 0.797
shelter 14 9 5 87 168 13.157 0.547 11 0.531 0.265 0.354
simple 3 7 2 10 18 1.955 0.541 2 0.722 0.583 0.645
solid 3 9 2 12 23 2.414 0.520 2 0.448 0.672 0.538
smell 3 7 3 73 230 5.450 0.371 4 0.519 0.546 0.532
sort 3 4 5 90 202 12.435 0.559 2 0.605 0.953 0.740

source 3 10 3 16 30 2.680 0.492 4 0.672 0.547 0.603
suspend 3 9 4 78 211 7.069 0.448 4 0.391 0.883 0.542

talk 8 12 4 35 89 4.138 0.450 3 0.808 0.733 0.769
treat 3 9 3 49 149 4.347 0.301 6 0.438 0.455 0.446
use 3 6 2 6 10 1.183 0.620 1 0.731 0.692 0.711

wash 12 7 3 26 47 4.346 0.534 3 0.576 0.652 0.611
watch 3 8 3 41 122 3.297 0.350 3 0.750 0.870 0.806
win 16 9 3 31 72 4.025 0.380 5 0.603 0.436 0.506

write 3 14 3 7 12 1.270 0.604 1 0.455 0.886 0.601

Table 5.11: Results of HyperLex OP+KPP for All Target Words (2)

It is found that the number of the hubs in HyperLex OP+SYN tends to be smaller than
HyperLex OP.
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Figure 5.3: Results of all HyperLex OP+KPP

Figure 5.3 compares the performance of HyperLex OP+KPP for different threshold T2.
As in Figure 5.2, the figure shows the average of P -IP for all words. T2 = AV G(Hubs)
achieved the best among various T2. Therefore, the heuristics to determine T2 as the
average number of the hubs for various parameter combination worked well.

WSI Method Hub P IP P -IP
Baseline 21.8 0.698 0.410 0.482

HyperLex OP 14.6 0.639 0.469 0.513
HyperLex OP+KPP 4.21 0.601 0.680 0.609

Table 5.12: Comparison among Baseline, HyperLex OP and HyperLex OP+KPP

Table 5.12 compares the baseline, HyperLex OP and HyperLex OP+KPP. T2 is set to
AV G(Hubs) in both HyperLex OP and HyperLex OP+KPP. P -IP of HyperLex OP+KPP
is much better than the baseline and HyperLex OP. One of the important characteristics
of HyperLex OP+KPP is that the number of hubs or induced senses are much smaller. It
causes great improvement of Inverse Purity at the cost of Purity. On average, however,
P -IP is improved. Therefore, the method choosing the hubs with graph connectivity
measure is effective.
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5.5.3 Results of Weighting Scheme Considering Syntactic Rela-
tion

Finally, we evaluate our weighting scheme where both co-occurrence of words and syntactic
relations between words are under consideration. HyperLex OP+KPP+SYN stands for
an extension of HyperLex OP+KPP : wegiths of the edges are determined by not only
co-occurrence probability but also the number of words under the syntactic relations as
Equation (4.11). Table 5.13 and 5.14 stand for the results ofHyperLex OP+KPP+SYN
(T2 = AV G(Hubs)) for all target words.

Target Word P1 P2 P3 N E
∣∣∣ C
Crand

∣∣∣ ∣∣∣ L
Lrand

− 1
∣∣∣ Hub P IP P -IP

activate 3 18 6 46 93 8.543 0.535 5 0.811 0.662 0.729
add 3 14 6 42 72 9.024 0.667 2 0.548 0.939 0.692

appear 3 9 6 92 215 11.669 0.506 5 0.592 0.585 0.589
argument 15 12 5 121 309 13.996 0.461 10 0.507 0.774 0.612

arm 3 12 6 107 365 6.700 0.309 8 0.771 0.489 0.598
ask 16 11 5 58 116 8.368 0.580 5 0.525 0.418 0.465

atmosphere 16 10 4 79 247 6.459 0.356 5 0.497 0.708 0.584
audience 3 4 7 67 139 8.239 0.522 5 0.740 0.700 0.719

bank 3 14 8 81 174 10.774 0.547 5 0.653 0.821 0.727
begin 3 14 7 29 60 4.409 0.534 2 0.519 0.950 0.672
climb 12 12 4 31 58 5.151 0.520 6 0.556 0.383 0.454
decide 15 9 4 38 73 6.094 0.527 4 0.779 0.762 0.770
degree 3 11 6 114 274 13.637 0.490 7 0.641 0.633 0.637

difference 3 7 5 134 336 13.554 0.501 7 0.473 0.845 0.607
different 3 7 4 43 75 6.801 0.616 2 0.520 0.939 0.670
difficulty 3 7 3 27 79 1.638 0.313 3 0.500 0.826 0.623

disc 3 4 7 77 149 9.923 0.651 2 0.410 0.965 0.575
eat 3 9 5 54 113 7.055 0.577 3 0.845 0.923 0.882

encounter 3 11 5 34 60 5.632 0.616 2 0.592 0.592 0.592
expect 11 11 4 45 111 5.921 0.457 5 0.744 0.840 0.789
express 3 11 4 49 107 6.982 0.465 9 0.655 0.264 0.376

hear 3 9 2 14 35 1.161 0.461 2 0.508 0.905 0.651
hot 3 10 3 14 23 2.624 0.477 3 0.826 0.523 0.641

image 3 7 5 105 304 7.300 0.279 5 0.596 0.623 0.609
important 3 6 3 28 66 2.701 0.501 1 0.417 0.972 0.583

interest 3 15 6 36 64 6.756 0.598 4 0.384 0.600 0.468
judgment 3 7 4 25 42 3.945 0.662 1 0.419 0.903 0.573

lose 3 8 3 34 90 2.727 0.334 4 0.507 0.577 0.540

Table 5.13: Results of HyperLex OP+KPP+SYN for All Target Words (1)
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Target Word P1 P2 P3 N E
∣∣∣ C
Crand

∣∣∣ ∣∣∣ L
Lrand

− 1
∣∣∣ Hub P IP P -IP

mean 3 7 4 35 63 5.033 0.524 3 0.600 0.663 0.630
miss 3 8 4 14 23 2.504 0.549 2 0.466 0.655 0.544
note 3 9 4 75 170 10.147 0.538 4 0.530 0.955 0.682

operate 3 5 2 29 81 1.835 0.195 3 0.629 0.629 0.629
organization 3 8 4 116 379 7.415 0.311 9 0.786 0.321 0.456

paper 3 6 5 136 323 14.799 0.515 5 0.306 0.828 0.447
party 16 10 7 102 379 5.141 0.340 3 0.704 0.865 0.777

performance 3 9 5 81 199 8.469 0.497 6 0.366 0.570 0.446
plan 3 11 5 80 209 8.060 0.445 6 0.735 0.422 0.536
play 14 7 4 53 113 5.020 0.394 6 0.490 0.433 0.460

produce 3 15 5 44 94 7.093 0.519 6 0.618 0.441 0.515
provide 3 11 6 35 84 3.406 0.426 2 0.824 0.868 0.845
receive 3 10 4 19 34 3.388 0.527 2 0.846 0.654 0.738
remain 3 12 5 41 73 7.307 0.486 5 0.856 0.266 0.406

rule 3 12 4 16 30 2.620 0.556 2 0.797 0.797 0.797
shelter 14 9 5 87 168 12.566 0.547 11 0.500 0.362 0.420
simple 3 7 2 10 18 1.955 0.541 2 0.722 0.583 0.645
solid 3 9 2 12 23 2.346 0.520 2 0.448 0.672 0.538
smell 3 7 3 73 230 5.450 0.371 4 0.519 0.546 0.532
sort 3 4 5 90 202 12.123 0.559 2 0.605 0.953 0.740

source 3 10 3 16 30 2.455 0.490 4 0.688 0.563 0.619
suspend 3 9 4 78 211 6.985 0.448 4 0.391 0.914 0.547

talk 8 12 4 35 89 4.089 0.450 3 0.808 0.705 0.753
treat 3 9 3 49 149 4.323 0.301 6 0.464 0.509 0.486
use 3 6 2 6 10 1.183 0.620 1 0.731 0.692 0.711

wash 12 7 3 26 47 4.137 0.544 3 0.576 0.621 0.598
watch 3 8 3 41 122 3.236 0.350 3 0.750 0.870 0.806
win 16 9 3 31 72 3.865 0.380 5 0.628 0.449 0.524

write 3 14 3 7 12 1.175 0.604 1 0.455 0.886 0.601

Table 5.14: Results of HyperLex OP+KPP+SYN for All Target Words (2)
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Figure 5.4: Results of all HyperLex OP+KPP+SYN

Figure 5.4 shows the performance of HyperLex OP+KPP+SYN for different threshold
T2. Similar to Figure 5.2 and 5.3. P -IP tends to be small when T2 is set high. Although
T2 = 5 and AV G(Hubs) are comparable, T2 = AV G(Hubs) is the best threshold.

WSI Method Hub P IP P -IP
Baseline 21.8 0.698 0.410 0.482

HyperLex OP 14.6 0.639 0.469 0.513
HyperLex OP+KPP 4.21 0.601 0.680 0.609

HyerLex OP+KPP+SYN 4.06 0.603 0.681 0.611

Table 5.15: Comparison of HyperLex OP+KPP+SYN and Other Systems

Table 5.15 compares the baseline, HyperLex OP, HyperLex OP+KPP and HyperLex OP+KPP+SYN.
Note that T2 is set to AV G(Hubs) in all systems except for the baseline. We focus on
the comparison between the system with and without considering syntactic relations for
weighting. HyperLex OP+KPP+SYN outperforms HyperLex OP+KPP for Purity, In-
verse Purity and P -IP . However, the improvement is not so great than we have expected.
The reason may be that the weights of the edges are used for delineating components and
disambiguation of the sense of a new sentence, but not used for construction of the graph.
In other words, even when the weights are changed by considering syntactic relations, the
structure of the graph is not changed. In addition, the average number of the hubs or
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senses of HyperLex OP+KPP+SYN is slightly less than HyperLex OP+KPP, although
the structures of the co-occurrence graphs in these systems are same.
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Chapter 6

Conclusion

6.1 Summary

This thesis presented a graph based word sense induction method that is an extenstion
of HyperLex. The co-occurrence graph where vertices correspond to words appearing in
the context of the target word is constructed. Edges between vertices represent relations
between words. Weights of the edges indicate how two words correlated. In this method,
the weights of the edges are determined based on both co-occurrence and syntactic re-
lations of words. Furthermore, the parameters that strongly influence the co-occurrence
graph are optimized so that the graph meets the small world properties. Then the hubs
in the graph are detected by Key Player Problem algorithm. Finally, the graph is subdi-
vided into the small pieces of trees whose root node is a hub. Each sub-tree represents
the induced sense of the target word. The performance of the proposed WSI method was
evaluated on a sense tagged corpus for 57 target words. The results of the experiments
showed that the proposed method outperformed the original HyperLex. Furthermore, the
number of induced sense was more similar to the genuine number of senses.

We summarize our contributions as follows:

1. In HyperLex, there are three parameters, and these parameters are determined in ad-
hoc manner. In this research, the optimization of the parameters are examined. To
find the best parameters, various combinations of parameters will be tested until the
graph meets the condition of small world properties: L ∼ Lrand and C � Crand. Our
method can determine the parameters appropriately for different sizes of corpora.

2. In order to analyze co-occurrence graph connectivity more precisely and divide the
graph into better components, we use a graph connectivity measure - Key Player
Problem (KPP). The use of KPP enhanced the performance of WSI in our experi-
ment.

3. A weighting scheme considering syntactic relations between words was introduced.
We found that syntactic relations contributed the improvement of WSI.
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6.2 Future Work

Results of the experiments have shown that HyperLex OP+KPP+SYN achieved higher
performance than the original HyerLex (for all values of the threshold T2). However, com-
paring with HyperLex OP+KPP, the Purity and Inverse Purity of HyperLex OP+KPP+SYN
were not so improved. In our method, syntactic relations are considered to determine the
weight of edges, but not used for construction of the graph. In future, we will examine a
method to the build co-occurrence graph considering the syntactic relations between two
words to improve the performance of WSI.
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