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Chapter 1

Introduction

1.1 Research background and aim

In 1525, the German painter and thinker Albrecht Dürer published his masterwork on
geometry “On Teaching Measurement with a Compass and Straightedge”, which opened
an area with a lot of open problems[1]. Lubiw and O’Rourke started investigating polygons
that can fold into polyhedra in 1996[2]. In 2007, Demaine and O’Rourke published a
scholarly book, which is about geometric folding algorithms[3].

In this paper, we study common developments that can fold into two or more incongru-
ent orthogonal convex polyhedra, that is boxes. Those common developments are obtained
by cutting along their unit lines. These developments are simple polygons that consist of
unit squares of four connected so that the boxes and their corresponding developments
have the same surface area. In searching for common developments that fold into two or
more incongruent orthogonal boxes, we start from a relative simple task: finding two or
more incongruent orthogonal boxes whose surface areas are equal but sizes are different.

The smallest surface area that different orthogonal boxes can appear is 22 which admits
to fold into two boxes of size 1×1×5 and 1×2×3. All common developments of these two
boxes have been already known[4][5]. The next smallest integer N such that surface area
N can fold into two different boxes is 30. Matsui tried to list the common developments
of two different boxes of sizes 1×1×7 and 1×3×3 of surface area 30, but failed due to the
limitation of computational power[5]. We filled this gap and research further.

We had already known another polygon that can fold into boxes of size 1×1×7 and√
5×
√

5×
√

5, whose surface area is also 30. So next we try to find a polygon of surface
area 30 that folds into above three different boxes. It is a great improvement from previous
known one that the smallest surface area that folds into three different boxes is greater
than 500[6]. To achieve that we propose a new efficient algorithm.

1.2 Content of thesis

The second chapter is preliminaries of thesis, we gave a definition to the common devel-
opments we explorer in the research, and a description of existing algorithm.
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The third chapter shows the detail of the algorithm of finding common developments
of incongruent orthogonal boxes, and some explanations of key points.

The fourth chapter shows the result of the research.
The fifth chapter is the conclusion and future works.
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Chapter 2

Preliminaries

2.1 Development and cuboid

The development is simple polygon that consist of unit squares of four connected. In this
way, the orthogonal box and its corresponding developments have the same surface area
n.

When unfolding a cuboid along the edge, there can be a overlap on the final development
as Fig. 2.1. Also, if there is a hole inside the development, all eight directions of its
adjacency squares should be occupied by unit squares of the development. Or that hole
may be a vertex of the cuboid in fact. In other words, a hole on the development should
have no adjacency blanks (Fig. 2.2).

A development with a hole or an overlap is not what we want to talk about in this
paper, for they cannot fold into a box with the same surface area.

Figure 2.1: Development with a overlap

2.2 Theorem about development

The following is the existing theorem about the development.
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Figure 2.2: Development with a hole (left), development without a hole (right)

Theorem[7]: Let P be a polygon that can fold to a box B. If P has a cut inside, we
glue it and obtain P’ with no cut inside. Then P’ also can fold to B (Fig. 2.3).

Figure 2.3: Development with a cut (left), development with no cut (right)

Proof: Since B is a convex orthogonal box, it follows.

If we fold a polygon into a box start around the cut, the cut should not contain any
square from other side of the polygon, or the interior angles sum is larger than 360 degrees,
which creates a non convex polyhedron, not a box.

Therefore, according to this theorem, we only consider developments with no cut in-
side.Also, even if a development has a cut inside, which cannot fold into another box using
the cut.

2.3 Incongruent orthogonal boxes with the same sur-

face area

In searching for common developments that fold into two or more incongruent orthogonal
boxes whose surface areas are equal but sizes are different. We have such a set: P(S )={(a,
b, c)|(ab+bc+ac)×2=S}(S, a, b, c are positive integers,0<a≤b≤c). When |P(S )|≥2, the
cuboid with size (a, b, c) can have a development. The list of incongruent orthogonal
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boxes with the same surface area is shown below.

• P(22)={(1, 1, 5), (1, 2, 3)}
• P(30)={(1, 1, 7), (1, 3, 3)}
• P(34)={(1, 1, 8), (1, 2, 5)}
• P(38)={(1, 1, 9), (1, 3, 4)}
• P(46)={(1, 1, 11), (1, 2, 7), (1, 3, 5)}
• P(54)={(1, 1, 13), (1, 3, 6), (3, 3, 3)}
• P(58)={(1, 1, 14), (1, 2, 9), (1, 4, 5)}
• P(62)={(1, 1, 15), (1, 3, 7), (2, 3, 5)}
• P(64)={(1, 2, 10), (2, 2, 7), (2, 4, 4)}
• P(70)={(1, 1, 17), (1, 2, 11), (1, 3, 8), (1, 5, 5)}
• P(88)={(1, 2, 14), (1, 4, 8), (2, 2, 10), (2, 4, 6)}

...

•

The smallest surface area that different orthogonal boxes can appear is 22 which admits
to fold into two boxes of size 1×1×5 and 1×2×3. All common developments of these two
boxes have been already known. The next smallest integer N such that surface area N
can fold into two different boxes is 30.

2.4 Existing algorithm

In searching for common developments of two different boxes of sizes 1×1×7 and 1×3×3
of surface area 30, we applied the algorithm that connects a unit square at a time at
random from scratch. It first starts from one unit square. By connecting unit squares at
each edge, many partial common developments are generated. Finally unit squares are
increased to the size of the surface area of given orthogonal boxes.

2.5 Partial common development

Common developments obtained by unfolding part of the cuboids, we call it partial com-
mon developments. It can be a part of the final common development, and can fold into
many different part of target boxes. With unit squares increasing, the partial common
development can finally become the normal common development.
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Chapter 3

Enumeration Algorithm

3.1 Enumeration algorithm of common developments

of three incongruent orthogonal boxes

The algorithm operates in the following steps.

Input : The edge length (a1, b1, c1), (a2, b2, c2), (a3, b3, c3) of three incongruent or-
thogonal boxes B1, B2 and B3.

Output: The common developments of incongruent orthogonal boxes B1, B2 and B3.

Step 1 Start from a partial development of surface area 1.

Step 2 Maintain a relationship diagram of boxes B1, B2 and B3, for it can be checked
in next steps.

Step 3 Check the partial developments generated. Test whether each partial develop-
ment can fit on boxes B1, B2 or not (B1, B2 are boxes of sizes 1×1×7 and 1×3×3, we
study these common developments first for it is the remaining issues of previous research),
any partial development that cannot fit all the box should be omitted. If there is a partial
common development passed all box check, add one square to one of its adjacency blank,
making is surface area one plus.

If the new partial common development has the same shape with the old partial com-
mon developments that already generated, then it will be omitted. The same shape means
the rotation and mirror images of the original development.

Step 4 To increase the partial common developments to normal common developments,
repeat the step 2 and step 3. When adding new one square to the partial development,
we need to check whether there is a hole inside the partial development(Fig. 3.1).

Step 5 When the surface area of partial common developments is increased to 16,

6



Figure 3.1: Change of partial developments with the increasing of surface area

divide the partial developments generated this step into small groups (102400 partial de-
velopments per group).

Step 6 Process these small groups on super computer one after one, continue process
from step 17 to final step of 30 (Fig. 3.2).

Step 7 Merge the result of each small group, the outcome is the common developments
of boxes B1, B2. Thus, the searching of common developments of two incongruent or-
thogonal boxes finishes.

Step 8 Based on the result of previous step, check whether each common development
can fit on the box B3.

Those developments pass the check at the final step of surface area 30 are common
developments that can fold into incongruent boxes B1, B2 and B3.

During the processing, the image of partial developments with surface area increasing
shows like a wave, it has a summit at some point. As shown in the result
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Figure 3.2: Process these small groups one after one

3.2 Data structure

Since we are studying cuboids, its unit squares are each four side connected, and num-
bered. Therefore, in this research developments are represented by the matrix of 0 and 1
(Fig. 3.3).

Figure 3.3: Matrix and corresponding development

We use a array to represent the position relationship of cuboid. Every cuboid has its
unique position relationship of unit squares (Fig. 3.4, Table 3.1). Every unit square
on the cuboid has four unique adjacency neighbors in four numbered directions. Thus
we can tell a development can fold into the target cuboid or not. Every unit square is
numbered from 1 to 30 and the rest of item are its neighbors in UP, RIGHT, DOWN,
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LEFT directions (Fig. 3.5).

Figure 3.4: Position relationship graph of cube of size
√

5×
√

5×
√

5

Figure 3.5: Structure of unit square

3.3 Box checking of developments

3.3.1 Checking algorithm

Previous study mainly focus only on the ”normal” orthogonal polyhedra, which are
cuboids with an integer edge length. Program can simulate the box with few arrays
to represent its structure. The gap between the element can be seen as the edge of unit
squares and development also fold along the edge. It is relative easy to check whether the
partial development can fit the boxes or not (Fig. 3.6).

However, the development of the cube of
√

5×
√

5×
√

5 cannot fold along the edge of
unit squares, which means the previous method of check the development can fit the box
or not is no more available. We have two algorithms for the approach of checking the
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Table 3.1: Position relationship table of cube of size
√

5×
√

5×
√

5

Square UP RIGHT DOWN LEFT
01 02 03 04 05
02 10 09 01 23
03 09 12 15 01
04 01 15 18 17
05 23 01 17 24
06 07 08 09 10
07 30 29 06 22
08 29 13 12 06
09 06 12 03 02
10 22 06 02 23
11 12 13 14 15
12 09 08 11 03
13 08 29 28 11
14 11 28 19 18
15 03 11 18 04
16 17 18 19 20
17 05 04 16 24
18 04 15 14 16
19 16 14 28 27
20 24 16 27 25
21 22 23 24 25
22 07 10 21 30
23 10 02 05 21
24 21 05 17 20
25 30 21 20 27
26 27 28 29 30
27 20 19 26 25
28 19 14 13 26
29 26 13 08 07
30 25 26 07 22
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Figure 3.6: Previous method cannot apply for cube of
√

5×
√

5×
√

5

cube of
√

5×
√

5×
√

5, one algorithm is checking for each P the vertex of the cube on the
development boundary. Since the surface of cube is also square, an angle of 26.6 degrees
exist between its edge and the unit square’s edge. Besides, a vertex is made of three
planes, which means every vertex on the development should be surrounded by 3 squares.
Therefore, we need to check whether there is a development fit such requirements: all
vertices of the cube are on the boundary of development, constituting a cross network
with 26.6 degrees to the unit square’s edge, squares around all vertices should be exactly
24. The second algorithm is checking the positional relationships of each unit square on
the development. Every polyhedron, including cube, as long as it has a development made
of a certain kind of basic shape, the positional relationships of each unit shape does not
change with different development. In this point, if in any development, its unit squares
have the same positional relationships even on the cube of

√
5×
√

5×
√

5 we can identify
if it can fold into that cube. The first algorithm can not consider the dislocation of center
square, which actually makes a hole and an overlap on the cube. Therefore, the second
algorithm is more feasible in this paper.

The detail of algorithm shown as below.

Step 1 After we obtained the position relationship table of the target cuboid, we mark
one unit square on the partial development as ”start point” (Basically, the square at top
left for it is always the first visited in traversal).

Step 2 Since there are six surfaces on the cuboid of size
√

5×
√

5×
√

5, we use one sur-
face to start matching. Besides, one surface of the cuboid has five squares, we mark them
as s1, s2, s3, s4, s5 (Other 25 squares can be obtained by rotation and makes no difference).

Step 3 Assume the partial development can fold into the part of the target cuboid
as the start point is located as s1(Start point can be any one of s1, s2, s3, s4, s5), then
give start point the number that s1 marked and the UP neighbor of start point should be
marked as the UP neighbor of s1 and given the number of the neighbor of s1, so do the
rest three directions (Fig. 3.7). If there is no neighbor of start point in some direction,
then skip it.
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Figure 3.7: Example of start point marked as s5, step 3

Step 4 Now we finished with start point, mark other unit squares given a number as a
new start point and repeat step 3 (Fig. 3.8).
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2

3

4
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11

12

13

14

15
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17
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19

20

21

22

23

24
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17 424

Figure 3.8: Example of start point marked as s5, step 4

Step 5 If all squares of the partial development are mark with different numbers, this
partial number pass the check(Fig. 3.9). If any two squares are marked with the same
number, that means an overlap on the development and this development cannot pass
the check.

Step 6 Repeat step 1 to 5, mark the start point as another square of s1, s2, s3, s4, s5.
It should be different than the previous one.

3.3.2 Direction deviation

A normal direction relationship should be UP to DOWN, LEFT to RIGHT. But when
there is an edge between two squares, things are different.
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Figure 3.9: Example of start point marked as s5, step 5

Figure 3.10: Position relationship across the edge
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As Fig. 3.10 shows, the UP of square 12 is 9 and the RIGHT of square 12 is 8, but the
DOWN of square 9 is 3 and the LEFT of square 8 is 6. Because there is an edge between
these squares, their direction relationship have a deviation.

Figure 3.11: Example of error occurs on a correct development

In some parts of developments like Fig. 3.11, RIGHT of square 9 need to be marked.
By checking the position relationship table, it should be 12. Besides, UP of 12 is also
need to be marked. It is marked as 9 again. But in fact it should be 8, which causes an
error.

Figure 3.12: Using numbers to represent directions

Every time a position relationship across an edge, the axis of the direction of the square
rotate 90 degree to the original axis of position relationship table. To solve this problem,
we use numbers to represent directions (Fig. 3.12), and propose a formula below:

deviation=[(direction from previous)-(direction from current)+2+old deviation]%4

In this fomula, from square 9 to 12, the deviation=(1-0+2+0)%4=3, which is 270
degrees clockwise. Thus the UP of square 12 is in fact the RIGHT of square 12, which is
square 8.

3.4 Generate of developments

A new development is generated by adding a square to the adjacency blank of an existing
partial development (Fig. 3.13). Repeat this step and we can obtain the final development.
However, a hole inside the development can appear during this step.

To generate a development with no hole inside it is necessary to consider what is around
the new added square.
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Figure 3.13: Possible results of adding one square

3.4.1 New square has three adjacency blank

Newly added square has only one neighbor square. In this situation, a hole inside is
impossible to appear (Fig. 3.14).

? ?

? ?

Blank

Blank

Blank

New

Possible

Figure 3.14: New square has three adjacency blank

3.4.2 New square has two adjacency blanks (up and down, left
and right)

Two neighbor on the opposite side are belong to the same one development. In this
situation, new square can make a hole inside the development (Fig. 3.15).

3.4.3 New square has two adjacency blanks (up and left, up and
right, down and left, down and right)

It is possible to generate a development with a hole inside, depends on whether the
diagonal square is blank or not, shown as Fig. 3.16.

3.4.4 New square has one adjacency blank

Same as as Fig. 3.16, depends on whether the diagonal square is blank or not (Fig. 3.17).
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Blank
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New

Impossible

Figure 3.15: New square has two adjacency blanks (up and down, left and right)

? ?

? ?

Blank

Blank

Blank

New

? ?

? ?

Blank

Blank

Blank

New

? ?

? ?

Blank

Blank

Blank

New

Possible Impossible Impossible

Figure 3.16: New square has two adjacency blanks (up and left, up and right, down and
left, down and right)

? ?

? ?

Blank

Blank

Blank

New

? ?

? ?

Blank

Blank

Blank

New

Possible Impossible

Figure 3.17: New square has one adjacency blank
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3.4.5 New square has no adjacency blank

In this situation, if there are two or more diagonal squares are blank, the hole exists (Fig.
3.18).

? ?

? ?

Blank

Blank

Blank

New

? ?

? ?

Blank

Blank

Blank

New

Possible Impossible

Figure 3.18: New square has no adjacency blank

3.5 Normalization of developments

During the processing, many same developments are generated repeatedly. Repeated
developments includes the mirror image and the rotation of the original development (Fig.
3.19). So there is necessary to make a normalization to the developments generated.

Figure 3.19: Polygons of the same shape

The rule of normalization shown as below.

Rule 1: The normalized development should has its longitudinal length larger or equal
than its Lateral length.

Rule 2: One development can have at most eight kinds of representation, four of eight
meet the rule 1. Representing these four developments with matrix, program read each
matrix from left to right, top to bottom, which form a number serial. Regard this serial
as a binary number, the development with the largest value is the normalized development.

Top right of Fig. 3.20 has the largest value, so it is the normalized development.
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Figure 3.20: Matrix representation of polygons of the same shape

3.6 Comparison between developments

We use a binary number array to compress the common developments, a hash tree to
store the common developments.

3.6.1 Compression

Storing the matrix of the development directly consume too much memory. It is necessary
to compress it into a smaller form. Regarding every row on the matrix as a binary number,
we transform it into decimal number. In this way, a matrix is transformed into an array.
Put the width value and length value in front of the array for recovery (Fig. 3.21).

When we need to take a box check on this compressed development, do the reverse
operation.

1 1 0

0 1 1

0 1 0

0 1 0

3

4

4

3

6

3

2

2

6

3

2

2

Figure 3.21: Compression of the development

3.6.2 Storage

The compressed developments are stored in a hash tree to manage (Fig. 3.22).
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Figure 3.22: Storage of the development
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Chapter 4

Common Developments of
incongruent orthogonal boxes

4.1 Common developments of boxes of sizes 1×1×7
and 1×3×3 of surface area 30

4.1.1 Experiment environment

The research program is compiled in C language to find the common developments of
boxes of sizes 1×1×7 and 1×3×3 of surface area 30 (Fig. 4.1). For normal PC cannot
withstand large amounts of data generated, the running environment is supercomputer
Cray XC30.

Figure 4.1: Boxes of sizes 1×1×7 and 1×3×3 of surface area 30

4.1.2 Result

Result shown as the table below (Table. 4.1, Table. 4.2), and the chart below for a more
intuitive expression (Fig. 4.2, Fig. 4.3). The chart shows the number of developments
changes with the increasing of surface area.
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Processing first 1 to 16 steps takes 3 hours, generating 7.5 millions of partial common
development as intermediate results. Processing every single development from step 17 to
step 30 takes 40 minutes. Processing all 7.5 millions of developments by super computer
take about 2 months.

The number of developments of surface area s=1 to s=16 is same as previous study.
After the step 17, process starts from single 1 development of surface area 17. We can
find it starts increasing rapidly from s=9, and didn’t stop at s=17, reach its summit at
s=24. Then decreases rapidly.

The final result is 1076, that is the number of common developments that can fold into
boxes of sizes 1×1×7 and 1×3×3 of surface area 30.

Table 4.1: Table of The number of developments changing with the increasing of surface
area from step 1 to 16

Surface area Number of development
1 1
2 1
3 2
4 5
5 12
6 35
7 108
8 368
9 1283

10 4601
11 16405
12 57879
13 200209
14 682639
15 2288392
16 7486799
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Figure 4.2: Chart of The number of developments changing with the increasing of surface
area from step 1 to 16

Table 4.2: Table of The number of developments changing with the increasing of surface
area from step 17 to 30 (Start from one development of surface area 16)

Surface area Number of development
17 22
18 230
19 1430
20 5834
21 16589
22 33997
23 50497
24 53420
25 38989
26 18605
27 5249
28 714
29 28
30 1
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Figure 4.3: Chart of The number of developments changing with the increasing of surface
area from step 17 to 30 (Start from one development of surface area 16)
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4.2 Common developments of boxes of sizes 1×1×7,
1×3×3 and

√
5×
√
5×
√
5 of surface area 30

4.2.1 Experiment environment

The research program is compiled in C language to find the common developments of
boxes of sizes 1×1×7, 1×3×3 and

√
5×
√

5×
√

5 of surface area 30 (Fig. 4.4). The running
environment is ASUS A43S laptop.

Figure 4.4: Boxes of sizes 1×1×7, 1×3×3 and
√

5×
√

5×
√

5 of surface area 30

4.2.2 Result

Our new positional relationship algorithm checked whether each of 1076 common devel-
opments of boxes of surface area 30 of size 1×1×7, 1×3×3 can fold into the cube of√

5×
√

5×
√

5. As a result, nine out of 1076 developments can fold into the cube. While
eight developments have only one way of folding into the cube of

√
5×
√

5×
√

5 (Fig. 4.5),
the other one development has two different ways of folding into the cube of

√
5×
√

5×
√

5,
for there is an angle of 26.6 degrees to the unit square’s edge clockwise and anti-clockwise.
That is, the last development can actually fold into 4 boxes: 1×1×7, 1×3×3 and 2 types
of
√

5×
√

5×
√

5 as Fig. 4.6.
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Figure 4.5: Development having three ways of folding into incongruent orthogonal boxes
of surface area 30
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Figure 4.6: Development having four ways of folding: (a)1×1×7 (b) 1×3×3 (c)√
5×
√

5×
√

5 (d)
√

5×
√

5×
√

5
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Chapter 5

Conclusion

After implementing the new hybrid search method combing breadth-first search and
depth-first search,we obtained the number of common developments of boxes of size
1×1×7, 1×3×3, which is 1076.

Our new positional relationship algorithm checked whether each of 1076 common de-
velopments of boxes of surface area 30 of size 1×1×7, 1×3×3 can fold into the cube of√

5×
√

5×
√

5. As a result, nine out of 1076 developments can fold into the cube. While
eight developments have only one way of folding into the cube of

√
5×
√

5×
√

5, the other
one development has two different ways of folding into the cube of

√
5×
√

5×
√

5.
After this research, we are still looking for a easier way to store large amour of devel-

opments. ZDD[8] is a better storage method, which can store 75,835,320,876,016 devel-
opments in only 5416 nodes. In future works we should apply these methods to make
research more efficient.
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