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Abstract

“We are drowning in information but starved for knowledge.” (John Naisbitt, Mega-

trends, 1982) is a famous quote that best describes our status in this technology era.

That is, the data is produced at an incredible rate while we have little ability to analyze

it. The numerical and text data has been well treated in computers, thanks to their

statistical analysis power granted by the data mining scientists. However, processing

visual data has remained challenging since computers cannot interpret the data in the

same manner as human. Therefore, how to represent visual data in computers and let

them process it semantically has become a vital question nowadays.

The dissertation approaches the above question from a computer vision aspect. It

searches for effective means to reconstruct the image properties in computers and hence

improves the quality of the visual analysis. In this way, the information in images are

correctly transformed from the non-declarative form to the declarative one, allowing us

to manipulate the data easily on computers and gain insights into complex problems.

This is expected to bring human toward the discovery of valuable visual knowledge.

The Local binary pattern (LBP) is studied comprehensively to enhance the represen-

tation of image properties. It is a popular family of visual features in computer vision

due to their high discriminative power and computationally simplicity. Specifically, the

effectiveness of LBP features in three important tasks, including interest region descrip-

tion, pedestrian detection and background subtraction, is thoroughly examined. This

demonstrates the robustness and generality of LBP in various visual tasks and thus

well facilitating computers in interpreting different kinds of visual information.

The first contribution of this dissertation is the two novel LBP features for describ-

ing salient regions in images. Their underlying concepts are straightforward and compu-

tationally simple, thus they are suitable for many types of applications, especially those

emphasizing the processing speed. The features are robust to different photometric and

geometric image transformations, enabling us to achieve accurate correspondences be-

tween parts of images. These properties help the proposed interest region descriptors

address two competing factors, matching accuracy and computational cost, at the same

time, while this is still a critical issue for several modern descriptors using other features,

such as gradient or pixel intensity. The success of novel LBP features motivates their



development in higher-level tasks such as pedestrian detection, background subtraction

and panorama image stitching.

The second contribution is a robust pedestrian detector using the proposed LBP

feature in the first contribution. The encoding of this LBP is revised to better character-

ize edges along diagonal and vertical directions, which are most visible and meaningful

details in an upright pedestrian body, so that the feature well distinguishes pedestri-

ans from other objects in the image. The proposed detector combines LBP with color

channels and gradient histogram to represent the subjects in different aspects, namely

texture, color and gradient changes in magnitude and orientation. The advanced learn-

ing framework of [34] is adopted to resolve the computational bottleneck in constructing

the feature pyramid. In this way, the proposed detector effectively identifies subjects

of various poses in different challenging environments while achieving a speed of 15.2

frame per second (fps). This encourages its implementation in practical systems like

surveillance, car driver assistant and human-computer interaction.

The third contribution is a multi-layer background modeling framework to extract

moving objects from a video sequence. This framework models the scene background by

processing consecutive frames through two layers: the block-wise layer considers blocks

of pixels while the pixel-wise layer manipulates each individual pixel. The proposed

LBP feature in the first contribution is used to represent the texture in a block, thus the

framework is more robust to illumination changes and shadows, which frequently occur

in background subtraction. The multi-layer framework operates in a coarse-to-fine

manner to better reduce the errors than the traditional Mixture of Gaussians approach.

It supports the object analysis for surveillance, video segmentation and event detection.

The final contribution is the introduction of an effective surveillance system that

automates the detection of pedestrians in the monitored area. The three proposed

techniques have been integrated perfectly to produce a unified system. The proposed

system first extracts foreground regions using the background modeling framework in

the third contribution then finds pedestrians in these regions with the pedestrian de-

tector in the second contribution. When multiple cameras are used, a panorama view

is created with the help of LBP features in the first contribution. This demonstrates

the generality of the proposed LBP in the sense that they can participate effectively in

all phases of the surveillance process. This doctoral research has been successful in im-

proving the visual perception of computers to a semantic level. It therefore contributes

to the computer vision as well as the knowledge discovery in Knowledge science.
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Chapter 1

Introduction

This chapter introduces the research context where the dissertation is motivated

and the contribution of this doctoral work to development of Computer vision

and Knowledge science. The first section describes the research motivation. The

second and third sections define key concepts in the dissertation. The four section

presents research objectives and contributions. Finally, the chapter is closed with

the dissertation roadmap.

1.1 Overview

As human, we are granted an amazing visual system to perceive the information

from the world around at apparent ease. Let us consider some examples in Fig.1.1.

Given a pair of images, we can point out their similarities and dissimilarities easily,

even when the details are transformed significantly under different conditions of

illumination, viewpoint, or image resolution. We are also able to count the people

in a photograph and interpret their activities in no time, though some of them

have tiny shapes or suffer occlusion. Even a hard case to computer like tracking

moving subjects (e.g. car or pedestrian) is not worth a challenge to human.

Perceptual psychologists have spent several decades to reveal the mechanism of

the human visual system but only achieves some of its principles [79, 85, 110].

Despite that ideal ability, the information processing power of human is usually

limited, preventing us from solving intensive or complicated tasks, such as looking

for the presence of a person in a collection of trillions images, solving high-order

equations to find the geometric correlation between images. Such tasks have

become very common when the visual data is growing more and more promptly

in this technology era. An automated assistant to do these tasks on behalf of

1



Chapter 1 2

(a) Matching details between two images

(b) Tracking moving targets (c) Counting people

Figure 1.1: Humans can perform visual tasks with no difficulty, yet computers need
special assistance from humans to achieve the same goals.

human is therefore an essential need.

We have seen how computers facilitate data mining scientists to discover

knowledge from huge data or enable mathematicians to reach new levels of under-

standing by solving complex problems. It is obviously not due to their in-born

intelligence but to the reasoning and inference abilities given by human. Com-

puters enhance this simple intelligence several times with their computational

power. Therefore, it is reasonable to expect a similar effect with visual knowl-

edge once the visual perception in computer is enabled. Computers perceive the

world in a completely different manner to that of humans, which causes several

difficulties to understand and improve their perception. For example, we observe

from Fig.1.1(a) blue sky and snowy mountain, whereas computers interpret the

picture as an array of pixels with various values. However, they possess incredibly

computational powers that are beyond most humans. For instance, to find im-

ages containing Barack Obama, Google Image Search returns 1,110 results within

1.06 seconds, or to recognize fingerprints, a modern system takes 10 milliseconds

per match with an equal error rate < 1% [42]. Identifying the great potential-

ity of computers in accompanying humans to reveal the visual knowledge from

the world, I conduct this dissertation with the desire to find an effective means

to represent the visual information in computers and let them process it more

similarly to human, i.e. enabling their visual perception.

Computer vision is an appropriate approach for my research topic since its

mission is to feed the visual perception to computers, i.e. to describe the world

that we see in images and reconstruct its properties, such as shape, illumination,
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(a) Input image (b) Gray-level histogram (c) Canny edge

(d) Gradient magnitude and direction (Pre-
witt operator)

(e) Haar wavelets (f) LBP textures

Figure 1.2: Common features for describing image details and structures.

and color distribution. Achievements from this research may enhance the qual-

ity of visual analysis to help computers interpret the information contained in

images correctly. Based on that, semantic content or meaning from images can

be extracted as an appropriate data representation for the visual analytics to get

insights into sophisticated problems. Hence, the gap between information and

knowledge will be narrowed. To fulfill this purpose, we can start with several

features in computer vision, such as intensity histogram, edge, gradient, wavelets,

etc. (cf. Fig.1.2). However, most of them are not meaningful enough for real-

world textures or computationally too complex to meet the real-time requirement

of many vision applications. Proposed in the year 2002, the Local binary pattern

(LBP) (cf. Fig.1.2(f)) has been shown as a promising local texture that is very

discriminative and computationally efficient. It is successfully applied in several

problems such as face recognition [10, 13, 164], texture classification [46, 105],

human action recognition [87], and medical image analysis [69, 99]. The LBP is

quite new, compared to other visual features like edge and gradient, whose first

publications date back to the 1980s or earlier. Its researches have been growing

promptly and attracting lots of attention as well as critics from the computer vi-

sion community. Therefore, the studies of LBP feature in this dissertation greatly

encourage its development in the future.
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(a) Two images depicting a mountain in different views are stitched into a panorama image
using SIFT features and RANSAC algorithm [21].

(b) 3D reconstructed model of Collosseum from 1,167 photos [8].

Figure 1.3: Applications of feature matching.

1.2 Feature matching and challenges

Feature matching is an important stage in several computer vision applications

since it greatly influences the accuracy of higher-level tasks. Good examples

exist in panorama stitching [21] (cf. Fig.1.3(a)), epipolar geometry estimation

[86, 119], 3D model reconstruction [8, 117, 135] (cf. Fig.1.3(b)), as well as texture

classification [67], object recognition [55, 81], and human action recognition [87].

The problem is defined as the comparison of two sets of feature descriptors

obtained from two different image to provide detail correspondences between im-

ages. Features may be specific structures in the image, such as points, edges or

objects, or the results of a general neighborhood operation, such as gradient mag-

nitude and directions, wavelet signals, or local textures (cf. Fig.1.2). To manip-

ulate them in computers, the corresponding descriptors are usually represented

as boolean variables, numerical values, multi-dimensional vector or continuous
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Figure 1.4: An example of computing LBP textures. A LBP operator is applied on
every pixel of the image to capture information in the 3× 3 neighborhood centered at
the pixel, resulting in a value at the corresponding location in the output image.

functions. Therefore, the problem of feature matching reduces to a simple task of

computing the similarity (or distance) between mathematical terms using some

similar measure (e.g. Euclidean or Mahalanobis distance).

In practice, it is very challenging due to phenomena such as occlusions, non-

rigid deformations, illumination changes, image rotation, poor textural content,

etc. (cf. Fig.3.19 and Fig.4.9). Therefore, several requirements on the adopted

feature are introduced to make the matching effective. Tuytelaars and Mikola-

jczyk [139] suggest six properties that an ideal local feature should have, which

can be summarized to two following main points:

1. The feature descriptor should be repeatable and precise so that features

detected on the scene part visible in both images should be found in both

images and accurately localized with respect to scale and possibly shape.

2. The intensity patterns underlying features should show a lot of variation,

such that features can be distinguished and matched, i.e. distinctiveness.

Most existing features cannot achieve all properties or at the same time pursuing

quality and speed. Therefore, a feature that enables effective matching while

being feasible enough for real-time applications remains elusive.

1.3 A brief review of Local binary pattern

1.3.1 Local binary pattern

The LBP [105] is a robust and efficient first-order texture operator for image

analysis, which transforms a grayscale image into a registered map describing

small-scale appearances of the original image. It describes textures in a n × n
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Figure 1.5: The history of LBP developments. The third and fourth phases are com-
bined in the “Major developments and applications of LBP” component.

neighborhood around every pixel of an image by thresholding the gray values of

neighbors with that of the center pixel and considering the result as a binary

number (cf. Fig.1.4). It can be seen as a unifying approach to the traditionally

divergent statistical and structural models of texture analysis [115].

The LBP has been shown to be highly discriminative, invariant to monotonic

gray-level changes and computationally simple, thus it is a promising solution for

several computer vision tasks, especially those requiring large-scale or real-time

processing. Since its proposal in the year 2002, the LBP has soon become popular

in the community in the sense that several studies of LBP have been made and

its use in various applications has increased significantly.

1.3.2 The history of LBP

According to [115], the development of LBP has four main phases, which are

illustrated in Fig.1.5 and described as follows:

Introducing the basic LBP operator. The LBP research started in the year 1992

with the idea that two-dimensional textures can be described by two complemen-

tary local measures, pattern and contrast, and thus by separating pattern from

contrast, invariance to monotonic gray-scale changes can be obtained. It was

first published in the International Conference on Pattern Recognition (ICPR)

1994 [102] and later extended into the Pattern Recognition [103]. The LBP and

contrast operators were adopted in some applications like unsupervised texture

segmentation [101] and visual inspection [113], obtaining clearly better results

than that of the state-of-the-art at that time.

Developing the LBP operator from basic LBP and extensions. In the late
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1990s, the use of multi-dimensional signed gray-level differences instead of abso-

lute differences [106] and the rotation-invariant LBP [114] were proposed, which

are key ideas for the multi-resolution gray-scale and rotation-invariant LBP nowa-

days [104, 105]. Henceforth, its use in various applications has increased rapidly

and several LBP studies have been motivated. Major developments were the

Center-symmetric LBP for interest region description [55], LBP histogram Fourier

[11] for rotation-invariant texture description, and Local ternary patterns for face

recognition [129]. LBP features for color image [83] and for 3D texture surfaces

classification [112] were also studied.

Spatial LBP for face description. In the mid-2000s, Ahonen et al. proposed

a novel approach that divides the face image into several regions from which

LBP features are extracted and concatenated into a feature vector [9, 10]. It has

inspired a large number of studies for further improvement and been adopted

in various practical applications. The approach and its variant have been used

for problems such as face recognition and authentication, face detection, facial

expression recognition, gender classification and age estimation.

Spatio-temporal LBP for motion and activity analysis. Also in the mid-2000s,

the first application of LBP in motion analysis was background modeling and

moving object detection [53, 54]. Each pixel is modeled as a group of adaptive

LBP histograms that are calculated over a circular region around the pixel. The

approach is highly robust against illumination variations, the multimodality and

the dynamism of background. In the year 2007, the spatio-temporal VLBP and

LBP-TOP [164] were proposed, establishing a basis for problems such as facial

expression recognition utilizing facial dynamics [164], face and gender recognition

from video sequences [50], and recognition of actions and gait [63, 87].

1.4 Research objective and contributions

1.4.1 Research objective

This dissertation studies the effectiveness of LBP features in describing image

properties in order to improve the quality of feature matching and hence better

facilitating the visual analysis in computers. To fulfill this objective, the perfor-

mance of LBP features are thoroughly examined on three major computer vision

tasks: (1) interest region description, (2) pedestrian detection and (3) background

subtraction.
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Figure 1.6: A taxonomy of the topics covered in computer vision [125]. The whole
figure should be taken with a large grain of salt, as there are many additional subtle
connections between topics not illustrated here. The red stars mark the general topics
to which the three studies in the dissertation belong.
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Figure 1.7: Topics in the ‘Feature detection” and “Recognition” fields. Techniques
related to the three studies are highlighted in red.

The above topics are selected due to their important roles in computer vision.

Figure 1.6 shows a taxonomy of the topics covered in computer vision, in which

the topic (1) belongs to the general topic “Feature detection” while the topics

(2) and (3) are in “Recognition”. Figure 1.7 zooms into the two corresponding

general topics. The interest region description searches for robust features to

describe the low-level image details. Features that are successful in this task

are possible to be improved for high-level tasks. The background subtraction

and pedestrian detection usually rely on the first task to select features for their

methods. In addition, the three techniques can be joined to build a complete

pedestrian surveillance system, which is very meaningful for both academic re-

search and practical applications. By consequently studying the LBP feature in

these topics, the dissertation gradually improves the visual perception of com-

puters from the most basic level, i.e. comparing general image details, to more

sophisticated ones, i.e. identifying moving objects and distinguishing pedestrians

from other types of objects. This demonstrates the effort of my doctoral research

to fill the gap of visual interpretation between computers and humans.

The first study aims for a meaningful representation of interest regions with
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(a) Proposed method (IO-QLBP) (b) SIFT [81]

Figure 1.8: Two matching results provided by the proposed IO-QLBP and the baseline
SIFT[81] descriptors. Red lines indicate correspondences that are correctly identified,
whereas yellow lines describe correspondences that the descriptor fails to match.

the LBP feature so that details between images can be matched correctly. There-

fore, it falls into the research of point and patches. This study enables the com-

puters to compare low-level details in images, which serves as the preliminary

step for many subsequent tasks, such as feature-based alignment, image stitching,

stereo correspondences, etc. It also has a direct support to the “recognition” topic

by providing means of sparse object representation. The second study targets the

detection of pedestrians in static images, which is done by searching patches that

potentially describe a person at every place of an image. Its applications are com-

monly found in our daily life like organizing personal photo albums or collecting

images related to a specific person. From this study, the computers can improve

their visual perception to a higher level, which is to identify objects rather than

fragments only. The third study employs the temporal dimension in the video

sequence to perform object detection. It detects moving objects by first building

a model representing the background scene and then, for each incoming frame,

considering pixels that yield great deviation from the model as parts of moving

objects. Combining the background subtraction and pedestrian detection allows

computers to handle semantic tasks like detecting the presence of human in the

monitored area using surveillance camera.

1.4.1.1 Interest region description

This study searches for an effective feature descriptor to describe interest re-

gions in a pair of images, so that region correspondences between two images

can be established correctly afterwards (cf. Fig.1.1(a)). A good feature should

be discriminative to identify regions depict the same scene part in both images

and robust against image transformations. Two novel descriptors, Intensity order

quartet local binary pattern (IO-QLBP) and Multi-scale region perpendicular local
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Figure 1.9: Some detection results on the INRIA benchmark provided by the proposed
multi-cue pedestrian detector.

binary pattern (MSR-PLBP), are proposed. The IO-QLBP efficiently produces a

compact feature from a set of four neighbors. Patterns are generated in a selective

manner with a weighting scheme and an adaptive thresholding scheme that is lo-

cally set for every pair of pixels. Meanwhile, the MSR-PLBP compares each pixel

in the image with its four neighbors distributed evenly on two fixed perpendicular

axes originated at the pixel. It proposes the use of multiple pattern candidates,

instead of conventionally assigning one patter per pixel, to address the drawback

of LBP on near-uniform regions. The local image contrast is also incorporated

to improve the adaptability to different illumination changes. Figure 1.8 shows

an example comparing the IO-QLBP with the baseline [81] in matching images.

1.4.1.2 Pedestrian detection

This study aims to adopt the novel QLBP feature in the previous study to build

a robust human detector so that pedestrians in static images can be well distin-

guished from backgrounds as well as from other objects. Challenges come from

the wide variations of pedestrian appearances, which are due to articulated pose,

clothing, illumination changes, and occlusions, thus making the problem far from

being completely solved. The QLBP is generalized to an abstract representation

that comprises all possible encodings from a neighborhood of four points. Since

the upright human body has specific cues that distinguishes itself from other ob-

jects, an encoding that emphasizes these cues will be likely to boost the detection

rate. The proposed detector jointly characterizes each detection window by a

normalized gradient histogram, three color channels and three generalized QLBP

images computed in each color channel. This allows describing the pedestrian

appearance with complementary aspects, i.e. intensity changes in different orien-

tations, color and texture, hence high performance is expected. Some detection

examples are shown in Fig.1.9.
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Figure 1.10: The performance of different background subtraction algorithms on the
scenario of sudden illumination changes. The result of the proposed method is very
similar to the ground truth.

1.4.1.3 Background subtraction

This study deals with the temporal information in video frames to extract moving

objects (e.g. pedestrians, cars, etc.) from background. It is an initial yet essential

step in several computer vision systems like motion tracking or event detection.

Nevertheless, it is very challenging since practical scenes may contain complex

dynamic effects, such like moving vegetation, rippling water, sudden illumination

changes and occlusions. An efficient multi-layer background modeling framework

is introduced to process the incoming frame in a coarse-to-fine manner with a

block-wise layer and a pixel-wise layer. The former is constructed with the QLBP

feature in the previous study, which is highly robust to illumination changes and

computationally simple. Meanwhile, the latter characterizes individual pixels by

distributions of colors. This allows us to classify stationary/non-stationary blocks

effectively so that only blocks containing moving pixels are further analyzed in

the latter layer. Both qualitative and quantitative evaluations show that the

proposed framework is able to capture more global structures while maintaining

the fineness of details. This advantage is hard to achieve with single approaches.

Fig.1.10 shows an example of background subtraction with the proposed method.

1.4.1.4 A unified surveillance system from three proposed techniques

We integrate the proposed techniques in three studies, namely the interest region

description, pedestrian detection and background subtraction, into an effective

unified surveillance system. The proposed system uses the novel LBP features
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in the first study to represent the visual objects. Moving objects are extracted

from video frames of a CCTV camera using the background modeling method

in the third study and then pedestrians are distinguished from other moving ob-

jects using the proposed pedestrian detector in the second study. In this way, a

surveillance system that automates the detection of human is enabled, support-

ing the monitoring of the entering/leaving of visitors in public places (e.g. the

school ground or office hall), or the prevention of potential intruders in restricted

areas. Since each camera has a limited field of view, objects and activities at the

border may not be described precisely. We therefore extend the proposed system

to the multi-view mode by creating a panorama view from multiple cameras and

performing the surveillance on this new common view. In this way, a considerable

number of fragments in each view are connected, improving the quality of detec-

tion as well as trajectory tracking and action recognition. The PLBP feature is

applied to the panorama image stitching to attain better feature alignment. Illus-

trations of the proposed surveillance system in single-view and multi-view modes

are shown in Fig.6.4 and Fig.6.6.

1.4.2 Contribution to the Computer vision research

Based on the above, the academic significance of this doctoral dissertation is

described as follows.

Novelty. This dissertation provides novel methods for effective feature match-

ing that are specialized in interest region description, pedestrian detection, and

background subtraction. These methods are all successful in boosting the perfor-

mance to a higher level than that of many modern methods while maintaining

acceptation computational speeds. Specifically, in the first study, two proposed

region descriptors improve the accuracy about 3-15% while they are both several

times faster than other descriptors. The multi-cue detector in the second study

reduces the average miss rate to 15.4% with a frame rate of 15.2 fps. It is equiv-

alent or better than many modern detectors while significantly outperforms the

baseline HOG (46%, 0.239 fps). In the final study, the multi-layer background

subtraction framework uses the novel LBP texture feature to halve the number

of errors, compared to other competing algorithms, when encountering sudden

illumination changes. It innovatively processes the information in a coarse-to-

fine manner instead of concentrating on a single component. All of those results

demonstrate the superiority of LBP in relation to other features, such as gradient,

color channels, or wavelets.
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Originality. The proposed methods provide several novel definitions of LBP

features in terms of encoding, thresholding scheme as well as the strategy of gener-

ating pattern, hence considerably enhancing the robustness and efficiency of LBP.

The proposed features include three key properties that completely distinguish

themselves from existing methods. First, they require a small set of neighbors

to depict the image properties while preserve the meaningfulness of patterns. In

this way, the issue of high dimensionality is resolved and the applicability of LBP

in tasks that need dense matching is improved. Second, instead of assigning one

pattern per pixel, the novel scheme of pattern generation creates a set of pattern

candidates, each of which has a confidence value, so that the lack of information

in noisy regions are diminished. Third, prior knowledge of image environments,

such as contrast, effects of illumination changes, etc. is incorporated. This makes

the features more adaptive to environment changes in an automatic manner, i.e.

less manual effort of tuning parameters is required.

Applicability. The dissertation provides a complete review of LBP features

in different computer vision problems, providing a starting point for people who

want to select features for their applications in object detection, texture classifi-

cation, action recognition, etc. The proposed descriptors in image matching effec-

tively support higher-level computer vision tasks such as panorama image stitch-

ing, 3D reconstruction and in-between view establishment in virtual/augmented

reality. The multi-cue pedestrian detector may contribute to some person track-

ing systems, such as a security system that it recognizes a person as suspect or

non-suspect or a driver assistance system that detect pedestrian and raises alerts

to drivers. For these applications, the multi-layer background subtraction could

serve as an initial step to help filtering non-interest regions (i.e. regions having

static contents) and thus significantly reduces the detection errors. To demon-

strate a unique application of the proposed LBP features in this dissertation, we

combine three related techniques to build a simple pedestrian surveillance sys-

tem that detects the presence of human in the monitored area. Quantitative and

qualitative evaluations show that the system performs effectively and stably in

real scenarios.

1.4.3 Contribution to the Knowledge science

This thesis contributes to the Knowledge science in the three following aspects:

Facilitating the visual analytic process to create knowledge: The key challenge

for visual analytics is to derive semantic content or meaning from images in real
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time (cf. Chapter 4 of [134]). This doctoral research enhances the quality of

visual analysis to help computers understand the information contained in the

image rather than the image itself only. Therefore, it helps us move toward an ap-

propriate data representation for the visual analytics. Using visual analytics, we

can create knowledge from analytical reasoning with the facilitation of interactive

visual interfaces.

Modeling knowledge creation process : Identifying image details seems to be

straightforward for human but involves sophisticated processes in the brain, which

has not been fully discovered by psychology. This hinders researchers in their

effort to bring computers close to human. This dissertation proposes several

techniques to gradually improve the ability of computer in revealing the visual

knowledge from huge amount of data. The proposed techniques are developed

and verified by standard experiments and experts, thus ensuring the validity of

the knowledge creation process.

Discovering knowledge and regularities for inference: Humans make decision

based on their intuition and experience, yet they are hardly able to point out

the differences or relations between two images clearly. Proposed features can be

utilized to discover various types of image patterns and examine these patterns

in a statistical manner. Therefore, they help researchers to attain novel visual

knowledge and regularities for inference.

1.5 The dissertation roadmap

The other chapters of this dissertation are organized as follows. Chapter 2 intro-

duces the Local binary pattern and its related works. The next three chapters

presents the studies on interest region description, pedestrian detection and back-

ground subtraction, respectively. They shares a similar structure in which the

proposed ideas are first described, followed by the comparative evaluations, and

finally a brief discussion about the advantages and drawbacks of the proposed

methods is given. Chapter 6 integrates the proposed techniques in three studies

into a unified surveillance system, demonstrating the contribution of novel LBP

features in enabling computers to handle the semantic vision task. Chapter 7

summarizes what the dissertation has achieved and draws plans for future work.

The novelty and originality have been stated in Sect.1.4.2 of this chapter. The

three key properties that constitutes the originality are discussed more deeply

when proposed methods are described in detail in each chapter. These chapters
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also make clear how these methods address the issues of accuracy and speed at

the same time and to what extent they improve the quality of feature matching.

The general applicability of LBP is mentioned in Chapter 2 while specific applica-

tions of proposed methods are discussed in corresponding chapters. The unique

application of all proposed techniques, i.e. the pedestrian surveillance system, is

described in Chapter 6.



Chapter 2

Local Binary Pattern

This chapter introduces the Local binary pattern (LBP), which is a robust and

efficient texture operator for image analysis. With the advantages of highly dis-

criminative, invariant to monotonic gray-level changes and computationally sim-

ple, the LBP and its variants constitutes a large family of texture features that

perform excellently in various computer vision applications.

The content of the chapter is organized as follows. Section 2.1 defines the

LBP operator. Its advantages and drawbacks are discussed in Sect.2.2. Section

2.3 is reserved for the Center-symmetric local binary pattern, a widely popular

LBP variant in the field of interest region description. Other variants are briefly

summarized in Sect.2.4. Finally, Section 2.5 lists several applications of LBP.

2.1 Local binary pattern

The Local binary pattern (LBP) is a first-order image operator that transforms

a grayscale image into a registered map describing small-scale appearances of the

original image. Ojala et al. first introduced the LBP during the years 1994 - 1996

[102, 103], in which the operator assigns a label to every pixel of an image by

thresholding a 3×3 neighborhood centered at the pixel and considering the result

as a binary number. In the year 2002, several years after the original publications

of LBP, they extended the operator into a more generic form allowing difference

sizes of neighborhood and numbers of neighbors [105]. The term “local binary

pattern” henceforth refers to the generic operator rather than its precursor.

17
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Figure 2.1: An example of basic LBP. The dotted arrow indicates the starting point and
direction (i.e. anticlockwise) of the encoding. Thresholding results at every position
are combined into a binary bit sequence.

2.1.1 The basic LBP operator

The basic LBP operator [102, 103] was motivated by the idea that two-dimensional

textures can be described by two complementary local measures, i.e. pattern

and contrast, and by separating pattern information from contrast, invariance to

monotonic gray-level changes can be obtained. It compares eight bordering pixels

(neighbors) in a 3× 3-neighborhood with the center pixel. A “0” bit is produced

if the considered neighbor has a lower gray value than that of the center pixel,

while a “1” bit is assigned in the opposite case. The LBP code is then computed

by multiplying bits with predefined weights and summing the results, resulting

in 28 = 256 different possible codes. The contrast measure C is obtained by

subtracting the average of gray values below the center value from the average

of gray values above or equal to the center value. Figure 2.1 demonstrates the

computation of basic LBP with a given 3 × 3-patch. The one-dimensional dis-

tribution of LBP codes or two-dimensional distribution of LBP and contrast are

used for further analysis like classification or segmentation.

2.1.2 The generic LBP operator

In the year 2002, Ojala et al. revised the operator into a more generic form that

puts no limitation to the neighborhood size or to the number of sampling points,

whereas the basic version is bounded to eight neighbors in a 3 × 3-pixel region.

The derivation of LBP presented below is summarized from [105].

Let I denote the monochrome image in consideration, gc = I(x, y) denote the

gray value of the center pixel of a circular neighborhood of radius R (R > 0), and

gp = I(xp, yp) (p = 0, . . . , P − 1) correspond to the gray values of P neighbors
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(a) P = 4, R = 1 (b) P = 8, R = 1 (c) P = 8, R = 2 (d) P = 16, R = 2

Figure 2.2: The circularly symmetric neighbor sets for different (P, R). Gray values of
points that are not in the center of pixels are interpolated.

evenly spaced on the circle. The coordinate of a neighbor p is determined by

xp = x+Rcos(2πp/P )

yp = y −Rsin(2πp/P )
(2.1)

If any neighbor does not fall exactly in the center of pixels, its gray value is esti-

mated by bilinear interpolation. Figure 2.2 illustrates some circularly symmetric

neighbor sets for different (P,R).

The texture T in a local neighborhood of a monochrome texture image is

defined as the joint distribution of gray levels of P (P > 1) image pixels:

T = t (gc, g0, . . . , gP−1) (2.2)

The gray value of the center pixel gc can be subtracted, without loss of in-

formation, from that of the circularly symmetric neighbors gp (p = 0, ., P − 1).

T = t (gc, g0 − gc, g1 − gc, . . . , gP−1 − gc) (2.3)

It is assumed that the center pixel is statistically independent of the differ-

ences, allowing the joint distribution to be factorized as follows.

T ≈ t(gc)t (g0 − gc, g1 − gc, . . . , gP−1 − gc) (2.4)

Although the exact independence is not warranted in practice, we accept a small

loss of information to achieve invariance with respect to gray-level shifts.

The distribution t(gc) in Eq.2.4 describes the overall luminance in the image,

thus containing no helpful information for local texture pattern analysis. The

joint different distribution, on the other hand, conveys many textural character-
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istics [106], and hence:

T ≈ t (g0 − gc, g1 − gc, . . . , gP−1 − gc) (2.5)

The operator records the occurrences of various patterns in the neighborhood

of every pixel on a P -dimensional histogram, therefore it is highly discrimina-

tive. The differences in all directions are zeroes in constant regions, whereas they

are large for spots. On a slowly sloped edge, the operator records the highest

difference in the gradient direction and zero values along the edge.

The signed differences gp− gc are not affected by changes in mean luminance,

thus the joint difference distribution is invariant against gray-level shifts. How-

ever, it is not warranted to be invariant against other changes like gray-level

scaling. In order to alleviate the issue, only the signs of the differences are con-

sidered instead of their exact values:

T ≈ t (s(g0 − gc), s(g1 − gc), . . . , s(gP−1 − gc)) (2.6)

where

s(z) =

{
1 z ≥ 0,

0 z < 0
(2.7)

The generic LBPP,R operator is derived from Eq.2.6 by assigning a binomial

factor 2p for each signed s(gp−gc), resulting in a unique number that characterizes

the spatial structure of the local image texture:

LBPP,R(xc, yc) =
P−1∑
p=0

s(gp − gc)2
p (2.8)

This equation indicates that each signed difference is interpreted as a binary bit.

Hence, there are 2P distinct LBP codes in total.

The term “local binary pattern” reflects the function of the operator, i.e. a

local neighborhood is thresholded at the gray value of the center pixel into a

binary pattern. The LBP8,1 (i.e. P = 8 and R = 1) is similar to the basic LBP

except two points: 1) the pixels in the neighbor set are indexed to form a circular

chain, and 2) the gray values of diagonal pixels are estimated by interpolation.

These modifications are essential for developing LBP into a rotation invariant

version (cf. Sect.2.1.4).



Chapter 2 21

2.1.3 Achieving uniformity for LBP patterns

Ojala et al. [105] introduce a uniformity measure that describes the number of

bitwise transitions in a pattern, i.e. from “0” to “1” or vice versa, when the bit

sequence is considered circular.

U(LBPP,R) = |s(gP−1 − gc)− s(g0 − gc)|+
P−1∑
p=1

|s(gp − gc)− s(gp−1 − gc)|
(2.9)

Patterns having U values of at most 2 are called uniform patterns, which are

denoted by LBPu2. For example, the patterns 000000002 (0 transition), 111111112

(0 transition), 011100002 (2 transitions) and 110011112 (2 transitions) are uniform,

while the patterns 110010012 (4 transitions) and 010100112 (6 transitions) are

not. In the histogram computation, every uniform pattern is mapped into a

separate bin while all non-uniform patterns are assigned to one “miscellaneous”

bin, producing a P (P − 1) + 3-dimensional vector.

The advantage of uniform patterns lies in two folds. First, most of the LBP

patterns in natural images are uniform. In the experiments with texture im-

ages [105], these patterns account for a bit less than 90% of all patterns when

using the (8,1)-neighborhood and for around 70% with the (16,2)-neighborhood.

Meanwhile, Ahonen et al. [10] observed from their experiments with facial im-

ages that the amounts of uniform patterns in the (8,1)-neighborhood and (8,2)-

neighborhood are 90.6% and 85.2%, respectively. Second, using uniform patterns

instead of all patterns gives better results in several applications. They are thus

believed to be more robust, i.e. less prone to noise. In addition, the dimension-

ality of the histogram reduces significantly from 2P to P (P − 1) + 3 and the

distribution estimation could be done reliably with fewer samples. Therefore, the

LBP is promising for recognition tasks involving a wide variety of textures.

2.1.4 Achieving rotation invariance for LBP patterns

The LBPP,R is unqualified to problems involving much rotation, such as image

matching, because its circular neighborhood is greatly affected by rotations of the

original image. The neighborhood itself translates into another location, while

its neighbors correspondingly rotates about the origin into a different orientation.

Since g0 is defined to be the gray value of the neighbor lying to the right of the

center pixel, that naturally results in a different LBPP,R code (cf. Fig.2.3).
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Figure 2.3: The effect of image rotation on points in a circular neighborhood.

Figure 2.4: The 36 unique rotation invariant patterns that can occur in the (8, R)
neighborhood. Points corresponding to bit “1” are denoted by blue circles, while those
corresponding to bit “0” by white circles. The first row shows patterns that are both
uniform and rotation invariant.

To achieve rotation invariance, Ojala et al. [105] consider every bit sequence

circular and rotates it into a minimum value as follows:

LBP ri
P,R = min

i
ROR(LBPP,R, i) i = 0, . . . , P − 1 (2.10)

where ROR(x, i) performs i circular bit shifts to the right on the bit sequence x.

For instance, the bit sequences 100000102, 000010102, and 001010002 arise from

different rotations of the same pattern, and it is possible to map all of them into

the minimum value 000001012 by right shifting 7, 1 and 3 times, respectively.

Figure 2.4 illustrates 36 unique LBP ri
8,R patterns, each of which illustrate some

texture primitives. For example, in the first row, the first pattern detects bright

spots, the eighth for dark spots and flat areas, and the fourth for edges.
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The rotation invariant pattern can also be improved to be “uniform”:

LBP riu2
P,R =


P−1∑
p=0

s(gp − gc) if U(LBPP,R) ≤ 2

P + 1 otherwise

(2.11)

The superscript riu2 denotes rotation invariant patterns having U values of at

most 2. There are exactly P +1 LBPriu2 patterns that can occur with a circularly

symmetric neighbor set of P pixels (cf. the first row of Fig.2.4). Equation 2.11

assigns a unique label to each pattern according to its number of bit “1” and uses

the “miscellaneous” label P + 1 for other patterns.

The rotation invariance is not always warranted because of the rough quan-

tization of the angular space, i.e. α = 360o/P . A straightforward solution is to

increase the number of neighbors P , yet it should be done with certain consid-

erations. The circular neighborhood of radius R can contain a limited number

of pixels (e.g. nine for R = 1), setting an upper limit to the number of non-

redundant neighbors. In addition, the set of possible codes grows exponentially

with P , requiring appropriate means of storing and searching on a lookup table

of 2P entries.

2.2 Properties of local binary pattern

The Local binary pattern has several good properties that support its wide appli-

cations in computer vision.

• The LBPP,R is, by definition, invariant against any monotonic gray-level

transformation, such as gray-level shift or gray-level scaling. That is, as

long as the order of gray values in the image is preserved, the output of

LBPP,R remains unchanged.

• The LBP is a nonparametric method that requires no assumptions about

the underlying distributions. It does not have many parameters to be set,

thus reducing the implementation burden and heading towards automation.

• The LBP has a highly discriminative power. It can tolerate a wide range

of illumination changes that commonly occur in natural images. It also

requires no specific normalization of the input image, except some trivial

smoothing operations for eliminating random noises.

• The operator structure is usually intuitively and computationally simple,

which is a useful property that encourages the use of LBP in various appli-
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cations, especially those aiming for real-time performance.

• The LBP code is quantized by its nature. This allows image regions de-

scriptors that collect LBP features on a square grid to perform bilinear

interpolation only. Meanwhile, descriptors using gradients usually perform

a heavy tri-linear interpolation. Therefore, the LBP has an advantage in

terms of computational efficiency.

The drawback of LBP, as well as of all local descriptors using vector quan-

tization, is that even a small change in the input would cause a change in the

output. The LBP may suffer instability on noisy images or near-uniform regions,

e.g. sky and plain wall, due to its thresholding scheme. Let us examine the

function s(gp − gc) in two cases: (gp = 29, gc = 30) and (gp = 30, gc = 30). It

returns 0 in the first case and 1 for the second case. Several improvements have

been proposed. The first approach replaces the term s(gp−gc) with s(gp−gc+a).

The higher the value of a is, the larger changes in gray level are allowed without

affecting the thresholding results [54]. The second approach introduces a scaling

factor τ to the function s, i.e. s(gp− τgc), allowing the operator invariant against

gray-level transform by a scale factor [74]. Relatively small values of a or τ should

be used to retain the discriminative power. The third approach extends the sec-

ond one so that the threshold is locally adaptive to every pair of pixels [146].

These improvements generally enable more robustness in many applications like

background subtraction and face recognition.

In addition, the use of s(gp−gc) rather than gp−gc causes performance degra-

dation when dealing with image details whose values of gp−gc are of the same sign

yet different magnitudes, though it is the key point for invariance against mono-

tonic illumination changes. This causes little affection to problems like texture

classification and face recognition but great impact to interest region description

and human detection. Therefore, the latter problems usually differentiate the con-

tribution of patterns to the histogram by some means of weight [49, 60], rather

than considering all patterns equivalent as done in the ordinary LBP.

2.3 Center-symmetric local binary pattern

The LBP has properties that favor its use in interest region description, such

as the computational simplicity and the strong invariance against monotonic il-

lumination changes. However, it has low robustness on flat image areas and

its 2P -dimensional histogram is too long for a region descriptor. To address
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LBP8,R = 
s(g0 – gc)20 + s(g1 – gc)21 + 
s(g2 – gc)22 + s(g3 – gc)23 + 
s(g4 – gc)24 + s(g5 – gc)25 + 
s(g6 – gc)26 + s(g7 – gc)27

CS-LBP8,R = 
s(g0 – g4)20 + 
s(g1 – g5)21 + 
s(g2 – g6)22 + 
s(g3 – g7)23

Binary pattern

g0

g1

g2

g3

g4

g7g5

g6

Neighborhood

gc

Figure 2.5: The neighborhood and the binary pattern of CS-LBP8,R. The LBP8,R

pattern is shown for comparison.

these issues, Heikkila et al. [55] introduce the Center-symmetric local binary pat-

tern (CS-LBP), which aims for a more compact representation by modifying the

scheme of comparing pixels in a neighborhood. That is, instead of comparing ev-

ery neighbor with the center pixel, the CS-LBP considers center-symmetric pairs

of neighbors as follows:

CS − LBPP,R(x, y) =
(P/2)−1∑

p=0

s(gp − gp+(P/2))2
p,

s(z) =

{
1 z > T,

0 otherwise

(2.12)

where P corresponds to the number of neighboring pixels equally spaced on a

circle of radius R centered at (x, y), gp and g(P/2−1) correspond to the gray values

of neighbors in center-symmetric pairs. Figure 2.5 illustrates the CS-LBP8,R

operator structure. The coordinates of neighbors are determined and interpolated

(if necessary) using the same approach described in Sec.2.1.

In comparison with the LBP, the CS-LBP halves the number of pixel pairs

for the same number of neighbors P , thus significantly reducing the dimension-

ality of the histogram from 2P to 2P/2 dimensions. For example, the LBP8,R

produces 256 (28) possible codes, whereas the CS-LBP8,R generates only 16 (24)

codes. In addition, the CS-LBP attains higher stability on flat image regions by

thresholding the gray-level differences against a small non-zero T as proposed in

[54]. The CS-LBP is, by definition, closely related to some gradient operators in

the sense that it takes into account pairs of center-symmetric pixels in a neigh-

borhood. Therefore, it is said to inherit good properties from both gradient and

texture operators. Experiments on image matching and object recognition [55]

have shown that the CS-LBP descriptor performs more robustly than descriptors
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using either texture or gradient only.

Thanks to its high robustness and efficiency, the CS-LBP has a wide range of

applications such as object recognition [55], background subtraction [156], pedes-

trian detection [155, 167], and human action recognition [87]. However, there is

still room for improvement. The thresholding scheme adopts a small non-zero T

to alleviate a great deal of sensitivity in flat image regions (cf. Eq.2.12), yet it

cannot handle drastic cases like soft cast shadows. The cast shadow tends to make

the covered region darker than other regions by a scale factor but preserves the

texture information, and therefore a global threshold seems to be not appropri-

ate. The proposed methods address this problem by improving the adaptability

of the thresholding scheme to different local changes, thus gaining more promising

results (cf. Sect.3.3 and Sect.3.4).

2.4 Other variants of local binary pattern

The success of LBP in various computer vision tasks has inspired a number of

researches on LBP variants. These researches aim for more robustness and effi-

ciency by addressing the limitations of LBP or modifying the operator according

to the needs of specific applications. This section briefly introduces several vari-

ants that improve LBP on three primary aspects: preprocessing, thresholding

and encoding, and neighborhood topology. Readers who are interested in more

types of variants should refer to the survey in [115].

2.4.1 Preprocessing

Preprocessing the input image is useful because it provides a new medium al-

lowing LBP features to be extracted more precisely. The Gabor filter has been

widely used for this purpose since it complements the LBP perfectly. It encodes

appearance information over a broad range of scales, whereas the LBP capture

fine details. Zhang et al. [163] filters images with four Gabor filter of difference

scales and orientations before extracting LBP features. Their method achieves

high performance in face recognition but suffers high dimensionality.

Ji et al. [59] extracts threshold-restricted LBP features from high-frequency

coefficients of pyramid Haar wavelet for text characterization. It preserves and

uniforms inconsistent text-background contrasts while filtering gradual illumina-

tion variations. Kim et al. [64, 66] build a human detector by obtaining CS-LBP
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features from three wavelet-transformed sub-images. The detector can attain

good accuracy and boost the performance speed to near real-time.

Tan and Triggs [129] present a simple and efficient preprocessing chain for fa-

cial images, including gamma correction, difference of Gaussian filtering, masking

(optional) and contrast equalization. It counters the effects of illumination varia-

tions, local shadowing and highlights, while preserving the essential appearance

details, thus greatly contributing to face recognition.

Several studies use edge detection to enhance the gradient information before

the LBP computation. Yao and Chen [158] propose the use of Local edge pat-

terns (LEP) and color features for color texture retrieval. The LEP is derived in

a LBP-like manner from a binary edge image created with Sobel filter and thresh-

olding. For shape localization, Huang et al. [56] describe the local appearance of

each facial points by computing LBP features on both original and Sobel-filtered

gradient magnitude images. A similar idea is implemented in [165] for face image

representation but further applied on Gabor real and imaginary features.

Several other methods are also promising to be applied before extracting LBP

features. For instance, the curvelet transformed images in medical image analysis

[69], multi-scale heat kernel matrices for face recognition [71], etc.

2.4.2 Neighborhood topology

The circular shape of neighborhood is vital for rotation invariance. However,

problems like face recognition are keen on anisotropic structures, allowing neigh-

borhoods to be defined in different shapes. Liao and Chung [73] combine their

variant of elliptical neighborhood with a local gradient (contrast) measure, re-

sulting in much improved results than that of the ordinary LBP. Nanni et al.

[99] examine several neighborhood topologies (circle, ellipse, parabola, hyperbola

and Archimedean spiral) and encodings in their research for medical image anal-

ysis. The operator using quinary encoding in an elliptic neighborhood is shown

to have the best performance. Meanwhile, the neighborhood in [111] consists

of two orthogonal lines lying along the horizontal and vertical directions, respec-

tively. Binary codes are obtained separately for each direction and the magnitude

characterizing details such as edges and corners is then computed.

Wolf et al. [152] explore dierent ways of using bit strings to encode the

similarities between patches of pixels. For every pixel of the image, the Three-

patch LBP (TPLBP) considers a w×w central patch and S neighboring patches

distributed uniformly on a ring of radius r around the pixel. It forms pairs of
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patches from those α-patches apart along the circle, and compares their values

with that of the central patch. Meanwhile, the Four-patch (FPLBP) uses two

rings centered on the pixel. Their methods share a similar idea with the Multi-

block LBP [75], in which the ordinary comparison between single pixels is replaced

with the comparison between average gray values of square pixels blocks.

2.4.3 Thresholding and encoding

n-ary encoding. It is possible to change the binary encoding to n-ary (n > 2)

for better discriminative power. The Local ternary patterns (LTP) [129] encodes

the gray-level differences into three values (1, 0, or -1) to effectively deal with

near-uniform regions in face recognition. It splits every pattern into positive and

negative components, from which histograms are computed separately and then

concatenated. The Scale invariant LTP (SILTP) [74] adopts a similar encoding

for background subtraction, yet each comparison is represented by two bits (01,

00, or 10). Nanni et al. [98, 99] examine different encodings (binary, ternary

and quinary), in which the binary and ternary operate similarly to the LBP and

LTP, while the quinary uses five values (-2, -1, 0, 1, or 2) and two thresholds.

They show that the Elongated quinary patterns (EQP) performs best on medical

image analysis, whereas the Elongated ternary patterns (ELTP) is the leading in

classifying pain states from facial expressions.

Ahonen et al. [12] propose the soft LBP histogram using two fuzzy member-

ship functions, i.e. one pixel typically contributes to more than one bin. A similar

idea is introduced in [57] for ultrasound texture characterization.

The above methods are, however, no longer strictly invariant to local mono-

tonic grayscale changes and their histograms are much longer.

Encoding style. Hafiane et al. [51] compares all pixels in a neighborhood with

their median value, while the mean value is used in [44, 61]. The method of Fu

and Wei [45] works similarly to the CS-LBP but additionally compares the center

pixel with the mean of neighborhood. Xu et al. [155] defines four horizontal and

vertical symmetric pixel pairs and one pair of the center and the average of neigh-

bors. These methods achieve good performance but produce long histograms.

In their study of object detection, Trefny and Matas [137] introduce the Tran-

sition LBP (tLBP), which compares pairs of adjacent neighbors in clockwise di-

rection, demonstrating the relation between neighbors. They also propose the

Direction coded LBP (dLBP) that operates similarly to the CS-LBP but includes
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the center pixel. It describes each comparison by two bits: the first bit indicates

whether the center pixel is an extrema and the other denotes whether the differ-

ence of border pixels due to the center grows or falls. Chan et al. [25] makes

pairwise comparisons of adjacent neighbors similarly to the tLBP, yet the process

is in anticlockwise direction and the center pixel is included.

Mu et al. [97] design the Semantic LBP (S-LBP) and Fourier LBP (F-LBP)

for accurately detecting human in photo albums. The S-LBP defines several

continuous 1 bits an arch, which is represented by its principle direction and

length, and computes a 2D histogram of patterns having at most one arch. In

the latter, real valued color distance between the kth samples and central pixel

are computed and transformed into frequency domain. Low-frequency coefficients

are then used to capture salient local structures around current pixel.

Zhang et al. [161] propose the Local derivative pattern for robust face recogni-

tion, which derivatively extracts various n-order spatial patterns from (n-1)-order

ones, whereas the LBP simply defines first-order relations between the center pixel

and neighbors. The Local directional pattern [58], on the other hand, computes

edge responses in eight directions for every pixel using some edge detector (e.g.

Kirsch, Prewitt, or Sobel) and encodes them into an 8-bit binary code.

Thresholding scheme. Heikkila et al. [54] replace the term s(gp − gc) with

s(gp − gc + a). The higher the value of a is, the larger changes in gray level

are allowed without affecting the thresholding results. Nevertheless, a relatively

small value (e.g. a = 3) should be used to retain the discriminative power. This

approach has been adopted in several studies, such as [45, 55, 99, 129, 152]. Mean-

while, Liao et al. [74] incorporate a factor τ to the function s, i.e. s(gp − τgc),

which helps the operator invariant against gray-level transform by a scale factor.

This scheme is extended by Wang et al. [146] so that it is adaptively set for each

pair of pixels. Pixels of the image are grouped into edge and texture types, whose

distributions are then used to estimate the threshold.

2.4.4 Other types of variants

Rotation invariance. Beside the LBPri (cf. Sect.2.1.4), we can obtain rotation

invariance from several other means. Ahonen et al. [11] show that rotations of the

input image cause cyclic shifts of values in the LBPu2 histogram, and therefore

discrete Fourier transform can be applied to construct rotation invariant features.

Guo et al. approach the problem from two different aspects. The first method [46]
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incorporates the directional statistical information, i.e. the mean and standard

deviation of local absolute differences. In addition, the least square estimation

is used to adaptively minimize the local difference for more stable directional

statistical features. Meanwhile, the second method [47] uses the variance of a

local neighborhood as an adaptive weight to adjust the contribution of LBP code

in histogram computation. It assigns high variance for high frequency regions

because these regions contribute more to the discrimination of texture images.

Multiple color channels. The LBP was originally developed for monochrome

images, yet it can be extended for color images. Anbarjafari [13] proposes a face

recognition system that computes LBP features separately on three HSI chan-

nels and studies different decision-making techniques to combine decisions from

each channel. Zhu et al. [169] compute their Orthogonal combination of LBP on

each channel of a color space (six color spaces are examined) then concatenate

all sub-histograms to get the final descriptor. The Opponent color LBP [83], on

the other hand, jointly considers texture and color. It computes patterns on indi-

vidual color channels, and for pairs of color channels, takes the center pixel from

one channel and neighboring pixels from the other. R-G and G-R are rejected

due to high redundancy. Thus, six histograms (R, G, B, R-G, R-B, and G-B) are

selected, resulting in a descriptor six times longer than an ordinary one.

Temporal dimension. Zhao et al. [164] propose the Volume LBP (VLBP),

which considers a neighborhood volume of three frames, i.e. the current, previ-

ous and following frames, producing a 23P+2-dimensional histogram. However, it

needs a large number of neighbors to attain enough robustness. They also intro-

duce the LBP-TOP to simplify the computation, which extracts LBP features

from three orthogonal planes (XY, XT and YT), incorporating spatial informa-

tion in XY plane and spatial temporal co-occurrence statistics in XT and YT

planes. Mattivi and Shao [87] extends the number of slices on every axis of the

LBP-TOP. On the XY dimension, beside the original plane centered in the middle,

they add two planes at positions of 1/4 and 3/4. The same is done for XT and YT

dimensions. They also suggest applying LBP-TOP on gradient and Gabor images

of orthogonal slices. Chan et al. [25] adopts the use of three orthogonal planes

to construct their operator for representing dynamic texture and appearance in-

formation of mouth-regions. Together with the linear discriminant analysis, their

operator drastically improves the performance of lip-biometric trait.
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2.5 Applications of local binary pattern

In the last two decades, an increasing popularity of LBP features can be observed

in computer vision. Many studies have been introduced, either proposing novel

methodology or bringing LBP to new applications. This section briefly describes

some representative variants from different areas.

The LBP was first proposed as a simple, yet efficient, multi-resolution ap-

proach for gray-level and rotation invariant texture classification [105]. This

problem aims to classify an unseen texture sample into one of predefined classes

by using rules derived from the learning of texture samples with known classes.

Developed from the strong base of texture analysis, the LBP and its variants

[46, 47, 51, 83, 158] perform so well in many comparative studies with publicly

available texture datasets that they are believed to have no rival in this field.

Automatic face analysis has been useful in several applications, e.g. biomet-

ric identification, visual surveillance, human-machine interaction, etc. The chal-

lenges come from large variations of face appearance due to changes in pose, ex-

pression, illumination and other factors like age and make-up. The LBP is highly

discriminative and invariant to monotonic illumination changes, thus suiting per-

fectly to the problem. That explains for the success of LBP in most subfields,

including face detection [44, 61], face recognition [13, 56, 71, 73, 75, 111, 129, 152,

161, 163, 165], and facial expression recognition [45, 58, 98, 164].

The aforementioned problems take a lot of time to train the system effectively

with discriminative samples, while the recognition could be done in no time af-

terwards. The interest region description is, on the other hand, more likely to be

unsupervised. Local features are thus required to be distinctive, robust against

common image transformations (e.g. viewpoint changes, image blur, scale and

rotation), computationally simple and compact. The CS-LBP and studies in

[40, 49, 169] are among those achieving good matching results.

The LBP has also gained a great deal of attention from the field of object de-

tection and recognition because it can effectively describe the texture of different

objects, such as car, animals, people, etc. [55, 91, 128, 137, 169]. The success of

LBP in face analysis has motivated several studies to extend the target from face

to the whole body. Pedestrian detection [64, 66, 97, 147, 155, 167] and human

action recognition [87] are active topics of LBP researches.

When dealing with non-static environments like video footages, it is vital to

separate the targeted objects from background scene before performing a higher-
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level process, such as tracking or recognition. However, dynamic activities in the

background, including illumination changes, swaying vegetation, rippling water,

and flickering monitors, cause the segmentation extremely difficult. Furthermore,

the background modeling algorithm should operate in real-time. Due to their

computational simplicity and discriminative power, several LBP variants have

been good options for background subtraction system [53, 54, 74, 146, 156, 162]

There are also many other applications of LBP. For example, text detection

[59], image retrieval [127], biomedical image analysis [69, 99], ultrasound texture

characterization [57] and lip-based speaker authentication [25]. More details are

available in the book written by Pietikäinen et al. [115].
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Description of Interest Regions

with Local Binary Pattern

This chapter presents the study of LBP for effective description of interest regions.

Innovative encoding strategies and thresholding schemes are introduced to build

two novel LBP region descriptors: Intensity order quartet local binary pattern (IO-

QLBP) and Multi-scale region perpendicular local binary pattern (MSR-PLBP).

These descriptors effectively match co-occurrence regions in pair of images and

recognize similar objects in large databases. Evaluations on standard benchmarks

show that they have better performances than that of state-of-the-art descriptors.

The content of the chapter is organized as follows. Section 3.1 gives the prob-

lem definition. Related works are described in Sect.3.2. Section 3.3 and Section

3.4 present the two proposed methods. Evaluations on the image matching and

object recognition tasks are described in Sect.3.6 and Sect.3.7, respectively. Fi-

nally, Section 3.8 closes the study.

3.1 Problem definition

Feature detection and matching plays an important role in many computer vision

applications. It detects salient features in a pair of images and establishes a set

of correspondences from features in the first image to those in the second image.

These correspondences set up the basis for higher-level vision tasks. For instance,

stitching images seamlessly into a panorama image [21], 3D model reconstruction

[117, 135] (cf. Fig.1.3), epipolar geometry estimation [86, 119], as well as texture

classification [67], object recognition [55, 81], and human action recognition [87].

A general pipeline of feature extraction includes three primary steps. First,

33



Chapter 3 34

Figure 3.1: Interest regions are extracted from salient points in the two im-
ages. A pair of regions describing the same detail of the toy truck establishes
a correspondence. The image is obtained from the lecture slide of Steve Seitz
(http://courses.cs.washington.edu/courses/cse576/08sp/).

detecting keypoint features (or interest points) in the images, i.e. salient loca-

tions such as mountain peaks, building corners, doorways, or interestingly shaped

patches. Second, describing these features by the appearance of patches of pixels

surrounding the point locations, hence called interest regions. These regions are

often defined to be scale-covariant or affine-covariant in order to handle basic im-

age transformations (e.g. translation, rotation, scaling, etc.). Finally, computing

a feature descriptor for every obtained interest region. The feature descriptor

is usually represented in the form of histogram, i.e. an n-dimensional numerical

vector. Correspondences from features in the first image to those in the second

image can be established afterwards according to the distances between their

vectors (e.g. the Euclidean or Manhattan distance). Figure 3.1 illustrates the

extraction of interest regions from a pair of images.

The first two steps can be done with a region detector, which is selected from a

number of approaches in the literature. Harris-Laplace/Hessian-Laplace [92, 93]

and Laplacian of Gaussian [78] are scale-covariant, while Harris-Affine/Hessian-

Affine [93], Intensity/Edge-based Regions (IBR/EBR) [138] and Maximally Sta-

ble Extremal Regions [86] are affine-covariant. The latter approaches are pre-

ferred because they cope with transformations other than scale and translation.

A comprehensive survey of detectors is provided in [95].

The problem of interest region description covers the last step. It is completely

not trivial in the sense that two images in a pair may significantly differ from

each other due to geometric transformation like translation, rotation, and scale,
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as well as photometric transformation like brightness or exposure changes (cf.

Fig.3.19). A robust feature descriptor should produce similar descriptions of an

interest region even when the viewing conditions vary, i.e. invariant to image

transformations, or there are detection errors. In addition, it should be at the

same time discriminative enough so that feature vectors of corresponding regions

are closely related while far from those of other regions. How to build a descriptor

satisfying these expectations is what this study aims for.

3.2 Related work

3.2.1 A review of related approaches

Researchers have explored different image properties, such as pixel intensity, edge,

gradient and texture, to improve the performance of local descriptors. These

features exhibit their advantages and drawbacks in different situations; therefore,

a robust descriptor under all challenges is still an open problem. In this section, we

briefly summarize recently published descriptors, while emphasizing those using

gradient or texture since they are closely related to the proposed method.

Gradient-based descriptors have been long studied for region description be-

cause gradients can intuitively describe directional changes in an image. The

Scale-invariant feature transform (SIFT) [81] is the most popular descriptor be-

cause of its good performance in various applications, such as object recognition

[81], panorama image stitching [21] and 3D scene reconstruction [117]. It is a 3D

histogram in which a 4× 4 square grid and eight bins are used to quantize gradi-

ent location and orientation, respectively. The Gradient location-orientation his-

togram (GLOH) replaces the square grid in SIFT by a log-polar grid with three

radial and eight angular bins. Experiments show that both SIFT and GLOH

outperform conventional methods, such as shape context, steerable filters, spin

images, differential invariants and moment invariants [94]. Ke and Sukthankar

[62] apply Principal Components Analysis (PCA) to the normalized image gradi-

ent patch, thus making the PCA-SIFT descriptor more compact and distinctive

than the original SIFT. Tola et al. [135] merge the ideas of SIFT and GLOH

to propose DAISY, which is an efficient dense matching descriptor consisting of

circular regions defined by Gaussians with increasing variance. Meanwhile, the

Rotation-invariant feature transform (RIFT) [67] divides a region into concen-

tric rings and computes a gradient orientation histogram within each ring. The
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Multisupport region order based gradient histogram (MROGH) [40] combines in-

tensity orders and gradients in multiple support regions to boost its performance

significantly. These methods are robust to common image transformations, yet

unstable under complex illumination changes.

Intensity order-based descriptors are preferred to gradient-based descriptors in

handling the illumination challenge since the intensity order is invariant to mono-

tonic illumination changes. SMD [48] selects pixels pairs from extremal regions

and penalizes the order flips between pairs to gain robustness to localization error

as well as to intensity noise. The Ordinal spatial intensity distribution (OSID) de-

scriptor [131] captures the texture and structure information by binning in both

the ordinal space and spatial space, and hence is invariant to monotonic bright-

ness changes. The Local intensity order Pattern (LIOP) [148] uses the intensity

order of all sampled neighboring points to exploit the local information effec-

tively. The disadvantage of this approach is that the intensity order is sensitive

to Gaussian noise, especially when nearby pixel values are close.

LBP-based descriptors are good alternatives thanks to the computational sim-

plicity and strong tolerance against illumination changes of the LBP operator

[105]. The LBP does not consider gray values directly but abstracts the rela-

tion between pairs of pixels to some degree, thus effectively avoiding the effects

of noise. Despite their wide applications in face recognition [13, 129], image re-

trieval [127] and background subtraction [54, 74], LBP features had been used

limitedly in region description because of high-dimensional histograms until the

emergence of the Center-symmetric local binary pattern (CS-LBP) [55]. The

CS-LBP descriptor adopts the squared grid of SIFT and replaces gradients by

CS-LBP textures, thus effectively combines good properties of SIFT and LBP.

Gupta et al. [49] concatenate two features, the Histogram of Relative Intensi-

ties (HRI) and Center-symmetric local ternary patterns (CS-LTP), to obtain a

HRI-CSLTP descriptor that is robust to Gaussian noise. The Local ordinal con-

trast pattern (LOCP) [25] encodes patterns from pairwise ordinal information

in adjacent circular neighborhoods and performs effectively in lip-based speaker

authentication. The Multisupport region rotation and intensity monotonic invari-

ant descriptor (MRRID) [40] employs a similar framework to that of MROGH

[40] but replaces gradients by CS-LBP-based texture features.

In addition, appropriate selections of image filters or learning strategies may

improve the performance. Song et al. [123] extract 2D discrete cosine transform

(DCT) features in the frequency domain and select a subset of the reordered
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coefficients as their compact descriptor. To address the problem of illumination

sensitivity, Zambanini et al. [160] use multi-scale and multi-oriented even Gabor

filters while Shi et al. [122] introduce fuzzy reasoning to their descriptor.

Region division is an essential technique to improve the distinctiveness of a

descriptor. The region is divided into several sub-regions, and features in each

sub-region are then concatenated. Most previous division methods are based on

the spatial location. For example, SIFT [81], CS-LBP [55], HRI-CSLTP [49] use

a 4 × 4 Cartesian grid while GLOH [94] utilizes a log-polar grid. The spatial-

based approach maintains rotation invariance by rotating the region following

a dominant orientation. However, experiments on synthetic [150] and real [40]

data show that estimating this orientation is error prone and time consuming.

RIFT [67] uses concentric rings to avoid this issue, yet the ring-shaped division

is less discriminative than grid-shaped division. Segmentation according to the

intensity order has recently been proposed [40] and used in MROGH, MRRID

[40] and LIOP [148]. This approach is theoretically rotation invariant, thus is

able to overcome the above limitations. However, a minor drawback is that it is

less spatially discriminative than the spatial-based approach.

Most aforementioned methods have been developed on a single support region.

Although the support size greatly affects the matching accuracy [95], it is usually

empirically determined for specific applications. In addition, a single region is

not discriminative enough to distinguish incorrect matches from correct matches

[40, 96]. Mortensen et al. [96] augment SIFT with a global context vector that

adds curvilinear shape information from a much larger neighborhood and thus

reduces the number of mismatches. Bin et al. [40] extract support regions of

various sizes from a detection point and compute a feature histogram in each

region. These descriptors perform effectively under common transformations, yet

heavy computation arises as a side effect.

3.2.2 Brief descriptions of competing approaches

The following six descriptors are selected to participate in the comparative studies

in Sect.3.6 and Sect.3.7.

The SIFT [81] computes a 3D histogram of gradient location and orientation,

where location is quantized into a 4×4 square grid and gradient angle is quantized

into eight orientations (cf. Fig.3.2).

The DAISY [135] computes gradient magnitude layers in different orienta-

tions and applies Gaussian convolution. To compute the histogram for a region,
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Figure 3.2: An example of SIFT with the 2 × 2 square grid. The image is obtained
from the slide of David Lowe [81].

Figure 3.3: Different configurations of DAISY.

Different configurations of DAISY. The T1-8-2r8s is in the rightmost figure.

it reads corresponding values from the pre-computed convoluted layers. The T1-

8-2r8s configuration [151] is selected for implementation (cf. Fig.3.3). It includes

two rings, eight segments per ring, and quantizes the gradient angle into eight

orientation bins.

The HRI-CSLTP [49] adopts the 4×4 grid in SIFT where each cell contains

16 bins of relative intensities, the jth bin stores pixels of the cell that have inten-

sities in the jth interval of the intensity range, and 8 bins of CS-LTP patterns.

The HRI-CSLTP finally concatenates two feature histograms.

The LIOP [148] divides a local patch into six ordinal bins using the overall

intensity order. A LIOP pattern is defined as a permutation of gray values of four

neighboring points of a pixel. It computes 24-dimensional pattern histograms for

every ordinal bin and concatenates them to a unique feature vector.

The MROGH [40] divides each of four support regions into six ordinal bins

in a similar manner to [148]. It then computes histograms of eight gradient

orientations for every ordinal bin and combines them together.

The MRRID [40] has a similar framework to that of MROGH but replaces

gradient orientations by 16 CS-LBP-like texture patterns. The descriptor is com-

puted on four support regions and four ordinal bins.
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3.2.3 Homography estimation

To determine the number of correspondences and correct matches for the evalua-

tion protocol in Sect.3.6.1, a homography is required. Hartley and Zisserman [52]

have given a definition of homography as follows.

Definition 1 A projectivity is an invertible mapping h from points in P2 (i.e.

homogeneous 3-dimensional vectors) to points in P2 such that three points x1, x2

and x3 lie on the same line if and only if h(x1), h(x2) and h(x3) do.

Projectivities form a group since the inverse of a projectivity is also a pro-

jectivity, and so is the composition of two projectivities. Collineation, projective

transformation or homography are synonymous with projectivity.

Theorem 1 A mapping h : P2 7→ P2 is a projectivity if and only if there exists a

non-singular 3×3 matrix H such that for any point in P2 represented by a vector

x it is true that h(x) = Hx.

Any point in P2 is represented as a homogeneous 3-vector, x, and Hx is

a linear mapping of homogeneous coordinates. The theorem is an equivalent

algebraic definition of a projectivity. It asserts that any projectivity arises as

such a linear transformation in homogeneous coordinates, and that conversely

any such mapping is a projectivity. The proof is available in [52].

Accordingly, an alternative definition of a projective transformation is given:

Definition 2 A planar projective transformation is a linear transformation on

homogeneous 3-vectors represented by a non-singular 3× 3 matrix: x′
1

x′
2

x′
3

 =

h11 h12 h13

h21 h22 h23

h31 h32 h33


 x1

x2

x3

 (3.1)

or more briefly, x′ = Hx.

The matrix H is a homogeneous matrix, i.e. multiplying it with an arbitrary

non-zero scale factor does not alter the projective transformation. There are

eight independent ratios amongst the nine elements of H, and it follows that a

projective transformation has eight degrees of freedom.

Two images can be related by a homography if the following conditions are

held [28] (cf. Fig.3.4):

• Intrinsic parameters of two cameras, namely O1 and O2, are identical.

• The scene consists of rigid geometry.

• The observed scene geometry is planar or the camera movement from O1
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Figure 3.4: The projective transformation, x′ = Hx, between (a) two images induced
by a world plane, (b) two images with the same camera center (e.g. a camera rotating
about its center or varying its focal length), and (c) the image of a plane (the end of the
building) and the image of its shadow onto another plane (the ground plane). Figures
are obtained from [52].

to O2 is purely rotational.

All benchmarks in Sect.3.6 are strictly set up to ensure of such a projectivity.

Therefore, to establish the ground truths for pairs of images, it is required to have

accurate corresponding matrices H. A common homography estimation includes

two steps [94]. First, an approximation of the homography is computed using

manually selected correspondences. It is used to warp the transformed image

to be roughly aligned with the reference image. Second, a robust small baseline

homography estimation algorithm computes an accurate residual homography

between the reference image and the warped image, with automatically detected

and matched interest points [52]. The composition of approximate and residual

homographies results in an accurate homography between the images. Alterna-

tively, a recently proposed method in [28] has been shown to increase the accuracy

of homographies by using a differential evolution approach for the optimization

of a new and feature-independent cost function.

3.2.4 The region size and its effect

Most affine-covariant detectors output elliptical interest regions of various sizes

(except those of MSER and EBR that are required to be normalized into ellipses).

Harris-Affine, Hessian-Affine and MSER tend to produce many small regions

while the others yield larger regions.

According to [95], the region size is measured as the geometric average of

the half-length of both axes of the ellipse, which corresponds to the radius of a

circular region with the same area. There is a distinction between distinguished
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Figure 3.5: The overlap between
two regions changes proportionally
to the scaling factor s. The image
is obtained from [95].

regions and measurement regions, in which the former refers to the set of pixels

that have effectively contributed to the affine detector response while the latter

can be any region obtained by an affine-covariant construction.

Larger regions typically have better chances of overlapping other regions and

higher discriminative power as they contain more information, though there is a

higher risk of being occluded or not covering a planar part of the scene. Simply

rescaling the region, i.e. using a different measurement region, suffices to boost

the overlap performance of a region detector [95]. This can be interpreted as

follows. Given an elliptical distinguished region, the measurement region is also

an ellipse centering on this region but with an arbitrary scale. From a geometrical

point of view, varying the scaling defines a cone out of the image plane (with

elliptical cross-section) with s being a distance on the cone axis (cf. Fig.3.5).

There are such two cones in the reference image: one from the distinguished

region of this image and the other from the mapped distinguished region of the

transform image. The cones remain separate as the scaling goes to zero while

the relative amount of overlap approaches unity when the scaling goes to infinity.

In this study, the descriptors are usually computed on regions whose sizes are

at least three times larger than that of the corresponding detected regions, i.e.

s ≥ 3. These regions are called support region. Some approaches like MROGH

and MRRID use multiple support regions by varying the factor s.

3.3 The IO-QLBP descriptor

3.3.1 Method overview

Inspired by the effectiveness of CS-LBP [55] in interest region description, we

propose the IO-QLBP descriptor to boost the matching accuracy and speed to
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a comparable or higher level than that of modern descriptors. The following

properties enable IO-QLBP to achieve good robustness.

1. The QLBP operator efficiently produces a 16-dimensional feature vector

from four neighbors, whereas the CS-LBP8,2 requires eight neighbors. It

well preserves the property of simultaneously capturing gradient and texture

while halving the interpolation cost.

2. An adaptive thresholding scheme is introduced to address the drawback of

global constant threshold (cf. Sect.2.3). The new scheme locally sets a

threshold value for every pair of neighbors during the encoding, enabling

the operator to be not only more robust to noise but also invariant against

gray-level scaling by a multiplying constant.

3. Each pattern is associated with a weight value denoting its gradient strength,

which is then accumulated in the corresponding histogram bin. This weight-

ing scheme improves the matching accuracy better than Gaussian and uni-

form schemes while requiring no additional complex operation.

4. The IO-QLBP descriptor extracts features from multiple support regions

and aggregates them into intensity orders using the region division strategy

of [40]. Accordingly, the descriptor is highly discriminative and rotation

invariant without any dominant orientation estimation.

3.3.2 The QLBP texture operator

The Quartet local binary pattern (QLBP) defines for every pixel (x, y) in the

image four neighbors that are evenly spaced on a circle of radius R centered at

(x, y) then encodes the information within the neighborhood as follows:

QLBPR(x, y) =
1∑

p=0

s(gp − gp+1)2
p + s(gp − gp+2)2

p+2

s(ga − gb) =

{
1 ga − gb > τ min(ga, gb),

0 otherwise

(3.2)

where gp corresponds to the gray value of the pth neighbor and τ is a scaling

factor. The term “quartet” indicates that the set of neighbors has four points.

Figure 3.6 shows an example of QLBP, compared with the CS-LBP8,R.

The scaling factor τ is empirically selected so that t ∈ [0, 0.05]. Although the

performance may slightly change with different values of τ , this interval suggests

a good starting point for parameter tuning. The higher the τ is, the larger
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CS-LBP8,R = 
s(g0 – g4)20 + 
s(g1 – g5)21 + 
s(g2 – g6)22 + 
s(g3 – g7)23

Binary pattern
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g1

g2
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(a) CS-LBP8,R

QLBPR = 
s(g0 – g1)20 + 
s(g1 – g2)21 + 
s(g0 – g2)22 + 
s(g1 – g3)23

Binary pattern

g0

g1

g2

g3

Neighborhood

(b) QLBPR

Figure 3.6: The neighborhood and the binary pattern of QLBPR. The corresponding
information of CS-LBP8,R is shown for comparison.

intensity changes are allowed without affecting the results. τ = 0 leads to the

original mode in [105], while τ > 0.05 begins to decrease the performance. Prior

works use a global constant (T = 0.01 [54] and T ∈ [0, 0.02] [55]), or associate

a similar τ = 0.05 with the center pixel [74]. The QLBP, on the other hand,

incorporates τ into pairs of neighbors, producing patterns that are more adaptive

and tolerant to drastic transformations. Note that the τ in [74] is tuned for

background subtraction, its range of value cannot be applied for interest region

description because the natures of two problems are different. Measuring the

amount of noise in the image and studying the behavior of gray-level transforms

are promising approaches to find τ theoretically. However, they involve deep

knowledge of image analysis and somewhat go beyond the main purpose of this

study, thus they are left for future work.

Heikkila et al. [55] examine different numbers of neighbors P and radii R

then show that the CS-LBP8,2 performs best. That inspired us to seek for a

more efficient structure while maintaining an acceptable accuracy. The proposed

QLBP with three following properties has met our expectation.

First, the QLBP operator efficiently revives the gradients in different orienta-

tions by considering four pairs of pixels established from four neighbors. These

pairs include two center-symmetric pairs depicting gradients along the horizontal

and vertical directions and two non-center-symmetric pairs for diagonal direc-

tions. Meanwhile, the CS-LBP needs eight neighbors to fulfill the same goal.

The QLBP is thus computationally simpler than the CS-LBP and the property

of simultaneously capturing gradient and texture is well conserved.

Second, the adaptive thresholding scheme enables QLBP to be not only robust

to noise but also invariant against gray-level scaling by a multiplying constant.
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Figure 3.7: The CS-LBP and QLBP operators under three transformations. Pixels or
patterns affected by a transformation are circled and shown in red.
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Figure 3.8: The statistics of QLBP patterns (τ ≥ 0). Low-frequency patterns are
zoomed on the right, in which 00112 and 10112 never appear while 01002 and 11002
appear with frequencies of around 0.005%.

It locally sets a threshold value for every pair of neighbors during the encoding.

Liao et al. [74] handle this transformation by a similar scaling factor, yet they

associate it with the center pixel. Figure 3.7 shows that both CS-LBP and QLBP

operators are robust to noise, yet ours is more stable under gray-level scaling.

Third, the dimensionality of the QLBP histogram is reduced from 16 di-

mensions to 12 dimensions. Due to the relation between pairs of neighbors,

the patterns 00112, 10112, 01002 and 11002, appear with very low frequencies

(0 ∼ 0.005%). They are thus replaced by nearest available patterns. To validate

this assumption, we randomly select over a hundred of images from [3] (also used
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QLBPR = 
s(g0 – g1)20 + 
s(g1 – g2)21 + 
s(g0 – g2)22 + 
s(g1 – g3)23
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g3
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QLBPR      =
s(g0 – g1)20 + s(g1 – g2)21 + 
s(g2 – g3)22 + s(g3 – g0)23 +
s(g0 – g2)24 + s(g1 – g3)25 +

sym

Figure 3.9: The neighborhood and the binary pattern of QLBPsym
R in comparison

with QLBPR. The QLBPsym
R additionally compares two pairs of neighbors, which are

denoted by red lines in the neighborhood.

for parameter tuning in Sect.3.5) and compute the frequency of each pattern in

these images (cf. Fig.3.8). It can also be proved by applying the transitivity rule

on gray values g0, g1, and g2 following Eq.3.2. In practice, this reduction can be

implemented easily with a lookup table.

3.3.3 The symmetric QLBP texture operator

The good properties of the QLBP help us to build a region descriptor that is

highly robust to challenging image transformations and on a par with state-of-

the-art approaches. Nevertheless, there is still much room for improvement. We

notice that the QLBP tends to favor the area around the second neighbor (i.e.

g1), thus encoding the information in a biased manner. Therefore, we revise the

QLBP into a symmetric form called QLBPsym (see Fig.3.9):

QLBP sym
R (x, y) =

3∑
p=0

s(gp − g(p+1) mod 4)2
p +

1∑
p′=0

s(g′p − gp′+2)2
p′+4

s(ga − gb) =

{
1 ga − gb > τ min(ga, gb),

0 otherwise

(3.3)

The QLBPsym originally has 26 = 64 distinct patterns. Again, it is possible

to reduce the set of patterns to 24 elements, as done similarly in the QLBP.

The QLBPsym makes two additional comparisons on the same neighbor set, thus

encoding more information from neighborhood but only slightly increasing the

computation cost. In this way, the QLBPsym is expected to boost the matching

accuracy better than that of the asymmetric variant.
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Figure 3.10: The construction pipeline of the IO-QLBP descriptor with two support
regions.

3.3.4 The IO-QLBP descriptor pipeline

We first obtain interest regions of N different scales from an interest point with

some affine-covariant detector. The regions are normalized to circular regions

of the same radius before segmented according to their overall intensity orders.

For each normalized region, we then compute QLBP patterns and pool them

into corresponding segments. The IO-QLBP descriptor, whose name implies the

cooperation between the intensity order-based region division and the QLBP

texture, is finally built by concatenating histograms in every segment ofN regions.

The construction pipeline with N = 2 is illustrated in Fig.3.10. Note that the

notation “QLBP” in this context refers to both QLBP and QLBPsym operators.

A note will be given if it is necessary to treat them separately.

3.3.4.1 Interest region detection

Interest regions are detected with an affine-covariant detector, such as Hessian-

Affine or Harris-Affine. To achieve better performance, we vary the scaling factor

to obtain multiple support regions of increasing scales that are centered on the
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originally detected region. We simply follow [94] to normalize all support regions

to circular patches of uniform diameter (41 pixels).

Smoothing is usually essential because the intensity order is sensitive to noise.

We first use a Gaussian filter with sigma σa to smooth the input image then, after

the normalization step, use another Gaussian filter with sigma σb to eliminate

noises that may occur during the bilinear interpolation. The values of σa and σb

should lie between 1 and 1.5 to maintain an adequate image quality.

3.3.4.2 Region division

As discussed in Sect.3.2, the region division strategy is able to improve the dis-

tinctiveness of a descriptor significantly. A typical approach divides a region into

several sub-regions from which feature histograms are computed separately be-

fore concatenated into a global histogram. We adopt the intensity order-based

strategy from [40] because it provides rotation invariance with less computation

cost and errors than that of the grid-shaped division. It is also more stable than

the ring-shaped division that greatly depends on the number of rings.

The approach of [40] partitions a normalized patch into K segments according

to the intensity order of pixels within the region. Let S = {x1, x2, . . . , xn} denote
a patch containing n pixels and gi the intensity (i.e. gray value) of xi. It first ob-

tains {f(1), f(2), . . . , f(n)}, which is the permutation of the indices {1, 2, . . . , n}
such that gf(1) ≤ gf(2) ≤ · · · ≤ gf(n). In other words, n pixels are sorted by their

intensities in a non-descending order. K segments is then defined by locating

K + 1 boundary points.

tk = gf(sk) : t0 ≤ t1 ≤ · · · ≤ tK , sk =

{ ⌈
n
K
k
⌉

k = 1, 2, . . . , K

1 k = 0
(3.4)

Finally, n pixels are pooled into K segments:

Sk = {xj ∈ S | tk − 1 ≤ gj ≤ tk} , k = 1, 2, . . . , K (3.5)

Figure 3.10 gives an example of intensity order-based division, in which indi-

vidual segments within a patch are shown in different colors.
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3.3.4.3 Feature construction

We compute QLBP histograms separately in K segments:

Hk =
[
hk0 , hk1 , . . . , hkm−1

]
(3.6)

with

hkj = |{x |x ∈ Sk, ϕ (QLBP (x)) = j}| (3.7)

where m is the number of distinct codes after eliminating low-frequency codes (i.e.

m = 12 for QLBP and m = 24 for QLBPsym), Sk is the kth segment, QLBP (x)

denotes the binary code generated at a pixel x, and ϕ is defined to map a pattern

to its corresponding histogram bin index according to a lookup table.

The IO-QLBP descriptor is, by definition, not able to distinguish textures

having the same binary code but different magnitudes. Although this property is

necessary for the invariance to illumination changes, it also causes the descriptor

less robust to geometric transformations like viewpoint change or rotation. We

alleviate the issue by associating a weight value w with each pattern QLBP (x),

which characterizes the total gradient magnitude around the pixel x. It is then

accumulated in the histogram bin corresponding to the pattern.

w(QLBP (x)) =
1∑

p=0

|gp − gp+1|+ |gp − gp+2| (3.8)

Meanwhile, the weight value for QLBPsym is:

w(QLBP sym(x)) =
3∑

p=0

|gp − g(p+1) mod 4|+
1∑

p′=0

|gp′ − gp′+2| (3.9)

In simple words, the above weighting scheme collects gradient magnitudes from

all pairs of neighbors during the encoding (cf. Eq.3.2 and Eq.3.3). We then

improve the term hkj in Eq.3.6 as follows:

hkj =
∑

x∈Sk, ϕ(QLBP (x))=j

w(QLBP (x)) (3.10)

Experimental results show that the proposed weighting scheme gives better per-

formance than that of uniform and Gaussian weighting schemes (cf. Sect.3.5).

To keep the pattern rotational invariant, for a pixel x, the first neighbor is
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located along the radial direction from the center of the normalized patch to x

such that x lies between two points. Other three neighbors are anticlockwise

sampled. Our method requires no interpolation because it is not grid-based and

the QLBP is quantized by its nature. Therefore, the IO-QLBP descriptor achieves

greater efficiency than the SIFT with tri-linear interpolation.

In a single support region, two non-corresponding points may be coincidentally

similar to each other or two corresponding ones may be ignored due to localization

error. This is because the single region is usually not meaningful enough to distin-

guish incorrect matches from correct ones. Multiple support regions capture the

information in different scales to clear the ambiguity, thus significantly boosting

the performance of a detector [95] or a descriptor [40]. We implement the above

steps on N support regions and combine the resulting histograms together. The

IO-QLBP descriptor is finally defined as follows:

IO −QLBP =
⊕

i=1,...,N
k=1,...,K

H i
k (3.11)

where N and K are the numbers of support regions and segments, respectively,

and
⊕

denotes the concatenation of histograms. Experimental results (cf. Sect.3.6

and Sec.3.7) show that the IO-QLBP with two support regions can well approxi-

mate the MROGH using four regions, indicating the advantages of QLBP texture

over gradient in terms of discriminative power and computation cost.

3.4 The MSR-PLBP descriptor

3.4.1 Method overview

The Multi-scale region perpendicular local binary pattern (MRS-PLBP) provides

a simple yet effective mean of region description. It is able to handle most common

image transformations while requiring lower computation cost than that of many

modern methods. The following properties are key factors for its robustness.

1. The PLBP captures textures within the local neighborhood of a pixel by

considering the relation between the pixel and its four neighbors, which are

distributed evenly on two fixed perpendicular axes originated at the pixel.

The brightness contrast of the region segment to which the pixel belongs

is measured and incorporated to the thresholding scheme, providing the

PLBP more robustness to illumination changes.
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LBP4,R = 
s(g0 – gc)20 + 
s(g1 – gc)21 + 
s(g2 – gc)22 + 
s(g3 – gc)23
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g3
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PLBPR = 
s(gc – g0)20 + 
s(gc – g1)21 + 
s(gc – g2)22 + 
s(gc – g3)23

gc

Figure 3.11: The neighborhood and the binary pattern of PLBP in comparison with
LBP4,R. The PLBP shares a very similar encoding to that of LBP4,R, yet the pattern
generation and the thresholding scheme clearly differentiate PLBP from LBP4,R.

2. To diminish the risk of information loss in near-uniform regions, which is

a drawback of the original LBP, a novel scheme of pattern generation is

introduced. It produces for each pixel a set of pattern candidates. These

candidates have distinct “strength”, depending on the amount of gradient

they capture, thus contributing to the histogram computation differently.

This property clearly distinguishes PLBP from other LBP operators.

3. The Multi-scale region (MSR) division scheme defines multiple support re-

gions from an interest point then sequentially performs ring-shaped and

intensity order-based segmentations on each region to create a set of seg-

ments. Accordingly, the descriptor can attain highly discriminative power

and be purely rotation invariant. Although each technique has been used

independently, their combination is unique and more effective.

4. The MSR-PLBP descriptor extracts PLBP patterns from multiple support

regions and pools them to corresponding segments. Histograms are then

computed separately in every segment before concatenated into a single

feature vector. Descriptors using a single support region (aka single-region)

usually conflict with those using multiple support regions (aka multi-region)

in terms of matching accuracy and computation cost. Meanwhile, the MSR-

PLBP provides a flexible framework that enables users to acquire either a

single-region or a multi-region descriptor by parameter tuning.

3.4.2 The PLBP texture operator

Let (x, y) denote the coordinate of the pixel being considered. The Perpendicular

local binary pattern (PLBP) first establishes two perpendicular axes intersect-

ing at (x, y) and a circle of radius R centered at (x, y). Intersections of each
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Algorithm 1 The pattern generation scheme of the PLBP feature

Input: gc - the gray value of the center pixel, {g0, g1, g2, g3} - the gray
values of four neighbors, and T - the threshold

Output: E = {e1, e2, ..., en} - the set of candidates
W = {w1, c2, ..., wn} - the set of associated weights

1: E = {0},W = {0} // initialize e1 = 0, w1 = 0
2: for p = 0, . . . , 3
3: if |gc − gp| ≤ T // intensities are very close
4: Etmp = ∅,Wtmp = ∅
5: for each candidate e ∈ E
6: e1 ← e+ 2p. 0 // bit pth = 0
7: e2 ← e+ 2p. 1 // bit pth = 1
8: w1, w2 ← w
9: add e1, e2 to Etmp and w1, w2 to Wtmp

10: end for
11: E ← Etmp, W ← Wtmp

12: else // dissimilar
13: if gc − gp > T
14: update all e ∈ E by e← e+2p. 1
15: else
16: update all e ∈ E by e← e+2p. 0
17: end if
18: update all weight w ∈ W by w ← w + 1
19: end if
20: end for

axis and the circle define four neighbors of PLBP. The information within the

neighborhood is then encoded as follows:

PLBPR(x, y) =
3∑

p=0

s(gc − gp)2
p, s(z) =


1 z > T,

0 z < −T,
∅ |z| ≤ T

(3.12)

where R is the radius of the neighborhood, gc and gp correspond to the gray values

of the center pixel at (x, y) and four neighbors respectively. The scalar T (T > 0)

is estimated from the brightness contrast of the segment to which the center pixel

belongs (cf. Sect.3.4.3). Figure 3.11 shows an example of PLBP in comparison

with the LBP8,R. The symbol ∅ indicates that no thresholding decision is made

for s(z) because of ambiguity. The encoding therefore cannot process as usual

and a special procedure, i.e. the Algorithm 1, is used instead.
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The dissimilar pairs of pixels are usually more reliable than the similar pairs,

because the Gaussian noise is likely to alter the order of pixels whose gray values

are close to each other. Therefore, Equation 3.12 generates only patterns that

have large gray-level differences. In this way, a number of noisy patterns are

filtered, yet the discriminative power is affected, especially in near-uniform re-

gions. Algorithm 1 addresses this issue by innovatively generating a set of PLBP

pattern candidates for each pixel rather than conventionally assigning a single

pattern. The case of ∅ is thus resolved in lines 4-11. To construct the descriptor,

each candidate ej at the location (x, y) is associated with a weight value:

w (ej(x, y)) =
3∑

p=0

HS(|gc − gp|), h(z) =

{
1 z > T,

0 z ≤ T
(3.13)

where T is the threshold in Eq.3.12 and HS(z) is the Heaviside function at T .

In simple words, the weight value characterizes the “strength” of a pattern by

counting the number of gray-level differences that are large enough to be immune

to noise. We will discuss in detail how to build a descriptor from these candidates

and weights in the next subsection.

The PLBP and LBP4,R [105] share a similar method of comparing pixels, yet

our operator has several properties that make it unique. It incorporates the

brightness contrast of a region segment to the thresholding scheme, enabling the

operator to attain more robustness to noise and to different illumination changes.

Previous approaches usually define the threshold as a non-negative global con-

stant [54, 55, 105, 129] or an adaptive term that varies proportionally to the

center pixel [74]. They either produce a fix value or cover a small neighborhood

around each pixel. The PLBP, on the other hand, balances the stability and

adaptability by operating on a larger image region. In addition, it generates a set

of pattern candidates for each pixel in the image. Each candidate is associated

with a weight value defining its contribution to the histogram computation. This

pattern generation scheme puts more emphasis on strong patterns (i.e. those

having adequate gray-level differences) while utilizing weaker patterns in a selec-

tive manner. As a result, the PLBP performs effectively on near-uniform image

regions.

3.4.3 The MSR-PLBP descriptor pipeline

The MSR scheme first sequentially performs ring-shaped and intensity order-

based segmentations on every support region, resulting in a set of discrimina-
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Figure 3.12: The construction pipeline of the MSR-QLBP descriptor. The Region
Segmentation component sequentially performs ring-shaped and ordinal divisions on
each of multiple support regions.

tive segments. PLBP patterns are computed for each pixel in a support region

and pooled to corresponding segments. We then compute the PLBP histograms

in every segment and concatenate them into a single feature vector, called the

MSR-PLBP descriptor. These steps can be controlled easily by tuning some func-

tional parameters, thus offering high flexibility to users. Figure 3.12 describes the

overall construction pipeline.

3.4.3.1 Interest region detection

We follow the same procedure described in Sect.3.3.4 for preprocessing.

3.4.3.2 Region division

We introduce the Multi-scale region (MSR) division scheme that includes three

steps: 1) define M nested support regions with equal increment of size centered

at the interest point, 2) form N disks in each normalized support region, and 3)

aggregate pixels in each disk into K segments according to their intensity order.

The first step adopts the concept of measurement region in [95] to define

multiple nested support regions of different scales around an interest point (cf.

Fig.3.13(a)). In the second step, we divide each normalized support region into N
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(a) Three support regions (M = 3) are defined from an interest point. Their boundaries are
shown in different colors.

Ring Division
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Normalized 

support region

(b) The normalized support region (e.g. the Normalized support region 3 in (a)) is spatially
divided into a number of disks (N = 3). The disk boundaries are shown in different colors.

Segmented disk

Ordinal Segmentation

Segment 1 Segment 2 Segment 3 Segment 4

Disk

(c) Each disk (e.g. the Disk 3 in (b)) is further broken down into many segments according
to the relative order of pixel intensities (K = 4).

Figure 3.13: The multi-scale region division scheme.

concentric rings of equal width and form N disks in a cumulative manner. The 1st

disk covers the innermost ring, the 2nd disk includes the 1st disk and the second

innermost ring, and the expansion continues until the N th disk occupies the whole

region (see Fig.3.13(b)). The proposed scheme and RIFT [67] share the idea of

concentric rings; however, the RIFT treats the rings separately while ours links

them together. The final step involves sorting pixels within each disk by intensity

and equally quantizing them into K segments based on their intensity order (see

Fig.3.13(c)). It resembles the intensity order-based region division described in

[40, 148] but the pixel aggregation is done on segments of a disk rather than of

a support region. It is worth noting that the MROGH and MRRID [40] only



Chapter 3 55

perform the first and third steps of our MSR scheme while we allow the support

region to be further divided into several disks.

The MSR scheme provides several benefits to a descriptor. First, it supports

rotation invariance without any dominant orientation estimation because all steps

are theoretically invariant to rotation. Second, it compensates the lack of spa-

tial information in intensity-based division methods by incorporating ring-shaped

segmentation. Third, the use of intensity order enables more robustness to mono-

tonic illumination changes. Finally, multiple support regions efficiently reduce

incorrect matches thanks to the rich information collected from different scales.

Although some techniques have been adopted individually in other methods, their

cooperation as a single framework is unique and successfully improves the perfor-

mance accuracy. In addition, the MSR scheme allows users to control the fineness

of region division by tuning parameters, M , N and K, producing a descriptor

that well reflects their preference between accuracy and computation cost.

3.4.3.3 Feature construction

We adopt Algorithm 1 to compute a set of PLBP pattern candidates for each

pixel x in a normalized support region. To maintain the rotation invariance, the

first neighbor of x is located along the radial direction from the region center to

x so that x lies between the center and the neighbor, then three other neighbors

are sampled anticlockwise according to the PLBP structure.

Because the Gaussian noise is likely to alter the order of pixels whose gray

values are close to each other, some pattern candidates will be more reliable than

the others if they contain large gray-level differences only. Therefore, each pattern

is characterized by a weight that counts the number of pixel pairs satisfying the

condition |gc−gp| > T (see Eq.3.13). The threshold T is estimated independently

for each disk based on the Michelson contrast [90]:

T = g

(
Imax − Imin

Imax + Imin

)
(3.14)

where Imin and Imax represent the lowest and highest intensities respectively, and

g(z) is a Gaussian function. The contrast value ranges from 0 to 1. When the

brightness contrast is low, we set T high to select |gc−gp| that are truly unaffected

by noise; otherwise, T is kept to be small.

We use the MSR division scheme to divide a normalized interest region into

M ×N ×K segments and compute the histograms separately in every segments.
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Depending on which segment a pixel belongs to, its PLBP patterns will contribute

to the corresponding histogram. The MSR-PLBP descriptor is finally constructed

by concatenating histograms across segments:

MSR− PLBP =
⊕

i=1,...,M, j=1,...,N
k=1,...,K

H i,j
k

H i,j
k = [hk0 , hk1 , . . . , hk15 ]

hkj =
∑

x∈Sk, ϕ(PLBP (x))=j

w(PLBP (x))

(3.15)

where H i,j
k is the histogram in the kth segment of the jth disk of the ith support

region,
⊕

denotes the concatenation of histograms, the function ϕ maps a PLBP

pattern to its corresponding histogram bin index and Sk is the kth segment. H i,j
k

has 24 = 16 entries, which are the number of distinct codes. Note that the term

PLBP (x) in this context refers to each pattern candidates of the pixel x. The

MSR-PLBP requires no interpolation because it is not grid based and the PLBP

feature is quantized by its nature. This offers a great advantage in computational

efficiency compared to that of SIFT with heavy tri-linear interpolation.

3.5 Parameter tuning for proposed descriptors

We examine the effects of different parameter settings to the performance of the

proposed descriptors. Experiments are conducted on 140 image pairs downloaded

from the web page of Mikolajczyk K. [3]. These images contain mainly zoom and

rotation transformations. They are completely separate from the data for other

evaluations in order to to avoid bias. The performance is depicted by the average

recall versus average 1-precision curves (cf. Sect.3.6.1). For each descriptor, the

parameter setting that yields good performance is selected as default setting.

Changes (if available) will be noted specifically.

3.5.1 The IO-QLBP descriptor

The parameters of the IO-QLBP (or IO-QLBPsym) includes: σa and σb - Gaussian

smoothing values, R - the radius of the neighborhood, τ - the thresholding factor,

K - the number of segments, and N - the number of support regions.

We first focus on the joint effect of the key parameters, N andK. According to

Fig.3.14, IO-QLBP and IO-QLBPsym perform better when N and/or K increases.

K = 6 and K = 8 are comparable to each other and both much better than
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Figure 3.14: The performances of IO-QLBP and IO-QLBPsym under different parame-
ter settings.

Figure 3.15: The performances of IO-
QLBP and IO-QLBPsym under different
weighting schemes.
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Table 3.1: The default parameter settings for IO-QLBP and IO-QLBPsym

Parameter Dimensions No. patterns σa σb K N R τ

IO-QLBP 144 12 1.0 1.2 6 2 4 0.01
IO-QLBPsym 192 24 1.0 1.2 4 2 4 0.01

K = 4. N = 2 outdistances N = 1, confirming the advantage of multiple

support regions. However, the improvement becomes minor when N increases to

3 while the computational cost and dimensionality expand dramatically. To keep

an optimal trade-off between accuracy and computation cost, we select (N = 2,

K = 6) for IO-QLBP and (N = 2, K = 4) for IO-QLBPsym. Since the IO-

QLBPsym is intrinsically stronger than the IO-QLBP, it does not require the

region to be finely segmented. Meanwhile, other trivial parameters are empirically
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Table 3.2: The default parameter settings for MSR-PLBPs and MSR-PLBPm.

Descriptor Dimensions
MSR scheme

R
T

σa σb

M N K a c

MSR-PLBPs 192 1 2 6
5 0.02 0.1 1.0 1.2

MSR-PLBPm 192 3 1 4

selected. Table 3.1 shows default parameter settings for two descriptors.

The influences of different weighting schemes are also investigated. Figure

3.15 shows that, compared to Gaussian and uniform schemes, ours (cf. Eq.3.8

and Eq.3.9) is best suited for IO-QLBP descriptors.

3.5.2 The MSR-PLBP descriptor

We focus on the radius R of the PLBP and three parameters, M , N and K, of the

MSR scheme, while other parameters are empirically tuned. The analysis enables

us to design the MSR-PLBPs and MSR-PLBPm, which are the single-region and

multi-region variants, respectively. Their parameter settings are described in

Table 3.2. These variants will be evaluated in Sect.3.6 and Sect.3.7 to verify the

effectiveness of the proposed method.

3.5.2.1 MSR-scheme parameters: M , N , and K

The joint effect of three parameters, including M - the number of support regions,

N - the number of disks, and K - the number of ordinal segments, is examined.

Figure 3.16(a) shows how K and N influence the performance when M is fixed

to 1. The performance significantly improves when K increases from 4 to 6,

but slightly declines when K increases from 6 to 8, which indicates the over-

segmentation. Considerable improvements are observed with N > 1, confirming

the effectiveness of ring-shaped division. However, because the normalized region

is small, fragments may occur if N continues to increase. N = 3 yields a very

minor improvement compared to that of N = 2. Therefore, for a single-region

descriptor, K = 6 and N = 2 are recommended.

Figure 3.16(b) shows the joint effect of M and N when K is fixed. Similarly

to [40], considerable improvements are observed when M > 1, which confirms the

advantage of multiple support regions. Although N also boosts the performance,

combiningM andN does not give a double benefit. (M = 2, N = 2) are very close

to (M = 3, N = 2), as well as (M = 2, N = 3) to (M = 3, N = 3). In addition,
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(c) Feasible (M , N , K) combinations

Figure 3.16: The performance of the MSR-PLBP descriptor with different (M , N , K)
combinations.

if M is large, for example M = 3, increasing N tends to lower the performance.

Therefore, (M = 3, N = 1) is recommended for a multi-region descriptor since it

yields the highest performance among different settings. Finally, we summarize

some feasible settings in terms of performance and dimensionality so that users

can decide which setting best fits their need (cf. Fig.3.16(c)). If an application

prefers preciseness to compactness, one should choose (M = 3, N = 1, K = 6).

(M = 1, N = 1) provides the most compact feature vector, hence is the fastest.

Other settings balance the two factors to different extents.

3.5.2.2 The radius R of the PLBP

Different values of R were tested, as shown in Fig.3.17(a). The performance

improves as R increases from 2 to 5; however, it declines after that because the
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Figure 3.17: The performance of the MSR-PLBP descriptor with different R and thresh-
olding schemes.

local neighborhood becomes too large, which loosens the relationship between

pixels. In this study, we choose R = 5.

3.5.2.3 The Gaussian filters: σa and σb

The values of σa and σb should lie between 1 and 1.5 to avoid over-blurring. We

simply followed [148] to choose σa = 1.0 and σb = 1.2.

3.5.2.4 The threshold T in Eq.3.14

The values a = 0.02 and c = 0.1 are empirically selected for the Gaussian function

g = ae(−x2/(2c2)), with the assumption that pixel intensities are normalized in the

closed interval [0,1]. We evaluated the performance in three cases: T = 0 [105],

T proportional to the center pixel gc [74], and T computed from Eq.3.14. Figure

3.17(b) shows that the proposed T produces the best performance.

3.6 Evaluation on the image matching task

This section presents the performance analysis of the proposed descriptors, in-

cluding the IO-QLBP (cf. Sect.3.3) and MSR-PLBP (cf. Sect.3.4), on the image

matching task. Experiments are conducted on the Oxford benchmark and two

datasets specialized in drastic illumination changes and viewpoint changes, and

thus sufficing to verify the effectiveness of these descriptors to different types of

image transformations.
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d2
d1 d1’

d2’

Figure 3.18: Three matching strategies. Descriptors depicting similar regions are de-
noted by the same color. Threshold-based matching: DA fails to match DB at a fix
distance (dashed circles) while DD incorrectly matches DC and DE . Nearest neighbor
matching: DA correctly matches DB but DD incorrectly matches DC . Nearest neigh-
bor distance ratio matching: the small d1/d2 correctly matches DA and DB and the
large d′1/d

′
2 correctly rejects matches for DD. This example is obtained from [125].

3.6.1 Evaluation protocol

The evaluation criterion is adopted from [94], which is based on the number of

correct matches and false matches on a pair of images. Each region A from the

reference image is matched with a region B from the transformed (test) image by

comparing their corresponding descriptors following one of the below matching

strategies (cf. Fig.3.18).

1. Threshold-based matching: two regions are matched if the distance between

their descriptors is below a threshold. A descriptor can have several matches

and several of them may be correct.

2. Nearest neighbor matching: A and B are matched if the descriptor DB is

the nearest neighbor to DA and if the distance between them is below a

threshold. A descriptor has only one match.

3. Nearest neighbor distance ratio (NNDR) matching: it is similar to the

second strategy except that the thresholding is applied to the distance ratio

between the first and the second nearest neighbor. A and B are matched if

NNDR =
d1
d2

=
∥DA −DB∥
∥DA −DC∥

< t (3.16)

where DA, DB, and DC are the descriptors of the target, first and second

nearest neighbor, respectively, and t is a threshold.

We select the NNDR matching strategy because it additionally penalizes descrip-

tors that have many similar matches.
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The result is presented in terms of recall versus 1-precision:

recall =
# correctmatches

# correspondences
(3.17)

1− precision =
# falsematches

# correctmatches+# falsematches
(3.18)

where # correspondences stands for the ground truth number of matched regions.

The curves are obtained by varying the distance threshold. A good descriptor

should have a recall approaching 1 at any precision.

The number of correct matches and correspondences are determined by the

overlap error ϵ [95], which measures how well the regions correspond under a

transformation, i.e. a homography in this case.

ϵ =
1− (A ∩HTBH)

A ∪HTBH
(3.19)

where H is the homography matrix between the images (cf. Sect.3.2.3). We

assume a correct match if ϵ < 0.5.

Interest regions are given by the Harris-Affine (haraff) or Hessian-Affine (hesaff)

detector then normalized into circular shapes of a fixed diameter (41 pixels).

3.6.2 List of evaluated descriptors

We evaluate the effectiveness of the two proposed approaches through four de-

scriptors: IO-QLBP, IO-QLBPsym, MSR-PLBPs and MSR-PLBPm. The first two

descriptors use QLBP and QLBPsym operators, respectively. The MSR-PLBPs

demonstrates the MSR-PLBP approach with a single support region while the

MSR-PLBPm for multiple support regions.

Six descriptors that are closely related to the proposed approaches are selected

for comparison: SIFT [81], DAISY [135], HRI-CSLTP [49], LIOP [148], MROGH

and MRRID [40]. SIFT, DAISY, and MROGH are gradient based, while the

HRI-CSLTP, LIOP and MRRID are intensity based. MRROGH and MRRID use

multiple support regions. Their details are summarized in Sect.3.2.

Evaluating all descriptors from a single perspective may be biased since multi-

region methods are based on larger amounts of information than that of single-

region methods. Therefore, we split the set of evaluated descriptors into two parts.

The multi-region group includes MROGH, MRRID, IO-QLBP, IO-QLBPsym and
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Table 3.3: The dimensions and average construction time of evaluated descriptors.

Method Dimensions
Construction time

(millisecs)

Single-region
group

MSR-PLBPs 192 1.03
LIOP 144 1.75
SIFT 128 2.13
DAISY 136 2.52

Multi-region
group

IO-QLBP 144 1.80
IO-QLBPsym 192 1.88
MSR-PLBPm 192 2.73
HRI-CSLTP 384 3.16
MROGH 192 4.60
MRRID 256 9.42

MSR-PLBPm, while the rest descriptors belong to the single-region group. Bina-

ries files are downloaded from [2, 4, 5] and run on an Intel Core i7 950 CPU 2.8

GHz PC. Table 3.3 shows the dimensions and average construction time of all

descriptors. Our descriptors are the fastest in each group.

3.6.3 Matching results on the Oxford benchmark

The Oxford benchmark [94] includes images with six different geometric and pho-

tometric transformations, i.e. rotation, scale change, viewpoint change, image

blur, JPEG compression and illumination change (cf. Fig.3.19). In the first four

transformations, the structured scene and textured scene are designed, allowing

the analyses of image transformations and scene types to be done separately.

The former contains homogeneous regions with distinctive edge boundaries (e.g.

graffiti and buildings) while the latter depicts repeated textures of various forms.

There are eight image sets, each of which has six images demonstrating different

levels of transformations. The images resolution is about 800× 640. This bench-

mark has been widely used in many comparative studies [40, 49, 55, 94, 148].

We report the performances on the 1st − 2nd and 1st − 4th image pairs, which

demonstrate small and large image transformations, respectively. Results on the

1st − 4th pairs are presented in Fig.3.20 to Fig.3.22, while those of the 1st − 2nd

pairs are shown in Fig.A.2 to Fig.A.1 - Appendix A. The descriptors generally

achieve high performance in easy 1st−2nd cases, while greatly diverging from one

another in challenging 1st − 4th cases. In addition, the selection of detector has

little effect on the ranking order, which is similar to the observation in [94].
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(a) graf: viewpoint change (b) wall: viewpoint change

(c) boat: zoom and rotation (d) bark: zoom and rotation

(e) leuven: illumination change (f) ubc: JPEG compression

(g) bikes: image blur (h) trees: image blur

Figure 3.19: Sample images from the Oxford benchmark [94]. In each set, the first
(reference image), second and fourth images are shown from left to right.

In the single-region group, the MSR-PLBPs is leading in 28/32 cases. Its high-

est difference to the next place is 13% in trees. The LIOP follows our descriptor

closely, with a difference of around 0.5-6%, but experiences several deteriorations

in boat 1-4 and trees. This is because the combination of ring-shaped and intensity

order-based divisions is more discriminative than each individual division. The

performance of all descriptors declines in trees because of the heavy blur; however,

the MSR-PLBPs still keeps a noticeably separation from other methods. This

supports the superiority of PLBP over the gradient and intensity permutation in

near-uniform image regions.

The MSR-PLBPm, MROGH and MRRID are leading in most challenges

thanks to multiple support regions. The differences of the MSR-PLBPm to the

closest and second closest competitors are around 0-2% and 1-5% respectively.

Due to their core features, the MROGH performs well in geometric transforma-

tions, while the MRRID in photometric transformations. The MSR-PLBPm is

comparable with the MROGH and MRRID in both types of transformations (ex-

cept bark),hence achieving better stability. The advantage of the MSR-PLBPm
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(a) graf: viewpoint change
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(c) leuven: illumination change

Figure 3.20: The performance of evaluated descriptors on the Oxford benchmark (Part
1/3). The scales are different through figures for better clarifying the plots.
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(c) ubc: JPEG compression

Figure 3.21: The performance of evaluated descriptors on the Oxford benchmark (Part
2/3). The scales are different through figures for better clarifying the plots.
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Figure 3.22: The performance of evaluated descriptors on the Oxford benchmark (Part
3/3). The scales are different through figures for better clarifying the plots.

is two-fold: 1) fewer support regions is required, thus faster, and 2) the PLBP

improves good properties of the LBP [105] to be more discriminative and robust

to monotonic illumination changes. It is worse than MROGH or MRRID in a few

cases, such as hesaff-bikes 1-4 and hesaff-ubc, but the differences are minor. The

IO-QLBPsym is comparable to the MROGH in most cases, except a loss of 5.4% in

trees. The trees contains textures that are very similar to each other due to heavy

blur, and thus descriptors using more support regions have an obvious advantage.

Note that the MSR-PLBPm performs better than the MROGH in this case despite

its smaller number of regions. The IO-QLBPsym outperforms the MRRID in

geometric transformations, yet it is less robust to photometric transformations.

This is because the IO-QLBPsym does not consider supplementary information
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(a) corridor (b) desktop

(c) desktop-square (d) desktop-square root

Figure 3.23: Pairs of reference - test images from the Illumination dataset [148].

of contrast as in the MSR-PLBPm. The IO-QLBP performs worst among multi-

region descriptors but still overcomes the single-region methods.

In bark, the complex surface of the bark makes textures seem to be randomly

arranged and thus the matching is very difficult. The IO-QLBPsym and IO-

QLBP surprisingly occupy the first places and the MSR-PLBPm maintain the fifth

place, after the MROGH and LIOP. Meanwhile, the ranking of other descriptors

vary significantly. Therefore, it is hard to draw any strong conclusion from this

challenge. In general, the proposed methods have shown to be efficient and stable

in more challenges than that of other descriptors. In addition, they achieve high

recalls from the outset, thus are promising for problems like image retrieval.

3.6.4 Matching results on the Illumination dataset

The Illumination dataset [148] is created primarily for examining the effective-

ness of descriptors under drastic illumination changes. It contains two sets of

images, corridor and desktop. Nonlinear transformations, including square root

and square operations, were performed on the second image of desktop to synthe-

size images with monotonic intensity changes. All images are in the resolution of

1504× 1000. Figure 3.23 shows pairs of images used in the evaluation.

The performances of evaluated descriptors are illustrated in Fig.3.24 and

Fig.3.25. The MSR-PLBPm performs best in all cases. The MRRID follows

the MSR-PLBPm closely with a difference of less than 3%. The performance

of MSR-PLBPs is lower than that of MRRID, around 0 - 3%) in desktop cases

and 10% in corridor, thus it ranks third. However, it is still much better than
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Figure 3.24: The performance of evaluated descriptors on the Illumination dataset
(Part 1/2). The scales are different through figures for better clarifying the plots.

the MROGH and LIOP. The IO-QLBPsym performs comparably to the MROGH

in most cases and its performance in hesaff-desktop-square root is even higher

than that of MROGH 10%. The IO-QLBP ranks right after MROGH while per-

forms much better than the SIFT, DAISY, and HRI-CSLTP. Since this dataset

demonstrates different types of illumination changes, it best suits intensity order-

based and texture-based descriptors, whereas gradient-based descriptors have few

opportunities to exhibit their effectiveness. We indeed observed severe declines

of MROGH in 4/8 cases. The LIOP achieve a moderate performance in corri-

dor, which may indicate that its intensity order-based structure cannot adapt to

drastic illumination changes well. The HRI-CSLTP fails in 6/8 cases because

its CS-LTP feature uses only four neighbors and a fixed threshold, thus losing a
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Figure 3.25: The performance of evaluated descriptors on the Illumination dataset
(Part 2/2). The scales are different through figures for better clarifying the plots.

large amount of information. In conclusion, the MSR-PLBP approach is capable

of handling complex illumination changes in the sense that their variants perform

efficiently and are leading in their groups. The IO-QLBP approach is not as good

as the MSR-PLBP since its encodings characterize gradient changes rather than

illumination changes. Nevertheless, the IO-QLBPsym is better than the MROGH

in terms of both matching accuracy and speed.

3.6.5 Matching results on the Viewpoint change dataset

We further evaluate the descriptors on the Viewpoint change dataset collected

by [28]. The dataset consists five subsets, each of which includes six images
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(a) grace: viewpoint
change

(b) there: strong view-
point change

(c) posters: viewpoint
change + texture rep-
etition

(d) underground: view-
point change + pat-
tern repetition

Figure 3.26: Sample images from the Viewpoint change dataset [28]. In each sequence,
the first (reference image), second and fourth images are shown from left to right.
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Figure 3.27: The performance of evaluated descriptors on the Viewpoint change dataset
(Part 1/2). The scales are different through figures for better clarifying the plots.

with different levels of difficulties. This resembles the structure of the Oxford

benchmark [94]. All images are in the resolution 1536 × 1024, demonstrating

viewpoint change, pattern repetitions or texture repetitions. We select four over

five subsets for this experiment. Figure 3.26 shows some image samples from the

dataset.
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Figure 3.28: The performance of evaluated descriptors on the Viewpoint change dataset
(Part 1/2). The scales are different through figures for better clarifying the plots.
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Similarly to the experiment in Sect.3.6.3, the results on the 1st − 2nd and

1st − 4th image pairs, are reported in Fig.3.27-3.28 and Fig.A.4-A.5 - Appendix

A. The MSR-PLBPm is comparable to or better than MROGH and MRRID

in all cases, with differences of around 0-5%. The performances of MRRID and

MROGH suddenly decrease in haraff-there 1-4, in which their largest losses to the

MSR-PLBPm at the 1-precision of 20% are over 15%. The IO-QLBPsym performs

comparably to the MROGH in 14/16 cases, yet suffering a severe deterioration

in there-1-4. We note that the MSR-PLBPs performs better than the IO-QLBP

several times, though it is single-region based. The advantage of the MSR-PLBPs

may lie in its pattern generation scheme that addresses the issue of noisy regions

and the MSR scheme that improves the distinctiveness of a region.

3.7 Evaluation on the object recognition task

This section presents the performance analysis of the proposed descriptors on

the object recognition task. Experiments are conducted on 266 images, 4000

images and 10,200 images of the 53 Objects and the Recognition Benchmark

databases, demonstrating the behaviors of descriptors to different data scales.

Our approaches not only perform effectively and consistently on these databases

but also possess a great advantage in terms of speed compared to other methods.

3.7.1 Evaluation protocol

The performance of each descriptor is evaluated according to its recognition rate

on a database. The recognition of objects goes as follows. First, in the prepro-

cessing phase, we extract interest regions for all images using the Hessian-Affine

detector, normalize them into circular shapes of a fixed diameter (41 pixels),

and compute feature vectors on the normalized regions. Then, during the online

recognition phase, each image in the database in turn plays the role of a query,

its similarity scores to the remaining images are estimated and M images having

highest scores are returned. Finally, the overall recognition rate is defined as:

Recognition rate =
1

N

N∑
i=1

# correctly returned images for query ith

# returned images
(3.20)

where N is the total number of images in the database.

In order to compute the similarity score between two images, A and B, we
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adopt the Sørensen-Dice coefficient:

sim(A,B) =
2|FA ∩ FB|
|FA|+ |FB|

(3.21)

where FA = {fA
1 , f

A
2 , ..., f

A
m} is the set of features computed from m interest

regions in the image A and FB = {fB
1 , fB

2 ,..., fB
n } is for n interest regions in the

image B (m < n). The denominator is the total number of features in two images.

The numerator is the number of matched pairs (fA
i , f

B
j ) with the assumption

that a fA
i has only one best match fB

j and their Euclidean distance d(fA
i , f

B
j )

< T . Because the feature spaces are different from each other, we simply tune T

separately for each descriptor to achieve the best result, as done similarly in [40].

In this way, images showing the same of object as in the query will have a higher

similarity score than those showing different objects. This similarity measure

purely relies on the distinctiveness of a descriptor, thus providing a preliminary

evaluation of descriptors on object recognition in advance of their integration into

a more sophisticated system.

3.7.2 List of evaluated descriptors

Similarly to the previous study, there are ten descriptors participating the evalu-

ation, including our four descriptors, i.e. IO-QLBP, IO-QLBPsym, MSR-PLBPs

and MSR-PLBPm, and six closely-related descriptors, i.e. SIFT [81], DAISY

[135], LIOP [148], HRI-CSLTP [49], MROGH and MRRID [40].

3.7.3 Recognition results on the 53 Objects database

The 53 Objects database includes 265 images of 53 objects, in which each object is

represented by five images taken under different viewpoints. The image resolution

is 320 × 240. The database is maintained by the Computer Vision Laboratory,

ETH Zurich, and available online at [1]. Figure 3.29 shows some sample images

from the database.

Since each five images represent one object, when an image is used as query,

the four remaining images from its group should ideally be at the top of the query

result. Therefore, we return four top ranked images for each query (M = 4) and

compute the recognition rate. The average number of detected regions per image

is 130. Figure 3.30 shows the recognition rates of ten descriptors.

In the multi-region group, the MSR-PLBPm and IO-QLBPsym perform best.
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Figure 3.29: Some representative images from the 53 Objects database. Each row shows
a group of five images for one object.

The MROGH ranks third, whose differences to the top descriptors are around

3 % and 6 %, respectively. The IO-QLBP does not perform as well as the top

descriptors, yet it is much better than the MRRID. In the single-region group,

the MSR-PLBPs is comparable to DAISY and HRI-CSLTP and better than SIFT

and LIOP. Since most transformations in the database are viewpoint changes,

descriptors designed primarily for illumination changes like MRRID and LIOP

cannot work well. An example of recognition result is shown in Fig. 3.31.

3.7.4 Recognition results on the Recognition Benchmark

The Recognition Benchmark was first introduced in [100] and is available online at

[7]. This database contains 2,550 groups of four images known to be taken of the

same objects but under different conditions, resulting in a total of 10,200 images.

The image resolution is 640 × 480. Image transformations in the database are

mainly viewpoint changes, yet they are more drastic than that of the 53 Objects

database. Illumination changes and image blur are also included. Therefore, this

database is more challenging in terms of both transformation and scale. Figure

3.32 shows some sample images from the database.

For evaluation, we compute on average 390 interest regions per image and

return three top ranked images for each query (M = 3). We conduct two ex-

periments on a subset of 4,000 images and the full database of 10,200 images,

respectively, thus the performances of descriptors on databases of medium and
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Figure 3.30: Recognition rates on the 53 Objects database. The names and percentage
values of the proposed methods are shown in red.

Figure 3.31: An example of recognition result on the 53 Objects database. The names
of the proposed methods are shown in red.

large scales are examined. Figure 3.33 shows the recognition rates of evaluated

descriptors in two test scenarios.

In the multi-region group, we again observe that the MSR-PLBPm and IO-
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Figure 3.32: Some representative images from the Recognition Benchmark database.
Each row shows a group of four images for one object.

QLBPsym are the top ranking descriptors and are followed closely by MROGH

and IO-QLBP. The MRRID performs worst and its differences to the next-to-last

descriptor are around 10 %. In the single-region group, the MSR-PLBPs slightly

loses to the HRI-CSLTP (0.5 - 1.6 %) while outperforming the rest descriptors.

Since illumination changes account for a small portion of image transformations

in the database, the performances of LIOP and MRRID are not improved signif-

icantly. An example of recognition result is shown in Fig. 3.34.

3.8 Discussion and Conclusion

The proposed approaches have been evaluated thoroughly on three image match-

ing datasets, which demonstrate different common image transformations, es-

pecially the illumination change and viewpoint change. The MSR-PLBPm is

generally most effective among evaluated descriptors. It is robust against both

photometric and geometric transformations. Meanwhile, the IO-QLBPsym only

exhibits its strength in the geometric transformation. The IO-QLBP performs

comparably to the MROGH, yet it cannot compete against the MRRID in the il-

lumination or repetition cases. The MSR-PLBPs is superior to other single-region

descriptors and sometimes even to the multi-region IO-QLBP and MORGH. This

is thanks to the discriminative power attained from the pattern generation and

MSR schemes. With these achievements, the proposed approaches are promising

for any applications of interest region description.
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Figure 3.33: Recognition rates on the Recongition Benchmark database. The names
and percentage values of the proposed methods are shown in red.

Figure 3.34: An example of recognition result on the Recognition Benchmark. The
names of the proposed methods are shown in red.
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In addition, our approaches achieve very good performance and stability in

the object recognition task at different data scales. The MSR-PLBPm and IO-

QLBPsym are the best among all descriptors. The IO-QLBP is comparable to

the MROGH and much better than the MRRID. Meanwhile, the MSR-PLBPs

is superior to most single-region methods, except the HRI-CSLTP. Although the

MRRID uses multiple regions and CS-LBP-based feature, it performs badly in

this task. This may be due to the ignorance of gradient magnitudes in its en-

coding. The property is particularly useful for scenes under drastic illumination

changes, in which the gradients are too noisy to be examined, yet it is not suit-

able for other transformations. The proposed approaches, on the other hand,

preserve the gradient magnitudes under the form of weight values. The HRI-

CSLTP achieves surprisingly high performance by combining the HRI and CS-

LTP features. However, its high-dimensional vectors make the matching process

extremely time-consuming. It takes twice as long as other descriptors to imple-

ment the nearest neighbor matching using Euclidean distance. Our approaches

maintain an optimal trade-off between the recognition rate and speed, and hence

are more promising solutions.

The MSR-PLBP approach has several limitations. First, although the number

of support regions and the number of disks individually boost the performance,

combining them does not yield a double effect. Some regions are not large enough

and hence suffer over-segmentation when applying the MSR scheme. For future

work, we will improve the MSR scheme so that the segmentation operates only on

regions of adequate sizes. Second, the PLBP histogram has 16 dimensions, which

are double the dimensions of the gradient orientation histogram [40, 81, 94]. This

is also the problem of other texture-based descriptors, such as the CS-LBP [55],

HRI-CSLTP [49], and MRRID [40]. The issue is more severe when multiple sup-

port regions and region divisions are adopted. Techniques such as DCT [123],

Gabor filters [160], or PCA [62] will be integrated to make the PLBP histogram

concise. Finally, the parameters in Eq.3.14 are empirically selected based on the

data of a limited size. A deep analysis of image contrast or gray-level trans-

form could be helpful to tune these parameters more theoretically. Meanwhile,

the IO-QLBP approach fails in corridor and there-1-4, indicating its drawback

in handling very drastic transformations. It also suffers the curse of dimension-

ality and has some free-choice parameters (e.g. the scaling factor τ in Eq.3.2).

Therefore, it could share the achievements of future work with the MSR-PLBP.
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Pedestrian Detection with Local

Binary Pattern

This chapter presents the study of LBP in pedestrian detection. The QLBP in the

previous study is revised to a generic form that better characterizes the shapes of

pedestrians. It is then integrated with the Aggregated channel features (ACF), an

advanced learning framework in [34], to build the ACF-QLBP pedestrian detector.

The novel detector performs robustly against a wide variation of human poses

while maintaining an acceptable frame rate.

The content of the chapter is organized as follows. Section 4.1 gives the

problem definition. Related works are described in Sect.4.2. Section 4.3 presents

the proposed pedestrian detector. Performance evaluations are given in Sect.5.4.

Finally, Section 4.5 closes the study.

4.1 Problem definition

Pedestrian detection is an important research field of computer vision that pos-

itively affects our human life. It is commonly applied in the advanced driver

assistance system (ADAS) to help drivers to better notice pedestrians crossing

the road. Let us consider some statistics of traffic crashes to see the necessity of

a robust ADAS. In the year 2012, the number of pedestrian fatalities accounts

for 14% of traffic fatalities in US (4,743 over 33,561) 1, whereas the correspond-

ing number in Japan is 37% (1,634 over 4,411) 2. The integration of pedestrian

1NHTSA: http://www-nrd.nhtsa.dot.gov/Pubs/811888.pdf
2Metropolitan Police Department: http://www.keishicho.metro.tokyo.jp/kotu/roadplan/

2rin_jiko.htm
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http://www-nrd.nhtsa.dot.gov/Pubs/811888.pdf
http://www.keishicho.metro.tokyo.jp/kotu/roadplan/2rin_jiko.htm
http://www.keishicho.metro.tokyo.jp/kotu/roadplan/2rin_jiko.htm
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(a) Deformable part models [41] (b) Mobileye C2-270

Figure 4.1: Examples of academic and industrial researches on pedestrian detection.
(a) The model in [41] describes each object by a coarse root filter and several higher
resolution part filters. (b) A commercial ADAS from Mobileye company.

(a) Illumination change (b) Viewpoint change

(c) Noise (d) Motion blur (e) Occlusion

Figure 4.2: Examples of extrinsic factors that affect the quality of pedestran detection.

detection techniques into the surveillance also contributes to the reduction of

crimes in public areas. In the year 2009, an analysis conducted on surveyed areas

from the United Kingdom to U.S. cities, such as Cincinnati and New York, have

shown that using CCTV cameras generally decreases 16% in crime in parking

lots, public transportation areas and other public settings [149]. This research

also finds applications in robotics, entertainment, content-based indexing and re-

trieval, or care systems for the elderly and disabled. With several potential social

benefits, pedestrian detection has greatly attracted the academic and industry

communities, making itself a very active field (cf. Fig.4.1).

Pedestrian detection is defined as the problem of detecting and localizing

pedestrians in static images and video footages. “Pedestrian”, by definition,
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Figure 4.3: Variations due to non-rigid deformations and intra-class variability. From
left to right: Shape and size, occlusion of body parts, different clothing, blend of subject
and background, and complex interaction.

means a person traveling on foot, especially in an area where vehicles go (cf.

Cambridge and Merriam-Webster dictionaries). The subjects are thus usually re-

stricted to people having upright fully visible poses. The constraint is sometimes

relaxed to include those traveling using roller skates, skateboards, and scooters,

as well as wheelchairs, motorbikes and bicycles, though their poses do not entirely

meet the condition. This is because the ADAS is usually installed in cars, for

which these types of pedestrians are frequent causes of dangers. The problem is

a special case of a more general research domain, called object detection or ob-

ject categorization, in which face, car and pedestrian are most widely researched.

Nowadays, face detection has been well solved in the sense that its detection and

recognition rates are usually over 90%, whereas car and pedestrian detection still

suffers several limitations.

Detecting pedestrians in real scenes is extremely challenging due to the wide

range of possible pedestrian appearances. Variations may arise from extrinsic

factors, such as viewpoint change, illumination change, and occlusion. Practi-

cal detection systems are typically low-cost devices, hence images are likely to

contain noise and motion blur (cf. Fig.4.2). Besides, the pedestrians themselves

produce many variations due to non-rigid deformations and intra-class variability

of shapes and other visual properties. For example, the body height and size,

occlusion of body parts, different clothing, blend of subject and background, and

complex interactions between people in the environments (cf. Fig.4.3). Appli-

cations working on video footages further deal with the object motion, camera

shifting or dynamic background. The problem is even tougher when a real-time

system is required, because accuracy and speed are competing factors. In recent

years, researches in pedestrian detection have grown significantly, yet they are

still very far from a complete solution.
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4.2 Related work

4.2.1 A review of related approaches

There are three primary sources of influences on the performance of a pedes-

trian detector, including the feature(s) describing objects of interest, the detector

architecture, and the learning technique(s).

Feature. A detector may adopt one feature or more to describe objects, such

as Haar-like feature [141], Histogram of oriented gradients (HOG) [31], shapelets

[118], region covariance [109, 140], etc. The HOG [31] is most preferred due to

the large performance gain it provides. The underlying concept is to represent

an object as dense grids of gradient histogram and normalize feature vectors at

the block level. It is robust to illumination changes and able to capture both ap-

pearance and spatial information. Its nature perfectly meets the needs of object

detection that no individual feature can compete. Although the original HOG

[31] is computationally heavy, the issue has been soon addressed by improve-

ments from [41, 84, 170]. Feature combinations, e.g. (HOG, edgelet, covariance)

[154], (color channels, gradient magnitude and orientation) [36], etc., have been

proposed to boost the performance beyond that of the HOG, yet they require ad-

vanced architectures to manage the workload as well as the compatibility between

features. The LBP [105] is a robust texture operator, which is highly discrimi-

native, invariant to monotonic gray-scale changes and computationally simple.

Although the original LBP is not appropriate for dense matching because of the

sensitivity in flat regions and high-dimensional histograms, extended variants suc-

cessfully overcome the issues while retaining basic properties. The Semantic-LBP

and Fourier-LBP are introduced to detect human in photo albums by redefining

LBP according to semantic interpretation and Fourier transform, respectively

[97]. Pyramids of CS-LBP/CS-LTP achieve comparable or better performance

than that of HOG [167]. The LBP is also combined with other methods to pro-

duce robust feature combinations that outperform HOG in terms of both accuracy

and speed, such as LbpHog [147], Modified CS-LBP with Haar-like features [155]

and pyramid CS-LTP with Pyramid HOG (PHOG) [167].

Architecture. The sliding window-based and part-based methods are typical

detector architectures, defining how the detector extracts features from images.

The former slides a rectangular window along two dimensions of the image at

different scales and extracts features for each window. A classifier is then trained

to predict whether an unseen window contains a person or not. Detectors follow-
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Figure 4.4: The pipeline of the HOG pedestrian detector [31]. The image is obtained
from the slide of Navneet Dalal [31].

ing this approach include [16, 31, 34, 36, 118, 141, 147]. Meanwhile, the latter,

which is adopted in [15, 41, 116], models an object as parts with a deformable

configuration, thus better coping with occlusions and large appearance variations,

though the number of parts are often limited for computational feasibility.

Learning algorithm. The support vector machines (SVM) and boosting

algorithms are most popular thanks to their solid mathematic foundations and

good performance in challenging detection tasks. They have both merits and

demerits, thus requiring careful consideration for specific settings. The SVM

is high speed and optimum-guaranteed, yet not suitable for large-scale feature

training. On the other hand, the boosting automatically does feature selection

and rejects redundant candidates in the early stage. Detectors of [31, 41, 84, 143,

147] adopt SVM, while those in [34, 36, 37, 118, 141] implement boosting. Other

algorithms, such as random forest [130] and partial least squares [121], are also

used with lower rates.

4.2.2 Brief descriptions of competing approaches

The following detectors are selected to participate in the comparative study in

Sect.4.4.4. They are sorted according to their publication year for easy reading.

The VJ [141] uses AdaBoost to train a chain of progressively more complex

region rejection rules based on Haar-like wavelets and space-time differences.

The HOG [31] divides an image into m × m-pixel “cells”, for each cell a

local histogram of gradient directions is computed. The combined histogram

entries form the representation. Contrast normalization for better invariance to

illumination is done by accumulating a measure of local histogram energy on the



Chapter 4 85

n× n-cell “blocks”. The normalized descriptor blocks are referred as Histogram

of oriented gradient (HOG) descriptors. It then collects HOGs over the detection

window and trains the combined feature vector with a linear SVM. The HOG

detector is considered a milestone in object detection due to its great effectiveness

at that time. Figure 4.4 shows the pipeline of HOG.

The Shapelet [118] uses AdaBoost to automatically learns a set of informative

mid-level features (“shapelets”), which are computed from gradient responses. It

then adopts the AdaBoost again to build the final classifier from these shapelets.

The HikSvm [84] improves the learning methodology by proposing an ap-

proximation to the histogram intersection kernel and incorporating it with the

SVM. It allows substantial speedups, thus enabling the use of a non-linear SVM

in sliding-window detection.

The ChnFtrs [37] extends the VJ [141] to compute Haar-like feature over

multiple channels of the visual data, including LUV color channels, grayscale,

gradient magnitude, and gradient histograms, providing a simple and uniform

framework for integrating multiple types of features.

The HogLbp [147] combines the HOG and LBP texture and uses the linear

SVM to train a global detector for whole scanning windows and part detectors

for local regions. In this way, the partial occlusion is effectively handled. This

detector is closely related to our approaches in term of LBP feature.

The Pls [121] augments widely used edge-based features with co-occurrence

matrices and color information to represent the pedestrian. The Partial least

squares (PLS) analysis is then employed to efficiently project the data onto a

much lower dimensional subspace.

The FPDW [36] extends the approach in [37] to fast multi-scale detection.

Dollar et al. have demonstrated how features computed at a single scale can be

used to approximate feature at nearby scales, thus resolving the computational

bottleneck that remains in several modern detectors.

The LatSVM-V2 [41] involves enriching the model in [31] using a star-

structured part-based model defined by a root filter plus a set of part filters

and deformation models. It models unknown part positions as latent variables in

a SVM framework (cf. Fig.4.1(a)).

TheMultiFtr+CSS [143] introduces a new feature based on self-similarity of

low-level features, termed CSS, to the combination of Haar-like features, shapelets,

shape context and HOG feature. It significantly improves the classification per-

formance for both static images and image sequence.
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The Crosstalk [35] provides an optimized implementation of [36] and couples

cascade evaluations at nearby locations, i.e. enabling the communication between

neighboring detectors, hence the computational cost is greatly reduced.

The VeryFast [16] reverts the FPDW [36] to avoid resizing the input image

at multiple scales and uses the “stixels world”, a recently introduced fast depth

information method, to quickly access to the geometric information from stereo.

It attains high quality pedestrian detection at 135 fps.

The Roerei [17] is based on the ChnFtrs [37]. It includes properly designs of

feature pooling, feature selection, preprocessing, and training algorithms.

The SketchTokens [76] introduces a local edge-based mid-level feature, called

sketch tokens. Patches of human generated contours are clustered to form sketch

token classes and a random forest classifier is used for classification.

The ACF [34] uses the same channel features and boosted classifiers as in [37].

The key difference is that the ACF uses pixel lookups in aggregated channels as

features while sums over rectangular channel regions are used in [37].

4.3 The ACF-QLBP pedestrian detector

4.3.1 Method overview

The success of the QLBP feature in interest region description (cf. Chapter 3)

has been an inspiration for its extensions into pedestrian detection. Specifically,

we integrate the QLBP and two other features into the Aggregated channel fea-

tures (ACF) [34] to form a multi-cue pedestrian detector, called ACF-QLBP. The

proposed method performs robustly against several challenging pose changes and

environmental conditions thanks to the following properties.

1. The QLBP encodes the information around every pixel in a detection win-

dow by comparing the relation between gray values of four neighbors, thus

efficiently revealing the gray-value changes in horizontal, vertical and diag-

onal directions. In addition, an adaptive thresholding scheme is introduced

to cope with noises and local illumination changes, giving a better discrim-

inative power than that of the CS-LBP and LBP.

2. The generalized QLBP is revised from the definition in Sect.3.3 to abstractly

represent all possible encodings that can be formed by taking pairs from four

neighbors. Some encodings performs better than the others because they

well characterize the essential cues of human body. Edges along diagonal
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and vertical directions are experimentally shown to be most meaningful

because they are more visible in upright and symmetric poses.

3. The QLBP is combined with three color channels and a gradient histogram

to build a multi-cue detector, thus depicting a pedestrian in different as-

pects: texture, color, and gradient changes in magnitude and orientation.

We adopt the ACF framework [34] for training and testing since it efficiently

resolves the computational bottleneck of many modern detectors with an

advanced pyramid construction technique. In this way, our detector speeds

up to 15.2 frames per second (fps). Although this performance is not real

time (i.e. > 24 fps), it is definitely eligible for most pedestrian surveillance

systems, which typically operate at 5-10 fps.

The ACF-QLBP detector successfully reduces the average miss rate to a lower

degree than its precursor, i.e. the original ACF [34] (15% vs 17%), yet the

speed drops down two times (31.9 fps vs 15.2 fps). Despite its superiority over

several other modern detectors, especially the baseline HOG (46%, 0.239 fps),

the proposed method does not clearly outperform the ACF. Several future works

have been planned to address this issue. The proposal of ACF-QLBP has an

important contribution to the research of LBP in pedestrian detection. Since

only a few LBP-based detectors can attain comparable effectiveness to that of

modern detectors [33], it confirms the advantages of LBP and encourages more

studies on this feature.

4.3.2 The generalized QLBP texture operator

Let G denote the set of gray values of four neighbors sampled evenly on a circle of

radius R, C = {(ga, gb) | ga, gb ∈ G4} represent the ordered set of four predefined 2-

tuples, each of which contains gray values of two neighbors, and T be a threshold.

The generic form of QLBP is defined as follows:

QLBPR =
3∑

i=0

s(gai − gbi )2
i

s(z) =

{
1 z > T,

0 otherwise

(4.1)

Each Cj is an encoding strategy, aka configuration. We experimentally examine

several Cj to select the most appropriate configuration for pedestrian detection.

1. C1 = {(g0, g1), (g1, g2), (g0, g2), (g1, g3)}, the sampling starts at the position

of 0o, i.e. on the horizontal axis, then goes anticlockwise.
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(a) C1 (b) C2 (c) C3 (d) C4

Figure 4.5: Different configurations of the generalized QLBP.

2. C2 = {(g0, g3), (g1, g2), (g0, g2), (g1, g3)}, the sampling starts at the position

of +45o in the anticlockwise direction.

3. C3 = {(g0, g1), (g2, g3), (g0, g2), (g1, g3)}, the same sampling as in C2.
4. C4 = {(g0, g3), (g1, g2), (g0, g2), (g1, g3)}, the same sampling as in C1.

where emphasized pairs are underlined (cf. Fig.4.5). Because pedestrian poses

are mostly upright and symmetric, edges along diagonal directions may be more

discriminative than that of horizontal and vertical directions. That resembles the

observation in [64]. We adopt the QLBP operator in Chapter 3 to be C1, and
design three additional configurations for comparison. The C2 and C3 emphasizes

diagonal edges by associating their corresponding tuples with larger values of 2i,

whereas the C1 and C4 highlights horizontal and vertical edges.

We are willing to accept a possible small loss of information when reducing

the number of neighbors and design an adaptive thresholding scheme, instead

of using a constant T , for compensation. The four Tk below are introduced to

adaptively threshold the input of s(z) in Eq.4.1:

1. The gray value of the center pixel gc

T1 = gcτ (4.2)

2. The smaller value of (ga, gb)

T2 = min(ga, gb)τ (4.3)

3. The average of gray values of the center pixel and four neighbors

T3 =

(
gc +

3∑
i=0

gi

)
τ/5 (4.4)



Chapter 4 89

Figure 4.6: The pipeline of the ACF-QLBP pedestrian detector. Feature channels are
managed by the ACF learning framework [34].

4. The median of gray values of the center pixel and four neighbors

T4 = median(gc, g0, ..., g3)τ (4.5)

where τ is an empirically selected constant. Experimental results in Sect.4.4 show

that the above schemes facilitate the QLBP operator better than a small offset. In

addition, the QLBP with an adaptive threshold can achieve higher performance

than that of its precursors LBP and CS-LBP.

4.3.3 The detector pipeline

We introduce the use of QLBP to pedestrian detection by integrating this fea-

ture into a multi-cue detector. Together with three LUV color channels and

a 6-orientation gradient histogram, it constitutes a robust feature combination

that describes the pedestrian in different aspects, thus effectively boosting the

detection accuracy. Figure 4.6 shows the pipeline of the proposed detector. We

adopt the Aggregated channel features (ACF) [34] for learning the detector. This

framework speeds up the training/testing using an advanced pyramid construc-
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tion technique. In addition, it organizes features into modules, allowing the

evaluation to be conducted on the same background. Since this study focuses on

the proposal of effective feature rather than the detector architecture, we simple

integrate the QLBP into the ACF framework and leave other details unchanged.

Input. Because the multi-cue detector deals with color channels, color input

images are required. It is not a challenging assumption in the sense that most

datasets nowadays are color supported. Similarly to [34], every image is smoothed

with a [1 2 1]/4 filter for noise reduction.

Feature channels3. The detector adopts twelve channels of three different

features, including six channels for a normalized gradient histogram of six orien-

tations, three color channels (L, U, V) and three corresponding QLBP channels

computed on each color layer. The ACF method [34] and ours share the two first

features, yet for the last feature, we compute QLBP patterns instead of gradient

magnitudes. This allows us to exploit objects in more aspects than that of [34].

We empirically select the CIE-LUV from a large variety of available color spaces

(e.g. HSV, YIQ, YUV, sRGB, CIE-LAB, etc.), because it well approximates the

human vision and achieves good performance in several detection tasks [32, 37].

Feature Pyramid. The feature pyramid is constructed by the Fast feature

pyramids technique [34], which computes feature channels at one scale per octave

and does extrapolation at intermediate scales. The coarsely-sampled pyramid

is simpler yet sufficient to well approximate the finely-sampled pyramid, thus

considerably speeding up the framework without noticeable loss in accuracy.

Boosting algorithm. To represent a 128 × 64 detection window, the ACF

performs channel pixel lookup to divide each feature channel into 4 × 4 blocks

and sum the pixels in each block, resulting in a vector of 128×64×12/16 = 6144

dimensions. These vectors are then trained/tested using Adaboost [43] with 2048

depth-two decision trees as weak classifiers.

4.4 Performance evaluations

4.4.1 Evaluation protocol

The performance of a pedestrian detection algorithm is evaluated by the Detection

Error Tradeoff (DET) curve, which features the miss rate versus FPPI (False

3A channel is a registered map of an input image so that each output pixel is computed from
corresponding patches of input pixels [37].
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Figure 4.7: The performance of
QLBP configurations, in com-
parison with that of LBP and
CS-LBP.
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Method LBP [105] CS-LBP [55] Our C2
Training time 543 401 350
Frame rate 4.79 7.02 15.2

Table 4.1: The training duration (in seconds) and frame rates (in fps) of LBP, CS-LBP
and C2.

Positives Per Image). A lower curve demonstrates the better algorithm. The

miss rate is defined as follows:

missrate = 1− detectionrate

=
#FalseNegatives

#TruePositives+#FalseNegatives

(4.6)

The evaluation methodology is fundamentally based on [31] with a difference

that FPPI values are used for the x-axis instead of FPPW (False Positives Per

Window) values. The per-window evaluation tends to isolate the performance of

classifier from that of the whole detection system, whereas the per-image evalua-

tion provides a more general view of the system [35, 167]. We use the overall miss

rate between 102 and 100 FPPI as a reference point for all subsequent evaluations.

4.4.2 Evaluation of QLBP configurations

We evaluate four QLBP configurations, Cj, (cf. Fig.4.5) to determine the most

appropriate setting for pedestrian detection. It can be seen from Fig.4.7 that C2
performs best, followed by C3 and C4, while C1 performs worst. This ranking order

indicates that configurations designed specifically for pedestrians, i.e. C2 and C3,
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are able to achieve better performance than that of arbitrary configurations. They

emphasize diagonal edges, which are likely to be more discriminative in upright

human poses than horizontal and vertical edges, thus attaining lower miss rates.

In addition, vertical edges are more visible than horizontal ones in this context,

which may explain for the superiority of C2 to C3. It is worth noting that C1
does not perform as well as others, though the IO-QLBP descriptor is shown

to be comparable to or better than most modern descriptors in interest region

description (cf. Chapter 3). Since visual problems are by nature different from

each other, simply applying a method from one field on another field without

sufficient considerations usually produces unexpected results.

The four Cj are also compared with the LBP and CS-LBP. The LBP has the

highest miss rate, which is 6% higher than that of our best configuration, C2. The
CS-LBP performs comparably to C3 and C4, but loses to C2. The differences of

miss rate are around 1% and 3% for the equivalence and inferior cases, respec-

tively. The LBP uses eight neighbors to create a 256-dimensional histogram; the

CS-LBP uses eight neighbors to generate a shorter representation of 16 dimen-

sions, whereas ours only requires four neighbors to attain a similar 16-dimensional

histogram. We may infer from observations that the fine quantization of pat-

terns and dense neighbor sampling are not suitable for a detection task, whose

subjects are often contaminated by wide variations of appearances and complex

backgrounds. The training durations and frame rates of C2, LBP and CS-LBP are

shown in Table 4.1 (other Cj do not differ much from C2, hence are not necessarily
listed). The proposed operator halves the number of neighbors in the CS-LBP

and emphasizes primary edges, therefore operating more efficiently. Despite the

differences of miss rate between Cj, they are all comparable to modern detectors

mentioned in Fig. 4.10.

4.4.3 Evaluation of thresholding schemes

We evaluate four thresholding schemes introduced in Sect.4.3.2 in terms of their

contributions to the robustness of a QLBP operator. The parameter τ is em-

pirically selected for all schemes such that it lies in the range of [0, 0.01] for

satisfactory results. According to Fig.4.8, T2 performs best, followed by T3 and

T1, and T4 performs worst. T2 compares the difference z in Eq.4.1 with the

smaller value of (ga, gb), i.e. threshold values are set adaptively for every pair of

neighbors, hence successfully handling challenges such as local illumination and

sudden gray-value changes caused by noise. The miss rate of T2 is 3-4% lower
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Figure 4.8: The performance of
four thresholding schemes.
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than that of other schemes, while T1, T3, and T4 performs comparably to each

other. Schemes other than T2 define threshold values for pixels rather than for

neighboring pairs and perform less effectively than T2. In addition, T4 is computa-

tionally heavier than other Tk because it requires sorting to compute the median

value. In conclusion, we choose T2 as the associated thresholding scheme for the

QLBP operator.

4.4.4 Evaluation of ACF-QLBP and competing detectors

The comparative study is conducted on the INRIA benchmark [31], which includes

902 with-person images (positives), 1774 human annotations, and 1671 person-

free images (negatives). For training, 1208 annotations, together with their left-

right reflections, are selected, resulting in 2416 positives samples. 12,180 negative

samples are created by randomly sampling patches from 1218 person-free images.

Similarly, the rest 566 annotations with their reflections are used for testing. The

dataset covers pedestrians in a wide range of poses (mostly upright), appearances,

clothing, illumination, and background, as well as in some partial occlusions.

Therefore, it is widely used for evaluating pedestrian detection algorithms. Some

sample images from the dataset are shown in Fig.4.9.

We compare our multi-cue detector with 15 competitors, including ACF [34],

ChnFtrs [37], Crosstalk [35], FPDW [36], HikSvm [84], HOG [31], HogLbp [147],

LatSVM-V2 [41], MultiFtr+CSS [143], Pls [121], Roerei [17], Shapelet [118],

SketchTokens [76], VeryFast [16] and VJ [141]. Brief descriptions of these meth-

ods are presented in Sect.4.2.2.
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Figure 4.9: Sample images from the INRIA benchmark [31]. Challenges include par-
tial occlusions and wide variations of pose, appearance, clothing, illumination, and
background.
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82% Shapelet

72% VJ

46% HOG

43% HikSvm

40% Pls

39% HogLbp

25% MultiFtr+CSS

22% ChnFtrs

21% FPDW

20% LatSvm−V2

19% CrossTalk

17% ACF
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15% Ours

14% Roerei

13% SketchTokens

Figure 4.10: The performance of the ACF-QLBP and competing detectors on the IN-
RIA benchmark. The data is obtained from the Caltech Pedestrian Detection Bench-
mark website [33] and are discussed in [34, 35].

The ACF-QLBP achieves a frame rate of 15.2 fps with an Intel Core i7 950

2.8GHz desktop, 640 × 480 image resolution, and non-optimized MATLAB im-

plementation of QLBP. The configuration C2 and the thresholding scheme T2

(τ = 0.005) are selected. Table 4.2 presents the frame rates of all competitors.

Our detector is slower than the ACF, Crosstalk and VeryFast, while much faster

than the others. This is thanks to the selection of the advanced ACF framework.

It can be observed from Fig.4.10 that the ACF-QLBP has a low miss rate

(around 15%) and appears in the top five most accurate methods. The ACF [34]

and ours share the use of LUV color channels and normalized gradient histogram.

These features are combined with a gradient magnitude channel in the ACF,
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Algorithm Frame rate Algorithm Frame rate

Pls [121] 0.018 ChnFtrs [37] 1.2
MultiFtr+CSS [143] 0.027 FPDW [36] 6.5
Shapelet [118] 0.051 Ours 15.2
HogLbp [147] 0.062 ACF [34] 31.9
HikSvm [84] 0.185 Crosstalk [35] 45.4
HOG [31] 0.239 VeryFast [16] 50
VJ [141] 0.447
LatSVM-V2 [41] 0.629

Table 4.2: The frame rates of the ACF-QLBP and competing detectors (in fps). The
data is obtained from [34, 35]. The Roerei and SketchTokens do not appear in this
table because their frame rates are not available.

while they are with three QLBP channels in ours. The ACF only exploits the

information of color and gradient but ours further capture textures from QLBP

channels. Therefore, we successfully reduce 2% of miss rate, demonstrating the

advantage of new feature combination.

The proposed detector, however, performs worse than Roerei [17] and Stretch-

Tokens [76] with differences of about 1% and 2%, respectively. The Roerei

improves the ChnFtrs architecture [37] and adopts an advanced normalization

scheme, as well as several subtle modifications, whereas we simply integrate the

QLBP into the ACF framework and leave other details unchanged. The Stretch-

Tokens combines sketch tokens with ten feature channels in ChnFtrs. Sketches

are mid-level features, which are more discriminative than the low-level texture

features, yet the sketch extraction is completely not straightforward.

The HogLbp uses the traditional LBP features and produces a higher miss

rate than ours (24% vs 15%). This is because the QLBP is superior to the LBP,

which has been already confirmed in the first evaluation (cf. Sect.4.4.2). The

success also lies in two factors: a robust feature combination and a good detector

architecture. First, the proposed detector captures different characteristics of

a pedestrian, including color, texture and gradient changes in magnitude and

orientation. These features complement each other and well facilitate the detector.

Second, the adopted framework [34] possesses an advanced learning mechanism

that allows the training to be accurate and fast. This mechanism also serves

several robust detectors like the ACF, Crosstalk, and FPDW. The HogLbp, on

the other hand, simply augments HOG and LBP features then trains them with

a linear SVM. In addition, the proposed ACF-QLBP greatly outperforms the
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Figure 4.11: Some detection results on the INRIA benchmark. The first and second
rows show successful cases, while the third row exhibits failure cases.

baselines HOG and VJ, indicating the advances of modern architectures and

feature combinations.

Figure 4.11 shows some detection results using the proposed ACF-QLBP de-

tector. This detector is able to detect pedestrians in different poses (e.g. turning

back or bending the body on the bicycle), challenging backgrounds and lighting

conditions. In addition, it is also able to detect pedestrians at very small size, as

shown in the middle image of the second row. Nevertheless, it still suffers several

failures, which are presented in the last row. It cannot discover a pedestrian under

large occlusion, e.g. over a half of the body is occluded by a car (left figure) or by

another pedestrian (middle image). Also in the middle figure, we observe a false

detection on the gutter. The detector sometimes gets confused with objects that

have upright poses, rectangular or cylindrical shapes (i.e. similar to the human

body) and/or similar color tones with the clothing. The right figure shows a fail-

ure due to the heavy non-rigid deformation. Since our detector is sliding window

based, it cannot collect enough features in these cases. A part-based architecture

[41] or aids from multi-pedestrian detection [108] may resolve the problem.
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4.5 Discussion and Conclusion

This study examines the effectiveness of LBP features in pedestrian detection

with the aim of discovering an appropriate encoding and broadening the research

of LBP for this problem. The proposed ACF-QLBP detector simultaneously con-

siders three different types of features, including the generalized QLBP, color

channel, and gradient histogram, to attain high robustness. The generalized

QLBP approximates the CS-LBP [55] by reducing the number of neighbors and

enhancing the adaptability of the thresholding scheme, thus it is computation-

ally simpler yet more robust to noise. The comparative evaluation of the LBP,

CS-LBP, and QLBP, shows the superiority of QLBP in terms of both detection

accuracy and speed (cf. Sec.4.4.2). In the evaluation with competing detectors,

the proposed detector can reduce the average miss rate to 15.4%, which is com-

parable to many modern detectors and much better than the baseline HOG. A

frame rate of 15.2 fps is achieved, which means our detector is faster than 10/13

competing detectors.

A limitation is that the frame rate is still far from real-time (i.e. > 24 fps).

Adopting the same framework, the ACF [34] uses 10 channels (5120 candidate

features) for each window while the ACF-QLBP needs 12 channels (6144 features).

Ours is three times slower than ACF (15.2 fps vs. 31.9 fps), yet achieves a

lower miss rate (15% vs. 17%). Although only a few detectors can attain high

frame rates, this is still an important problem to resolve. In addition, since our

detector still performs worse than Roerei [17] and StretchTokens [76], improving

the detection accuracy is another mission. Enhancing the QLBP encoding or

computing QLBP features on another stable medium rather than color channels

are our initial ideas. Another minor limitation is that the τ in Eq.4.2-4.5 needs to

be empirically selected, hence novice users may meet some difficulties even when

a feasible value range is introduced. For future work, we will study the behavior

of image transformation to discover a more independent thresholding scheme.
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Background Subtraction with

Local Binary Pattern

This chapter introduces a novel background modeling framework that models the

background scene with QLBP features and color. For each of the consecutive

video frames, the framework first considers the feature distributions in blocks

of pixels then examines the color distributions in each individual pixel. The

combination of block-wise and pixel-wise approaches enables the framework to

capture both global and local structures effectively, thus enabling high robustness

against various environment conditions.

The content of the chapter is organized as follows. Section 5.1 gives the prob-

lem definition. Related works are described in Sect.5.2. Section 5.3 presents

proposed algorithm. Performance evaluations are given in Sect.5.4. Finally, Sec-

tion 5.5 closes the study.

5.1 Problem definition

In several systems like video surveillance, motion capture and multimedia, it is

essential to localize the humans in the scene so that their trajectories or activities

can be recognized afterward with some tracking algorithm. A common approach

is to detect the locations of humans in every single frame. The pedestrian de-

tection techniques in Chapter 4 are instantiations of this approach. Although

modern detectors have achieved very high detection rates, several unexpected er-

rors still occur in complex contexts. The background subtraction in this chapter

utilizes the temporal information from multiple frames of a video sequence to

reduce such errors. It is commonly used when the image in question is a part of

98
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Figure 5.1: A typical pipeline of background subtraction. The term B denotes the
background image while I denotes the current image.

a video stream.

The background subtraction (BGS) aims to build a representation of the scene,

called the background model, and then finds deviations from the model for each

incoming frame. Any significant change in an image region, compared to the

background model, indicates a moving (foreground) object [159]. These moving

objects are low-level visual cues that serve some higher-level object analysis pro-

cesses, such as motion tracking, human gait classification, video segmentation

and event detection. Because this process depends mainly on the feature differ-

ences between frames, it is worth noting that the input must be provided by a

stationary camera so that the viewing position and angle are unchanged during

the operation.

A typical background subtraction procedure consists of four components: back-

ground modeling, background initialization, background maintenance and fore-

ground detection [19, 27]. The background modeling denotes the selection of

an appropriate model to represent the background. The other components op-

erate on the selected model following the pipeline in Fig.5.1. The background

initialization first learns the model from the information of N first frames. These

training frames should contain the background only, though it is not always the

case. The foreground detection is triggered afterwards to classify a pixel as a back-

ground or foreground pixel. These pixels constitute a foreground mask, which is

then applied on the current frame to obtain the moving objects. The background

maintenance component controls the adaption of the background model over time

following the changes occurring in the scene. Preprocessing and post-processing

are optional steps, in which the former involves simple image processing tasks

that change the raw input into a suitable format while the latter uses domain

knowledge and computationally-intensive vision algorithms to eliminate pixels
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(a) Gradual illumination change. The first three images presents an indoor scene with increasing
illumination. The last image shows the background image created by the MOG [124]

(b) Sudden illumination change. The first image presents an indoor scene with light-on. The
light suddenly goes out, resulting in the second image. The last image shows the background
image created by the MOG [124]

Figure 5.2: The effects of illumination change to background subtraction. The input
and background images are provided in [136] and [20], respectively. Black pixels belong
to the background while white pixels to the foreground.

(a) Wavering tree branches. (b) Water rippling.

Figure 5.3: The effects of dynamic background to background subtraction. The input
images are provided in [70] while the background images are in [20]. Black pixels belong
to the background while white pixels to the foreground.

that do not correspond to the actual moving objects. The background modeling

is most important since it determines how well the background subtraction adapts

to the critical situations. Therefore, a large number of studies focus on improving

this step and the term “background subtraction” and “background modeling” are

usually used interchangeably.

The general requirements for a background modeling algorithm include spatial

accuracy, temporal coherency, sensitivity and robustness. That is, the algorithm

should be able to detect minor changes to obtain accurate object contours and

it should performs consistently over time under varying conditions. Such an

ideal algorithm is hard to be achieved in practice due to several challenges. The
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arrival/removal/re-location of background objects like waving trees and rippling

water makes the background usually dynamic. The background model is com-

monly initialized inadequately because of the presence of foreground objects in

the training images. These objects occlude several areas of the background, hin-

dering the modeling from learning an accurate background view. In addition, the

foreground object may have similar texture as that of the background or become

motionless for a long time, making the distinction between the real background

and foreground very difficult. The illumination change is another source of false

positives. It may alters the pixel intensity progressively (gradual changes) or

abruptly (sudden changes), and therefore the model incorrectly recognizes these

changes as indications of moving objects. Other challenges come from the poor

image quality, camera jitter or camera automatic adjustments. The illumination

change and dynamic background are by nature very critical and they also occur

commonly in practical scenes, thus the background subtraction research identi-

fies them as major issues [19] (cf. Fig.5.2 and Fig.5.3). More illustrates of the

aforementioned challenges are shown in Sect.5.4.3.

5.2 Related work

5.2.1 Common trends in background modeling

There are a number of background modeling algorithms in the literature, which

are discussed in several comprehensive surveys [20, 29, 39]. We briefly summarize

common research trends and highlight some representatives in each trend.

• Basic background modeling: a single background image is modeled using

the average [68], median [88], or mode of a histogram [166] over time.

• Statistical background modeling: the background is modeled as one or many

distributions using a single Gaussian [153], a mixture of Gaussians [124], or

kernel density estimation [38]. The pixel in question is compared with the

distribution(s) so that it is classified as foreground or background pixel.

• Fuzzy background modeling: the fuzzy concept is introduced to account for

the uncertainty, such as fuzzy running average [14] or Type-2 fuzzy mixture

of Gaussians [14].

• Background clustering: the algorithms following this approach use the K-

mean algorithm [23] or a codebook [65] to represent each pixel in the frame

temporally by clusters. Incoming pixels are matched against the correspond-



Chapter 5 102

ing cluster group and are classified depending on whether the matched clus-

ter is considered part of the background.

• Neural network background modeling: a neural network is trained on N

clean frames to classify each pixel as background or foreground, thus the

background is modeled by weights of the neural network [30, 82].

• Wavelet background modeling: the coefficients of discrete wavelet transform

(DWT) is employed to defined the background in the temporal domain [18].

• Background estimation: these methods adopt a Weiner filter [136], Kalman

filter [89], or a Tchebychev filter [26] to estimate the background. Any pixel

of the current image that deviates significantly from its estimated value is

considered foreground pixels.

The statistical background modeling is most frequently adopted due to its ro-

bustness against critical situations and many developments have been introduced

in this topic [20]. These approaches typically fall into three categories: Gaussian

models, support vector models and subspace learning models. We describe each

category in turn while giving more details on the Gaussian models because they

are closely related to the proposed multi-layer framework.

Gaussian models: the basic way is to model the history of intensity change

at each pixel by a single Gaussian. Wren et al. [153] use a single 3D Gaussian

N(µ(x, y), σ(x, y)) to describe the distribution of YUV color at each pixel I(x, y)

of a stationary background. The mean µ and the variance σ are learned from

several consecutive frames. Every pixel (x, y) of an incoming frame is compared

to the N(µ(x, y), σ(x, y)). It is labeled as foreground pixel if its color greatly

deviates from the distribution. However, this unimodal model cannot handle dy-

namic backgrounds where there are repetitive object motions (e.g. waving trees

or water rippling), shadows or reflectance. Stauffer and Grimson [124] addresses

the problem with a mixture of Gaussians (MOG). They match the pixel in con-

sideration with every Gaussian of the background MOG. If a match is found,

the mean and variance of the corresponding Gaussian is updated. Otherwise, a

new Gaussian is initialized using the current pixel and then joined to the MOG.

The drawback is that the number of Gaussians greatly depends on specific ap-

plications. Elgammal et al. [38] uses non-parametric kernel density estimation

(KDE) to compute the probabilities at each pixel. Each pixel is matched not only

based on the corresponding pixel in the background model but also to nearby

pixels, thus incorporating the region-based information instead of using color

only. This method is capable of handling camera jitter or small movements in
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the background, yet it is quite computationally heavy.

Support vector models: It is based on the principle of support vector to

model the background for different applications. Lin et al. [77] use a support

vector machine for outdoor scenes. Wang et al. [145] adopt the support vector

regression to handle illumination change in traffic surveillance. Tavakkoli et al.

[132] apply support vector data descriptor to deal with dynamic backgrounds.

Subspace learning models: Learning with the PCA is employed in [107] to

represent the background by a mean image and a projection matrix comprising

the first p significant eigenvectors. The difference between the input image and its

reconstruction is then computed to detect the foreground. Some improvements

resort to the use of independent component analysis (ICA), which is a variant of

PCA in which components are assumed to be mutually statistically independent

instead of merely uncorrelated, to remove the rotational invariance of PCA [157].

Meanwhile, the Incremental non-negative matrix factorization (INMF) [22] is

proposed to reduce the dimension, and the Incremental rank-(R1, R2, R3) tensor

[72] takes into account the spatial information.

5.2.2 Mixture of Gaussians

Stauffer and Grimson [124] model the recent history of the color features at

each pixel in the image by a mixture of K Gaussians (MOG), demonstrating

the multimodality of the background. This algorithm is based on two basic

assumptions: 1) the time series of observations at a given pixel is independent

of observations at other pixels, and 2) it can be modeled using a mixture of K

Gaussians.

Each pixel is characterized by a three-dimensional vector x that contains the

RGB color intensities at the pixel. The probability that x is observed at time t

is given by:

P (xt) =
K∑
i=1

ωi,t η (xt, µi,t,Σi,t)

=
K∑
i=1

ωi,t
1

(2π)n/2|Σi,t|1/2
e−

1
2
(xt−µi,t)

ᵀΣ−1
i,t (xt−µi,t)

(5.1)

where ωi,t, µi,t and Σi,t is the weight, mean and covariance matrix of the ith

Gaussian at time t. K is the maximum number of Gaussians for a pixel.

For computational reasons, the RGB color channels are assumed to be inde-
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pendent and have the same variance. Hence, the covariance matrix is written as:

Σi,t = σ2
i,tI (5.2)

where σ is the variance and I is an identity matrix.

The parameters of the MOG model include the number of Gaussians K, the

weight ωi,t associated to the ith Gaussian at time t, the mean µi,t, and the covari-

ance matrix Σi,t (or σ
2
i,t). They are initialized and updated as follows.

Parameter initialization. K is determined according to the available memory

and computational power. It is usually set from 3 to 5 as proposed in [124]. The

ωi,t is assigned a low prior weight and the σ2
i,t is with a large initial variance, indi-

cating the Gaussians are not observed frequently and not stable at the beginning.

Parameter update. After initialization, the first foreground detection can be

made and then the parameters are updated. To determine the number of Gaus-

sians to represent the background, K distributions are sorted in descending order

following the criterion ωi/σi and only the first B distributions are chosen:

B = arg min
b

(
b∑

i=1

ωi > T

)
(5.3)

where T determines the minimum fraction of the recent data contributing to

the background model. This criterion indicates that the background should be

represented by distributions that have high weights and weak variances, i.e. they

are more present than other distributions and their values are practically constant.

When a new frame comes at time t, a match test is made for each pixel. If the

Mahalanobis distance
√

(xt − µk,t−1)ᵀΣ
−1
k,t(xt − µk,t−1) < δσk,t−1 (δ = 2.5), the

observation xt matches the kth Gaussian. If this matched Gaussian is identified

as a background distribution, the corresponding pixel is classified as background.

Otherwise, the pixel is a foreground pixel. The parameters of the kth Gaussian

are updated:

µk,t = (1− α)µk,t−1 + αxt (5.4)

σ2
k,t = (1− α)σ2

k,t−1 + α(xt − µk,t)
T (xt − µk,t) (5.5)



Chapter 5 105

The weights of all Gaussians are updated to

ωi,t = (1− α)ωi,t−1 + αMi,t, Mi,t =

1 if i = k

0 else
(5.6)

where α is the learning rate that controls the speed of adaption and k is the index

of the matched Gaussian.

If no match is found with any of the K Gaussians, the corresponding pixel is

a foreground pixel. The least probable distribution k is replaced with a new one

whose parameters are:

µk,t = xt (5.7)

ωk,t = low prior weight (5.8)

σk,t = large initial variance (5.9)

In practice, a low prior weight is equal to the learning rate α while the initial

variance is set according to the range of values of a specific feature (e.g. 4 <

σr,g,b < 15 [120]).

The above maintenance procedure is applied for every incoming frame during

the background subtraction.

5.2.3 Brief descriptions of competing approaches

The following algorithms are selected to participate in the evaluation in Sect.5.4.4.

The MOG [124] is the baseline in the statistical approach. It models each

pixel with a mixture of Gaussians and uses an online approximation to update

the model. The Gaussians with top values of ωi/σi are selected to represent the

background model. Each pixel x is classified based on whether the Gaussian that

best matches the data at x is considered part of the background.

The Wallflower [136] is a three-component system. The pixel-level com-

ponent performs Wiener filtering to make probabilistic predictions of the ex-

pected background. The region-level component fills in homogeneous regions

of foreground objects. Finally, the frame-level component detects sudden global

changes.

The Improved MOG [144] minutely modifies the implementation of the

traditional MOG [124] in several aspects, such as dealing with shadow removal,

background update and background subtraction. This greatly improves the per-
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formance of MOG.

The LBP-P [54] models each pixel as a group of adaptive LBP histograms

[105], which are calculated over a circular region around the pixel. The back-

ground update is done with a similar procedure to that of the MOG [124], yet

it uses the histogram intersection to compute the proximity between data distri-

butions and two learning rates to control the speeds of adaptation and weighting

separately.

The MOG-MRF [120] adopts and enhances the MOG [124] with several

improvements from [136, 144]. They model the smoothness of the foreground

and background with a Markov random field, thus attaining more complete fore-

ground objects, whereas most statistical techniques treats the pixels in the image

independently and disregards the fundamental concept of smoothness.

5.3 The ML-QLBP framework

5.3.1 Method overview

Inspired by the good performance of the QLBP features in interest region descrip-

tion (cf. Chapter 3), we introduce the Multi-layer QLBP (ML-QLBP) background

modeling framework, which integrates the QLBPsym and RGB color intensities to

model the background scene in a coarse-to-fine manner. The proposed approach

performs robustly against challenging conditions, such as sudden illumination

change and dynamic background, and keeps pace with several baseline and state-

of-the-art methods. This success lies in the two following properties.

1. The background is modeled with two processing layers of the framework.

The block-wise layer manages the distributions of local textures at blocks

of pixels, while the pixel-wise layer deals with the distributions of normal-

ized RGB color intensities at every pixel. During the subtraction process,

the pixel blocks in the incoming frame are first matched with the texture

distributions at corresponding locations and cell in the blocks are then clas-

sified into background/foreground. A background cell contains background

pixels only, whereas a foreground cell includes both types of pixels. There-

fore, pixels in the mixed cells are further matched with color distributions

to find their categories. By jointly processing the frame at block-wise and

pixel-wise levels, global structures can be utilized to avoid a great amount

of false positives due to the instability of color, while the fineness of details
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Figure 5.4: The proposed multi-layer background subtraction framework. The update
is done at every blocks with the block-wise layer and at every pixel of the frame with
the pixel-wise layer. The classification of a pixel into background/foreground depends
on the type of the cell to which it belongs.

are maintained thanks to the manipulation on individual pixels.

2. We adopt the QLBPsym feature to describe the local textures in a pixel

block. It effectively captures the intensity changes in different orientations

around the considered pixel and uses an adaptive thresholding scheme to

cope with noises and local illumination changes. Therefore, it attains a

better discriminative power compared to that of other LBP features. In

addition, because the feature encoding only operates on four neighboring

points, the operator is very computationally efficient and suitable for real-

time applications like background subtraction.
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Figure 5.5: Creating partially overlapping blocks of pixels from 2×2 cells using a sliding
window.

5.3.2 Framework construction

The proposed multi-layer framework models the background scene by observing

the behaviors of QLBPsym textures at blocks of pixels and colors at individual

pixels. The block-wise layer maintains a mixture of QLBPsym histograms at each

block and updates them in a similar manner to that of [54]. Meanwhile, the pixel-

wise layer deals with the normalized RGB intensities following the multivariate

MOG [124]. In this way, both global and local structures in the background can

be well preserved. Figure 5.4 describes the pipeline of our framework.

5.3.2.1 The block-wise layer with QLBPsym features

The incoming frame is first divided into cells of n × n pixels and then a sliding

window of 2× 2 cells slides along two dimensions of the frame (one cell per move)

to create overlapping blocks (cf. Fig.5.5). The use of partially overlapping blocks

enables more accurate extraction of objects than in the case of non-overlapping.

In the block-wise layer, the textures at each block location are characterized by

K average QLBPsym histograms. K is selected by users, which is usually from 3 to

5 [124]. To compute the QLBP sym histogram, we follow the proposed procedure

for the IO-QLBP descriptors in Chapter 3. Intensities of pixels within the block

are sorted in non-descending order and the block is partitioned into S segments

according to the overall intensity order (S = 2 in our experiments). QLBP sym

histogram are computed and concatenated across segments. The model histogram

ith has an associated weight ωi so that the sum of weights is equal to 1, i.e.

ΣK
i=1ωi = 1. The larger weight indicates a more present texture distribution.

Similar to the MOG [124], we sort the model histograms in decreasing order
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according to ωi and select the first B histograms to represent the background:

B = arg min
b

(
b∑

i=1

ωi > TB

)
(5.10)

where TB determines the minimum fraction of data contributing to the back-

ground model.

Let ht denote the QLBPsym histogram computed at the given block in an

incoming frame f(t). ht is compared with the current K model histograms at the

corresponding location using the histogram intersection:

∩(ht, µi,t−1) =
M∑
j=1

min(ht, µij ,t−1) (5.11)

where µi,t−1 is the ith model histogram and M is the number of histogram bins.

The histogram intersection measures the common part of two histograms with

simple operations, thus it is suitable for high dimensional features like LBP.

When ht matches the kth model histogram, i.e. ∩(ht, µk,t−1) ≥ TH where TH

is a user-defined threshold, if the model histogram is part of the background, the

pixel block is identified as background. Otherwise, it is a foreground block (a

mixture of background and foreground pixels). The parameters of the kth model

are updated as follows:

µk,t = αbht + (1− αb)µk,t−1 (5.12)

where αb is the learning rate controlling the adaptation speed of the background

model (αb ∈ [0, 1]). The bigger the learning rate, the faster the adaptation is.

The weights of all model histograms are also updated:

ωi,t = (1− α)ωi,t−1 + αMi,t + β, Mi,t =

1 if i = k

0 else
(5.13)

where αw controls the speed of updating weights, β is a small adjusted constant

[171] and k is the index of the matched Gaussian.

If no match is found with any of the K model histogram, the pixel block is

classified as foreground. The least probable model histogram kth is replaced with
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a new one:

µk,t = ht (5.14)

ωk,t = low prior weight (5.15)

5.3.2.2 The pixel-wise layer with normalized RGB color

In this layer, we characterize each pixel by its normalized RGB color intensities.

The normalized RGB color space is used rather than the original RGB because

of its advantages to minor illumination changes like shadows [38, 120, 144]. The

normalized chromaticity coordinates can be written as: r

g

b

 =
1

R +G+B

 R

G

B

 (5.16)

We follow [120] to define the new color space (r, g, I), where I = (R+G+B).

All channels are scaled to [0, 255]. In this color space, shadows or highlights

are expected to alter the intensities only and therefore, to avoid them, I should

follow the criterion β < It
It−1

< γ, where β and γ are empirically set to 0.6 and

1.5, respectively

The behaviors of pixels through frames are modeled using the conventional

MOG approach [124], in which a mixture of K (r, g) color distributions are main-

tained at each pixel location. In the context of multimodal, the above criterion of

I becomes β < It
µi,t−1

< γ where µi,t−1 is the mean of the ith Gaussian. Therefore,

a match should satisfy both criteria, including the Mahalanobis distance is below

a threshold and I is in the valid range.

Since the normalized color (r or g) is very noisy when the intensity is low, we

adopt the strategy in [144] that uses two color spaces alternatively according to

the values of I. That is, when I < Itd, the (R,G, I) color space is used, while the

(r, g, I) color space is for I ≥ Itd, where Itd is a user-defined threshold.

5.3.2.3 The pipeline of the multi-layer framework

The background subtraction pipeline can be described as follows (cf. Fig.5.4):

• Input: The RGB-formatted color image is first converted into the grayscale

image and then divided into multiple overlapping blocks of 2× 2 cells, each

cells has n× n pixels.
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• The block-wise layer calculates the QLBP histogram for each block and up-

dates the corresponding background models following the mechanism pre-

sented in Sect.5.3.2.1. If a block has ∩(ht, µi,t−1) < TH with all K model

histograms, it is identified as a foreground block. Otherwise, it is a back-

ground block.

• Cells in the blocks are further classified into background/foreground using

a voting strategy. If 50% of the blocks (or more) to which the cell belongs

are background, the cell is identified as background.

• The pixel-wise layer updates the (r, g) color distributions of all pixels in

the image following the mechanism presented in Sect.5.3.2.2. Pixels in the

background cell contribute directly to the background region in the output

while those in the foreground cell are further matched with corresponding

Gaussian color models to determine their categories.

• Output: the process ends when every pixel in the input image is classified

and an output binary image is created with black background pixels and

white foreground pixels.

5.4 Performance evaluation

5.4.1 Evalution protocol

In order to provide a comparative evaluation with other competing methods, we

evaluate the results with the two following quantities:

1. False negatives (FN): the number of foreground pixels incorrectly detected

as background.

2. False positives (FP): the number of background pixels incorrectly detected

as foreground.

5.4.2 Parameter selection

The frame is divided into cells of 10 × 10 pixels and blocks of 2 × 2 cells are

established so that they overlap one another one cell in each dimension.

In the block-wise layer, each block is characterized by at most K = 5 model

histograms. We empirically select the learning rate αb = 0.01 and the weight

updating rate αw = 0.01. The incoming histogram is considered to match a

model histogram if their histogram intersection is equal or above TH = 0.8. B
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Figure 5.6: Sample images from the Wallflower dataset. Each scenario corresponds to a
column in the figure. From top to bottom: two frames of the sequence, the test image,
and the ground truth.

first model histograms that satisfy Eq.5.10 with TB = 0.7 are selected to represent

the background model. The QLBPsym operator has a radius of four pixels. Each

cell is partitioned into three segments according to the intensity order, from which

QLBPsym histograms are computed and concatenated.

In the pixel-wise layer, each pixel is characterized by at most K = 5 Gaussian

distributions of normalized RGB color intensities. The learning rate α is 0.001.

The variance σr,g is between 2 and 15. To handle sudden illumination changes, we

adopted the strategy in [136] to boost the learning rate to 0.1 when the number

of foreground pixels are over 70% the total number of pixels in the frame and

then gradually reducing it back to the original values after some frames.

5.4.3 The Wallflower dataset

We evaluate the performance of our proposed framework using the Wallflower

benchmark [136]. The dataset consists of seven image sequences, in which each

sequence presents a different type of difficulty that a practical background mod-

eling system may encounter. Therefore, it has been widely used for assessing

background subtraction methods. The sequences in Wallflower benchmark are:

Moved Object (MO), Time of Day (TOD), Light Switch (LS), Waving Trees

(WT), Camouflage (C), Bootstrap (B) and Foreground Aperture (FA) (cf.Fig.5.6).

Each image sequence is stored at a resolution of 160 × 120 pixels and contains

one manually segmented ground truth image for evaluation.
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Figure 5.7: The performance of the block-wise layer on the Wallflower benchmark. First
row: test frames of each image sequences. Second row: the hand-segmented ground
truth. Third row: the block-wise segmentation result.

Table 5.1: The performance of the block-wise layer. The FN is the number of blocks
wrongly labeled as background and the FP is the number of blocks wrongly labeled as
foreground.

Sequence FN FP Total Error

Moved Object (MO) 0 0

(13.61%)

Time Of Day (TOD) 1 10 183
Light Switch (LS) 0 34
Waving Trees (WT) 0 29
Camouflage (C) 8 29
Bootstrap (B) 0 46
Foreground Aperture (FA) 0 26

5.4.4 Evaluation results

We first evaluate the performance of the standalone block-wise layer. Each image

has 192 cells of 10× 10 pixels. The layer attains an average error rate of 13.61%

over seven sequences (cf. Table 5.1), thus it is robust enough the facilitate the

subsequent pixel-wise layer to reduce the errors.

The proposed ML-QLBP framework is compared with several baseline and

state-of-the-art background modeling algorithms, including the Mixture of Gaus-

sians (MOG) [124], Wallflower [136], MOG with modifications (Improved MOG)

[144], MOG with Markov Random Field for post-processing (MOG-MRF) [120],

pixel-wise LBP histogram based approach (LBP-P) [54]. The methods in [120,

124, 144] share with the ML-QLBP the use of MOG, yet they only operate on

the pixel level while ours considers both the block and pixel levels. The LBP-

P computes histograms of traditional LBP features for each pixel, whereas the

ML-QLBP collects QLBP features on blocks of pixels.
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Figure 5.8: The qualitative evaluation on the Wallflower benchmark.

From Fig. 5.8, it can be observed that the proposed ML-QLBP and MOG-

MRF are the two best methods in the sense that their results are most similar

to the ground truth. The Moved Object sequence is simple and therefore all

methods attain perfect results. Our framework performs better than the MOG-

MRF in the Time Of Day, Waving Trees and Camouflage. This is thanks to

the effectiveness of the block-wise layer so that background regions are identified

accurately and thus prevents the appearance of false positives in these regions.

Meanwhile, other methods encounter several false positives and negatives. In

the Foreground Aperture case, all methods produce objects with holes inside

except the MOG-MRF. It is due to the advantage of Markov Random Field

(MRF) for post-processing. The MRF exploits the history of pixel activities to

estimate the likelihood of background membership, thus gaining better results

than that of conventional connected component algorithms that depend solely

on the neighborhood in a single image. Although our framework uses only a

simple contour-based method for post-processing, the error difference compared
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to MOG-MRF is not significant (84 pixels). Therefore, it could be inferred that

our framework is superior in adaption. This ability also contributes a good result

in highly dynamic background such as Bootstrap, in which the proposed ML-

QLBP is comparable to the MOG-MRF with a difference of 24 pixels. The Light

Switch is the most challenging task for most of existing methods. To handle this

case, a global change detection mechanism is necessary. Our method implements

a similar mechanism to that of [136] to handle sudden illumination, whereas the

traditional MOG and LBP-P do not use global detection and hence fail in this

case. The ML-QLBP achieves a comparable result to that of MOG-MRG with a

very minor difference of 7 pixels.

The quantitative comparison is presented in Table 5.2. Since the number of

false positives and false negatives for each sequence was not provided in [54], the

LBP-P is not included in the table. Table 5.2 shows FN and FP over seven

sequences, total error - the sum of FN and FP (TE), and total error without

Light Switch (TE*). Because the Light Switch causes a large number of errors

that may distort the overall result, a total error without Light Switch is necessary

to evaluate the performance on other challenges. Our method gives the lowest

TE and TE* among five methods.

We used a standard PC with an Intel Core i7 950 CPU 2.8 GHz PC and

achieved the frame rate of 150 fps was achieved. This makes the framework

suitable for applications that require real-time processing. The frame rate is high

enough to compensate for worse conditions (e.g. lower computer configuration,

higher image resolution, etc.) so that the smooth motion is preserved.

5.5 Discussion and conclusion

In this study, we propose an efficient multi-layer background subtraction frame-

work that combines pixel-wise and block-wise approaches. This framework is

robust to various challenging scenarios thanks to the use of a simple yet highly

discriminative LBP feature and the coarse-to-fine manner that helps to eliminate

a great amount of false positives, which are commonly found in standalone ap-

proaches. It has been shown to be comparable to state-of-the-art methods, and

therefore it is a promising solution for video processing applications like surveil-

lance or video segmentation.

The limitation is that errors in the block-wise layer may greatly affect the

performance of the pixel-wise layer. A false negative cell creates several of false
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negative pixels while a false positive region is a burden to the pixel-wise MOG.

Understanding the interaction between two layers and the feedback mechanism is

our future work. In addition, achievements from the research of LBP in interest

region description may improve the quality of the block-wise layer.
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Pedestrian Surveillance with

Proposed Techniques

This chapter introduces a surveillance system to detect the presence of pedestri-

ans in the monitored area. It is a unified framework based on the integration

of the three proposed techniques in previous chapters, namely interest region

description, background subtraction and pedestrian detection. It helps the ad-

ministrators to improve their observation and sets up a solid foundation for the

development of more sophisticated surveillance systems. The system works effec-

tively on practical scenarios of different environmental conditions, encouraging

its development into a real application in the future.

The content of the chapter is organized as follows. Section 6.1 defines the

pedestrian surveillance task. The unified framework is described in Sect.6.2 and

then evaluated in Sect.6.3. Finally, the last section gives some discussion points

and plans for future work.

6.1 Pedestrian surveillance

Pedestrian surveillance is the monitoring of pedestrians, usually in terms of their

presence and behaviors, for the purpose of managing the activities in certain

places and protecting pedestrians from crimes and dangers. The surveillance

systems are commonly found in public areas such as schools, shopping malls or

subway stations, where a great number of people gather and hence there are also

a lot of potential threats to the life safety and security. Figure 6.1 describes a

surveillance system that uses eight cameras to observe the entering/leaving of

visitors in a university campus. The surveillance task could be more complex,

118
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Figure 6.1: A surveillance system monitors the presence of visitors in a university
campus. It uses eight cameras installed at different location (the leftmost figure) to
capture information at multiple viewpoints (View 1-8). Images are obtained from the
PETS 2009 dataset [6].

(a) Grand Central Ter-
minal

(b) Collective dynamics patterns

Figure 6.2: A surveillance system can further discover interesting collective dynamics
of pedestrians to help the manager to get insight into the activities in the station [168].

such as collecting the motion paths of pedestrians and analyzing the collective

dynamic patterns to identify the traffic flows in the monitored area (cf. Fig.6.2)

[168].

The surveillance is a long-term and intensive task because it is usually carried

out in a 24/7 manner, i.e. without interruption regardless of time or day. In

addition, most systems nowadays still require great manual labor to manipulate

multiple cameras, perhaps up to twenty or thirty devices. Therefore, there is a

high possibility of missing important events due to the working overload. Modern

surveillance systems are heading towards automation by utilizing the advanced

of computer vision technologies so that the monitoring could be done more accu-

rately and less depends on the human effort, which is limited and unstable.

An automated system typically follows the pipeline in Fig.6.3. It consecutively

receives video frames transmitted from a CCTV camera and processes them in

three phases, which demonstrate the increasing levels of automation. It first de-

tects and localizes pedestrians appearing in the monitored scene. Instances of

the same subject are then matched through frames to track the trajectories of
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Figure 6.3: The pipeline of a surveillance system typically consists of three phases,
demonstrating increasing levels of automation.

different pedestrians. Finally, activities of interest such as abnormal running or

crowd formation are recognized based on the temporal information of trajectory

and object shape deformation. The pipeline can be extended to multiple input

sources by using many cameras, as illustrated in Fig.6.1. This can improve the

surveillance quality significantly but needs advanced hardware technologies and

algorithms to manage the process. In practice, a surveillance system not nec-

essarily follows all phases but varies according to the level of monitoring. For

systems that monitor the presence of human to investigate the population or

prohibit intrusion, correctly detecting the movements is essential. Marketing an-

alysts may further demand the trajectories of customers in a department store

to understand the shopping habits. The system in public places like parking lots

and subway stations are most complex since they have to perform all phases to

identify criminal suspects or dangerous events.

From the viewpoint of computer vision, the surveillance task is completely not

trivial because it involves several sub-fields to build different parts of the system.

These research topics may include the background modeling and pedestrian de-

tection for the detection phase, the camera topology estimation, re-identification

and trajectory grouping for the tracking phase and finally the machine learning

for action recognition. These techniques all require deep knowledge of vision prop-

erties to select the most appropriate features. In addition, many difficulties come

from external factors, such as complex background scenes, crowded population,

wide variations of pedestrian appearance and behaviors.

This dissertation introduces a pedestrian surveillance system that implements
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the first level of automation (cf. Fig.6.3) using the three proposed techniques

in previous chapters. Moving objects are first detected using the proposed back-

ground modeling framework in Chapter 5 and then classified into pedestrians/non-

pedestrians using the pedestrian detector in Chapter 4. The QLBP and QLBPsym

in Chapter 3 play the key role in these techniques, allowing the surveillance to

be accurate with an acceptable frame rate of 15.1 fps. Since most CCTV cam-

eras have limited field-of-views, using a single camera cannot recognize objects

and activities at the border. We therefore introduce an extension of the pro-

posed system with multiple cameras. The system creates a panorama image from

frames of different cameras and maps the background subtraction results on this

image. The PLBP feature in Chapter 3 is used to enhance the feature alignment

during image stitching. In this way, the shapes of individuals are revealed more

completely and their motions are joined seamlessly, boosting the effectiveness of

subsequent processes, i.e. trajectory tracking and action recognition.

6.2 The proposed unified framework

We introduce a surveillance system that automates the detection and localization

of pedestrians in the monitored scene. This system is capable of observing the

entering/leaving of visitors in public places, e.g. school ground or office hall,

or detecting potential intruders in prohibited areas. Therefore, it is suitable for

users who want to balance the workload between machines and administrators and

those who have limited budgets. Two versions of the proposed system for a single

camera and multiple cameras are described in the next following subsections,

introducing alternative solutions to different practical demands.

6.2.1 Single-view surveillance system

The proposed system receives input video frames consecutively from a station-

ary CCTV camera. It performs ideally on the D1 Resolution (704 x 480 pixels),

which is available in most cameras even those with low prices. At the time t,

pixels in the frame f(t) are distinguished into foreground/background pixels us-

ing the background modeling algorithm in Chapter 5. Connected foreground

pixels are grouped into blobs {mi}Ni=1, which demonstrate image regions with

temporal changes. These blobs mostly include pedestrians, yet they sometimes

contain birds, cars and background objects (e.g. water fountain or waving tree
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Figure 6.4: The pipeline of the proposed surveillance system with a single camera.

branches) since they also greatly alter pixel values. The system is not interested

in movements of non-pedestrian objects, thus corresponding blobs are filtered

using the ACF-QLBP pedestrian detector in Chapter 4. Finally, the pedestrians

are localized by rectangular bounding boxes in the output frame o(t). Figure

6.4 shows the overall pipeline of the proposed system. Since the effectiveness of

each individual technique has been already verified through standard evaluations

in previous chapters, it is reasonable to expect high performance from this inte-

gration. Experiments in Sect.6.3 show that our system can perform robustly on

practical scenarios of different environmental conditions with the speed of 15.1

fps. This frame rate ensures smooth motion for the human vision and the fea-

sibility for most surveillance applications (except those in casinos or banks that

require values of more than 30 fps).

6.2.2 Multi-view surveillance system

In wide places such as school ground or building hall, a single camera is insuf-

ficient because of the finite sensor field-of-view. A common technical solution

is to install multiple cameras at different locations to capture fragments of the

scene. However, the administrator may meet several difficulties to track a target

traveling from one view to another view since the human vision needs time to

adapt to new scene structures. The panorama surveillance camera resolves the

problem with 180o or 360o images. This new technology is promising but quite
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Figure 6.5: An example of creating a panorama image (the bottom row) from three dif-
ferent views (the top row). Images are obtained from the Pixtra PanoStitcher software
(http://www.pixtra.com/).

expensive. The current price of a panorama camera is usually at least four times

as high as that of a simple camera.

We utilize the advances of computer vision research to fuse the ideas of mul-

tiple cameras and panorama image into a more feasible solution. Specifically,

the proposed system extends its working environment from a single camera to

multiple cameras, stitches a panorama image from all views and performs the

detection on the new common view. It is able to deal with standard cameras,

thus less technology dependent and possibly more economical. To capture a

panorama scene, the cameras are intentionally arranged such that two adjacent

devices share at least 15-30% view overlap. An example of panorama image is

shown in Fig.6.5. We use some modern image stitching method (e.g. [21]) to

composite the panorama scene from frames of multiple views. The feature align-

ment is enhanced with the PLBP feature in Chapter 3, which has been shown

to be faster and more robust than most local features, such as SIFT, DAISY or

MORGH. The proposed system does background subtraction separately on each

view then maps the resulting moving blobs onto the same panorama image. Fi-

nally, the pedestrian detector identifies and localizes pedestrians with bounding

boxes. Since then, the trajectory tracking and action recognition can be done on

the panorama view. Figure 6.6 outlines the pipeline of our multi-view system.
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(a) Fuse-first (b) Track-first

Figure 6.7: The fuse-first and track-first mechanisms. Images are obtained from [126].

It is worth noting that typical image stitching methods are too heavy to

be invoked at every frame. However, we can address the problem easily with

the following suggestions. First, since the panorama image mainly contains the

background details (foreground regions are mapped later from separate views),

it is reasonable to update it partially or with a longer interval. Second, several

robust stitching methods are available. They improve the core algorithm or adopt

GPU [80, 142] to boost the processing speed up to 30 fps or more. Finally, the

position and viewing angle of a stationary surveillance camera are fixed, allowing

us to do some pre-calculation of the scene structure. These modifications greatly

reduce the computation cost for stitching.

The proposed multi-view system resembles the fusion-fist mechanism in the

multi-view tracking literature, i.e. the detection information is projected onto a

common view prior to the tracking. It is the reversal of the track-first mechanism,

which performs everything on each view then projects and links the resulting

information on other views [126]. Figure 6.7 contrasts the two mechanisms. The

fusion-fist approach is computationally simpler, though a higher data transfer

load is required. Most methods in this category build a hypothesis common view

by mapping all views to a top view or constructing a ground plane occupancy

map. This involves sophisticated mappings and the hypothesis view is obscure to

most users. Our solution benefits from the modern vision techniques to operate

directly on the panorama view. There are some attempts to do the tracking
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Sequence Camera model Resolution Frame rate

S1.L1.001 Axis 223M 768× 576 ∼ 7
S1.L1.005 Sony DCR-PC1000E 3xCMOS 720× 576 ∼ 7
S1.L1.008 Canon MV-1 1xCCD w 720× 576 ∼ 7

Table 6.1: The details of selected sequences. The second column shows the camera
models used to film the videos.

on panorama images, yet they focus on using panorama cameras [24, 133]. The

proposed system, on the other hand, less depends on the hardware technologies.

6.3 Performance evaluation

6.3.1 Evaluation data

The evaluation is conducted on three video sequences of the Performance Eval-

uation of Tracking and Surveillance Contest (PETS) 2009 [6]. The videos are

recorded in the campus of the University of Reading (UK) at different viewpoints

and time stamps in the day, demonstrating practical scenarios of surveillance. The

PETS 2009 dataset supports several highly diversified and challenging sequences,

for both single and multiple cameras, thus it is widely used for evaluating pedes-

trian detection and tracking algorithms.

Each sequence includes 795 frames, some of which are shown in conjunction

with the detection results in Fig.6.8-6.10. More details are described in Table 6.1.

We build the background models using the training data provided in the dataset.

6.3.2 Evaluation results

We evaluate the performance of the proposed single-view system while leaving the

evaluation of the multi-view system for future work. This is because the multi-

view system extends the working environment from a single camera to the multiple

cameras, yet it preserves all related techniques, namely the QLBP features, the

ML-QLBP background modeling algorithm and the ACF-QLBP pedestrian detec-

tor. In addition, different from other multi-view fuse-first methods that depend

on the quality of the projection onto a complex hypothesis view, the panorama

image only alters the scene structure moderately and hence has little effect on

the detection and tracking steps. Therefore, the effectiveness in the single-view

case is sufficient to draw a preliminary conclusion for the multi-view case.
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Figure 6.8: The detection result on the S2.L1.001 sequence. Detected pedestrians are
marked by red bounding boxes.
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Figure 6.9: The detection result on the S2.L1.005 sequence. Detected pedestrians are
marked by red bounding boxes.



Chapter 6 129

Figure 6.10: The detection result on the S2.L1.008 sequence. Detected pedestrians are
marked by red bounding boxes.
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(a) Input frame 283th (b) BGS result (c) Output frame

Figure 6.11: An example of false positive in the background subtraction phase. The
rightmost blob in subfigure (b) is a false positive. It is rejected in the pedestrian
detection phase. The background model gradually reduces the error until the frame
288th.

Figure 6.8-6.10 present the detection results on the three PETS 2009 video

sequences. For each sequence, we select eight frames at equal intervals to demon-

strate the surveillance progress and the intermediate background subtraction re-

sults are also presented for comparison.

The background subtraction module performs well on all sequences despite

the large difference of lighting conditions between sequences. This is thanks to

the robustness of the QLBP feature against illumination changes, making the

system more feasible to the wide variations of the outdoor environment. This

phase aims to extract moving blobs for the pedestrian detection, thus accurate

object contours are unnecessary. We therefore modify the background modeling

algorithm so that the subtraction is done coarsely on the block-wise level to ob-

tain the bounding boxes of the moving blobs. This allows the process to attain a

frame rate of ∼ 50fps in this phase. False positives and false negatives sometimes

appear, yet they are soon alleviated in subsequent frames by the adaptive mech-

anism of MOGs. The false positives have little effect on the final results because

the pedestrian detector will recognize that there is no pedestrian in these regions

and hence they will be rejected (cf. Fig.6.11). Meanwhile, the false negatives are

more severe because the pedestrian detector only performs on the moving blobs.

However, they rarely appear because the background model is customized to be

highly sensitive to the changes of feature in the blocks.

The ACF-QLBP pedestrian detection operates on the moving blobs provides

by the previous phase, instead of on the whole frame. Because the foreground

usually accounts for smaller portion of the image than that of the background,

this mechanism can save a considerable amount of computation cost, allowing
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the process to run at ∼ 22.6 fps, which is much faster than the full-image mode

(15.2 fps). As described in Chapter 4, our detector is trained on the INRIA

benchmark [31]. The benchmark shares no scene and subject with the PETS

dataset, except the ratio between the subject and the image size. Nevertheless,

the ACF-QLBP successfully identifies pedestrians of various sizes and poses in

all sequences, proving its robustness and generality. Although it encounters some

false detections and incomplete localization (too small or too large bounding

boxes) due to occlusion or feature instability, these errors are negligible. We

consider the scene context to alleviate the false negatives (miss detections) in

a heuristic manner. In a video sequence, the pedestrian should move smoothly

and continuously until s/he arrives the exit. Therefore, when the detector finds

no pedestrian in a moving blob B, the system will search for with-pedestrian

bounding boxes in the moving blobs that overlap B in previous frames. If there

is such a bounding box, there is a high possibility that a pedestrian appears in B

and thus a new bounding box is created with a certain shift to demonstrate the

movement of the pedestrian. In this way, we incorporate the temporal information

to improve the performance of the single-frame detector.

In order to evaluate the overall performance of the system, we present all

locations of pedestrians through frames onto a single map and compare them

with the corresponding manual labeled ground truth. Let [x, y, w, h] denote the

bounding box covering a pedestrian, where (x, y) is the coordinate of the top-

left corner, w and h are the width and height, respectively. The location of

the pedestrian is represented by a dot at (x + w/2, y). As seen from Fig.6.12-

6.14, the dot maps generated by our data and the ground truth data are very

similar to each other. This demonstrates the effectiveness and stability of the

proposed system. Note that the dots between two maps cannot match exactly

at the same location because the positions and sizes of the bounding boxes vary

slightly. In addition, the ground truth is strictly labeled, i.e. occluded people

are also counted, while our detector intrinsically cannot handle large occlusions

(cf. Chapter 4). However, these differences do not alter the general correlation

between two maps and therefore it is still possible to verify the correctness of the

system.

The proposed system is recommended to run on a standard PC or more. Table

6.2 presents the elapsed time and frame rate for each phase of the process. Our

system attains an average frame rate of 15.1 fps on an Intel Core i7 950 CPU 2.8

GHz PC, which satisfies the required speed for common surveillance applications.
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Table 6.2: The elapsed time (seconds) and frame rate (fps) for each phase of the
surveillance process (tested on a standard PC).

Sequence
Background subtraction Pedestrian detection Average FPS

Time FPS Time FPS

S2.L1.001 17.61 45.13 36.16 21.98 14.78
S2.L1.005 17.28 46.00 35.30 22.52 15.12
S2.L1.008 17.03 46.68 34.77 22.86 15.35

Table 6.3: The elapsed time (seconds) and frame rate (fps) for each phase of the
surveillance process (tested on a laptop).

Sequence
Background subtraction Pedestrian detection Average FPS

Time FPS Time FPS

S2.L1.001 27.17 29.26 50.24 15.82 10.27
S2.L1.005 28.04 28.36 49.40 16.09 10.27
S2.L1.008 27.97 28.42 48.62 16.35 10.40

This encourages us to extend the proposed system to multi-view processing as

well as developing it into a practical application in the future. We also run the

system on a Intel Core i5-2430M CPU 2.4 GHz laptop (cf. Table 6.3). Although

the speed is not promising as in the case of a PC, yet it is still in the feasible

range of surveillance, i.e. from 5 to ∼ 30 fps.

6.4 Discussion and conclusion

We introduce an effective pedestrian surveillance system, which is unified from

three proposed techniques in interest region description, background subtraction

and pedestrian detection. It automates the detection of human, which is an es-

sential step in the surveillance process. Therefore, it is suitable for applications

like monitoring the entering/leaving of visitors in public places or detecting in-

truders in prohibited areas. The evaluation on standard video sequences have

shown its good abilities. This success lies in the robustness of novel LBP features

in every phase. In addition, the system attains an average frame rate of 16 fps

on a standard PC, which is sufficient for the human vision and thus promising

for common surveillance demands (usually in 5 ∼ 30 fps).

We note that the bottleneck of our system is the pedestrian detection, though

changing the detection mechanism on the whole frame to on specific moving blobs
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have improved the frame rate significantly (from 15.2 fps to 22.6 fps). In previous

chapters, we have presented the future works to improve related techniques. Their

achievements will contribute to the enhancement of this system. In addition, some

code optimization will be able to speed up the process.
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(a) Our data (b) Ground truth data

Figure 6.12: The dot maps represent all locations of pedestrians in the S2.L1.001 se-
quence, which are generated by our system (a) and the ground truth (b).

(a) Our data (b) Ground truth data

Figure 6.13: The dot maps represent all locations of pedestrians in the S2.L1.005
sequence, which are generated by our system (a) and the ground truth (b).

(a) Our data (b) Ground truth data

Figure 6.14: The dot maps represent all locations of pedestrians in the S2.L1.008
sequence, which are generated by our system (a) and the ground truth (b).
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Conclusion

This chapter presents the conclusions for the studies and analysis reported in the

dissertation and describes future work. The first section summarizes achievements

from the studies. The second section points out limitations that need to be

addressed in future work. The final section discusses some prospects of this

research in the future.

7.1 Summary

This dissertation has systematically studied the LBP features to attain an effec-

tive means of feature matching. The abilities of interpreting and distinguishing

image properties are the key factors that enable computers to perform high-level

tasks more similarly to human, such as identifying objects or finding the similarity

and dissimilarity between objects. Therefore, the achievements in this disserta-

tion could contribute to the development of visual perception for computers.

To fulfill its goal, the dissertation has analyzed the advantages and drawbacks

of the LBP features in three major computer vision tasks, including the interest

region description, pedestrian detection and background subtraction.

Chapter 3 introduces the IO-QLBP and MSR-PLBP descriptors for interest

region description. They are able to match details between different images un-

der challenging geometric and photometric transformations. The problems of

matching accuracy and computational cost are simultaneously addressed though

they are competing factors. Meanwhile, other descriptors usually encounter ei-

ther of these issues. This success is constituted from two key factors. First, the

computational simplicity enables them to be implemented easily for certain ap-

plications. Second, they are robust to several challenging image transformations
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and noise. This results in their excellent performance in image matching and

object recognition.

Chapter 4 presents the ACF-QLBP, a robust pedestrian detection built from

the generalized QLBP and the advanced learning framework of [34]. The QLBP

texture well characterizes edges along diagonal and vertical directions, which are

identified as the most visible and essential cues of the human body. It is combined

with three color channels and a gradient histogram to describe the target from

different aspects, namely texture, color, and gradient changes in magnitude and

orientation. In this way, the proposed detector attains high robustness against

the wide variations of human poses while maintaining an acceptable frame rate.

Chapter 5 describes the ML-QLBP background modeling method. The block-

wise layer examines the distributions of QLBPsym textures in blocks of pixels to

classify cells in the blocks into background/foreground while the pixel-wise layer

further analyzes the obtained foreground cells with distributions of colors to iden-

tify true moving pixels. Its robustness and efficiency come from the combination

of the block-wise and pixel-wise approaches into a unified framework. In addition,

the QLBPsym effectively captures global structures while strongly resisting to the

effects of illumination change. These properties allow the system to reduce the

errors better than approaches using pixel-wise or block-wise subtraction only. It

is also comparable to several modern background modeling approaches at that

time.

Chapter 6 integrates the three proposed techniques into a unified pedestrian

surveillance system. It consecutively processes video frames transmitted from a

stationary CCTV camera through two phases. First, the frame is compared with

the background model to extracting moving blobs, which may contain pedestrians,

birds, cars, and non-stationary background objects also. Second, the pedestrian

detector classifies whether there are pedestrians in the moving blobs and localizes

them by rectangular bounding boxes in the output frame. The system has shown

good performance through evaluations on challenging scenarios, encouraging its

development into a practice application in the future.

The effectiveness of the proposed techniques is comprehensively evaluated

through several comparative studies with competing baseline and state-of-the-art

approaches in each field. They are all shown to be on a par with their competitors

in one or many aspects, such as matching accuracy, computational cost, or the

balance of these two factors. This makes the novel LBP features prominent among

a large variation of features in computer vision.



Chapter 7 137

7.2 Limitations and future work

Despite of significant achievements, this dissertation still encounters several limi-

tations and hence leaving space for further improvements. The following content

discusses each limitation as well as possible solutions to overcome the issue.

Generality. The dissertation has provided two effective LBP features for

three different major computer vision tasks. However, they need careful consid-

erations to adjust their parameters and hence they cannot be applied without

profound understanding of the nature of each problem. Texture analysis is the

fundamental knowledge that may help us to create more general and innova-

tive LBP encodings. In addition, the QLBP and PLBP should be extended for

P neighbors instead of fixing them with four neighbors. Although the current

settings are sufficient to compete with modern approaches, enhancing their gen-

erality may enable many interesting properties and thus open more opportunities.

High dimensionality. It is an intrinsic drawback of most LBP features

because robustness and compactness are competing factors. Approaches using

gradients usually provide compact feature vectors yet they are computationally

heavy due to the computation of gradient orientation and magnitude. The LBP

also records the magnitude of gray-level changes but ignores the quantization of

orientations, thus it needs more elements in the feature vector to compensate

the information loss. In the study of interest region description, gradient-based

descriptors use eight orientations while our descriptors need 16 distinct binary

codes to achieve the same level of robustness. In the pedestrian detection problem,

a sliding window is characterize by features of 5120 dimensions in the ACF [34]

and 6144 dimensions in the proposed ACF-QLBP, resulting a significant drop of

frame rate in our method. Enhancing the encoding, computing LBP features on

a more stable medium rather than gray values (e.g. Gabor images or DCT), or

applying PCA to reduce the dimensions are promising suggestions.

Parameter tuning. The proposed approaches have some parameters that

need tuning. For example, the scale factor τ in the QLBP (Eq.3.2) and the

threshold T that is estimated from a Gaussian function of brightness contrast in

the PLBP (Eq.3.14). Up to now, they are usually selected according to exper-

iments or empirically selected following some subjective observations. The lack

of a mathematic foundation causes difficulties in verifying their effectiveness in

general cases. A deep analysis of image contrast or gray-level transform could be

helpful to fill this gap.
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7.3 Future prospects

To this end, the dissertation has provided good solutions to partially resolve

the problem of representing visual data and enabling the visual perception in

computers, yet there are still several issues worthy of note in the future.

The computer vision by nature should have close connections with cognitive

sciences and behavioral sciences because it relates the human visual perception

with the computational power of computers. However, we have seen very few

benefits from these connections while most of the fundamental knowledge comes

from pure sciences, mathematics, or fields based on mathematics like signal pro-

cessing, image or control robotics. It does interact with artificial intelligence and

machine learning in the sense that many algorithms in these fields are used for

learning models or making decisions, which somewhat reflects the simplest abil-

ities of reasoning and inference of humans. Nevertheless, a system that is able

to imitate the full, or coarse, mechanism of receiving and processing the visual

information in human has never been revealed in computer vision. Therefore, it

is substantially necessary to improve the connections with sciences related to hu-

man vision, for example, the neurobiology, cognitive vision and biological vision.

These fields study and model the physiological processes behind visual percep-

tion in humans. The computer vision, on the other hand, tries to describe the

processes by implementation in software and hardware behind artificial vision

systems. Interdisciplinary exchange between biological research and computer

vision are therefore highly expected to nurture both fields.

There are several discussions about the quantum computer, which is a device

that makes direct use of quantum-mechanical phenomena to perform operations

on data. Large-scale quantum computers are able to solve certain problems more

much quickly than any classical computer by using advanced algorithms like inte-

ger factorization using Shor’s algorithm or the simulation of quantum many-body

systems. While machine learning and artificial intelligence have just touched the

surface of the “human intelligence” iceberg because of the incredible complexity

of the human brain, the emergence of this technology offer us good opportuni-

ties to gain more insights. It allows modeling and testing several hypotheses

with greater complexity, hence enabling the involvement of a large-scale visual

analytics process in order to discover valuable knowledge.
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[54] Heikkila, M., Pietikäinen, M.: A texture-based method for modeling the background

and detecting moving objects. IEEE Transactions on Pattern Analysis and Machine

Intelligence 28(4), 657–662 (2006)
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[112] Pietikäinen, M., Nurmela, T., Mäenpää, T., Turtinen, M.: View-based recognition of

real-world textures. Pattern Recognition 37(2), 313–323 (2004)
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Appendix A

Image matching results

A.1 Matching results on the Oxford dataset
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Figure A.1: The performance of evaluated descriptors on the 1st − 2nd pairs of the
Oxford benchmark (Part 1/3). The scales are different through figures.
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Figure A.2: The performance of evaluated descriptors on the 1st − 2nd pairs of the
Oxford benchmark (Part 2/3). The scales are different through figures.
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Figure A.3: The performance of evaluated descriptors on the 1st − 2nd pairs of the
Oxford benchmark (Part 3/3). The scales are different through figures.
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A.2 Matching results on the Viewpoint change

dataset
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Figure A.4: The performance of evaluated descriptors on the 1st − 2nd pairs of the
Viewpoint change dataset (Part 1/2). The scales are different through figures for better
clarifying the plots.
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Figure A.5: The performance of evaluated descriptors on the 1st − 2nd pairs of the
Viewpoint change dataset (Part 1/2). The scales are different through figures for better
clarifying the plots.
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