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Abstract

With the emergence of new knowledge sources such as machinery knowledge and organiza-
tional knowledge, knowledge creation process has shifted to a new level of co-creation process
where multiple participants share and utilize other’s knowledge to create newly collaborative
knowledge. One issue of knowledge co-creation is the heterogeneity and conflict among knowl-
edge from various sources. Ontologies are the solution for heterogeneous problem since they
can explicitly represent the knowledge within each participant to make the knowledge under-
standable and manipulatable by the others. They have been used widely in many areas re-
lating to Knowledge Science such as knowledge managements, service science, bioinformatics,
e-healthcare, e-learning, among others. There are various specification for ontology representa-
tion among which description logics (DLs) is chosen as the recommendation in Semantic Web
environment due to their good tradeoff between expressive power and computational efficiency.
DL ontology represents the world by concepts, which correspond to groups of objects, and roles,
which correspond to the relationship among concepts. A DL ontology contains logical axioms,
which are understandable by a computer and make it is possible to automatically handle an
ontology.

This research aims to accelerate and accurate knowledge co-creation process by studying and
extending ontology abilities to handle heterogeneous and conflict knowledge shared among col-
laborators. We construct an expressive ontology for School of Knowledge Science, KS ontology,
and propose an extension of description logic (DL) ontology, named defeasible DL, which can
handle conflict knowledge in inconsistent ontologies. The KS ontology is an explicit representa-
tion of educational program of School of Knowledge Science which allows students to exchange
and create their own knowledge about studying plan with the assistant of computer. DL axioms
are used to express educational program so that computer programs can process the ontology to
provide assistant services. The application of KS ontology demonstrates the role of DL ontology
to support knowledge sharing and co-creation process in real world situation.

Upon building ontology for real-world application, we recognize the problem of conflict
knowledge. Conflict appears naturally because of the incompleteness of participant’s know-
ing in a knowledge co-creation environment. For example, the advances of machine learning and
data processing techniques can allow computer to generate the knowledge that have not been
discovered by human being. Conflict knowledge can make an ontology inconsistent and infer
meaningless conclusion. Reasoning with inconsistent ontologies is necessary and has attracted
much attention in recent years. Those researches extend ontology reasoning ability by inte-
grating non-monotonic reasoning mechanisms or providing uncertainty representation to handle
conflict knowledge in ontology.

We propose defeasible DL, an extended representation of DL ontology, which contains defea-
sible axiom and priority relation. Defeasible axiom provides a mean to represent knowledge that
can be retracted when there is contradict evidence and priority relation is used to assign the
preference among axioms to resolve conflict among defeasible knowledge. Based on the principle
of defeasible reasoning, we propose a reasoning framework for defeasible DL ontology which uti-
lizes a selection function to select axioms and create a consistent sub-theory of original ontology
and perform reasoning. The selection function is skeptical because it looks ahead to see whether
there is any contradict conclusion that can be inferred and only select an axiom if all contradict
conclusions are eliminated. Compared with other related works, our approach has simplicity and
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flexibility, expressive power, and computational efficiency as the advantages. Therefore, this re-
search can help to accurate the conflict issue in knowledge co-creation application. Due to the
simplicity, our approach also has the limitation of not exploiting the semantics of elements in
the knowledge. This limitation can be solved by integrating our reasoning approach with more
complicated uncertainty representation, which is the future perspective of our research.

Keywords: ontology, defeasible reasoning, description logics, knowledge representation and
reasoning, conflict knowledge
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Chapter 1

Introduction

1.1 Ontology and Knowledge Science

For along time, knowledge creation process has been solely associated with human be-

cause it is one of the most intellectual processes. However, modern society witnesses the

emergence of new sources of knowledge: organizational knowledge and machinery knowl-

edge. Organizational knowledge is created through the interaction among agents in a

complex system or organization. Typical research into collaborative knowledge is Non-

aka and Takeuchi’s [87] which introduces how knowledge is organizationally created in

enterprises and produces successful products and technologies. This work establishes the

foundation of research into what knowledge is and how knowledge is created and utilized,

which are the main objectives of Knowledge Science (KS). Machinery knowledge is greatly

motivated by two recent factors of information science: deep learning technique and the

‘big data’. Deep learning is machine learning technique that allows computer to learn

knowledge from data with very little human assistant. Meanwhile, ‘Big data’ refers to

any amount of data that is too large and complex to be processed using on-hand database

management tools or traditional data processing applications. With the appearance of

these factors, it is expected that machines can generate knowledge beyond human insight.

Knowledge creation scheme has shifted to a new level, the knowledge co-creation

scheme where knowledge is created during the mutually interaction among individual

knowledge, organizational knowledge and machinery knowledge, as shown in Figure 1.1.

Knowledge co-creation consists of sharing, utilizing, and synthesizing knowledge from dif-

ferent sources to create newly collaborative knowledge. One of the problems of knowledge

co-creation is heterogeneity among knowledge from different sources. For example, the

knowledge learned by the computer can be distinct or even conflict with knowledge that

have been known by the human. This research aims to contribute to knowledge science

by addressing the problem of conflict knowledge to accelerate and accurate the knowledge

sharing and co-creation process.
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Figure 1.1: Knowledge Co-Creation in Modern Society where Knowledge can be created
by sharing, utilizing, and synthesizing from Individual, Organizational and Machinery
Knowledge

Ontology is the answer for heterogeneous problem when sharing and integrating knowl-

edge from different sources. The term ‘ontology’ originally refers to the subfield of phi-

losophy, which deals with the nature of existence. This branch of metaphysics tries to

identify and describe the things that actually exist. The world ontology has recently been

adopted by computer science to formally describe a domain of discourse and allow knowl-

edge sharing within a certain domain or among various domains. Definitions of ontology

have evolved over the years and also varies by perspectives. The most accepted definition

of ontology is given by Studer et al. [111], which extends Gruber’s definition [46], which

states that “an ontology is an explicit and formal specification of a conceptualization”.

Therefore, ontology formally represents knowledge about a world or a domain to allow to

share and incorporate mutual understanding among collaborators in knowledge sharing

and co-creation as shown in Figure 1.2.

Another definition that is suitable to perspective of this research is Guarino and Gi-

aretta’s definition which considers ontology as a logical theory which gives an explicit,

partial account of a conceptualization [47]. From computer science aspect, an ontology

consists of a shared understanding of a domain of interest and this understanding is repre-

sented is a formal way so that a machine can handle it. Usually an ontology will contain

a set of terms together with relationships between them. The terms typically denote

classes of objects and relationships include the most often used is-a hierarchy and other

2



Figure 1.2: Ontology for Knowledge Sharing and Co-Creation

domain-specific associations.

Construction of ontologies is a major concern in Knowledge Engineering (KE). Al-

though KE is originally an artificial intelligent (AI) discipline to integrate knowledge into

computer systems in order to solve complex problems normally requiring a high level of

human expertise, many KE systems today have a deep involvement of human experts

and organization in many phases of modeling and utilizing the knowledge in the domain.

Therefore, KE systems exhibit both art and engineering features. KE involves various ac-

tivities from diverse disciplines such as cognitive science [112], socio-cognitive engineering

[107], ontological engineering [39], and service science.

1.2 Ontology and Semantic Web

The coordination of ontology and Semantic Web creates an ideal tool for many researches

and applications in knowledge science even though they are initially developed separately.

Ontology working group adopts semantic web elements to construct contemporary ontol-

ogy languages which allow us to describe domain models and the current trend in the

Semantic Web community is to utilize ontologies for expressing the meaning of informa-

tion in the Web. Figure 1.3 shows some typical examples of research and applications of

the duet in various topics of researches and applications in Knowledge Science.

Ontologies had been created before the Semantic Web concept was introduced, firstly

using AI modeling techniques based on frames and first-order logic (FOL). Cyc ontology

[72], one of the first reputable ontologies, expresses a large knowledge base of commonsense

knowledge using CycL, a formal language based on FOL. Ontolingua [33] is a represen-
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Figure 1.3: Ontology and Semantic Web for Knowledge Engineering

tation language based on KIF (Knowledge Interchange Format) [36], a language for the

interchange of knowledge between heterogeneous software systems, with the addition of a

frame ontology. The traditional representation formalism like FOL has two drawbacks: it

can be confusing even for many software developers and computational cost of practical

system is too expensive. With the rapid development of Semantic Web techniques in the

last few years, knowledge representation languages based on description logics (DL) [11],

a subset of FOL with sufficient expressive power and rational computational expense, like

OIL [34], DAML-ONT [81], DAML+OIL [21], OWL [24], and OWL 2 [23, 109], have been

emerging in the context of Semantic Web and OWL 2 becomes the recommendation of

the W3C Web Ontology Working Group for ontology language.

The Semantic Web, which was presented by Tim Berners-Lee and extensively de-

veloped from 2001 [15, 7, 54], is a vision for transforming the World Wide Web into a

semantically rich web of information to enable a distributedly massive intelligence in In-

ternet environment. The World Wide Web currently consists mostly of linked hypertext

documents, which are readable for people but are understandable for computers because

they are written in the natural language. Instead, computer programs can only treat texts

as streams of words, which are not connect with their meaning. The Semantic Web, just

as the Internet and the World Wide Web, is decentralized and open for everyone to add

content. Moreover, people publish content in various forms such as text, images, sound

and video. The Web also spans across languages and cultures. This makes it very hard to

capture the meaning of each piece of information made public on the Web by individuals

around the world. It is necessary for the Semantic Web to utilize a formal representation
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Figure 1.4: Ontology and Semantic Web Stack

such as ontology to present information that is understandable and manipulatable by

computers.

As discussed above, ontology and Semantic Web are mutually interacting to promote

researches and applications in each field and other areas of knowledge engineering and

knowledge science. Figure 1.4, which is modified from the schema first proposed by Tim

Berners-Lee1, clarifies the interaction between them by showing the use of Semantic Web

layers in current ontology formalism.

The white part of the figure presents the main layers the Semantic Web Stack and

the color part presents two main component of an ontology formalism. The Semantic

Web utilizes the same underlying technologies as the current World Wide Web. Uniform

Resource Identifier (URIs) to identify web resources, Unicode as the standard character

encoding and XML as a universal data format are already the dominant standards. These

1http://www.w3.org/2000/Talks/1206-xml2k-tbl/slide10-0.html
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two layers provide syntactical units to build ontology.

The next three layers provide building blocks to represent meaningful information in

the ontology. The contemporary ontology languages are primarily using RDF (Resource

Description Framework) [105] as the underlying data model. RDF is a very general data

model for describing resources and relationships between them. The RDF data model

is built with statements in the form of object-attribute-value triples. These triples also

allow efficient store of the data model on a distributed environment like Internet because

it does not need a unified schema like in the case of relational database [1]. The primary

syntax of RDF is based on XML [35]. However, other syntaxes could be used to express

the RDF data model. RDF Schema [19] specializes RDF for describing properties and

classes of RDF resources. It provides the means to express hierarchies of these classes

and properties. RDF Schema explicitly defines the “is subclass of” relationship, which

does not exist in RDF. OWL (Web Ontology Language) [109] is semantically and syntac-

tically a further specialization of RDF. It provides an expressive language for describing

relationships between classes and individuals.

Apart from representation, formal semantics is needed to precisely define the meaning

of knowledge of ontology. The semantics of ontologies is usually based on a logic formalism,

such as FOL or DL. Formal semantics is needed to make each statement unambiguous.

An ontology language has to support efficient reasoning, which is enabled by the formal

semantics of the language. Reasoning support is required among others in order to check

the inconsistency of a knowledge base and to answer queries. For example, the OWL

ontology language is based on description logic and thus existing DL reasoners can be

employed. A sufficient expressive power is also required to describe as many aspects of a

domain as possible. Every ontology language will have its limitation as to the knowledge

it can express. However, expressivity is always increased at the cost of computational

complexity reasoning.

1.3 Conflict Knowledge and Inconsistent Ontologies

Basic elements of ontology include individual, concept, role, and axiom. These elements

correspond to a particular entity in a domain, a set of entities, a relationship among

individuals or concepts, and logical statement to explicitly represent known truth about

the domain, respectively. Conflict knowledge can be encountered in all levels of element.

The conflict in individual, concept and role often occurs when integrate multiple ontologies

due to the homonyms or synonyms of vocabulary to express the terms, for example, a

‘plant’ can be both a tree or a manufactory. The reason for this problem is the different

convention of naming elements among organizations. It brings back the heterogeneous

problem to ontology and can be addressed by syntactical approaches to match elements

6



Figure 1.5: A demontration of Inconsistent Ontologies

among ontologies [32, 86]. Hyvönen [57] argues that we should prevent instead of solve

heterogeneous problem by proposing a set of principles for ontology development.

On the other hand, conflict knowledge at axiom, or logical, level make an ontology

inconsistent and possible to infer invalid knowledge. Let’s consider the following example.

A bird ontology can contain axioms saying that ‘birds fly’ and ‘penguins are birds’. From

those axioms, implicit knowledge such as ‘penguins fly’ can be deduced by ontology rea-

soning process. This example is illustrated in Figure 1.5(a). Assume that bird ontology

has another axiom saying that penguin does not fly, as depicted in Figure 1.5(b). Then

concept ‘penguins’ is unsatisfiable or inconsistent because it belongs to two mutually dis-

joint concepts ‘fly’ and ‘not fly’ concurrently, as shown in Figure 1.5(c). This situation is

not acceptable according to the law of non-contradiction in classical logic, the underlying

logic of current ontology formalism.

According to the principle of explosion (or ex contradictione quodlibet) of underlying

classical, anything can be inferred from contradictory premises. For example, we can

infer that ‘penguins are human’ from an unsatisfiable concept such as penguins in above

example. There are two main ways to deal with inconsistency in ontologies: one is to

diagnose and repair it when it is encountered; another is to avoid the inconsistency and

to apply a non-standard inference relation to obtain meaningful answers [38]. Although

common ontology editors such as Protégé provide function to identify the potential axioms

that can cause conflict, performing repairing ontologies can be very difficult. For example,

we do not have enough rights to modify remote ontology or even expert ontology engineers

also find it confusing to work out the underlying errors [114].

The latter approach to scope with inconsistency by utilizing a non-standard inference

relation. This approach has attracted considerable interest in recent years because incon-

sistency in unavoidable due to the nature of knowledge, as indicated in many studies. A

famous example of inconsistency from theoretical aspect is Gödel’s first incompleteness

theorem which states that for any consistent axiomatic theory of arithmetic, which can be

recognized to be sound, there will be an arithmetic truth not provable in it, but which can

7



be established as true by intuitively correct reasoning. The appearance of inconsistency

many practical knowledge-based applications like knowledge management is also certain.

There are two common cases that causes the inconsistency in practical applications. The

first case is when the ontology contains some default knowledge such as bird ontology

in above example. Default knowledge is the knowledge that is generally true but false

in some exception. The second case is when we migrate the knowledge from another re-

source or integrate multiple sources of knowledge. Those knowledge sources can be locally

consistent but contain conflict knowledge with the others.

This research aims to solve the problem of inconsistent ontologies by providing more

tolerant reasoning ability for ontology. Using proposed reasoning approach, meaningless

answers is removed while meaningful answers are retained. For example, if the ontol-

ogy includes axiom ‘birds have wings’, the conclusion ‘penguins have wings’ is obtained.

Due to the necessary of non-monotonic reasoning, a great amount of research has been

devoted to propose conflict representation and reasoning approaches. Typical works of

non-monotonic logics include paraconsistent logic [93], default logic [69], among others.

Those works overcomes the principle of explosion or avoid inconsistency by extending

the representation of classical propositional logic. Those approaches have been integrated

with ontology reasoning in various related researches.

In this research, we propose an extended representation of DL ontology, named as

defeasible DL ontology, to express conflict knowledge and defeasible reasoning approach

to process this knowledge. The extended representation is based on the integration of de-

feasible logics into DL ontology formalism. Among non-monotonic reasoning approaches,

defeasible logics [88, 89] standout for their deeply theoretical foundation and efficiently

practical applications. They have been studied deeply in term of proof theory [4], se-

mantics [42, 78] and its relation to logic programming [5, 6]. The use of defeasible logics

and related approaches in various application domains has been advocated, including the

modeling of regulations and business rules [45], modeling of contracts [98, 41], legal rea-

soning [44], agent negotiations [29], and agent modeling [43]. Defeasible logics are also

introduced in semantic web [13, 3]. Those applications are supported by efficient im-

plementation systems [3, 67]. Defeasible inference in propositional form of logic can be

performed in linear time as proved in [78].

Our proposed extension adds two features to DL ontology: defeasible axiom and pri-

ority relation. Defeasible axiom provides a mean to represent knowledge that can be

retracted when there is contradict evidence. In defeasible DL ontology, defeasible axiom

is used to represent the meaning such as ‘most birds fly’, which is depicted in Figure

1.6(a). In this figure, we also see the inference result when integrating new defeasible

axiom with classical axiom ‘penguins are birds’. The conclusion is ‘most penguins fly’

and can be defeated by the classical axiom ‘penguins do not fly’ in Figure 1.6(b). As a
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Figure 1.6: Defeasible axiom to resolve inconsistency

Figure 1.7: Conflict among defeasible axioms

consequence, ‘penguins’ is satisfiable in defeasible DL ontology, as shown in Figure 1.6(c).

Defeasible reasoning is skeptical and priority relation is used to assign the preference

among axioms to resolve conflict among defeasible knowledge. Defeasible reasoning is

skeptical because it rejects both conclusions if two conflict conclusions can be inferred.

To demonstrate this principle, assume that we replace the classical axiom in Figure 1.6(b)

by defeasible axiom ‘most penguins do not fly’ in Figure 1.7(b) (since we may expect that

some gene modified penguins or super penguins can fly). The reasoning result of new on-

tology is illustrated in Figure 1.7(c). We have a half-half situation where ‘most penguins

fly’ and ‘most penguins do not fly’ occur simultaneously. Without preferential infor-

mation, defeasible reasoning removes both conclusions. We can assign priority relation

among conflict axioms to make defeasible reasoning generate desired result. For example,

specifying that ‘most penguins do not fly’ is stronger than ‘most birds fly’ makes defea-

sible reasoning infer the former as a conclusion and discard conclusion ‘most penguins

fly’.
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1.4 Research Contributions

Figure 1.8 illustrates the roadmap to knowledge science in our research that aims to

harmonize the conflict knowledge to accurate and alleviate the knowledge sharing and

co-creation process. The blue paths show our research contributions while the gray ones

show alternative approaches for encountered problems. We first examine the ability of

contemporary ontology specification for knowledge sharing and co-creation by creating

a comprehensive ontology about educational program of School of Knowledge Science of

JAIST that helps the students to understand the knowledge in educational guideline and

build their own knowledge about studying plan. The constructed model shows that cur-

rent ontology language is sufficient and efficient enough to handle complicated situations

in practical knowledge sharing and co-creation application.

Building and utilizing the ontology in an practical knowledge sharing application also

reveals conflict knowledge which causes the inconsistencies in ontology. In this research,

we propose a defeasible reasoning approach to handle inconsistent ontologies. The pro-

posed approach is applied on the ontology layer of a DL ontology so that it can inherit

the semantic expressiveness of DL ontology and computational efficiency of defeasible

reasoning. The green paths present our future works to scope with contextual knowledge,

i.e. the knowledge that has the meaning depending on the context or viewpoint, which

is the more general case than conflict knowledge. We believe that kind of knowledge is a

appropriate form to encode knowledge in more complicated scenario in knowledge sharing

and co-creation.

Compared with other related works, our approach has simplicity and flexibility, ex-

pressive power, and computational efficiency as the advantages. Therefore, this research

can help to expand the applicability of ontology and knowledge representation in knowl-

edge sharing and co-creation applications. A short comparison is given as follows and

more detail discussion can be found in chapter of related works .

Owning to its simplicity, flexibility and efficiency, defeasible proof theory has been

introduced to DLs by other research such as in [40, 2, 91]. However, defeasible logic relies

on a proof-based semantics, which is not fully compatible with model-based semantics

of description logic. This limitation prevents the application of defeasible reasoning on

the ontology reasoning. Current work on defeasible description logic [40, 91] converts DL

axioms into propositional rules and perform reasoning with logic programming techniques.

This approach shows some restrictions on the expressiveness and efficiency. This approach

relies on the semantics of propositional logic, which is much “weaker” than those of

current DLs such as proposed in [23], causing much difficulty in extending the semantics

of proposed defeasible DL. Transformation from a DL ontology to logic program increase

the size of theory and thus significantly affect the reasoning complexity. A similar work

10
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is introduced in [38] that translates a DL ontology into defeasible logic program DeLP

and perform argumentative reasoning by an justification abstract machine. However, this

approach lack of expressiveness power of DL ontology and computing argumentation in

logic program is also known to be untraceable. Variants of paraconsistent logic are also

integrated with DL ontology in [61]. Zhang et al. [117] introduces an extension of tableau

algorithm for ALC to handle paraconsistent and nonmonotonic reasoning in ontology.

Those works have the similar drawback due to the lack of expressiveness of extended

languages.

Another approach to handle inconsistency is modeling the uncertainty and incom-

pleteness of knowledge. Some typical works of uncertainty representation and reasoning

in ontology which can also be applied to handle conflict knowledge are probabilistic DL

[74], possibilistic DL [97, 95], Bayesian network in OWL [27], Fuzzy OWL [18], and rep-

resentation of belief network in OWL [31]. Those researches provide flexible frameworks

to scope with inconsistent ontologies and have powerful expressiveness. However, those

works make the ontology language more complicated with new concepts of uncertainty.

It is also difficult for ordinary ontology modeler to determine the value of uncertainty in

practice.

The contributions of this research are as follows:

• We demonstrate the applicability of present ontology formalisms in knowledge shar-

ing and co-creation that can fulfill the complicated requirements in real-world ap-

plication.

• We propose defeasible DL ontology, an extension of DL ontology which has the

ability to represent and reason with conflict knowledge.

• Based on defeasible proof theory, we introduce a reasoning approach for defeasible

DL ontology and a formal interpretation of defeasible semantics.

• We introduce heuristics to automatically determine the preferences among knowl-

edge to resolve conflict to facilitate knowledge sharing.

• We implement a prototype of defeasible DL as a Protégé plugins to demonstrate

and evaluate the applicability of the proposed approach.

The remaining of this dissertation is organized as follows. Chapter 2 introduce con-

structed ontology for educational program of School of Knowledge Science as well as formal

foundation of description logic ontology. Chapter 3 summarizes and discusses about rele-

vant knowledge and features about defeasible logic which is integrated into our framework

to handle conflict in inconsistent ontologies. The formal definition of proposed framework

is presented in detail in Chapter 4 and the implementation and evaluation in Chapter

12



5. Chapter 6 discusses about alternative approaches to model and reason with conflict

knowledge in ontologies. Chapter 7 concludes this dissertation and considers future works

for our research.
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Chapter 2

Description Logics Ontology

2.1 Introduction to Description Logics

Description Logics (DLs) [66] are a family of knowledge representation (KR) that pro-

vides the underlying semantics for the current recommended ontology language, OWL.

Although developed from other KR formalisms such as semantics web and frames, DLs

differentiate from their predecessors by their formal, logic-based semantics. This distin-

guished feature allows DLs to focus on their reasoning ability, which can infer implicitly

represented knowledge from the knowledge that is explicitly contained in the knowledge

base [23].

As indicated in their name, DLs describe the important notion of domain by the con-

cept descriptions. The building blocks of these expressions are atomic concepts, which

denotes a set of individuals, and atomic roles, which denotes binary relationships between

individuals. Complex descriptions are constructed from atomic ones inductively with con-

cept constructors. The set of allowed constructors depends on the language of a particular

DL system but the following constructors are supported by most of DLs including concept

conjunctions, concept disjunctions and concept negations.

Assume we want to construct a knowledge-based system of educational program of

Doctoral Course in School of Knowledge Science. Then the set of atomic concepts of the

domain may include Professor, Student, and Course which relate to the ordinary definition

of those entities. It also consists of other concepts that express more specific notions such

as ‘student of School of Knowledge Science’, KSStudent, or ‘doctoral student’, DoctorStu-

dent. The set of atomic roles contains supervises, which denotes the relationship that a

professor is the main supervisor of a student, and passes, which denotes the relationship

that a student passes a lecture.

By using concept constructions introduced above, we can define complex concepts

such as ‘KS doctoral student’ by KSStudent u DoctorStudent with concept conjunction,

‘a doctor or master student’ by DoctorStudent tMasterStudent with concept disjunction,
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and ‘not doctoral student’ by ¬DoctorStudent with concept negation.

Concept descriptions are used to build two types of logical statements, or axioms, in DL

knowledge: terminological and assertional statements. Terminological statements describe

the properties of concepts and roles, and relationships between thems. The general form

of terminological statements is general concept inclusion (GCI) axiom, which has the form

C v D where C and D are concept descriptions and it is read as “C is subsumed by D”.

For example, the statement that “all students of School of Knowledge Science are JAIST

students and JAIST students are student” is represented by the following axioms

KSStudent v JaistStudent,

JaistStudent v Student.

Another form of terminological axiom is equality, denoted as C ≡ D, which is equiv-

alent to C v D and D v C. If C is an atomic concept, this axiom is called a definition.

For example, the statement “As a graduate school, a regular student of JAIST is either a

doctor or a master student” is represented by two axioms

JaistStudent v DoctorStudent tMasterStudent,

DoctorStudent ≡ ¬MasterStudent.

The former states that a regular JAIST student can be one of two types, a master or a

doctoral student, and the latter (in the context of JAIST) states that these two types

are mutually disconnected, which implies an individual can not belongs to both concepts

concurrently.

Assertional statements describe a concrete situation by stating properties of individ-

uals or relationship among individuals. For example, the assertions

KSProfessor(YAMADA), supervises(YAMADA, SUZUKI), passes(SUZUKI,K612)

state that Yamada is a Professor of School of Knowledge Science, that he is the main

supervisor of Suzuki and that Suzuki passes the course K612.

DL statements are typically separated into two parts, terminological part TBox and

assertional part ABox. For more expressive ontology, role box RBox is added to describe

the properties of roles or relationship among roles. TBox corresponds to the schema in the

database setting while ABox to the data. But in contrast to the database setting, ontol-

ogy inference takes into consideration both terminological statements and the assertional

statements to provide reasoning services. These services will be discussed thoroughly in

Section 2.4.

This sections so far has introduced basic syntax of DLs and we will discuss about an

important notion in the domain of educational program in School of Knowledge Science,
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Courses, before go into detail of syntax and semantics of DLs. Courses in School of

Knowledge Science are considered with respect to two aspects, level aspect and area

aspect. According to the area aspect, courses are categorized into 3 areas as Social

Knowledge (A), Knowledge Media (B), and Systems Knowledge (C). Besides, some courses

such as K228 Introduction to Knowledge Science I can be categorized as any of those three

areas. Thus, we consider these courses as Multi-Area Courses and create a new concept

for them. The formulation of this categorization is as follows1:

KSCourse ≡ SocialCourse tMediaCourse t SystemCourse tMultiAreaCourse

With respect to the level aspect, courses are classified as Introductory Lectures, Basic

Lectures, Intermediate Lectures and Advanced Lectures and Seminars. The classification

corresponds to the level of students: generally, the three former lectures are for master

students and the last ones for doctoral students. Among those lectures are English (Tech-

nical Communication) courses that is considered in a different way. Therefore, a new

concept for these lectures is necessary for representing and processing these knowledge.

We define the concept KSLecture, which is indeed equivalent to KSCourse, to describe this

partition as below

KSLecture ≡ IntroLecture t BasicLecture t InterLecture t AdvanLecture t EnglishLecture

KSCourse ≡ KSLecture

2.2 Syntax and Semantics of Description Logics

2.2.1 Syntax

A member of DLs family is distinguished and named by the constructors it provides. The

simplest and much studied expressive DL isALC (Attributive language with Complement)

which provides concept conjunction, concept disjunction, concept negation, universal re-

striction, and existential restriction. Two notable extensions of ALC DL are SHOIN ,

which is the basic of OWL ontology language, and SROIQ, which is the basic of OWL

2 ontology language. SHOIN DL extends ALC DL with simple hierarchical roles, nom-

inals, inverse roles and (unqualified) number restrictions. SROIQ DL in turn extends

SHOIN with a full role box RBox and qualified number restrictions. [62]

Because the requirements of KS Ontology is limited as discussed later, we assume an

empty RBox in this research but the results of proposed approach can be easily extend

1For the sake of brevity, the prefix KS in concept name is omitted where it does not cause any
ambiguity.
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to Rbox in general. Therefore, we consider SHOIQ, a DL that is more expressive than

SHOIN but less expressive than SROIQ. A concept description in SHOIQ is defined

by the following syntactic rule:

C,D −→ A | (atomic concept)

> | (top concept)

⊥ | (bottom concept)

¬C | (concept negation)

{o} | (nominals)

C uD | (concept conjunction)

C tD | (concept disjunction)

∃R.C | (existential restriction)

∀R.C | (universal restriction)

≥ nR.C | (qualified at-least restriction)

≤ nR.C (qualified at-most restriction)

where A is a atomic concept name, o an individual, C and D concepts, > abbreviation for

C t¬C, ⊥ abbreviation for C u¬C, R a atomic role or its inverse, and n a non-negative

integer. The meanings of the constructors and the letters associated with them are briefly

explained and demonstrated as follows.

Universal restriction (or value restriction) allows us to pose range restriction of roles,

it requires every individual that participates in a relationship must be a particular con-

cept. For example, we may state that a student must be supervised by professor by the

statement

Student v ∀supervisedBy.Professor.

Existential restriction expresses that a relationship can be satisfied by at least one

member of the concept of discourse. For example, the requirement that a student must

pass at least one course of Advance Lectures and Seminars to graduate can be expressed

by the statement

GraduateStudent v ∃passes.AdvanLecture.

Universal and existential restrictions can be used to set the domain and range of role

such as specified by the following axioms

∃supervises.> v Professor (domain restriction)

> v ∀supervises.Student (range restriction)

These axioms state that Professor is the domain and Student is the range of supervises.

The letter S is the abbreviation of ALC with transitive role, which can represents role
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like locatedIn which states that the location of a concept is within the other. Transitive

role allows automatic implication such that if JAIST is located in Ishikawa and Ishikawa

is located in Japan, JAIST is located in Japan.

Simple hierarchical role (indicated by the letter H) allows role hierarchical statements

such as

transfers v passes

to describe that if a student transfer a valid course from his master program, he is con-

sidered to pass this course.

Nominals (indicated by the letter O) provide us with a convenient way to define

a concept by enumerating its members. The “set” (or one-of ) constructor, i.e. {}-
constructor, is used with individual names to construct the concept. For example, from

requirement of course completion of School of Knowledge Science, the course of Seminar

on Knowledge Science B contains only one course K601, which corresponds to the major

research project. Thus, this concept can be expressed by {K601}.
Inverse role (indicated by the letter I) allows to use role axiom such as

supervises ≡ supervisedBy−1

to state the supervises and supervisedBy have the reverse domain and range to each other.

Number restrictions (indicated by the letter N ) allow us to describe the number of

relationship of a particular type that individuals can participate in. They are at-least

restriction, written as ≥nR, and at-most restriction, written as ≤nR. For example, the

restriction that a student has exactly one main supervisor can be represented by using

both constructors in the statement

Student v ≤ 1supervises−1 u ≥ 1supervises−1

which can be abbreviated as

Student v = 1supervises−1.

With qualified number restrictions (indicated by the letter Q), we can additionally

describe the type of individuals that are counted by a given number restriction. For

example, the requirement that a student must pass at least 5 courses to graduate is

represented by

GraduateStudent v ≥ 5passes.Course.

With respect to the assumption of empty RBox, a SHOIQ ontology Σ = (T ,A)

consists of two finite and mutually disjoint sets: the TBox T which introduces the termi-
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nology and the ABox A, which contains facts about particular objects in the application

domain. TBox statements have the form C v D, concept subsumption, or C ≡ D, con-

cept equivalence. The ABox is referred to by a finite number of individual names and

these names may be used in two types of assertional statements: concept assertions of

the type C(a) and role assertions of the type R(a, b).

In SHOIQ ontology we can simulate the ABox assertions with TBox axioms by using

named individuals together with the {}-constructor as follows:

C(a)⇔ {a} v C

R(a, b)⇔ {a} v ∃R.{b}

This simulation, which is applied in [50], is helpful to reduce all ontology reasoning services

to concept checking. If the role of ABox is not necessary in the discussion, it can be

omitted in upcoming sections and chapters.

2.2.2 Semantics

The description language has a model-theoretic semantics which is defined in terms of

interpretation. An interpretation of an ontology is a tuple I = 〈4I , ·I 〉, where 4I is

a non-empty set called the domain, and ·I is an interpretation function mapping each

concept name A to subset AI of 4I , and each role name R to binary relations RI over

4I ×4I :
AI ⊆ 4I , RI ⊆ 4I ×4I ,>I = 4I ,⊥I = ∅

for all individual name o,#{o}I = 1

Given an interpretation I = 〈4I , ·I 〉, ·I is extended to interpret complex concepts in

the following way:

(¬C)I = 4I \ CI , (C uD)I = CI ∩DI , (C tD)I = CI ∪DI

(∃R.C)I = {x | ∃y such that (x, y) ∈ RI and y ∈ CI},
(∀R.C)I = {x | ∀y, (x, y) ∈ RI implies y ∈ CI},

(≥ nR.C)I = {x | #{y | (x, y) ∈ RI and y ∈ CI} ≥ n},
(≤ nR.C)I = {x | #{y | (x, y) ∈ RI and y ∈ CI} ≤ n},

where #N is the number of elements in N .

Given the definition of interpretation, semantics of DL is defined as follows. An

interpretation I satisfies C v D or C ≡ D iff CI ⊆ DI or CI = DI , respectively.

An interpretation I satisfies the assertion C(a) iff aI ∈ CI , and it satisfies R(a, b) iff

(aI , bI) ∈ RI . An interpretation I is a model of a DL (TBox or ABox) statement ϕ iff it

satisfies the statement, and is a model of a DL ontology Σ iff it satisfies all statements in

19



Σ. A concept C is satisfiable with respect to Σ if there exists a model of Σ such that

CI 6= ∅. Otherwise, C is unsatisfiable or inconsistent. An ontology is inconsistent if

it contains unsatisfiable concept. A DL ontology Σ entails a DL statement ϕ, written as

Σ |= ϕ, iff every model of Σ is a model of ϕ.

2.3 An ontology for Educational Program in School

of Knowledge Science

2.3.1 KS Ontology

A comprehensive ontology, named KS Ontology, is constructed to represent and manage

knowledge about educational program in School of Knowledge Science. The overall model

is illustrated in Figure 2.1 and the detail knowledge of this ontology is partially represented

in Figure 2.2 and 2.4. The figures focus on representing the course and credit requirements

for doctoral student, which is shown in Figure 2.3. The requirements for a doctoral student

to be qualified are quite complicated. Understanding those requirements is one of the main

concern of freshmen when entering the program. They often consult their seniors about

this problem. However, it also costs much time for them to understand the requirements

to prepare and submit the enrollment just after the entrance. This motivates us to

construct this ontology to ease the burden of the newcomers. This example demonstrates

the difficulty when one participant utilize the shared knowledge from other participant to

create new knowledge in a knowledge co-creation process.

The application of ontological research in education is proposed by [83] and becomes

one of the most fashioned and rapidly evolving in the field. Typical work of this trend is

performed by [9], as well as in [25] for the more specific domain of Web-based Intelligent

Systems. Recently, Dicheva [26] develops an ontology-driven web portal that provides

a single network place, where researchers, students, and practitioners can find informa-

tion about available research projects and successful practices in this field. Regarding to

knowledge sharing application, [48] proposes a cross-language semantic model (SEMCL)

for knowledge sharing, which uses semantic web technologies to provide a potential so-

lution to the problem of ambiguity which can match knowledge descriptions in diverse

languages. This model employs an ontology as an underlying layer to overcome diffi-

culties of cross-language information retrieval. Those related works focus of knowledge

retrieval that exploits the semantic relations provided by ontology to perform searching

knowledge. However, they do not show the use of expressive power of ontology to derive

implicit knowledge of the ontology. Our approach considers mainly expressive features

of contemporary ontology language to maximize the use of reasoning ability of ontology

itself.
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Figure 2.1: Top level concepts of the Ontology for School of Knowledge Science

The created ontology is an expressive ontology which represents knowledge in logical

axioms so that the implicit knowledge can be derived through ontology reasoning process

and used to create new knowledge for student by answering interest questions from the

user such that:

– Is a student qualified to get a doctoral degree from School of Knowledge Science?

– Does a student’s enrollment plan satisfy the course requirements?

– Given a list of course that student has passed, which course does he should take to

satisfy the requirements?

– etc.

In order to answer above questions, the KS ontology defines general concepts of Pro-

fessor, Student, and Courses, and the relationships among them, as shown in Figure 2.1.

These general concepts are used to represent detail concepts in interest that is KSPro-

fessor, KSStudent, KSCourse and KSLecture, among which the latter two are actually

equivalent. The figure also shows the partition of regular JAIST students into solely two

type of graduate students, master and doctoral students, by isUnionOf and disjointWith

relationships.
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The KS ontology ΣKS = (TKS,AKS) consists of a TBox TKS and an ABox AKS, which

represents the detail knowledge of the domain. The TBox provides definitions of interest

concepts, represented the requirements in an explicit and logical fashion. The ABox plays

a role as a database which contains relevant information about interest objects in the

domain and can be used to derived answers to specific questions.

2.3.2 KS Ontology TBox

Figure 2.2 presents the essential excerpt of TBox TKS. The axioms from (1) to (9) have

been introduced and discussed in sections 2.1 and 2.2. The most important axiom in

TBox is the definition axiom (10), which establishes the conditions of a doctoral student

of School of Knowledge Science to graduate. The requirements are expressed as six terms

in the right hand side of the definition. The first two terms are trivial since qualified KS

doctor have to be doctoral student of School of Knowledge Science. The remaining four

terms represent four conditions of the requirement respectively.

Among four remaining terms, the first two terms ∃passes.{K601} and ∃passes.{K602}
directly correspond to the requirements 1) and 2) in Figure 2.3.

The remaining two requirements, correspond to requirements 3) and 4), are quite

complicated and should be broken down. They are expressed by two concepts DrCour-

seCompleted and DrEssentialCompleted in axiom (10) and the corresponding requirements

are represented in axioms (11) and (15), respectively.

Due to the complexity of condition 3), definition of concept DrCourseCompleted is also

decomposed into 2 concepts DrAreaCompleted and DrLevelCompleted corresponding to the

requirements of course area completion and course level completion.

The requirement of course area completion is represented in the main statement of the

requirement 3) in the Figure 2.3 that requires a student to take course in at least 2 areas.

Since there are courses in particular area and courses in multiple areas, one of following

two cases can occur for the student to satisfy this requirement:

– the student passes at least 1 course in 2 of 3 areas:

(∃passes.SocialCourse u ∃passes.MediaCourse) t (∃passes.SocialCourse u
∃passes.SystemCourse) t (∃passes.MediaCourse u ∃passes.SystemCourse)

– or the student passes at least 1 multi-area course and 1 course in 1 of 3 areas:

∃passes.(SocialCourse tMediaCourse t SystemCourse) u ∃passes.MultiAreaCourse

The union of above two condition terms forms the definition (12) for the concept

DrAreaCompleted.
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Terminological Box TKS:

(1) KSStudent v JaistStudent

(2) JaistStudent v Student

(3) JaistStudent v DoctorStudent tMasterStudent

(4) DoctorStudent ≡ ¬MasterStudent

(5) KSCourse ≡ SocialCourse tMediaCourse t SystemCourse tMultiAreaCourse

(6) KSLecture ≡ IntroLecture t BasicLecture t InterLecture t AdvanLecture t
EnglishLecture

(7) KSCourse ≡ KSLecture

(8) Student v = 1supervises−1

(9) ∃supervises−1.KSProfessor v KSStudent

(10) KSQualifiedDoctor ≡ KSStudent u DoctorStudent u ∃passes.{K601} u
∃passes.{K602} u DrCourseCompleted u DrEssentialCompleted

(11) DrCourseCompleted ≡ DrLevelCompleted u DrAreaCompleted

(12) DrAreaCompleted ≡ ((∃passes.SocialCourse u ∃passes.MediaCourse) t
(∃passes.SocialCourse u ∃passes.SystemCourse) t (∃passes.MediaCourse u
∃passes.SystemCourse))t (∃passes.(SocialCoursetMediaCourset SystemCourse)u
∃passes.MultiAreaCourse)

(13) DrLevelCompleted ≡ ∃passes.AdvanLecture u (≥5 passes.DrLecture t
((∃passes.EnglishLecture u ≥4 passes.DrLecture)))

(14) DrLecture ≡ BasicLecture t InterLecture t AdvanLecture

(15) DrEssentialCompleted ≡ (TypeE u ∃passes.{K617}) t (TypeS u ∃passes.{K618})

Figure 2.2: Terminological Box for Educational Program in Ontology for School of Knowl-
edge Science

The requirement of course level completion, which defined in axiom (13) for the concept

DrLevelCompleted, comes from the analysis of the notes of requirement 3) as follows:

• The first note requires that the student must pass at least one course (2 credits) of

Advanced Lectures and Seminars and corresponds to the term ∃passes.AdvanLecture.

• The second note implies that only courses of Basic Lectures or Intermediate Lecture

or Advance Lectures and Seminars are valid for the doctoral program. We define

a new concept DrLecture as the union of these three valid course levels use this
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7.1.2 Course and Credit Requirements

1) 6 credits from K601 Seminar on Knowledge Science B (major research project)

2) 4 credits from K602 Knowledge Science Research B (minor research project)

3) 10 credits from 5 course, or more, in 2 areas of the Advanced Lectures and Seminars

• Those credits must include at least 2 credits from the course of the Advanced
Lectures and Seminars

• If a student who is a graduate of a master’s program in our schools completes
a course of Basic Lectures or Intermediate Lectures, which the student did not
complete in the master’s program, the course and Area will be transferred to
corresponding course and Area of the Advanced Lectures and Seminars and
recognized as a part of completion requirements in the doctoral program.
In addition to the recognized courses, at least 2 credits from 1 course of
Advanced Lectures and Seminars (K6xx series) in the doctoral program must
be completed.

• Only 2 credits from the course of English (Technical Communication) III can
be recognized as a part of completion requirements.

4) The course of K617 Project Management (Advanced) is essential for the type E
students and the course of K618 Critical Thinking and Scientific Discussions is
essential for the type S students.

Figure 2.3: Course and Credit Requirements for Doctoral Program in School of Knowledge
Science from JAIST Degree Completion Guide 2010-2011

definition as the shorthand in the following requirement. The definition of created

concept is represented by

DrLecture ≡ BasicLecture t InterLecture t AdvanLecture.

• The last note, together with the main statement of the requirement, indicates two

cases that a student satisfies the requirements of course level:

– he passes at least 5 courses of doctoral lectures:

≥5 passes.DrLecture,

– or he passes one English course and at least 4 courses of doctoral lectures:

(∃passes.EnglishLecture u ≥4 passes.DrLecture).
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The conjunction of description in the first and third notes forms definition for the concept

DrLevelCompleted.

For the essential requirement, the mapping between condition terms of axiom (15) for

concept DrEssentialCompleted and the requirement 4) in Figure 2.3 is straightforward: one

student satisfies this requirement if

– he is a type E student and pass the course of K617:

TypeE u ∃passes.{K617},

– or he is a type S student and pass the course of K618:

TypeS u ∃passes.{K618}.

2.3.3 KS Ontology ABox

Figure 2.4 shows important assertions in the ABox relating to three students in interest,

namely Robert, Suzuki, and Nguyen. The upper part shows the assertions relating to the

courses of School of Knowledge Science. This part corresponds to the core knowledge of

educational program and is built in the implementation phase of the ontology together

with the TBox. The lower part describes a specific circumstance in interest and is used

to verify the correctness of the ontology. Those assertions can be inputted by the user

when using this ontology.

In the particular situation described by this figure, all three students are KS students

among who Robert and Nguyen are explicitly represented as KS students while Suzuki is

implicitly via the statements that Yamada is the main supervisor of Suzuki and Yamada

is a professor of School of Knowledge Science. The latter case is used to verify the

representation ability the ontology. Suzuki and Nguyen are doctoral students while Suzuki

a master student and all of them are type S students. All those students have pass 5

courses as shown in the figure and Robert also finished his major and minor researches,

K601 and K602 respectively. Together with knowledge about courses and lectures, this

ABox allows to infer the status of each student as given in the following section.

2.4 Ontology Reasoning

2.4.1 Ontology Reasoning Tasks

A DL system is emphasized by its reasoning or inference ability which plays the central

role of an artificial intelligence system. Figure 2.5 shows the architecture of knowledge

25



Assertion Box AKS:

EnglishLecture(K218) BasicLecture(K211) IntroLecture(K116)
BasicLecture(K228) BasicLecture(K213) BasicLecture(K217)
InterLecture(K417) BasicLecture(K229) InterLecture(K414)
AdvanLecture(K613) AdvanLecture(C612) InterLecture(416)
AdvanLecture(K618) AdvanLecture(K612) AdvanLecture(616)
MultiAreaCourse(K218) SocialCourse(K211) SystemCourse(K116)
MultiAreaCourse(K228) MultiAreaCourse(K213) SystemCourse(K217)
MediaCourse(K417) MultiAreaCourse(K229) SystemCourse(K414)
MultiAreaCourse(K613) MediaCourse(K612) SystemCourse(K416)
MultiAreaCourse(K618) MediaCourse(C612) SystemCourse(K616)

...
KSProfessor(YAMADA)
KSStudent(ROBERT) supervises(YAMADA,SUZUKI) KSStudent(NGUYEN)
DoctorStudent(ROBERT) MasterStudent(SUZUKI) DoctorStudent(NGUYEN)
TypeS(ROBERT) TypeS(SUZUKI) TypeS(NGUYEN)
passes(ROBERT,K218) passes(SUZUKI,K211) passes(NGUYEN,K116)
passes(ROBERT,K228) passes(SUZUKI,K213) passes(NGUYEN,K217)
passes(ROBERT,K417) passes(SUZUKI,K229) passes(NGUYEN,K414)
passes(ROBERT,K613) passes(SUZUKI,C612) passes(NGUYEN,K416)
passes(ROBERT,K618) passes(SUZUKI,K612) passes(NGUYEN,K616)
passes(ROBERT,K601) passes(ROBERT,K602)

Figure 2.4: A part of Assertion Box which relates to knowledge about Students and
Courses for Educational Program in School of Knowledge Science

representation and usage using ontology-based knowledge system. The user constructs

and updates the knowledge base by stating his expertizing knowledge using DL language

and stores it in TBox and ABox of the ontology. Reasoning engine accesses this knowledge

and performs inference to deduce the implicitly represented knowledge and returns result

to the user as requested. Mid-tier programs or applications can be added to facilitate the

user to interact with the system by proving features such as knowledge interpretation,

which expresses the knowledge in a language that is familiar to human, or user friendly

interface.

Typical reasoning services for DL ontology include:

• Concept subsumption checking determines the inclusion relationship among con-

cepts: given two concept C and D, whether D is more general than C or C is

subsumed by D, denoted as C v D, that is all instance of C is necessarily instances

of D. For example, from the statements that KS students are JAIST students and

JAIST students are students, it is possible to infer that KS students are students,

i.e. KSStudent v Student.
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Figure 2.5: Knowledge Representation Systems based on Description Logics

• Concept satisfiability checking determines whether a concept C is satisfiable or con-

sistent, or literally speaking, whether it is not subsumed by an empty concept,

denoted as C 6v ⊥. This is the main ontology reasoning service since every reason-

ing tasks con be reduce to concept satisfiability checking. For example, if we want

to check whether a KS student is a student, we can determine the satisfiability of

its contradiction, KSStudentu¬Student. The unsatisfiability of the negated concept

implies a positive answer and vice versa.

• Instance checking determines whether an individual i is an instance of concept

C. For example, from the fact that Yamada is the main supervisor of Suzuki and

Yamada is a Professor of School of Knowledge Science, it is possible to conclude

that Yamada is a student of School of Knowledge Science, KSStudent(SUZUKI),

according to the axiom (9) in Figure 2.2.

• Consistency checking determines whether a knowledge base (consisting of a set of

assertions and a set of terminological axioms) is non-contradictory. For example,

if we add ¬KSStudent(SUZUKI) to the ABox AKS, which conflicts with the above

inferred assertion KSStudent(SUZUKI), the knowledge base becomes inconsistent.

Another enhanced service is ontology classification, that is to discover all concept pairs

〈C,D〉 such that C is subsumed by D and all individual-concept pairs 〈i, C〉 such that i

is a instance of C. Since the cost subsumption checking is computationally high, various

optimization techniques have been introduced which utilize explicit hierarchical informa-

tion of concepts and individuals to minimize the number of subsumption checking when

classifying concepts and instances [37, 64, 110, 71]. Ontology classification is provided by

modern ontology editors as a default function for ontology reasoning which automatically
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performs all above reasoning services in one single command.

Figure 2.6 shows the important results when performing inference on KS Ontology to

determine the status for every student in the ABox. They are mainly instance assertions

which shows the status of individuals in discourse. ROBERT is classified as a qualified

KS doctor since he has satisfied all requirements that is stated in axiom (10). SUZUKI is

classified as a KS student as expected and even being a master students, he considered

to satisfies doctoral course requirements because all the courses he has passed belongs

doctoral courses and cover at least 2 areas. Finally, NGUYEN does not satisfies any

requirements and thus is not assigned to any corresponding concepts.

Inference results:
JaistStudent(ROBERT) Student(ROBERT)
KSQualifiedDoctor(ROBERT) DrCourseCompleted(ROBERT)
DrEssentialCompleted(ROBERT) DrLevelCompleted(ROBERT)
DrAreaCompleted(ROBERT)

JaistStudent(SUZUKI) Student(SUZUKI)
KSStudent(SUZUKI) DrCourseCompleted(SUZUKI)
DrEssentialCompleted(SUZUKI) DrLevelCompleted(SUZUKI)

JaistStudent(NGUYEN) Student(NGUYEN)

Figure 2.6: Reasoning results for individuals of KS Ontology

2.4.2 Tableau Reasoning Algorithms

Most ontology reasoners today utilize tableau reasoning algorithms, which initially pre-

sented by [104] for ALC DL and extensively developed for more expressive DLs such as

in [12, 55, 85, 65, 63], to check concept satisfiability.

Tableau algorithms prove the satisfiability of a concept C by constructing a model,

an interpretation I in which DI is not empty. A tableau is a directed graph which

represents such a model, with nodes correspond to individuals (elements of 4I) and

edges correspond to relationships between individuals (elements of 4I ×4I). Each node

x is labeled with a set of concepts (L(x) = {C1, . . . , Cn}), and each edge 〈x, y〉 is labeled

with a role (L(〈x, y〉) = R). When a concept C is in the label of a node x(C ∈ L(x)), it

represents a model in which the individual corresponding with x is in the interpretation

of C. When an edge 〈x, y〉 is labeled R(L〈x, y〉) = R), it represents a model in which

the tuple corresponding with 〈x, y〉 is in the interpretation of R. A node y is called an

R-successor of a node x if there is an edge 〈x, y〉 labeled R, x is called the predecessor of

y if y is an R-successor of x, and x is called an ancestor of y if x is the predecessor of y

or there exists some node z such that z is the predecessor of y and x is an ancestor of z.
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u-rule: if 1. C1 u C2 ∈ L(x), x is not blocked, and
2. {C1, C2} 6⊆ L(x)

then set L(x) = L(x) ∪ {C1, C2}
t-rule: if 1. C1 t C2 ∈ L(x), x is not blocked, and

2. {C1, C2} ∩ L(x) = ∅
then set L(x) = L(x) ∪ {C} for some C ∈ {C1, C2}

∃-rule: if 1. ∃R.C ∈ L(x), x is not blocked, and
2. x has no R-successor y with C ∈ L(x)

then create a new node y with L(〈x, y〉) = {r} and L(y) = {C}
∀-rule: if 1. ∀R.C ∈ L(x), x is not blocked, and

2. there is an R-successor y of x with C ∈ L(y)
then L(y) = L(y) ∪ {C}

v-rule: if 1. C1 v C2 ∈ L(x), x is not blocked, and
2. C2 t ¬C1 6∈ L(x)

then set L(x) = L(x) ∪ {C2 ∪ ¬̇C2}

Figure 2.7: The tableau expansion rules for ALC

The algorithm initializes a tree to contain a single node x (called the root node) with

L(x) = {C}, and then expands the tree by applying rules that either extend node labels

or add new leaf nodes. A set of expansion rules for the ALC DL is shown in Figure 2.7

which cited from [11], where C and D are concepts, and R is a role. For example, if

C1uC2 ∈ L(x), and either C1 6∈ L(x) or C2 6∈ L(x), then the u-rule adds both C1 and C2

to L(x); if ∃r.C ∈ L(x), and x does not yet have an r-successor with C in its label, then

the ∃-rule generates a new r-successor node y of x with L(y) = {C}. Blocking prevents

application of expansion rules when the construction becomes repetitive; i.e., when it is

obvious that the sub-tree rooted in some node x will be “similar” to the sub-tree rooted

in some predecessor y of x. The algorithm stops if it encounters a clash: there exists

{C,¬C} ⊆ L(x) for some node x and some concept name C. A node x is blocked if there

is an ancestor of y of x such that L(x) ⊆ L(y), or if there is an ancestor z of x such that z

is blocked. The tree is fully expanded when none of the expansion rules can be applied. If

a fully expanded and clash-free tree can be found, then the algorithm returns satisfiable;

otherwise it returns unsatisfiable.

Among expansion rules, t-rule is different from the other rules in that it is non −
deterministic: if C1 t C2 ∈ L(x) and neither C1 ∈ L(x) nor C2 ∈ L(x), then it adds

either C1 or C2 to L(x), the algorithm may be necessary to explore all possible choices of

rule applications and it cause the highly computational complexity. Adding other rules

to handle other constructors in more expressive DL may also increase the complexity. A

great amount of research effort has been paid to optimize expansion rules and strategy to

select expansion rules to make reasoning algorithm practical in real-world applications.
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2.4.3 Open World Assumption

Ontology applies the so called Open World Assumption (OWA), which is different from

the Close World Assumption (CWA) in relational database and logic programming. In

database and logic programing settings, a fact is assumed to be false if it cannot be proved

from the existing data. Meanwhile, ontology reasoning leave the value of non-existing

fact as undetermined. For example, without assertion supervises(YAMADA,ROBERT), a

database engine can conclude that Professor Yamada does not supervise Robert while

ontology reasoning make the conclusion unknown.

The OWA assumption has a significant affect the results of the reasoning process.

Let consider the following example to clarify the affect. From the reasoning results of

KS Ontology in previous subsection, SUZUKI and NGUYEN are not classified as KS

qualified doctor because of their unsatisfiability of the requirements. Assume we add

assertions KSQualifiedDoctor(SUZUKI) and KSQualifiedDoctor(NGUYEN) to the ABox.

We may expect that adding these assertions will cause contradiction with current as-

sertions in the ABox and the system can detect the inconsistency. Adding assertion

KSQualifiedDoctor(SUZUKI) indeed causes inconsistency because it implies DoctorStudent

(SUZUKI) which explicitly conflicts with assertion MasterStudent(SUZUKI) by the defini-

tion DoctorStudent ≡ ¬MasterStudent in the TBox. However, adding assertion KSQuali-

fiedDoctor(NGUYEN) does not cause inconsistency even the assertions about courses that

Nguyen has passed does not satisfy the requirements. Regarding to OWA, ontology rea-

soning assume that there may be courses that Nguyen has passed but not provided to the

ABox yet, and thus, accept the added assertion.

The reason for OWA is that it is appropriate for the Semantic Web setting which is

characterized by its distributively huge-scale and dynamically changing properties. Thus,

it is very often that the knowledge cannot be collected completely before performing

reasoning and thus assuming what is not known to be false cannot be used.

2.5 Motivating Examples for Inconsistent Ontology

We introduce two motivating examples for inconsistent ontologies in this section. These

examples will be used to explain and demonstrate our approach in following chapter.

Example 2.1 (Subsumption checking). This is the formalism of Penguin example which

is introduced in Section 1.3, a well-known example of default knowledge. Assume two

ontologies Bird and Penguin which represent that birds typically fly and have wings while
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penguins are birds that do not fly. Those ontologies are denoted as follows 2,3:

ΣBird =

{
BF : Bird v Fly,

BW : Bird v HasWings

}

ΣPenguin =

{
PB : Penguin v Bird,

PF : Penguin v ¬Fly

}

This example demonstrates the logically conflict issue when integrating ontologies.

Each of above ontology is locally consistent. However, when Penguin ontology refers to

Bird ontology through import operation, concept Penguin becomes unsatisfiable because

it is subsumed by two mutually disjoint concepts, Fly, according to axiom BF , and ¬Fly,

according to axiom PF .

Example 2.2 (Instance checking). This example extends the KS Ontology with excep-

tional knowledge of regulation about students. According to the regulation, all adult

people who aged 20 or over in Japan are obliged to enroll in the National Pension system.

However, students whose income is usually less than a certain level are not required to

pay the monthly contributions. The interpretation of this knowledge is as follows:

ΣStudent =

{
AP : Adult v PaysPension,

SP : Student v ¬PaysPension

}

Assume we instantiate the ontology with a particular individual Suzuki that is a

student and an adult, denoted as

SA : {SUZUKI} v Adult,

SS : {SUZUKI} v Student

Adding those axioms to the ontology will cause the inconsistency because we cannot

create a model with the individual SUZUKI since in one hand, Suzuki has to pay pension

contributions as stated in axiom AP , but in another hand, Suzuki does not need to pay

as stated in axiom SP .

Due to the classical property of underlying logic, DL ontologies are unable to scope

with inconsistencies as shown in above examples. In detail, there are two kinds of incon-

sistency which are introduced: concept inconsistency in the former example and model

inconsistency in the latter. For the latter case, it is impossible to construct a model for

the ontology. Therefore, no reasoning service can be provided for this ontology. In the

2According to the last note in Subsection 2.2.1 which states that ABox assertions can be simulated
by TBox axioms, we assume hereby that an ontology contains only terminological statements.

3We also add the axiom label at the beginning of each axiom to allow convenient process afterwards.
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former case, for every possible model of the ontology, concept Penguin must be equivalent

to an empty concept. Then meaningless conclusions such as “Penguins are human” are

inferred from unsatisfiable concepts. Both issues of classical DL ontology can be handled

by providing more tolerant reasoning ability for the ontology. This research considers

an extension of classical ontology which combine defeasible logic reasoning approach with

DL ontology. The following chapter thoroughly discusses various aspect of defeasible logic

and defeasible reasoning to establish the foundation for our approach.
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Chapter 3

Defeasible logic

3.1 Introduction to Defeasible Logic

Defeasible Logic is an approach to nonmonotonic reasoning which has been developed by

Nute [88, 89] over several years with a particular concern about computational efficiency

and ease of implementation. Defeasible inference in propositional form of logic can be

performed in linear time as proved in [78]. Efficient implementations of defeasible inference

such as in [102, 77, 67] can answer queries from a system with 100,000’s of defeasible

rules or even calculate all conclusions. Apart from efficiency, defeasible logic is flexible

enough to deal with several intuitions of non-monotonic reasoning, and it has been applied

to modeling of regulations and business rules [45], modeling of contracts [98, 41], legal

reasoning [44], agent negotiations [29], and agent modeling [43].

As being developed based on the idea of logic programming without negation as failure,

basic elements of a defeasible theory include facts and rules. Informally, a defeasible theory

contains five different kinds of knowledge: facts, strict rules, defeasible rules, defeaters,

and a superiority relation.

Facts are indisputable statements, for example, “Suzuki is a student” which might be

logically expressed as Student(SUZUKI).

Strict rules are rules in the classical sense: whenever the premises are indisputable

(e.g., facts) then so is the conclusion. An example of a strict rule is “JAIST students are

students” which is written formally as:

JaistStudent(x)→ Student(x)

Defeasible rules are rules that can be defeated by contrary evidence. An example of

such a rule is “adult peoples need to pay pension”; written formally:

Adult(x)⇒ PaysPension(x).

33



The rule states that if we know that someone is an adult people, then we may conclude that

he/she is required to pay pension contributions, unless there is other evidence suggesting

that he/she does not need to pay.

Defeaters are rules that cannot be used to draw any conclusions. Their only use is to

prevent some conclusions. In other words, they are used to defeat some defeasible rules by

producing evidence to the contrary. An example is “students might not work”. Formally:

Student(x) ; ¬Works(x).

The main point is that the information that somebody is a student is not sufficient

evidence to conclude that he/she might not work. In other words, we do not wish to

conclude ¬Works if Student, we simply want to prevent a conclusion Works in absence of

further information.

The superiority relation among rules is used to define priorities among rules, that is,

where one rule may override the conclusion of another rule. For example, given the two

defeasible rules
r : Adult(x)⇒ PaysPension(x)

r′ : Student(x)⇒ ¬PaysPension(x)

which contradict each other. If an instance is represented as both an adult and a student,

no conclusive decision can be made about whether a he/she pays the pension or not. But

if we introduce a superiority relation > which r′ > r, then we can indeed conclude that

he does not need to pay the pension.

Notice that the superiority relation is required to be acyclic. In the above example,

it makes no sense to have both r > r′ and r′ > r. Moreover, priorities are local in the

following sense: two rules are considered to be competing with one another only if they

have complementary heads. Thus, since the superiority relation is used to resolve conflicts

among competing rules, it is only used to compare rules with complementary heads; the

information r > r′ for rules r, r′ without complementary heads may be part of superiority

relation, but has no effect on the proof theory.

3.2 Formal Definitions

For the formal definitions below, we consider only essentially propositional rules without

loss of generality. Rules containing free variables are interpreted as the set of their variable-

free instances. For a propositional literal q, ∼q denotes the complementary literal (if q is

a positive literal p then ∼q is ¬p; and if q is ¬p, then ∼q is p).

A rule r : A(r) ↪→ C(r) consists of its unique label r, its antecedent A(r) which is a

finite set of literals (A(r) may be omitted if it is the empty set), an arrow ↪→ (which maybe
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one of three specific arrows for three kinds of rule), and its head (or consequence) C(r)

which is a literal. In writing rules we omit set notation for antecedents, and sometimes

we omit the label when it is not relevant for the context. There are three kinds of rules,

each represented by a different arrow. Strict rules use →, defeasible rules use ⇒, and

defeaters use ;.

Given a set R of rules, we denote the set of all strict rules in R by Rs, the set of

strict and defeasible rules in R by Rsd, the set of defeasible rules R by Rd, and the set of

defeaters in R by Rdft. R[q] denotes the set of rules in R with consequent q.

A defeasible theory D = (F,R,>) consists of a set of facts F , a set rules R, and a set

of superiority relation > among rules. D is called well-formed if and only if > is acyclic

and > is only defined on rules with complementary heads. Defeasible logic has a proof-

based semantics. Provability of defeasible logic is based on the concept of a derivation

(or proof ) which is a finite sequence P = (P (1), . . . , P (n)) of tagged literals. A tagged

literal consists of a sign (+ denotes provability, − finite failure to prove), a tag and a

literal. There are two tags signify the “strength” of the conclusions they are attached to,

and correspond to different classes of derivations: ∆ denotes definite provability based

on monotonic proofs, and df defeasible provability based on non-monotonic proofs. The

interpretation of the proof tags is as follows:

+∆q: there is a definite derivation of q using only strict rules and facts;

−∆q: it is not possible to obtain a definite derivation of q;

+dfq: there is a defeasible (non-monotonic) derivation of q;

−dfq: it is not possible to obtain a defeasible (non-monotonic) derivation of q.

3.3 Defeasible Proof Theory

In above interpretation, definite provability, or monotonic proof, follows classical deriva-

tion of facts and strict rules. Furthermore, defeasible logic introduces and exploits definite

non-provability as the strong negation of definite provability. The conditions of definite

provability are expressed as follows:

+∆) We may append P (i+ 1) = +∆q if either

1) q ∈ F or

2) ∃r ∈ Rs[q] ∀a ∈ A(r) : +∆a ∈ P (1..i)

−∆) We may append P (i+ 1) = −∆q if

1) q 6∈ F and

2) ∀r ∈ Rs[q] ∃a ∈ A(r) : −∆a ∈ P (1..i)
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where Rs[q] is the set of strict rules which have q as their conclusions, and A(r) is the

antecedent of r.

The reason for considering definite non-provability is that defeasible provability, or

non-monotonic proof, is skeptical. It prevents conflict conclusions by detecting the conflict

in advance and one conclusion is defeasibly derived if all of its conflict derivations are

eliminated. In other words, a conclusion is tagged defeasible provability only when its

conflict conclusion is unprovable or defeated. For the sake of doing so, defeasible reasoning

needs to manage definitely unprovable tags (−∆) as well as defeasibly unprovable ones

(−df).

In general, the conditions to establish a non-monotonic proof have three phases, which

has a similar structure to arguments.

(1) In the first phase we have to put forward an argument for the conclusion we want

to prove;

(2) in the second phase (the attack phase in argumentation terms) we have to consider

all possible arguments against the thesis (counter-arguments);

(3) in the third and last phase we rebut the counter-arguments. To rebut an argument

we have to two options:

(a) we can show that the argument is not founded, i.e., some of the premises do

not hold, or

(b) we can defeat the argument by providing a stronger counterargument.

The followings represent the framework of proof theory for defeasible tags which show-

ing the usage of those tags to determine defeasible provability and non-provability and

realizing the three-phase structure as discussed above:

+df) We may append P (i+ 1) = +df q if either

1) +∆q ∈ P [1..i]; or

2) The following three conditions all hold

2.1) −∆ ∼q ∈ P [1..i], and

2.2) there is an applicable strict or defeasible rule for q, and

2.3) every rule for ∼q is either

2.3.1) discarded or

2.3.2) defeated .

−df) We may append P (i+ 1) = −df q if

1) −∆q ∈ P [1..i], and

2) either

2.1) +∆ ∼q ∈ P [1..i], or

2.2) every strict or defeasible rule for q is discarded or
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2.3) there is rule for ∼q such that

2.3.1) the rule is applicable and

2.3.2) the rule is not defeasible .

For defeasible provability, a monotonic proof is also non-monotonic proof according

to condition +df.1. In the second condition for a literal q to be defeasibly provable or

not defeasibly provable, rules are categorized as following situations. A rule is applicable

(condition +df.2.2 and −df.2.3.1) if all elements of its antecedent are definitely or defea-

sibly provable. On the other hand, a rule is discarded (condition +df.2.3.1 and −df.2.2)

if one element of its antecedents is not provable. For the condition 2.3.2, a rule is defeated

(+df.2.3.2) if there exists an applicable rule that is superior to it while it is defeasible

(−df.2.3.2) if there a non-discarded rule that is stronger than it.

Notice that strict rules can be used in two different ways, depending on the degrees

of provability of their antecedents. If their bodies are proved definitely then their head is

proved definitely, then strict rules are used as in classical logic, regardless of any reasoning

chains with the opposite conclusion. But strict rules can also be used to show defeasible

provability, given that some other literals are known to be defeasibly provable. In this

case, strict rules are used exactly like defeasible rules. For example, a strict rule may have

its body proved defeasibly, yet it may not fire because there is a rule with the opposite

conclusion that is not weaker. Furthermore, strict rules are not automatically superior to

defeasible rules. In [78] strict rules are duplicated as defeasible rules, and definite reasoning

use the strict rules (as always), while defeasible reasoning may use only defeasible rules.

This duplication and separation of rules does not modify the consequences. When there

is a duplicate defeasible rule for every strict rule in a defeasible theory, we say that the

theory has duplicated strict rules.

A desired characteristic of non-monotonic logics is that it can avoid inconsistent con-

clusions from the theory. In defeasible logic, this is assured by the coherent property

which states that a well-formed theory cannot conclude that both a proposition p and its

negation are defeasibly true unless they are both definitely true. Or equivalently speak-

ing, a defeasible theory is consistent if its strict part is consistent. This property was first

proved in [16] and extensively analyzed in [4]. This property suggests that an extension

of DL ontology based on defeasible logic is sufficient to handle to inconsistency with a

proper treatment for the conflicting axioms. This problem will be discussed in detail in

the following chapter.

3.4 Variants of Defeasible Logics

There are four variations of defeasible logics, which correspond to four different pairs of

inference rules, that have been introduced in literature [79]. The variants utilize different
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strategies when resolving conflict proofs and handling inference after encountering an

ambiguity, a situation where there are proofs for two contract conclusions and there is

no superiority among them. According to the manner to resolve conflicts, we have team

defeat and non-team defeat strategies. According to the method to handling inference

after encountering an ambiguity, we have ambiguity blocking and ambiguity propagation

strategies.

The four logics are labelled as ∂, δ, ∂∗, and δ∗ and produce conclusions of the form

(respectively) +∂q,−∂q,+δq,−δq, etc. The meanings of those labels are as follows:

• ∂: team defeat with ambiguity blocking;

• ∂∗: non-team defeat with ambiguity blocking;

• δ: team defeat with ambiguity propagation; and

• δ∗: non-team defeat with ambiguity propagation.

3.4.1 Team Defeat vs Non Team Defeat

Figure 3.1 highlights the difference between team defeat and non team defeat with ambi-

guity blocking defeasible logics. As we can see in the conditions (+∂.2) and (+∂.2.2.3),

+∂ relies on a team consisting of r and all the rules t that are needed to overcome the

competing rules s. In order for a rule to be applied, every competing rule can be defeated

by any of supporting rules. In comparison, +∂∗ relies on a single rule to overcome all

competing rules. Thus +∂ employs team defeat while +∂∗ relies on a single rule over-

coming all opposition. The same analysis is applied in defeasible logics with ambiguity

propagation, δ and δ∗.

For example, consider the following defeasible theory D on whether animals are mam-

mals [4].

r1 : monotreme ⇒ mammal

r2 : hasFur ⇒ mammal

r3 : laysEggs ⇒ ¬mammal
r4 : hasBill ⇒ ¬mammal

r1 > r3

r2 > r4

For a platyrus, we have the facts: monotreme, hasFur, laysEggs, and hasBill, then

those four rules are all applicable. The rules r3 and r4 for ¬mammal are over-ruled by,

respectively, r1 and r2. Consequently, under inference with team defeat (∂ and δ), we

conclude +∂mammal and +δmammal. Under inference without team defeat (∂∗ and

δ∗), there is no rule that overrules all opposing rules. Consequently we cannot make any

positive conclusion; we conclude −∂∗mammal and −∂∗¬mammals, and similarly for δ∗.
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Team Defeat
+∂) +∂q ∈ P (i+ 1) iff either

1) +∆q ∈ P (1..i); or

2) ∃r ∈ Rsd[q] such that

2.1) ∀a ∈ A(r),+∂a ∈ P (1..i) and
2.2) −∆ ∼q ∈ P (1..i) and
2.3) ∀s ∈ R[∼q] either
2.3.1) ∃a ∈ A(s),−∂a ∈ P (1..i); or

2.3.2) ∃t ∈ Rsd[q] such that
∀a ∈ A(t),+∂a ∈ P (1..i) and t > s

−∂) −∂q ∈ P (i+ 1) iff
1) −∆q ∈ P (1..i) and

2) ∀r ∈ Rsd[q] either

2.1) ∃a ∈ A(r),−∂a ∈ P (1..i); or
2.2) +∆ ∼q ∈ P (1..i); or
2.3) ∃s ∈ R[∼q] such that
2.3.1) ∀a ∈ A(s),+∂a ∈ P (1..i) and

2.3.2) ∀t ∈ Rsd[q] either
∃a ∈ A(t),−∂a ∈ P (1..i) or t 6> s

Non-Team Defeat
+∂∗) +∂∗q ∈ P (i+ 1) iff either

1) +∆q ∈ P (1..i); or

2) ∃r ∈ Rsd[q] such that

2.1) ∀a ∈ A(r),+∂∗a ∈ P (1..i) and
2.2) −∆ ∼q ∈ P (i..1) and
2.3) ∀s ∈ R[∼q] either

2.3.1) ∃a ∈ A(s),−∂∗a ∈ P (1..i); or

2.3.2) r > s

−∂∗) −∂∗q ∈ P (i+ 1) iff
1) −∆q ∈ P (1..i) and

2) ∀r ∈ Rsd[q] either

2.1) ∃a ∈ A(r),−∂∗a ∈ P (1..i); or
2.2) +∆ ∼q ∈ P (1..i); or
2.3) ∃s ∈ R[∼q] such that

2.3.1) ∀a ∈ A(s),+∂∗a ∈ P (1..i) and

2.3.2) not r > s

Figure 3.1: Comparison between Proof Theories of Team Defeat and Non-Team Defeat
with Ambiguity Blocking

3.4.2 Ambiguity Blocking vs Ambiguity Propagating

Both defeasible logics discussed in the previous subsection are ambiguity blocking. Intu-

itively, a literal is ambiguous if there is a (monotonic) chain of reasoning that supports

a conclusion that p is true, another that supports that ¬p is true, and the superiority

relation does not resolve this conflict. In ambiguity blocking inference, such literal is not

used in any inference afterwards. Meanwhile, ambiguity propagation allows the use of

this literal to prevent some possible conclusion.

The difference between ambiguity blocking and ambiguity propagation is appealing

in the case of court debate where different principles of regulation application can be

applied. Let consider the following example in a legal case to demonstrate the difference.

This example consists of two rules stating that evidence A suggests that the defendant in

is not responsible while a second piece of evidence B indicates that he/she is responsible;

moreover the sources are equally reliable. According to the underlying legal system a

defendant is presumed innocent (i.e., not guilty) unless responsibility has been proved

(without any reasonable doubt). The scenario is encoded in the following defeasible
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theory:

r1 : evidenceA ⇒ ¬responsible
r2 : evidenceB ⇒ responsible, r3 : responsible⇒ guilty,

r4 :⇒ ¬guilty.

Given both evidenceA and evidenceB, the literal responsible is ambiguous. There are two

applicable rules (r1 and r2) with the same strength, each supporting the negation of the

other. As a consequence r3 is not applicable, and so there is no applicable rule support-

ing the guilty verdict. This behavior is called ambiguity blocking, since the ambiguity

of guilty has been blocked by the failure to prove responsible. In contrast, ambiguity

propagation describes a behavior where ambiguity of a literal is propagated to dependent

literals. If we propagate ambiguity then the literals guilty and ¬guilty are ambiguous;

thus an undisputed conclusion cannot be drawn. On the other hand, if we assume an am-

biguity blocking stance, the literal ¬guilty is not ambiguous and a verdict can be reached.

If we extend the theory with the rule r5 : ¬guilty ⇒ compensation, saying that in case of

a not guilty verdict the defendant is entitled to compensation, then, despite the existence

of equally strong pieces of evidence, he/she is entitled to compensation, while this is not

the case in the ambiguity propagating case.

The example and the discussion above show that both ambiguity blocking and ambigu-

ity propagation can be used in the same application domain. In legal reasoning, typically,

civil law takes an ambiguity blocking stance, while criminal law more often opts for an

ambiguity propagation point of view. In addition there are situations where both types

of reasoning are required at once. For example, in legal proceedings, often, the different

parties involved have different burden of proof [92], and these types call for different ways

to lead to the conclusions. Typical, in criminal litigation, a plaintiff, to win a case, has to

prove it without any benefit of doubt, while a defendant is only required to produce an

exception to the accusation. This means that the claim of the plaintiff must be proved

using ambiguity propagation reasoning, while the claim of the defendant by ambiguity

propagation [76]. In addition the conditions to justify plaintiff claims are more stringent

than those for the defendant.

The inference rules δ and δ∗ require auxiliary tags and inference rules, denoted by σ

and σ∗, respectively. The complexity of those inference rules are beyond of this research

and interested readers can refer to [17, 68, 80] for more detail interpretation and discussion.

In this research, we rely on team defeat with ambiguity blocking defeasible logic.
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3.5 Defeasible Reasoning Algorithm

3.5.1 Basic Defeasible Logic

The research on correctness and efficiency of defeasible reasoning algorithm is performed

on basic defeasible logic which is a subset of defeasible logic that has no superiority state-

ments and no defeaters. A general defeasible theory can be transformed into basic theory

by simulating those elements by defeasible rules. Figure 3.2 shows a simple example of

reduction to basic defeasible theory. This example theory consists of 2 strict rules, 3

defeasible rules and 1 superiority relationship between two defeasible rules. The example

employs a simple transformation which alters each defeasible rule by two corresponding

defeasible rules with an auxiliary literal. Those auxiliary literals are used to simulate

superiority relationships between defeasible rules. This simulation is performed by intro-

ducing a defeasible rule which takes the auxiliary literal corresponding to the superior

rule as the antecedent and the negation auxiliary literal corresponding to the inferior rule

as the consequence such as the last rule in the corresponding basic theory. In the basic

theory, if penguin is provable, its corresponding auxiliary r2 is also provable. With the

simulated rule, r1, and thus, fly, becomes unprovable.

Defeasible Theory Basic Theory
→ penguin
penguin→ bird

r1 : bird⇒ fly

r2 : penguin⇒ ¬fly

r3 : bird⇒ hasWings

r2 > r1

→ penguin
penguin→ bird
bird⇒ r1
r1 ⇒ fly
penguin⇒ r2
r2 ⇒ ¬fly
bird⇒ r3
r3 ⇒ hasWings
r2 ⇒ ¬r1

Figure 3.2: Simple Example of Reduction to Basic Defeasible Theory

A full treatment of the transformation, including proofs of correctness and other prop-

erties, is presented in [4]. The transformation can increase the size of the theory by at

most a factor of 12. Furthermore, the time taken to produce the transformed theory is

linear in the size of the input theory. Consequently, the implementation of full defeasible

logic by first transforming the input theory to a theory without defeaters and superiority

statements, and the applying an algorithm like Algorithm 1 to the transformed theory

provides a linear implementation of defeasible logic.

For basic defeasible logic, the inference rules are simplified by introducing two auxiliary

tags (+σ and −σ), namely tentative conclusions, as follows:

+σ: We may append P (i+ 1) = +σq if
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∃r ∈ Rsd[q]∀a ∈ A(r) : +∂a ∈ P (1..i)

−σ: We may append P (i+ 1) = −σq if

∀r ∈ Rsd[q]∃a ∈ A(r) : −∂a ∈ P (1..i)

With the addition of auxiliary tags and corresponding inference rules, the inference

rules for ∂ are reduced to:

+∂: We may append P (i+ 1) = +∂q if either

+∆q ∈ P (1..i) or

{+σq,−∆ ∼q,−σ ∼q} ⊆ P (1..i)

−∂: We may append P (i+ 1) = −∂q if

−∆q ∈ P (1..i) and

{−σq,+∆ ∼q,+σ ∼q} ∩ P (1..i) 6= ∅

3.5.2 Efficient Implementation

The algorithm to compute all conclusions of a defeasible theory is shown in Algorithm

1. This algorithm is based on a modification of forward chaining for propositional logic

with rules to label conclusions from the theory. The algorithm first transforms the input

theory into basic theory and duplicates all strict rules as defeasible ones. A set of definitely

(and defeasibly) provable literals S is initialized from the known facts. Those provable

literals iteratively “fire” a set of rules whose bodies contain them while the unprovable

literals (which is added later) remove the corresponding rules. After modifying the rule,

the second part of the iteration (line 13 to 28) generates the new definitely provable and

unprovable conclusions by finding the applicability or absence of strict rules, respectively,

and adding them to the conclusion set. It also records the tentatively provable and

unprovable literals from the fired and removed defeasible rules, respectively. Procedure

CheckInference uses the inference rules in previous subsection to check recorded literals in

K and returns defeasibly provable and unprovable conclusions.

Since the second part of the algorithm is the iteration to compute defeasible tags, it is

essential to optimize the calculation to achieve a linear complexity. The key to an efficient

implementation of this algorithm is the data structure used to represent the rules. Figure

3.3 illustrated the data structures for the theory

r1 : b, c, d⇒ a

r2 : ¬, b, d,¬e⇒ a

r3 : d,¬e⇒ ¬a

Each rule body is represented as a doubly-linked list (horizontal arrows in Figure 3.3).

Furthermore, for each literal p there are doubly-linked of the occurrences of p in the bodies

of rules (diagonal arrows). For each literal p, there is a doubly-linked list of rules with
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Algorithm 1: Compute all conclusions of a defeasible theory

Algorithm: CompAllConclusions(D)
Input: A defeasible theory D = (F,R,>)
Output: Set of conclusions C

1 D′ = (F ′, R′, ∅)← Basic(D)
2 R← DupStrict(R′)
3 S ← initialize(F ′)
4 K ← ∅
5 while S 6= ∅ do
6 choose s ∈ S and delete s from S
7 C ← C ∪ {s}
8 switch s do
9 case +∆p: delete all occurrences of p in strict rule bodies

10 case −∆p: delete all strict rules where p occurs in the body
11 case +∂p: delete all occurrences of p in defeasible rule bodies
12 case −∂p: delete all defeasible rules where p occurs in the body

13 repeat
14 S ′ = ∅
15 while a body of a strict rule with head h becomes empty do
16 S ′ ← S ′ ∪ {+∆h}
17 K ← K ∪ {+∆h,+∂h,+σh}
18 remove rule

19 while there are no more strict rules for a literal h, and +∆h 6∈ S ∪ C do
20 S ′ ← S ′ ∪ {−∆h}
21 K ← K ∪ {−∆h}
22 while a body of defeasible rule with head h becomes empty do
23 K ← K ∪ {+σh}
24 remove rule

25 while there are no more defeasible rules for a literal h do
26 K ← K ∪ {−σh}
27 S ′ ← S ′ ∪ CheckInference(K)
28 S ← S ∪ S ′
29 until S ′ 6= ∅
30 return C

head p (dashed arrows). Each literal occurrence has a link to the record for the rule it

occurs in (not shown in Figure 3.3).

This data structure optimizes the iteration part of defeasible reasoning algorithm and

thus reduces the computational expense to linear complexity. It allows the deletion of

literals and rules in time proportional to the number of literals deleted. Furthermore, we

can detect in constant time whether a literal deleted was the only literal in that body,

and whether a rule deleted with head h was the only rule for h. Each literal occurrence

is deleted at most once, and the test for empty body is made at most once per deletion.
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Figure 3.3: Data Structure for Rules in Defeasible Reasoning Algorithm

Similarly, each rule is deleted at most once, and the test for no more rules is made once

per deletion. Thus the cost of the algorithm is O(N), where N is the number of literal

occurrences in D.

3.6 A Syntactical Approach for Defeasible DLs

3.6.1 Adding Defeasible Rules to DL Ontology

As indicated by the Semantic Web architecture in Figure 1.4, rules can be added on the

top of ontology language to complete the knowledge representation. A natural approach

to integrate defeasible reasoning to DL ontology to handle conflict knowledge is to add

defeasible rules to DL ontology to represent conflict knowledge while considering TBox as

set of strict rules and ABox set of facts. This syntactical approach is proposed for ALC−

DL in [40] and then extended for ALE DL in [91]. However, this syntactical approach

shows some essential drawbacks because of the incompatibility between description logics

and definite Horn logic (cf [8] for detail discussion about features of each logic that is not

reducible to the other). To perform defeasible reasoning, a transformation is necessary

to convert defeasible ontology into defeasible logic program. This transformation signif-

icantly increases the size of resulting theory and reduces the efficiency and applicability

of syntactical approach of defeasible DL ontology. The following example and discussion

will show the weakness of this approach.

A defeasible DL ontology is a tuple ΣRDDL = (A, T , R,>) (RDDL stands for rule-

based defeasible DL) where A is the ABox, T is the TBox, R is a set of rules (in general, R

can contain strict rules, defeasible rules and defeaters), and > –the superiority relation– is

a binary relation defined over the rules in R plus the strict rules induced by the inclusion

axioms in T , according to the construction given in following subsection. Figure 3.4 shows
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ABox:

EnglishLecture(K218) BasicLecture(K211) IntroLecture(K116)
MultiAreaCourse(K618) MediaCourse(C612) SystemCourse(K616)
KSProfessor(YAMADA)
KSStudent(ROBERT) supervises(YAMADA,SUZUKI) KSStudent(NGUYEN)
passes(ROBERT,K218) passes(ROBERT,K618) passes(ROBERT,K601)

TBox:

(1) Student v Adult

(2) KSProfessor v ∀supervises.KSStudent

(3) ∀passes.KSCourse v KSStudent

Rules:

(4) Adult(x)⇒ PaysPension(x)

(5) Student(x)⇒ ¬PaysPension(x)

>: (5) > (4)

Figure 3.4: An example of DL ontology with defeasible rules

an example of defeasible DL ontology demonstrates the example of inconsistent ontology

presented in Example 2.2. In this ontology, defeasible rules are used to represent the

conflict knowledge which states that an adult has to pay pension contribution (rule 4)

while the student does not (rule 5) and the superiority relation states that the latter is

preferred to the former. Three terminological axioms (1)–(3) are used to demonstrate the

transformation to defeasible logic program.

3.6.2 Transformation to Defeasible Logic Program

Defeasible reasoning for a defeasible DL consists of those following steps:

Step 1: Transform T to RS and transform A to F , hence, ΣRDDL = 〈T ,A, R,>〉 is

reduced to Σ = 〈F,R,>〉. Given a theory ΣRDDL and a conclusion ϕ (i.e., a query), this

step is designed such that ΣRDDL |= ϕ iff Σ ` ϕ.

Step 2: Propositionalize Σ to Σprop, including propositional auxiliary rules for uni-

versal quantified literals (∀R.C(x)) in antecedents of rules. Given a theory Σ and a

conclusion ϕ (i.e., a query), this step guarantees that Σ ` ϕ iff Σprop ` ϕ. It is easy to

verify that this statement follows immediately from the first step statement plus nature

of propositionalization.

Step 3: Apply the linear algorithm on the transformed theory.
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The transformation in Step 1 is straightforward from inclusion axioms to strict rules. In

particular, the inclusion axiom uni=1Ci v umj=1Dj is equivalent to the following set of strict

rules (the set of rules induced by T )

C1, . . . , Cn → D1

...

C1, . . . , Cn → Dm

In case n = m = 1 and Ci, Dj are atomic concepts (i.e., concepts not defined in terms of

other concepts), we also have to include the contrapositive of the inclusion axiom, namely

¬Dj → ¬Ci

For example, axiom (1) in above figure is transformed to Student(x) → Adult(x) and

¬Adult(x) → ¬Student(x). For axioms (2) and (3), the contraposition is not included

because there are non-atomic concepts in the axioms and the negation is only allowed in

atomic concepts. The universal restrictions in axioms (2) and (3) are processed differently

depends on the position of the restrictions. If the universal restrictions appears in the

right-hand-side of the axiom, it is recursively analyzed to move the role in the restriction

to the left-hand-side and keep the concept in the restriction in RHS. For example, axiom

(2) is transformed to

KSProfessor(x), supervises(x, y)→ KSStudent(y).

The universal restriction still remain in the converted rules if it occurs in the LHS of the

axiom like in axiom (3), which is transformed to

∀passes.KSCourse(x)→ KSStudent(x).

At this point, we need additional inference rule to deal with the remaining universal

quantified concepts. However, universal quantified concepts’ semantics takes into account

all individuals in the DL knowledge base, in particular the ABox. Consequently, the proof

conditions for universal quantified concepts will incorporate the domain of ABox A, 4IA,

in themselves as follows:

+∆∀R.C : +∆∀R.C(a) ∈ P (i+ 1) iff

∀b ∈ 4IA, either (1)−∆R(a, b) or (2) + ∆C(b)

−∆∀R.C : −∆∀R.C(a) ∈ P (i+ 1) iff

∃b ∈ 4IA such that (1) + ∆R(a, b) and (2)−∆C(b)

Similarly the conditions to derive role restriction in a defeasible way are
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+∂∀R.C : +∂∀R.C(a) ∈ P (i+ 1) iff

∀b ∈ 4IA either (1)− ∂R(a, b) or (2) + ∂C(b)

To prove a positive defeasible role restriction +∂∀R.C(a) we have to prove that for

all elements b in the domain of the knowledge base either we cannot prove that b is not

related via R with a, or we can show that b is a instance of the concept C.

Given the syntactic limitation of the language, it is not possible to have rules for

¬∀R.C: negation is limited to atomic concept. Therefore the argument for proving a

positive defeasible role restriction cannot be rebutted by another argument, but only

undercut by arguments undermining the arguments used to prove the two parts of the

argument for it.

−∂∀R.C : −∂∀R.C(a) ∈ P (i+ 1) iff

∃b ∈ 4IA such that (1) + ∂R(a, b) and (2)− ∂C(b)

To prove−∂∀R.C(a) then there must exist an element b in the domain of the knowledge

base such that it is defeasibly provable that b is in the role R with the concept instance

a from the role restriction statement and it must be defeasibly not provable that b is an

instance of the concept C.

In Step 2, for each universal quantified literal ∀R.C(x) in an antecedent of a rule,

following propositional auxiliary variables and rules are created to compute its provability:

for every ai in 4IA,
RC(ai, a1), . . . , RC(ai, an)→ ∀R.C(ai)

for every aj in 4IA,

∼R(ai, aj)→ RC(ai, aj)

C(aj)→ RC(ai, aj).

If C is a universal quantified literal, the process is recursively applied on C.

In the propositionalization step, each universal quantified literal in antecedent adds

O(|4IA|2) auxiliary rules to the theory. Thus, given dv is the depth of nested quantifier

in ontology, the size of propositionalized theory is O(|4IA|dv). And since the logic allows

roles (binary predicates), the complexity of resulting theory is O(|4IA|dv+2), in the case we

apply a linear algorithm to perform defeasible reasoning. Moreover, the quantified number

restrictions require investigating combination of all auxiliary variables. This implies that

extending syntactical approach for more expressive defeasible DL ontology like SHOIQ
is untraceable in general.
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Chapter 4

Defeasible DL Ontology

This chapter introduces our extension of DL ontology which includes defeasible subsump-

tion axiom and priority relation to handle conflict knowledge in inconsistent ontology.

This extension is named defeasible DL and presented in the first section. The follow-

ing section discusses the new type of satisfiability in defeasible DL ontology, defeasible

satisfiability, and investigates defeasible reasoning procedure to compute defeasible satis-

fiability. The third section represents the formal interpretation of defeasible satisfiability.

An heuristic method to determine defeasible axioms and priority relations to facilitate

the use of defeasible DL ontology is introduced in the last section.

4.1 Defeasible DL DSHOIQ

Defeasible DL ontology employs defeasible subsumption axiom C <∼ D to represent the

meaning that most C’s are typically D’s. These axioms are “weaker” than the classical

ones which express that all C’s are D’s in the sense that C v D also implies C <∼ D.

Defeasible axioms are complemented by superiority relations among axioms to express

preference among conflict knowledge.

Definition 1. A DSHOIQ ontology is a tuple Σ = 〈T ,D, >〉 where T is a TBox, D
a set of defeasible axioms (DBox), and > a set of superiority relations among axioms of

T ∪ D.

There are two types of satisfiability for defeasible DL: classical and defeasible satisfia-

bility. Classical satisfiability only considers classical axioms while defeasible satisfiability

takes into account both classical axioms and defeasible axioms. Therefore, classical con-

sistency and satisfiability with respect to a defeasible ontology Σ can be defined using the

classical part of the ontology as in the following definition.

Definition 2. Given a defeasible DL ontology Σ, a concept C is classically satisfiable

with respect to Σ if and only if C is satisfiable with respect to T . As a consequence, Σ
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is classically consistent if and only if T is consistent. Σ classically satisfies an axiom

C v D, denoted as Σ |≈ C v D, if and only if T |= C v D. Then, D is a classical

subsumer of C and we denote ∆C as the set of classical subsumers of C.

In above definition, we use the non-standard inference relation |≈, which is introduced

in [56], for reasoning with defeasible DL ontologies. This notation indicates that we utilize

a consistent sub-theory of Σ (in this case T ) to check the satisfiability of an axiom. We

will employ and discuss more detail about this notation in the next subsection when

studying defeasible satisfiability.

Let us demonstrate how defeasible DL can resolve inconsistentcy problem by revisitting

motivating examples introduces in Section 2.5.

Example 4.1 (Penguin revisited). To resolve the conflict in integrated ontology, we use

a näıve approach that axioms from remote ontology is considered to be “weaker” than

axioms from the local ontology. Assume we want to perform reasoning from Penguin

ontology, for example to infer subsumption relations of Penguin concepts, axioms of Bird

ontology are converted to defeasible ones. The integrated ontology is denoted as follow:

ΣBird =〈
{
PB : Penguin v Bird,

PF : Penguin v ¬Fly

}
,{

BF : Bird <∼ Fly,

BW : Bird <∼ HasWings

}
,

∅
〉

Example 4.2 (Student revisited). The regulation that adults have to pay pension contri-

bution is the general rule which can be overruled by some specific case such as a student

whose income is usually less than a certain level are not required to pay the monthly

contributions. The latter in turn can be reversed with more specific case such as when

the student attends a research program and earn the regular salary. Therefore, we con-

vert regulation axioms into defeasible ones and add the order set > as following formal

representation:

ΣStudent =〈
{
SA : {SUZUKI} v Adult,

SS : {SUZUKI} v Student

}
,{

AP : Adult <∼ PaysPension,

SP : Student <∼ ¬PaysPension

}
,

{SP > AP}
〉

In above examples, adding defeasibility to terminological axioms will remove contra-

diction with respect to the classical parts of those ontologies. However, it is our interest

that we can derive defeasible inclusion axioms such as Penguin <∼ HasWings from ΣBird.
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Moreover, we also want to employs the superior relation in the inference, i.e. allow MP

to defeat TP and derive {SUZUKI} <∼ ¬PaysPension from ΣStudent.

4.2 Reasoning for Defeasible DL Ontology

4.2.1 Defeasible Satisfiability

We study defeasible satisfiability by considering reasoning tasks for defeasible ontology.

Two basic reasoning tasks for defeasible ontology that extend from corresponding classical

reasoning services are defeasible instance checking and defeasible subsumption checking.

Both tasks can be represented as answering the query Σ |≈ ϕ where ϕ = {a} <∼ C

(instance checking) or ϕ = C <∼ D (subsumption checking).

Huang et al. introduces a general framework to answer those queries from an incon-

sistent ontologies by constructing a consistent subtheory in [56]. This framework utilizes

a selection function s to partition the axioms in the ontology. Then, the reasoning frame-

work will add those partitions iteratively to construct subtheories of the ontology and

check the answer of the query by using those subtheories. The iteration stops when the

answer is achieved or no more consistent subtheory is constructed. Since the function

linearly adds axiom to extend subtheories, this frame work is named linear extension

strategy.

We modify Huang’s framework to utilize a skeptical selection function for defeasible

reasoning, as illustrated in Figure 4.1. There are two important differences in this mod-

ification compared to the original work. Firstly, inconsistency checking only needs to be

performed at the first step of defeasible reasoning. The skeptical selection function ensures

that additional axioms to a consistent subtheory do not make the subtheory inconsistent.

In this step, if the condition of the query is not classically satisfied, the query is also

satisfied according to the property of classical reasoning.

The second difference relates to selection function select. In our framework, subtheory

at the step k is computed by using the subtheory of step k − 1. In order to preserve the

consistency, the skeptical selection function needs to use the reasoning results of the

previous step to prevent any conflict in advance. And due to the separation of defeasible

and classical axioms, the selection process at the initial step is also dedicated as init

function. The following two subsections explain init and select functions in detail.

4.2.2 Initial Selection Function

The selection function init finds the subtheory of classical part of the ontology that is

justified with respect to C. Given T classical part of an ontology and C an concept,

this function computes all axioms of T which are justified with respect to C. This step
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Σ |≈ C <∼ D?

C is satisfied w.r.t T

k := 1
ΣC,1 := init(T , C)
∆C := subsumer(T , C)

ΣC,k |= C <∼ D

k := k + 1
ΣC,k := select(Σ, C,∆C ,ΣC,k−1)

ΣC,k ⊃ ΣC,k−1

Unsatisfied:
Σ 6|≈ C <∼ D

Satisfied:
Σ |≈ C <∼ D

No

Yes

Yes

Yes

No

No

Figure 4.1: Linear extension strategy for defeasible reasoning

corresponds to showing definite provability of defeasible logic. Justifiability, a “stricter”

semantics for satisfiability in defeasible KB than traditional semantics, is established in

Definition 3 and 4. This semantics requires every axiom in the theory to involve in the

reasoning when answering a query.

Definition 3. Let Σ = 〈T ,D, >〉 be an DSHOIQ-knowledge base and I = (4I , ·I ) an

interpretation of Σ. A terminological axiom α = A v B ∈ T or α = A <∼ B ∈ D is

justified w.r.t x ∈ 4I and I iff x ∈ AI and x ∈ BI. α is justified w.r.t to a concept

expression C and an interpretation I if ∀x ∈ 4I if x ∈ CI then α is justified w.r.t x. If

each axiom in Σ is justified w.r.t to C and I, I is called an justified model of Σ w.r.t

C.
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Definition 4. A DSHOIQ ontology Σ is justified w.r.t a concept expression C if there

exists an justified model I of Σ such that CI 6= ∅ and for all model J of Σ, J is an

justified model w.r.t. C. Then, we say that Σ justifies a defeasible subsumption

C <∼ D, denoted as Σ |= C <∼ D, if CI ⊆ DI for each justified model I of Σ.

Example 4.3 (Penguin extended). Assume we extend Penguin ontology in Example 4.1

by adding new axiom that eagles are birds.

ΣBird =〈


PB : Penguin v Bird,

PF : Penguin v ¬Fly

EB : Eagle v Bird

 ,

{
BF : Bird <∼ Fly,

BW : Bird <∼ HasWings

}
,

>

〉
Let consider the TBox TBird. Assume two example models I1 and I2 of TBird such that

4I1 = 4I2 = {EMU} and interpretation functions are presented in the following table:

Penguin Bird Fly Eagle

I1 {EMU} {EMU} {EMU} {EMU}
I2 {EMU} {EMU} {EMU} ∅

Both I1 and I2 satisfy all three axioms in TBird but only I1 justifies all those axioms

while I2 does not justify EB. It is easy to show that for every model I of TDB such that

PenguinI 6= ∅, two axioms PB and PF is justified. Therefore, we say that PB and PF

is justified with respect to Penguin but EB is not. TBird is not justified with respect to

Penguin.

For answering defeasible query relating to Penguin concept, the result of initial step is

as follows:

ΣPenguin,1 =

{
PB : Penguin v Bird,

PF : Penguin v ¬Fly,

}
.

In addition, the set of definite subsumers of Penguin is:

∆Penguin = {Penguin,Bird,¬Fly}.

Example 4.4 (Student extended). We add the regulation that GRP students who have

income have to pay pension. This extended ontology will be used to demonstrate defeasible
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reasoning later. The interpretation of extended ontology is as follows:

ΣStudent =〈
{
SA : {SUZUKI} v Adult,

SS : {SUZUKI} v Student

}
,

AP : Adult <∼ PaysPension,

SP : Student <∼ ¬PaysPension,

GP : GRPStudent <∼ PaysPension

 ,

{SP > AP, GP > SP}

〉.
Similar to analysis in Example 4.3, we can show that TStudent is justified with respect

to {SUZUKI}. The results of initial step for defeasibly reasoning about {SUZUKI} are

ΣSuzuki,1 = TStudent and ∆Suzuki = {{SUZUKI},Adult, Student}.

4.2.3 Skeptical Selection Function

This subsection describes the main process in iteration of defeasible reasoning in the

Figure 4.1, the select function. Given Σ an ontology, C a concept, ∆C a set of definite

subsumer of C and ΣC,k−1 justified subtheory of Σ with respect to C at step k − 1,

this function chooses appropriated axioms in Σ, labeled as justified axioms, to construct

ΣC,k. The select function is named skeptical because it realizes the skeptical principle

of defeasible reasoning as described in Subsection 2.3. This principle is expressed as the

conditions to label concepts and axioms. Given a concept C, some concepts in Σ are

labeled as defeasible subsumer of C or defeasible non-subsumer of C, corresponding to

defeasible provability and defeasible non-provability, respectively. Besides, two auxiliary

labels, possible and tentative, are used to help the computation. The conditions to label

concepts are described below:

• For any concept description D, if ΣC,k−1 |= C <∼ D then D is a defeasible subsumer

of C. The set of defeasible subsumers of C is Csub.

• The set of possible subsumers of C, denoted as Cpos, contains conclusions of all

remaining axioms in Σ′, where Σ′ is the subset of Σ excluding axioms in ΣC,k−1 and

set of discarded axioms.

• The set of tentative subsumers of C, denoted as Cten, consists of conclusions of all

axioms that are applicable and not defeasible.

• The set of defeasible non-subsumers of C, denoted as Cnon, consists of concept that

satisfies one of following three conditions:

(1) Concept whose complement is a defeasible subsumer of C, we denote this subset

as C1
non.
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(2) Concept is neither definite nor possible subsumer of C, we denote this subset

as C2
non.

(3) Concept is not a defeasible subsumer of C and its complement is a tentative

subsumer of C, we denote this subset as C3
non.

The conditions to label axioms which correspond to the conditions of rules in defeasible

provability explained in Section 3.3 are defined as follows:

• An axiom is applicable if all literals in its antecedent are defeasible subsumers of C.

The set of applicable axioms is Aapp.

• An axiom is discarded if one literal in its antecedent is defeasible non-subsumer of

C. The set of discarded axioms is Adis.

• An axiom is defeasible if there exists a conflicting axiom which is not discarded and

stronger than it. Two axioms are conflicting if they have contradict literals as their

conclusions. The set of defeasible axioms is Adf .

• An axiom is defeated if there exists a conflicting axiom which is applicable and

stronger than it. The set of defeated axioms is Adfd.

• An axiom is justified if satisfies all following conditions:

(1) it is applicable;

(2) its conclusion is not a defeasible non-subsumer of C;

(3) and all of its conflicting axioms are either discarded or defeated.

The set of defeasible axioms is Ajus.

The above conditions to classify concepts and axioms are the mutual interactive. For

example, non-subsumer concepts cause some axioms discarded. Those axioms when with-

drawn may remove some concepts from possible set and thus, add those concepts to

non-subsumer set. Those new non-subsumer concepts in turn may cause other axioms

discarded and the process repeats.

To solve this recursive problem, the select function is detailed as in Figure 4.2. Inde-

pendent elements such as defeasible subsumers and applicable axioms are computed in the

first step. Then an iteration starting from the second block is used to compute mutually

interactive components. This iteration successively computes defeasible axioms, tenta-

tive and possible subsumers, and then defeasible non-subsumer concepts and discarded

axioms. If the set of discard axioms is not empty, the procedure removes discards axiom

from Σ′ and continues to compute those sets again. Otherwise, the iteration terminates.

Then, the sets of defeated and justified axioms are computed.
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input: Σ, C,∆C ,ΣC,k−1

Σ′ := Σ \ ΣC,k−1
Csub := compSubsumer(ΣC,k−1)
Aapp := compApplicable(Csub)

Adf := compDefeasible(Σ′)
Cpos := compPossible(Σ′)
Cten := compTentative(Aapp, Adf )
Cnon := compNonsubsumer(∆C , Cpos, Csub, Cten)
Adis := compDiscarded(Σ′, Cnon)
Σ′′ := Σ′ \ Adis

Σ′′ ⊂ Σ′Σ′ := Σ′′

Adfd := compDefeated(Σ′, Aapp)
Ajus := compJustified(Cnon, Aapp,Σ

′, Adef )

output: ΣC,k := ΣC,k−1 ∪ Ajus

No

Yes

Figure 4.2: Selection process of skeptical extension for defeasible reasoning

It is worth noting about the representation of an axiom. Let’s consider a classical

axiom in the general form as follow:

uni=1Ci v tmj=1Dj

where Ci, Dj are concept literals, A or ¬A1; or role literals, ∃R.C,∀R.C,≥ nR.C, or

≤ nR.C where C is in negation normal form.

1According to the convention of description logics, ¬A is used to represent complement of A in
defeasible DL.
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This axiom is equivalent to one of the following transpositions:

uni=1Ci umj=2 (¬Dj) v D1 (1)
...

uni=1Ci um−1j=1 (¬Dj) v Dm (m)

uni=2Ci umj=1 (¬Dj) v ¬C1 (m+ 1)
...

un−1i=1 Ci umj=1 (¬Dj) v ¬Cn (m+ n)

A simple treatment to handle those transpositions is to replace the classical axiom

by m+ n defeasible axioms, each axiom corresponds to one transposition. For defeasible

axiom, C <∼ D, it is not necessary to consider its contrapositive, i.e. ¬D <∼ ¬C, as

discussed in [38]. Therefore, a defeasible axiom is replaced by the transpositions (1)

to (m). In the following parts of this paper, we consider Σ′ as the transformation of

original ontology according to this treatment. The following examples demonstrate the

computational procedure of select function after the initial step.

Example 4.5 (Penguin reasoning). We consider the selection process after initial step for

extended Bird ontology in Example 4.3. The remaining ontology after removing ΣPenguins,1

is

Σ′ =〈


EB : Eagle <∼ Bird,

BE : ¬Bird <∼ ¬Eagle,

BF : Bird <∼ Fly,

BW : Bird <∼ HasWings

 ,

>

〉.

∆Penguin = {Penguin,Bird,¬Fly}

ΣPenguin,1 =

{
PB : Penguin v Bird,

PF : Penguin v ¬Fly

}

The set of defeasible subsumer of Penguin inferred from ΣPenguin,1 is

CSub = compSubsumer(ΣPenguin,1) = {Penguin,Bird,¬Fly}.
Then the set of applicable axioms is:

Aapp = compApplicable(Ssub) = {BF,BW}.
For the first iteration of computing recursive elements, the set of defeasible axioms

compute from the remaining ontology is:

Adf = compDefeasible(Σ′) = ∅
The set of all possible subsumers, which are the conclusions of remaining axioms, is:

Cpos = compPossible(Σ′) = {Fly,HasWings,¬Eagle,Bird}
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The set of all tentative subsumers, which are the conclusions of applicable but not

defeasible axioms, is:

Cten = compTentative(Aapp, Adef ) = {Fly,HasWings}
The set of non-subsumer of Penguin is represented as the union of three sets corresponding

to three conditions, respectively:

Cnon = compNonsubsumer(∆Penguin, Cpos, Csub, Cten)

= C1
non ∪ C2

non ∪ C3
non where

C1
non = {¬Penguin,¬Bird,Fly},

C2
non = {¬Penguin,¬HasWings,Eagle,¬Bird},

C3
non = {¬HasWings}.

Then the set of discarded axioms is

Adis = compDiscarded(Σ′, Cnon) = {EB,BE}.
Since Adis is not empty, the iteration continues after removing Adis from Σ′. The

results of second iteration are as follows:

Σ′ = 〈
{
BF : Bird <∼ Fly,

BW : Bird <∼ HasWings

}
,

>
〉

Adf = ∅,
Cpos = {Fly,HasWings},
Cten = {Fly,HasWings},
Cnon = {¬Penguin,¬Bird,Fly} ∪

{¬Penguin,¬HasWings,Eagle,¬Eagle,¬Bird} ∪
{¬HasWings},

Adis = ∅.
The iteration terminates because Adis is empty. Then the sets of defeated axioms and

justified axioms are

Adfd = compDefeated(Σ′, Aapp) = ∅ and

Ajus = compJustified(Cnon, Aapp,Σ
′, Adef ) = {BW : Bird <∼ HasWings}.

Axiom BF : Bird <∼ Fly is not justified because Fly is a defeasible non-subsumer of

Penguin.

Example 4.6 (Student reasoning). For selection function after the initial step of Student

ontology in Example 4.4, the remaining ontology is

Σ′ = 〈


AP : Adult <∼ PaysPension,

SP : Student <∼ ¬PaysPension,

GP : GRPStudent <∼ PaysPension

 ,

{SP > AP, GP > SP}
〉

∆Suzuki = {{SUZUKI},Adult, Student}
Results of initial step of select function are as follows:
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Csub = {{SUZUKI},Adult, Student},
Aapp = {AP, SP}.

Results of computation in the first iteration for recursive elements are as follows:

Adf = {SP : Student <∼ ¬PaysPension, AP : Adult <∼ PaysPension},
Cpos = {PaysPension,¬PaysPension},
Cten = ∅,
Cnon = {¬{SUZUKI},¬Adult,¬Student,GRPStudent,¬GRPStudent},
Adis = {GP}.

The results of computation in the second iteration are as follows:

Σ′ = 〈
{
AP : Adult <∼ PaysPension,

SP : Student <∼ ¬PaysPension

}
,

{SP > AP} 〉,
Adf = {AP : Adult <∼ PaysPension},
Cpos = {PaysPension,¬PaysPension},
Cten = {¬PaysPension}
Cnon = {¬{SUZUKI},¬Adult,¬Student,GRPStudent,¬GRPStudent,PaysPension},
Adis = ∅.

After the iteration, the results of remaining computation are Adfd = {AP : Adult <∼
PaysPension} and Ajus = {SP : Student <∼ ¬PaysPension}. Axiom SP is justified because

its conflict axiom GP is defeated. Meanwhile, AP is not justified since SP is not defeated.

4.3 Semantics of Defeasible DL

Given the reasoning approach to verify defeasible query as described in previous subsec-

tions, we can define a formal semantics for defeasible DL as follows.

Definition 5. Let Σ be a DSHOIQ ontology, C a concept expression, ΣC a sub-theory

of Σ that is justified with respect to C.

1. A concept expression D is

a) defeasible subsumer with respect to C and ΣC iff ΣC |= C <∼ D;

b) possible subsumer with respect to C and ΣC iff ∃α ∈ Σ \ΣC ∪Σ− such that

C(α) = D, where Σ− is the set of discarded axioms of Σ with respect to C and

ΣC and C(α) is conclusion of α;

c) tentative subsumer with respect to C and ΣC iff ∃α ∈ Σ\ΣC ∪Σ− such that

C(α) = D and α is applicable and not defeasible with respect to C and ΣC;

d) defeasible non-subsumer with respect to C and ΣC iff (¬D is a defeasible

subsumer with respect to C and ΣC) or (D is neither definite subsumer nor
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possible subsumer with respect to C and ΣC) or (D is not a defeasible subsumer

and ¬D is a tentative subsumer with respect to C and ΣC).

2. A terminological axiom α ∈ Σ \ ΣC ∪ Σ− is

a) applicable with respect to C and ΣC iff ∀D such that A(α) v D,D is a

defeasible subsumer with respect to C and ΣC where A(α) is the antecedent of

α;

b) discarded with respect to C and ΣC iff ∃D such that A(α) v D and D is

defeasible non-subsumer with respect to C and ΣC;

c) defeasible with respect to C and ΣC iff ∃β ∈ Σ \ ΣC ∪ Σ− such that C(β) =

¬C(α) and β is not discarded with respect to C and ΣC and β > α;

d) defeated with respect to C and ΣC iff ∃β ∈ Σ\ΣC∪Σ− such that C(β) = ¬C(α)

and β is applicable with respect to C and ΣC and β > α;

e) justified with respect to C and ΣC iff (α is applicable) and (C(α) is not a

defeasible non-subsumer) and (∀β ∈ Σ \ ΣC ∪ Σ− such that C(β) = ¬C(α), β

is defeated).

Definition 6. Let Σ be a DSHOIQ ontology, C a concept expression. Subtheories of Σ

with respect to C are defined as follows:

ΣC,1 = {α| α ∈ T ∪ {C v C} and α is justified with respect to C}
ΣC,n+1 = ΣC,n ∪ {α | α ∈ Σ and α is justified with respect to C and ΣC,n}

ΣC,M is the maximal subtheory with respect to C of Σ if ΣC,M = ΣC,M+1.

Given a concept C, subtheories of Σ with respect to C form a strictly partial order :

ΣC,1 ⊂ ΣC,2 ⊂ · · · ⊂ ΣC,M ⊆ Σ.

Finally, defeasible satisfiability of a defeasible subsumption is given in Definition 7.

An important property of a defeasible theory is that it is coherent in the terms that it do

not derive contradict conclusions if its classical part is consistent, which is introduced in

Theorem 8.

Definition 7. A defeasible DSHOIQ ontology Σ satisfies a defeasible subsumption

C <∼ D, denoted as Σ |≈ C <∼ D if ΣC,M |= C <∼ D where ΣC,M is the maximal applied

subtheory of Σ with respect to C.

Theorem 8. If Σ is consistent and Σ |≈ C <∼ D then Σ 6|≈ C <∼ ¬D.
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Proof by contradiction. Assume that Σ |≈ C <∼ D and Σ 6|≈ C <∼ ¬D there there exists m

and n such that ΣC,n |= C <∼ D,n = 1 or ΣC,n−1 6|= C <∼ D and ΣC,m |= C <∼ ¬D,m =

1 or ΣC,m−1 |= C <∼ ¬D. Because Σ is consistent, which implies ΣC,1 can not derives

C v D and C v ¬D concurrently, m and n cannot be 1 concurrently. Without loss of

generality, we can assume that n ≤ m.

Case 1 ≤ n < m. Then ΣC,m−1 |= C <∼ D and ∃α ∈ ΣC,m \ ΣC,m−1,C(α) = ¬D and α

is justified with respect to C and ΣC,m−1. This contradicts with the second condition of

condition 2.e) in Definition 5 because D is a defeasible subsumer of C.

Case 1 < n = m. Then ∃α ∈ ΣC,n \ ΣC,n−1 and β ∈ ΣC,m \ ΣC,m−1 such that C(α) = D

and C(β) = ¬D and α, β are justified with respect to C and ΣC,n−1. This contradicts

with the third condition of condition 2.e) in Definition 5 because both conflict axioms are

not defeated. Therefore, none of them can be justified.

4.3.1 Complexity of Defeasible Reasoning

As discussed in Subsection 4.2, defeasible reasoning is performed by a linear strategy,

expressed as a single loop in Figure 4.1, which employs ontology reasoner as the basis for

checking consistency. However, in each iteration, the algorithm needs to use ontology rea-

soner to compute subsumers of concept iteratively. Therefore, the algorithm complexity

is quadric according to ontology reasoning. Given n is the size of ontology and C the com-

plexity of ontology reasoning, computational complexity of defeasible reasoning is O(n2C).
Theoretically, the consistency problem of a SHOIQ ontology is NEXPTIME-complete

[113], but for expressive ontologies that have been developed so far, the reasoning services

can performed in practically acceptable [54]. Therefore, defeasible reasoning approach

has a rational complexity for inference with practical ontologies.

4.4 Determine Defeasible Axioms and Priority Rela-

tions in Inconsistent Ontologies

Even defeasible DL provides an efficient way to deal with inconsistent ontologies, it may

be difficult for ordinary ontology modelers to aware where to modify the ontology. We

aim to facilitate the use of defeasible reasoning by providing automatic function to assign

defeasibility and priority relationships among problem axioms. The defeasibility and

priority relationships in examples used in previous sections are determined by the semantic

meanings of the concepts and axioms and required human or expert knowledge. However,

the following approach uses only syntactical relationship among axioms to give a quick

solution for inconsistency. Ontology modelers then can modify the suggestion based on

their own preference.
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4.4.1 Detecting Inconsistency in Ontology

It is easy to verify that defeasible reasoning is not different from classical reasoning for

entailment which is not related to the inconsistency. Therefore, we need to find the

minimal set of axioms that cause the inconsistent, which defined as minimal inconsistent

set as in following definition.

Definition 9 (Minimal Inconsistent Set (MIS)). Given an inconsistent ontology Σ, a

subset M ⊆ Σ is a minimal inconsistent set (MIS) if there exists a concept C such that

M |= C v ⊥ and for all M′ (M,M′ 6|= C v ⊥.

Single MIS for inconsistent ontology can be generated by a “divide and conquer”

method presented in Algorithm 2, which is modified from algorithm in [53]. The algorithm

receives a set of restriction S, which is initially empty, and the ontology as inputs. It

divides the ontology into to parts SL and SR and looks for inconsistency in each part.

If inconsistency is found in one part, the algorithm recursively looks through this part

for the minimal set of axioms. If inconsistency is not found, the algorithm computes

the sub-part of SL which causes the inconsistency w.r.t. S ∪ SR, denoted S ′L, and then

compute the corresponding sub-part of SR which causes the inconsistency w.r.t. S ∪ S ′L,

denoted S ′R. The combination of S ′L and S ′R is one MIS.

Algorithm 2: Compute one MIS for inconsistent ontology

Function 2: ComputeSingleMIS(Σ)
1 return ComputeSingleMIS(∅,Σ)
Function 2R: ComputeSingleMIS(S, F )
1 if |F | = 1 then
2 return F
3 SL, SR ← split(F )
4 if IsInconsistent(S ∪ SL) then
5 return ComputeSingleMIS(S, SL)
6 if IsInconsistent(S ∪ SR) then
7 return ComputeSingleMIS(S, SR)
8 S ′L ← ComputeSingleMIS(S ∪ SR, SL)
9 S ′R ← ComputeSingleMIS(S ∪ S ′L, SR)

10 return S ′L ∪ S ′R

Reconsider the Student ontology in previous examples in its classical form as below,

Figure 4.3 demonstrates the calculation of one MIS for this ontology.
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ΣStudent =



Adult v PaysPension

Student v ¬PaysPension

GRPStudent v PaysPension

Student v Adult

GRPStudent v Student


Given the procedure to compute one single MIS, Algorithm 3 generates all MIS by

the following idea. It first find any MIS, then remove each of the axioms in the MIS indi-

vidually, and find a new MIS according to the new ontology. This process is exhaustively

performed to generate all MIS. An example to compute all MIS for Student ontology

is shown in Figure 4.4. The algorithm presented here is a brief version of algorithm to

compute justifications in ontology reasoning. For approaches that aim to debug the on-

tology such as in [60, 53], the algorithm for computing all MIS as well as the repair adopts

Reiter’s hitting set tree algorithm from Reiter’s general theory diagnosis [100].
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F =


Adult v PaysPension
Student v ¬PaysPension
GRPStudent v PaysPension
Student v Adult
GRPStudent v Student



SL =


Adult v PaysPension
Student v ¬PaysPension
GRPStudent v PaysPension

 SR =

{
Student v Adult
GRPStudent v Student

}

S ′L =

{
Adult v PaysPension
Student v ¬PaysPension

}
S ′R =

{
Student v Adult

}

M =


Adult v PaysPension
Student v ¬PaysPension
Student v Adult


Figure 4.3: Example of finding one MIS

Algorithm 3: Compute all MIS for inconsistent ontologies

Function 3: ComputeAllMIS(Σ)
1 S ← ∅
2 ComputeAllMIS(Σ, S)
3 return S
Function 3R: ComputeAllMIS(Σ, S)
1 if IsConsistent(Σ) then
2 return
3 M ← ComputeSingleMIS(Σ)
4 S ← S ∪ {M}
5 for each ax ∈M do
6 ComputeAllMIS(Σ \ {ax}, S)
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M1 = {A v P, S v ¬P, S v A}

M2 = {S v ¬P,G v S,G v P} {} M2 = {S v ¬P,G v S,G v P}

{} {} {} {} {} {}

S v ¬PA v P S v A

S v ¬P G v S G v P S v ¬P G v S G v P

Figure 4.4: Example of finding all MIS

4.4.2 Assigning Defeasible Axioms and Priority Relations

After retrieving all MIS from inconsistent ontologies, we apply following heuristics to as-

sign defeasible axioms and priority relations to axioms in each MIS, which is shown in

Algorithm 4. Axioms that have conflict consequences in each MIS if exists are converted

to defeasible axioms. These axioms are the sources of inconsistency thus converting them

to defeasible axioms ensures that defeasible reasoning will not infer conflict consequences.

However, skeptical reasoning disregards all conflict consequences without preferential in-

formation about axioms.

Algorithm 4: Assign defeasible axioms and priority relations for axioms in all MISs

Algorithm: AssignDefeasible(S)
Input: All minimal inconsistent sets S

1 for each s ∈ S do
2 for φ1 = C1 v D and φ2 = C2 v ¬D ∈ s do
3 Convert φ1 and φ2 to defeasible axioms
4 if (s |= C1 v ⊥ and s 6|= C2 v ⊥) then
5 Assign φ1 > φ2

6 else if (s |= C2 v ⊥ and s 6|= C1 v ⊥) then
7 Assign φ2 > φ1

We utilize generalized specificity [108] which favors those axioms which are more

specific or more informed as a syntax-based preference criterion to assign priority re-

lations. In MIS M1 in above example, Student v ¬PaysPension is preferred to Adult v
PaysPension because the former refer to more specific concept of Student. Similarly,

Student u HasIncome v PaysPension is preferred to Student v ¬PaysPension because an-

tecedent of the former has more conditions. In general, given two axiom φ1 = C1 v D and
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φ2 = C2 v ¬D, φ1 is more specific or more informed than φ2 if C1 v C2, hence C1 v ⊥,

and vice versa. This principle is also applied in lexicographic default reasoning and logic

programming with arguments as shown in chapter of related works.
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Chapter 5

Implementation and Experiments

5.1 Protégé and Plugins

Protégé1 is ontology development environment which is common because of its capabil-

ity of handling ontologies of various formats. Protégé is developed by the Centre for

Biomedical Informatics Research at Standford University. The latest versions of the edi-

tor (Protégé 4.x) is capable of handling ontologies of various formats but predominantly

serves for OWL 2 ontologies. The support and alignment with the OWL 2 standard

is provided by the latest version of the underlying API that Protégé uses. This is the

Java-based OWL-API [51] which it depends on for executing management tasks such as

creating, loading and manipulating OWL ontologies. It also provides support for inte-

gration of implemented reasoning engines (OWL) reasoners for analyzing and revealing

implicit information in loaded ontologies during the modeling process. It has a plug-in

friendly infrastructure, Protégé is indeed a bulk of plug-ins, which makes it ideal for ex-

tensibility. There are many Protégé plug-ins that have been developed by the Knowledge

Representation community of varying types and functionality which aim to facilitate the

ontology engineering process. We construct KS Ontology with Protégé 4.1 editor and

develop a plug-ins for defeasible axiom representation and reasoning in this environment.

In Protégé, concept is named as class and role as property.

Protégé has a tab-based interface, which opens by default to the Active Ontology

tab. This tab provides an overview of the ontology, including metrics on its contents,

annotations about the ontology as a whole, and other imported ontologies (if any imports

exist). Figure 5.1 shows a screen shot of the overview of KS ontology. The metrics show

the properties of the ontology, for example, the SHOIQ in DL metrics indicates that KS

ontology consists of transitive and inverse roles, nominals and qualified number restriction

descriptions.

1http://protegewiki.stanford.edu/wiki/Main_Page
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Figure 5.1: Ontology view of KS Ontology

The Entities tab is the workhorse of the ontology editor where we can explore all of the

classes (or concepts), properties (or roles), and individuals in an ontology. Specific tabs

such as Classes, Individuals, etc. are dedicated for corresponding particular elements

in the ontology. Other tabs such as OWLViz Plugins, DL Query, etc. are external

plug-ins which are packed in Protégé installation that provides extensions for ontology

engineering. OWLViz Plugins enables class hierarchies in an OWL ontology to be viewed

and incrementally navigated, allowing comparison of the asserted class hierarchy and the

inferred class hierarchy. For example in Figure 5.2, the concept KSProfessor is highlighted

as the sub-class of JaistProfessor in the inferred model of KS ontology even though it is

not explicitly specified (for the purpose of verifying the inference ability of KS ontology).

DL Query is another important tab that allows users to ask for detail inference results

that does not shown by default reasoning service.
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Figure 5.2: Inferred model of KS Ontology in OWLViz tab

5.2 Implementation of KS Ontology

5.2.1 Implementation of KS TBox

We implement KS TBox by adding the concept descriptions in Entities or Classes tabs.

The concept description is stipulated in Description view such as in Figure 5.3. It is usual

to define the equivalent classes, corresponding to equivalent axioms, and superclasses,

corresponding to inclusion axioms, of a selected class. As shown in the figure, class

descriptions are given in the Manchester OWL Syntax.

Manchester OWL Syntax [52] is created to produce a syntax that could be used by

non-logical ontology modeler to edit class description in tools such as Protégé-OWL or

Swoop. The class description syntax is shown in the Figure 5.4. The syntax replaces DL

operators by the natural language keywords to make class expressions more natural to

read. In addition, the syntax makes it easy to paste the plain text representation of the

expression into e-mails etc. without incurring the formatting problems that can arise due

68



Figure 5.3: Concept Descriptions for KS Ontology

to the different fonts required to represent the mathematical symbols that are used in the

DL syntax.

OWL Constructor DL Syntax Manchester OWL Example

intersectionOf C uD C and D DoctorStudent and TypeS
unionOf C tD C or D DoctorStudent or MasterStudent
complementOf ¬C not C not DoctorStudent
oneOf {a}t{b}... {a b ...} {K601 K602}
someValuesFrom ∃R.C R some C passes some KSLecture
allValuesFrom ∀R.C R only C supervises only KSStudent
minCardinality ≥ nR.C R min n C passes min 5 KSCourse
maxCardinality ≤ nR.C R max n C passes max 1 English
cardinality = nR.C R exactly n C supervisedBy exactly 1 Professor
hasValue ∃R.{a} R value a passes value {K601}

Figure 5.4: The Manchester OWL Syntax Class Constructors

The Manchester OWL Syntax encourage the minimization of the number of brackets

that are used. This is achieved using operator precedence for class descriptions. The fol-

lowing list summarizes operator precedence – operators are shown from highest precedence

to lowest precedence.

– some, all, value, min, max, exactly

– not

– and
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– or

As would be expected, the syntax supports the nesting of class constructors to arbi-

trarily complex levels. Complex class expressions can be disambiguated by bracketing.

For example, the class expression below describes the set of students who pass the level

requirements for doctoral program in School of Knowledge Science:

(passes some AdvanceLecture) and

( ((passes min 1 EnglishLecture) and (passes min 4 DrLecture))

or (passes min 5 DrLecture))

The expression has been formatted using indentation to ease readability.

Class expression that are built up using the syntax described previously can be used

in tools for representing and editing items such as superclass/equivalent class expression

etc. In addition to the class expression syntax, there is a full syntax for OWL entity

descriptions. This means that it is possible to represent full descriptions for classes,

properties and individuals in a textual manner.

5.2.2 Implementation of KS ABox

Individuals in KS Abox are created with the following three steps:

1. Create individual name and its additional information in annotation view.

2. Assign individual to some types, which are the ontology concepts. This corresponds

to create concept assertion.

3. Assign property assertion(s) for the individual. Each assignment consists of a prop-

erty and a value (an individual) and corresponds to a role assertion.

An example of the assertions for individual Yamada is shown in Figure 5.5. We can

notice that the lower part of the left view shows the list of different individuals which

covers all the individuals of the domain. The listing is necessary because the Unique

Name Assumption is not applied in ontology reasoning. This implies that in an ontology,

two individuals can refer to the same object in the real world. This implication makes

ontology reasoning with number restrictions not work properly without clearly stating

that all the individuals are different.

5.2.3 Performing Reasoning on KS Ontology

The use of KS Ontology to answer the question of interest user is carried out by calling

reasoning service of Protégé. This service is provided by the built-in reasoner HermIT

or another plug-in reasoner such as FaCT++. After the reasoner finishes classifying,
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Figure 5.5: Individual Descriptions for KS Ontology

an additional sub tab appears on the Entities tab to show the inferred class hierarchy

and for every class (or individual), its inferred super-classes/equivalent classes (or types)

are appeared as light color items, as shown in Figure 5.6. DL Query tab can be used

to find additional inferred results such as inferred sub-classes or answer a specific query

from the user. Unsatisfiable classes (if exist) appear in red under Nothing and everything

else appears in the hierarchy under their inferred superclasses. In the ontology contains

inconsistent individual, Protégé also shows a warming message to the user.

Figure 5.6: Inferred Type for Individual in KS Ontology

Modern ontology developing environment like Protégé also provides explanation ser-

vice to help the user to understand the reasoning process to obtain the results. Expla-

nation dialog appears when clicking the ‘?’ mark beside the inferred result. Figure 5.7

shows an example how to infer that Nguyen is a student of School of Knowledge Science
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from the knowledge that he is supervised by Professor Yamada who is a faculty member

of School of Knowledge Science.

Figure 5.7: An Explanation for Ontology Reasoning Result

5.3 DR-OWL–Prototype of Defeasible Reasoning

We implement a prototype of defeasible reasoning approach as a Protégé plugins DR-

OWL, which stands for Defeasible Reasoning OWL. DR-OWL plugins consists of two

main views that is defeasible axiom view and defeasible query view.

Defeasible axiom view allows the ontology modeler to specify the defeasible and pri-

ority information of axioms. An example of defeasible axiom view for Bird ontology is

depicted in Figure 5.8. This view includes two axiom lists. The upper list shows axioms

which relate to a selected concept and the lower shows all axioms in the ontology. Modeler

can toggle defeasibility of an axiom by clicking on the “d” button beside the axiom. To

specify priority relation between axioms, we select an axiom in upper list and click “<”

button of its inferior axiom in the lower list. For the Bird ontology in the Figure 5.8,

there are two defeasible axioms that ‘birds fly’ and ‘penguins do not fly’. And the axiom

‘penguins do not fly’ is stronger than ‘birds fly’.

Defeasible and priority information is stored in the axiom annotations. Therefore, no

explicit extension of current ontology specification is required and the logical meaning

of the ontology is preserved. This information is used to perform defeasible reasoning

but does not affect other reasoning process in Protégé. This technique of using axiom

annotations for extending ontology representation has been utilized in several works such

as fuzzy OWL [18] or preferential DL [84].

Query view provides two defeasible reasoning tasks: query checking and concept clas-

sification. Those reasoning tasks are performed by implementing linear reasoning strategy

as discussed in Section 4.2. To perform reasoning tasks, user can select one of Protégé

reasoners as the classical checker in the framework. In our experiments, we use HermiT

[85, 37] as the classical reasoner. This reasoner implements a hyper-tableaux algorithm
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Figure 5.8: DR-OWL Axiom view

with several optimization heuristics for ontology classification. This reasoner is also com-

patible to most semantic features of OWL 2 ontologies and efficient for most ontology

reasoning services.

For query checking task, an class axiom editor is used to input the query. The plugins

then check whether the query is entailed from the ontology. The explanation panel shows

all justified axioms with respect to the query. Those axioms are divided into strict and

defeasible axiom groups. Figure 5.9 illustrates result of checking the query ‘penguins do

not fly’ in Bird ontology. This query is defeasibly entailed by the ontology because there

are both classical and defeasible axioms in the set of justified axioms with respect to the

query. The other reasoning function is concept classification which is applied for class

which is currently selected in Protégé class hierarchy. The explanation panel then shows

all classical and defeasible superclasses of selected class.

5.4 Evaluation of DR-OWL

We evaluate DR-OWL plugins on some example ontologies including Bird and Student

ontologies from the examples in previous sections and people+pets ontology 2, which is

created from ISWC tutorial on ontology [14]. The last ontology contains a typical example

of unsatisfiable concept named MadCow. In this ontology, MadCow is a Cow which eats

brains of sheep, whereas a Cow is considered as a vegetarian which does not eat everything

relating to animal. The interpretation of this example is as follows:

2http://protege.cim3.net/file/pub/ontologies/people.pets/people+pets.owl
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Figure 5.9: DR-OWL Query View

Cow v Vegetarian

MadCow v Cow

MadCow v ∃eats.(Brain u ∃part of.Sheep)

Sheep v Animal

Vegetarian v (∀eats.¬Animal) u (∀eats.(¬∃part of.Animal))
In order to evaluate the reasoning framework for inconsistent ontologies, Huang et

al. [56] proposes an intuitive test in which the answers provided by the system are

compared to the intuitive answers of the users for a set of queries. Using a syntactical

relevance function as selection function, Huang et al.’s system, named PION, can give

matching answer for most of the queries except for one important query that ‘is mad

cow a vegetarian?’ We expect that ‘mad cow is not a vegetarian’ but the system accepts

‘mad cow is a vegetarian’ instead. This is because the syntactical path of the latter answer

(mad cod–cow–vegetarian) is shorter than of the former (mad cow–eats part of sheep–eats

part of animal–not vegetarian). PION prefers the shorter syntactical path when resolving

conflict.

Meanwhile, DR-OWL allows the modeler to flexibly resolve conflict by the means of

defeasibility and priority relation. For people+pets ontology, we can express ‘cows is

typically a vegetarian’ as a defeasible axiom. With this representation, the problem of

unsatisfiable concept ‘mad cow’ is solved and the expected answer ‘mad cow is not a

vegetarian’ is obtained. We apply a semantic approach to determine defeasible axiom in

this example. For syntactic-based heuristic presented Section 4.4, the defeasible axioms

and superiority relations are computed as follows:
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Ontology Queries Defeasible axiom(s) Priority relation(s)
Student 64 Adult <∼ PaysPension

Student <∼ ¬PaysPension > Adult <∼ PaysPension
GRPStudent <∼ ¬PaysPension > Student <∼ ¬PaysPension

Bird 80 Bird <∼ Fly
Penguin <∼ ¬Fly > Bird <∼ Fly

people+pet 288 Cow <∼ Vegetarian

Table 5.1: Settings of example ontologies to pass intuitive test

CA : MadCow <∼ ∃eats.(Brain u ∃part of.Sheep)

V A : Vegetarian <∼ ∀eats.(¬∃part of.Animal)

CA > V A
Both approaches can address the conflict problem but for syntactic approach, seman-

tically unexpected result such as ‘mad cow is a vegetarian’ is inferred. This example

shows the differences among semantic approach, which reflects the actual meaning of the

knowledge, and syntactic approach, which is only based on relationship among axioms.

This result suggests that the heuristic to determine defeasible axiom and priority relations

can be improved by taking into account the meanings of concepts and axioms.

Table 5.1 represents the settings of three example ontologies such that defeasible rea-

soning return correct answers in the intuitive test. For each ontology, a set of queries is

generated and executed by the system. The total number of the queries for each ontology

is shown in the table. An answer can be unsatisfied, classically satisfied and defeasibly

satisfied. The answers returned by DR-OWL are compared to the intuitive answers, tak-

ing into account the logical meaning of the ontology. In our experiments, all the answers

of the system are exact to the expected answers.

Regarding to the practical time complexity, performing defeasible reasoning takes un-

der 1 second per query on a typical PC setting (with 2.4 GHz CPU, 4Gb RAM under Win-

dows 7). This time complexity is acceptable for moderate ontology such as people+pets

ontology which contains 60 concepts and about 400 axioms. The practical efficiency of

reasoning framework comes from the combination between linear strategy and skeptical

selection function. With skeptical selection function, no combination of axioms is needed

to explore during the reasoning.
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Chapter 6

Related Works

Since conflict knowledge appears in many real-world applications and situations, re-

searches into representation and reasoning with conflict knowledge attract much attention

in AI and Semantic Web communities. Those researches fall into two categories: (i) in-

tegrate non-monotonic reasoning with ontology reasoning and (ii) represent uncertainty

knowledge in ontology. For the first category, the most common approach is to integrate

defaults to DL ontology. Lexicographic entailment in default logic also influences other

approaches in second categories of uncertainty representation in DL ontology. This section

provides an overview of related works as the basis to compare our proposed approach.

6.1 Non-monotonic Approaches for DL Ontology

6.1.1 Default Logic

Default logic has been introduced by Reiter [99] as an approach to commonsense reasoning.

It can be used to deal with the inability to fully describe the world and to provide more

concise representations of knowledge due to the form of specifying exceptions to defaults.

The notion of a default is introduced, which acts as an inference rule on the current set

of beliefs.

A default is in the form
α : β

γ
where α, β and γ are well-formed formulae. α is the

prerequisite, β is the justification and γ is the consequent. The default can be applied and

the consequent inferred if the prerequisite can be proved and the justification is consistent

with the current knowledge. We say that a default is closed if it contains no free variables.

A normal default is in the form
α : γ

γ
which is usually read as “Typically, if α then β”

and abbreviated as (α : γ). Default reasoning mainly deals with normal defaults, thus we

assumes hereafter the normal form of defaults without loss of generality.

A default theory is a pair Σ = 〈W,Γ〉, where W is a set of first-order logic formulae

creating a world description and Γ is a set of defaults. The consequences of a default
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theory are defined using the notion of an extension, which is a set of deductively closed

formulae derived from the application of defaults that does not cause any inconsistency.

Due to the complex interaction among defaults, a default theory can have more than one

extension or even no extensions. However, a default theory consisting only of normal

defaults (normal default theory) guarantees having at least one extension. The following

definition shows a non-deterministic iterative process of obtaining extensions of a default

theory. In each step a default is used to add the consequent to the resulting set of formulae.

An extension is defined by the fixed point of this process.

Let E be a set of closed formulae and Th(E) we denote the deductive closure of a set

of formulae E. Th(E) is an extension of 〈W,Γ〉 iff

Th(E) =
∞⋃
i=0

Th(Ei)

where

E0 = W

Ei+1 = Ei ∪ {γ|(α : γ) ∈ Γ, α ∈ Th(Ei) and ¬γ 6∈ Th(E)}

The consequences of a default theory can be defined by employing skeptical or cred-

ulous reasoning. Given the default theory Σ, a formula ϕ is a consequence of skeptical

reasoning in Σ if it is in at least one extension, i.e. ∃E ∈ ext(Σ), ϕ ∈ E. A formula ϕ is a

consequence of credulous reasoning in Σ if it is in all extensions, i.e. ∀E ∈ ext(Σ), ϕ ∈ E.

Both approaches for default reasoning are NP-complete because the extensions are finite

sets of formulas and the definition of extension is non-constructive.

6.1.2 Defaults with DL Ontology

Baader and Hollunder [10] show how defaults can be embedded into description logics.

Based on Baader and Hollunder’s formalism, Wiȩch [115] propose a framework to perform

default reasoning in a distributed environment where agents exchange not only reasoning

results but also default justification to achieve the result. Default justification is help

to resolve possible conflict among reasoning results of agents. Defaults for description

logics are formed analogously to the original defaults syntax. Here, the formulas for the

prerequisite, justification and conclusion are replaced by DL concepts. A default is in the

form C : D which expresses that it can be inferred that x is an instance of the concept D

if x is an instance of C and it is consistent to assume that x is an instance of D.

A default DL ontology Σ = 〈T ,D〉 consists of T a set of classical axioms and D a

set of defaults. In order to answer a query ϕ = C v D? from a default DL ontology,

an default reasoning algorithm such as proposed by Risch and Schwind [101] is used to
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compute all extensions of the theory 〈T ∪ {C},D〉. The answer to the query is computed

by investigating the extensions to look for D with one of two default reasoning rules,

skeptical or credulous reasoning.

Example 6.1. Consider a default theory Σ = 〈T ,D〉, where

T = {{SUZUKI} v Adult, {SUZUKI} v Student}

D = {Adult : PaysPension, Student : ¬PaysPension}

For the query ϕ = {SUZUKI} v PaysPension, there are two extensions, which corre-

sponds to the application of one of two defaults respectively, as follows:

E1 = {{SUZUKI},Adult, Student,PaysPension}

E2 = {{SUZUKI},Adult, Student,¬PaysPension}

Since PaysPension is in E1 but not in E2, ϕ is satisfied w.r.t. credulous reasoning but

not satisfied w.r.t. skeptical reasoning.

Wiȩch [115] points out two limitations of default reasoning on DL ontology. The first

one is embedding defaults in description logics is not as straightforward defaults can only

be applied to named individuals which already exist in the knowledge base. This problem

is due to the incompatibility between default reasoning and description logic. The second

problem of is inconsistent answers can be returned by default reasoning. For example,

both query {SUZUKI} v PaysPension and {SUZUKI} v ¬PaysPension are satisfied by

credulous reasoning from the default ontology in Example 6.1. This is due to the nature of

default reasoning and can be addressed by posing a priority relationship among defaults.

Lehmann proposes preferential entailment [70] and lexicographic entailment [69] which

allow the use of logical specificity or exceptionality of defaults to handle the inconsistency

in default reasoning.

6.1.3 Preferential Description Logics

Preferential DLs [20] handle incompatibility issue by adding defeasible axiom C <∼ D,

which corresponds to a normal default (C : D), to DL ontology and lifting the semantics

of preferential logic from propositional case [70] to description logic case and thus inherits

the elegant and well-formed semantics of the original one. Application of this approach

is also implemented as a plugins of common ontology editor Protégé [84].

Preferential reasoning utilizes ranking of the Σ which is computed as a collection of

sets of sentences D. Each sentence in a particular set from D shares the same level of
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exceptionality. Given the collection of sets D = {D1, . . . ,Dn},D1 represents the lowest

rank containing the least exceptional (specific) sentences in the Σ. Then they are the ones

which can be “disregarded” with the most confidence when contradicting information is

found. Meanwhile, the highest ranking subset D∞ contains all non-defeasible or classical

axioms that will not be disregarded and should always remain in the Σ.

Example 6.2. Consider the following preferential DL ontology:

Σ =


Bird <∼ Fly

Bird <∼ HasWings

Penguin v Bird

Penguin <∼ ¬Fly


The ranking of Σ is as follows:

D∞ = {Penguin v Bird}

D2 = {Penguin <∼ ¬Fly}

D1 = {Bird <∼ Fly,Bird <∼ HasWings}

The ranking is computed based on exceptionality of the axioms. A classical axiom is

always exceptional w.r.t. Σ while a defeasible axiom C <∼ D is exceptional w.r.t. Σ if its

antecedence is not satisfied by Σ, i.e. Σ |= C v ⊥. These ranks is computed iteratively,

starting from the lowest rank [84]: axioms that are not exceptional w.r.t. the current

Σ are removed from the Σ and added to the current rank. The remaining KB is used

to compute next higher ranks. The iteration continues until current KB is empty or all

axioms are exceptional w.r.t to current KB.

For a given query, preferential DL reasoning procedure finds the maximal subset of the

ranking that satisfies the antecedent and returning the reasoning result according to this

subset. There are two strategies two find the maximal subset corresponding to two type

of reasoning in preferential DL: prototypical and presumptive reasoning. Prototypical

reasoning uses the original ranking. That means it will remove the entire rank when

antecedent is not satisfiable. In Example 6.2, for the query Penguin <∼ Fly, the maximal

subset of D is D∞∪D2 because D1 is remove to avoid inconsistency. Therefore, the query

is not satisfiable and does not conflict with knowledge that Penguin does not fly. However,

Penguin <∼ HasWings is also not satisfied because of the removal.

Presumptive reasoning provides more lenient answer than prototypical reasoning by

trying to remove one by one axiom before removing the whole rank. It performs this

computation by adding some ranks above every rank Di(i 6= ∞) in the prototypical

ranking. Every additional rank corresponds to the union of subsets of Di after removing
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one axiom. Example 6.3 shows the converted ranking for presumptive reasoning. The

additional rank D′12 is added and it is the union of the subset of D1 after remove one

axiom. With this converted ranking, Penguin <∼ HasWings is satisfiable w.r.t presumptive

reasoning.

Example 6.3. The covnerted ranking D′ for presumptive reasoning is as follows:

D′∞ = {Penguin v Bird}

D′2 = {Penguin <∼ ¬Fly}

D′12 = {Bird <∼ Fly t HasWings}

D′11 = {Bird <∼ Fly,Bird <∼ HasWings}

The problem of presumptive reasoning is the cost of generating all sub-rankings of a

ranking. The computational complexity of presumptive reasoning is NEXP which easily

becomes untraceable for a moderate preferential DL ontology.

Lexicographic entailment [69] for sets of defaults is the formalization of semantics of

presumptive reasoning. It partition defaults into lexicographic structure z-partition based

on the specificity to define preferred models among interpretations. A model is lexico-

graphically preferable (or lex-preferable) to the other if it satisfies more defaults in the

lexicographical structure and it is a lexicographically minimal (or lex-minimal model if

and only if no model is lex-preferable to it. Given a query, the entailment is determined

by the lex-minimal model that satisfies or falsifies it. Similar to presumptive reasoning,

lexicographic entailment allows inheritance to exceptional subclasses, for example pen-

guins can inherit properties of birds even though they do not fly, but it also suffers the

high computational expense. Lexicographic entailment is applied in several formalisms as

shown in Section 6.2.

6.1.4 Other non-monotonic approaches for DL Ontology

Beside above approaches and syntactical defeasible DL ontology approach that has been

introduced in Section 3.6, there are some notable works that apply non-monotonic rea-

soning to DL ontology. Heymans and Vermeir (2002) extend the DL SHOQ(D) with a

preference order on the axioms. With this strict partial order, certain axioms can be over-

ruled if defeated with more preferred ones. They also impose a preferred model semantics,

introducing non-monotonicity into SHOQ but the detail discussion about inference for

this approach is not presented.

Gomez et. al. [38] present δ-ontologies, a framework for reasoning with inconsistent

DL ontologies which expresses DL ontologies as defeasible logic programs (DeLP). Given
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a query posed w.r.t. an inconsistent ontology, a dialectical analysis will be performed

on a DeLP program obtained from such an ontology, where all arguments in favor and

against the final answer of the query will be taken into account. However, some ex-

pressiveness features of DL ontology, for example disjunction constructor and existence

restriction in consequence of an axiom, is missing during the transformation because the

non-overlapping between expressiveness of description logic and logic programming.

6.2 Representation of Uncertainty in DL Ontology

and OWL

6.2.1 Probabilistic Description Logics

Probabilistic DL is based on probabilistic logic, a well-founded logic which has its origin

back to philosophy. There is a wide spectrum of formal languages that have been explored

in probabilistic logic, ranging from constraints for unconditional and conditional events to

rich languages that specify linear inequalities over events. There are several proposals for

probabilistic description logics such as in [49, 58, 30, 59, 74] among which Lukasiewicz’s

expressive probabilistic description logic [74] is the only approach so far for Semantic Web

and it also supports both terminological and assertional probabilistic knowledge.

Probabilistic DL utilizes conditional constraints to express uncertain statements. A

conditional constraint is an expression of the form (D|C)[l, u], where C and D are DL con-

cepts, and l and u are reals form [0,1]. Informally, (D|C)[l, u] encodes that the probability

of ψ given φ lies between l and u. It naturally interprets terminological and assertional

probabilistic knowledge as statistical knowledge about concepts and roles and as degrees

of belief about instances of concepts and roles, respectively, and allows for deriving both

statistical knowledge and degrees of belief.

The semantics of probabilistic DL is based on the notion of lexicographic entailment in

probabilistic default reasoning, which is a probabilistic generalization of the sophisticated

notion of lexicographic entailment in default reasoning from conditional knowledge bases.

This semantics implies that we can express default knowledge about concepts (as a special

case of terminological probabilistic knowledge), which is semantically interpreted as in

Lehmann’s lexicographic default entailment. Therefore, probabilistic reasoning for DL

ontology consists of two steps. Given a probabilistic DL ontology and a query written

as ϕ = (D|C), probabilistic reasoning first verifies the satisfiability of the default C : D

w.r.t. lexicographic entailment and then compute probability interval [l, u] by a linear

optimization technique [74]. The computational complexity of the each step is NEXP

and FPNEXP [75], respectively, which cause much difficulty on implementing practical

probabilistic DL systems.
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6.2.2 Possibilistic Description Logics

Possibilistic DL [97] is based on possibilistic logic [28], which is a weighted logic where

each classical logic formula is associated with a number in (0,1]. Possibilistic DL provides

a simpler and more flexible treatment to compute uncertainty in DL ontology than prob-

abilistic DL. Implementation and evaluation of various reasoning schemes in possibilistic

DL using KAON2 is reported in [97, 96, 95, 94].

The syntax of possibilistic DL is based on the syntax of classical DL. A possibilistic

axiom is a pair (φ, α) consisting of an axiom φ and a weight α ∈ (0, 1]. A possiblistic

TBox (resp., ABox) is a finite set of possibilistic axioms (φ, α), where φ is an TBox (resp.,

ABox) axiom. A possibilistic DL knowledge base Σ = (T ,A) consists of a possiblistic

TBox T and a possibilistic ABox A. We use T ∗ = {φi : (φi, αi) ∈ T } (A∗ can be defined

similarly). The classical base Σ∗ of a possibilistic DL knowledge base is Σ∗ = (T ∗,A∗).
The main possibilistic inference tasks are deciding whether a possibilistic DL ontology

is satisfiable, deciding whether a possibilistic axiom is a logical consequence of a possi-

bilistic DL ontology, and computing possibility of a classical description logic axiom. All

those tasks can be reduced to the task of computing inconsistent degree of a possibilistic

ontology [95] and based on the notion of α-cut of the ontology. Given a possibilistic DL on-

tology Σ = (T ,A) and α ∈ (0, 1], the α-cut of T is T≥α = {φ ∈ Σ∗ | (φ, β) ∈ T and β ≥ α}
(the α-cut of A, denoted as A≥α, can be defined similarly). The strict α-cut of T (resp.,

A) can be defined similarly as the strict cut in possibilistic logic. The α-cut (resp., strict

α-cut) of Σ is Σ≥α = (T≥α,A≥α) (resp., Σ>α = (T>α,A>α)). The inconsistent degree of

Σ, denoted Inc(Σ), is defined as Inc(Σ) = max{αi : Σ≥αi
is inconsistent}. A axiom ϕ

is satisfied by Σ to a degree α, written Σ |=π (ϕ, α) if the following conditions hold: (1)

Σ≥α is consistent, (2) Σ≥α |= ϕ, (3) forall β > α,Σ 6|= ϕ.

Example 6.4. Suppose we have a possibilistic DL knowledge base1

Σ =



(Penguin v Bird, 1),

(Penguin v ¬Fly, 0.95),

(Bird v HasWings, 0.9),

(Bird v Fly, 0.8),

(EatsFish v Swims, 0.8),

(Penguin v EatsFish, 0.7)


For α = 0.8,Σ≥0.8 = {(Penguin v Bird, 1), (Penguin v ¬Fly, 0.95), (Bird v HasWings,

0.9), (Bird v Fly, 0.8), (EatsFish v Swims, 0.8)} is inconsistent.

For α = 0.9,Σ≥0.9 = {(Penguin v Bird, 1), (Penguin v ¬Fly, 0.95), (Bird v HasWings, 0.9)}
is consistent.

1We assume an empty ABox here.
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Therefore, Inc(Σ) = 0.8. And since Σ≥0.9 |= Penguin v HasWings and Σ≥0.95 6|= Penguin v
HasWings, we have Σπ |= (Penguin v HasWings, 0.9)

As noted earlier, possibilistic inference is performed by searching α such that Inc(Σ) =

α. The computational complexity of possibilistic inferebce linear w.r.t. ontology reason-

ing. However, possibilistic inference in possibilistic DL inherits the drowning effect of

possibilistic inference in possibilistic logic which drops all axioms that have possibility

lower than inconsistent degree.

Linear order inference can be adapted to deal with the drowning problem. It only

drops the axioms in the most recent stratum, set of axioms that have same degree, that

causes the inconsistency and keep the others. The weighted consequence of Σ in linear

order inference is based on the possibilistic inference. For example, in Example 6.4,

we only need to drop axioms that have degree of 0.8 to make the ontology consistent.

Therefore, we have ΣLO |= (Penguin v EatsFish, 0.7) but Σπ 6|= (Penguin v EatsFish, 0.7)

Linear order inference has stronger inferential power than possibilistic inference. How-

ever, it drops all axioms in one stratum even if only a few of them are involved in the

inconsistency. Lexicographic inference is proposed to provide a more powerful inference

mechanism [94]. The idea of lexicographic inference for possibilistic DL is the same to the

one for default reasoning except for possibility is used to construct lexicographic order

instead of specificity. With lexicographic inference, we can deduce detail consequence

such as Penguin v Swims from the ontology in Example 6.4.

6.2.3 Other uncertainty representation approaches

The literature contains several probabilistic generalizations of web ontology languages.

Many of these approaches focus especially on combining the web ontology language OWL

with probabilistic formalisms based on Bayesian networks [75].

In particular, da Costa and Laskey [22] suggest a probabilistic generalization of OWL,

called PR-OWL, whose probabilistic semantics is based on multi-entity Bayesian networks

(MEBNs). Roughly speaking, PR-OWL represents knowledge as parameterized fragments

of Bayesian networks. Hence, it can encode probability distributions on the interpretations

of an associated first-order theory as well as repeated structure.

In [27], Ding et al. propose a probabilistic generalization of OWL, called Bayes-

OWL, which is based on standard Bayesian networks. BayesOWL provides a set of rules

and procedures for the direct translation of an OWL ontology into a Bayesian network,

and it also provides a method for incorporating available probability constraints when

constructing the Bayesian network. The generated Bayesian network, which preserves the

semantics of the original ontology and which is consistent with all the given probability

constraints, supports ontology reasoning, both within and across ontologies, as Bayesian
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inferences. In [90, 27], Ding et al. also describe an application of the BayesOWL approach

in ontology mapping.

In closely related work, Mitra et al. [82] describe an implemented technique, called

OMEN, to enhancing existing ontology mappings by using a Bayesian network to represent

the influences between potential concept mappings across ontologies. More concretely,

OMEN is based on a simple ontology model similar to RDF Schema. It uses a set of meta-

rules that capture the inuence of the ontology structure and the semantics of ontology

relations, and matches nodes that are neighbors of already matched nodes in the two

ontologies.

Yang and Calmet [116] present an integration of the web ontology language OWL

with Bayesian networks, called OntoBayes. The approach makes use of probability and

dependency-annotated OWL to represent uncertain information in Bayesian networks.

Similar above approaches, Essaid and Yaghlane [31] proposes BeliefOWL which utilize

a set of structural translation rules in OWL language to build evidential network. The

evidential network is the realization of Dempster-Shafer theory [106] which is a more

generalization of Bayesian theory of probability.
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Chapter 7

Conclusion

In order to conclude this dissertation, we introduce Figure 7.1 to summarize the main

features of our proposed defeasible DL and other related works. Compared to the others,

our proposed approach has sufficient syntactical power, which can represent defeasible

knowledge as well as preferential information about knowledge, model-based semantics,

which is compatible to DL and extensible to most ontology languages, and efficient rea-

soning algorithms as the advantages. Defeasible DL does not overcome other approaches

in all features but the combination of these advantages can provide a rational solution to

the conflict knowledge issues.

Among related works, rule-based defeasible DL has polynomial reasoning complexity

with respect to ontology size and it does not suffer theoretically exponential complexity

of ontology reasoning since it does not use ontology reasoning but transforms ontology to

logic program for reasoning. However, this transformation prevents rule-based defeasible

DL from inheriting expressive power of ontology language. Transforming expressive fea-

tures of ontology to logic program indeed results in a much higher computational expense.

Probabilistic DL and possibilistic DL provide more power extension than proposed

defeasible DL because conditional constraints and possibilistic axioms define a global

ordering among axioms. However, those methods tolerate a highly computational cost

which originates from the lexicographic inference of default reasoning. Moreover, proba-

bilistic DL also suffers a higher complexity issue of solving linear optimization problem

to compute conditional intervals.

The comparison results show that defeasible DL is promising to handle conflict knowl-

edge in practical applications of knowledge sharing and co-creation. However, there are

several limitations in the proposed approach that can create new research directions.

The most important limitation derives from the property of defeasible logic that there

is no universal preference among knowledge in defeasible DL like the global preference in

probabilistic and possibilistic DL. In defeasible DL, defeasible axioms are globally weaker

than classical axioms while priority relations are locally is defined among conflict axioms.
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This limitation causes difficulty in computing defeasible axioms and priority relations

as shown in evaluation section for the case of mad cow. The only heuristic is to use

syntactical approach to determine defeasible axioms, global preference among axioms,

and superiority relations, local preference among defeasible axioms. The syntax-based

approach is clearly not suitable in a semantic-rich environment like knowledge sharing

and co-creation application. Other approaches such as semantic or statistic measures can

be used to compute global preferences among all axioms but the next problem is how

to transform this preferential information to defeasible axioms and superiority relations.

The answer for this question may not be realistic because of the property of defeasible

logic as shown above. One alternative solution is to combine defeasible reasoning with

methods that represent uncertainty in DL ontology like probabilistic logic or possibilistic

logic to express the global preferential. As presented in related works, those approach have

been integrated with lexicographic inference of default reasoning. Hence, the combination

between those uncertainty representation methods with defeasible reasoning is a promising

research direction to handle conflict knowledge in DL ontology.

The second limitation relates to reasoning technique of proposed defeasible DL which

utilizes ontology reasoner as the basis for defeasible reasoning. Therefore, every itera-

tion in defeasible reasoning increase computational complexity by an untraceable factors,

i.e. the complexity of ontology reasoning. The other approach is to integrate principle

of defeasible reasoning to ontology reasoning algorithms, hopefully that the integration

does not increase computational complexity of defeasible reasoning for DL ontology like

in the propositional case. Several researches have been introduced to modify tableau

algorithm to combine possibilistic reasoning [96] or paraconsistent logic reasoning [118].

Thus, integrating defeasible reasoning and tableau algorithm and comparing between dif-

ferent approaches for defeasible ontology reasoning is a difficult but interesting problem

for other research.

In summary, this dissertation demonstrates the expressiveness of DL ontology in

knowledge sharing and co-creation problem, by introducing the KS ontology to help stu-

dents to understand and utilize school’s knowledge to create their own knowledge, and

extends the ability of DL ontology to handle conflict knowledge that can be encountered

in practical problems, by introducing defeasible DL and defeasible reasoning approach for

ontology. With this encouraging results, we plan to develop methodology for knowledge

sharing and co-creation process in real-world application. In detail, the future works for

this research are as follow:

Evaluate defeasible DL on large ontologies and ontology integration: Even most

of current common large ontologies are light-weight ontologies, they still contains

potential inconsistencies, as indicated by [103]. For example, [73] has detected 75

inconsistencies in Gene Ontology. We are currently studying on some large ontolo-
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gies to understand the inconsistencies in practical problem and discover how we

can solve those inconsistencies by defeasible reasoning. This trend of research can

show the applicability of proposed approach on real-world problems. Sharing and

integrating knowledge from multiple sources is one of the main reasons to caused

inconsistency because different sources usually contains conflicts. We plan to im-

plement plugins feature to perform defeasible reasoning on ontology which imports

knowledge from different sources and determine the preference among axioms from

different ontologies.

Extend the proposal to handle contextual knowledge: Conflict knowledge is a spe-

cial case of contextual knowledge. In a knowledge co-creation process, we assume

that each participant in the process has a local context of viewpoint so the knowl-

edge exchanged by a participant can be understood and utilized differently by the

others. For example, students of different entrance years have different graduation

requirements so they use the knowledge about educational program of School of

Knowledge Science distinctly. We believe that sharing and reasoning with contex-

tual knowledge is an interesting research question to understand how knowledge is

created in a dynamic environment like our contemporary world.
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[32] Jérôme Euzenat and Pavel Shvaiko. Ontology Matching. Springer-Verlag New York,

Inc., Secaucus, NJ, USA, 2007.

[33] Adam Farquhar, Richard Fikes, and James Rice. The ontolingua server: a tool for

collaborative ontology construction. In International Journal of Human-Computer

Studies, volume 46, pages 707–727, 1997.

92

http://www.w3.org/TR/owl-ref/


[34] Dieter Fensel, Ian Horrocks, Frank Van Harmelen, Deborah McGuinness, and Pe-

ter F. Patel-Schneider. Oil: Ontology infrastructure to enable the semantic web.

IEEE Intelligent Systems, 16:200–221, 2001.

[35] Fabian Gandon and Guus Schreiber. Rdf 1.1 xml syntax. http://www.w3.org/TR/

rdf-syntax-grammar/, 2014.

[36] Michael Genesereth, Richard E. Fikes, Ronald Brachman, Thomas Gruber, Patrick

Hayes, Reed Letsinger, Vladimir Lifschitz, Robert Macgregor, John Mccarthy, Peter

Norvig, and Ramesh Patil. Knowledge interchange format version 3.0 reference man-

ual. Technical report, Computer Science Department, Stanford University, 1992.

[37] Birte Glimm, Ian Horrocks, Boris Motik, and Giorgos Stoilos. Optimising ontology

classification. In Proceedings of the 9th international semantic web conference on

The semantic web - Volume Part I, ISWC’10, pages 225–240, Berlin, Heidelberg,

2010. Springer-Verlag.
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