
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
イベントベースアーキテクチャにおける事象モニタリ

ング機構

Author(s) 柏瀬, 秀行

Citation

Issue Date 1999-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/1231

Rights

Description Supervisor:落水 浩一郎, 情報科学研究科, 修士



Events Monitoring System

on an Event-Based Architecture

Hideyuki KASHIWASE

School of Information Science,

Japan Advanced Institute of Science and Technology

February 15, 1999

Keywords: Event-Based Architectures, Distributed Cooperative Works, Events

Monitoring.

1 Background and Purpose

We can comfortably interact with each other during our collaborative work while we can

be aware of our situation. When we work together under the distributed computing envi-

ronment, we should interact with computer systems as well as our colleagues. Therefore,

our computer systems should be also aware of the situation of our work.

With several kinds of systems, e.g. structured e-mail or work 
ow systems, we should

tell our system about our situation explicitly. But we can not or do not always tell

our system correctly and frequently our situation, because such kinds of additional and

troublesome tasks are not always acceptable for collaborative workers.

In this paper, we introduce a method for monitoring the situation of our collaborative

work. In this method, we use a general behavioral model of a collaborative work for

producing a shared product. And we deduce the transitions on the model from the

event histories accompanied with our tool operations, such as drawing diagrams, editing

texts, sending messages and so on. This method do not enforce additional tasks for

reporting their situations upon collaborative workers. We also performed experiments for

our method to evaluate and discuss its advantages and disadvantages.

2 A Collaboration Model

Ochimizu et al. present a general state transition model of a shared product, which

transitions are �red by interactions of collaborative workers. But we can not design and

Copyright c
 1999 by Hideyuki KASHIWASE

1



implement a supporting system based on this model directly, because the relationships

between concrete events and each states and transitions are not de�ned. So we de�ned

such events for adapting a task of reviewing and re�ning a object diagram.

The features of states in our model are as follows;

Developing or Modifying ; A leader is making a draft or modifying a draft.

Possibility of errors ; The other workers are detecting the possible errors in the draft

made by the leader.

Coordination ; All workers are coordinating about the draft which a leader made.

Stable ; All workers consider the draft has no more errors at that time.

For example consider the sequence of state transitions as follows; \Developing or

Modifying" ! \Possibility of errors" ! \Coordination" ! \Developing or Modifying"

. . .

This loop means improving of class diagrams step by step. If \Possibility of errors" state

has no errors, transits in from the state \Coordination" to the state \Stable" directly. A

state transit of \Stable" to \Coordination" means re-examination of class diagrams.

3 Event-based Architectures and Monitoring sys-

tems

Under the event-based architecture, a distributed software component does not interact

with other components directly and synchronously. When a component interacts with

another component, it sends a message not to another component directly but to an

event bus, which knows which components should accept the message. Based on this

mechanism, software components can asynchronously work together.

The event-based communication style is characterized by the following properties:

� Multicast

� Implicit Invocation

This style holds the promise of supporting a 
exible and e�ective interaction among

highly recon�gurable distributed software components.

Recently, this style is developed using the communication model implemented by Dis-

tributed Objects (CORBA and Java-RMI etc.).

On the other hand, this style holds the promise of events of between components must

go through an event bus. So, the system can monitor events among components.

In this paper, we developed a shared whiteboard which is a collaboration tool using

duplicated distributing style.

We implements the Event-based architecture using Java RMI. The shared whiteboard

communicates using Java RMI. According to the Mediator, components interact with

events implicitly and in multicast.

2



4 Methods of monitoring and Evaluation

Each state of our model is characterized by patterns of event sequences as follows;

Developing or Modifying State Sequence of drawing events issued only by the leader.

Possibility of errors State Sequence of drawing events issued by all members except

the leader.

Coordination State Sequence of drawing events issued by all members.

Stable State No event are monitored.

Based on this characteristics, the system can monitor the situation of collaborative work-

ers.

For evaluating the validity of this method, we performed an experiment distributed

meeting for developing the diagrams. As a result, we have the following �ndings;

� In \Coordination" state, events for exchanging email messages are also monitored

as well. Hence we should revise our �rst model.

� Because we did not de�ne a pattern of event sequences corresponding to \Stable"

state in our model, it is not clear to decide whether here is \Stable" state or not.

So we should de�ne such patterns with another kind of events, e.g. releasing a new

revision of products.

� We append new transition from \Possibility of errors" to \Developing or Modifying",

to our �rst model.

� Several exceptional events are observed.

As we mentioned, we discussed about future works considering these problems.

We discussed about improving monitoring precision about drawing events granularity

and contents analysis of an e-mail.

5 Future works

The tasks in the future are shown as follows;

� To improve a state transition diagram model for collaboration works.

� To re�ne the rules of events analysis.

� To develop an automatically transition system.

� To implement the system on CORBA for \Jizai" in our OCHIMIZU-lab.

3


