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Abstract—This paper proposes an extrinsic information trans-
fer (EXIT)-chart based optimization technique of LDPC codes
for the transmission of quantized Gauss-Markov (GM) source
samples over additive white Gaussian (AWGN) noise channels.
A joint source and channel (JSC) decoding technique of the
proposed code is also devised. In the proposed scheme, no inter-
leaving is performed between the source and the JSC encoder
so that the decoder can well exploit the relatively low entropy
of the source with memory compared to memory-less sources.
At the transmitter, the quantized samples are converted to bit
sequences with an injective mapping and the bit sequences are
encoded using a systematic binary LDPC code. The proposed JSC
decoder is a concatenation of a multi-state BCJR Markov decoder
and a sum-product (SP) LDPC decoder. Decoding thresholds of
the optimized codes at certain code rates are investigated for both
uniform and Lloyd-Max quantizations in different numbers of
bits. The decoding thresholds are close to the Gaussian code book
Shannon limits for code rate Rc ≤ 0.5, although the gap to the
Shannon limit notably increases at the higher rates. Finally, the
simulation results confirm the significant improvement of coding
gain on the bit error rate (BER) performances of the optimized
LDPC codes with both the quantization schemes.

I. INTRODUCTION

Transmission of auto-correlated source samples over noisy
channels has motivated a huge flurry of research activity to
source and channel coding during recent years [1], [2]. Recent
investigations confirm that the joint source-channel (JSC)
coding/decoding achieves significant coding gain improvement
over the separate coding in finite block-length transmission [1],
[2]. Application dependant variable length codes (VLC) that
can achieve near entropy compression have been intensively
researched towards their practical implementations, there still
remains residual source redundancy in the source coding
which can be utilized to improve the channel coding gain
[3], [4]. Furthermore, the VLC based JSC coding suffers
from the error propagation because of its sensitivity to the
symbol boundary error [2]. In addition, certain applications,
e.g., sensor networks, may have serious power consumption
constraint and hence communication is only possible in very
low signal-to-noise ratio (SNR) regime. As a remedy to these
drawbacks, the framework of JSC coding which directly ex-
ploits the memory structure of the source has been recognized
as being of significant importance, when the proper operability
of the system in the low SNR regime is considered.

Majority of the JSC coding methods have taken binary
Markov model into account for the sources with memory [5],

[6], and references therein. However, binary Markov sources
can simply be extended to the auto-correlated signals such as
quantized Gauss-Markov (GM) sources. A serial concatenation
of a multi-state BCJR decoder to a sum-product (SP) decoder
has been developed recently in [7] for JSC decoding of multi-
state Markov sources encoded by a short-length binary LDPC
code. Since the BCJR decoder of [7] operates in the probability
domain, it is numerically unstable for long-length codewords.
Furthermore, the LDPC codes used in [7] were not optimized.

The main contributions of this paper are summarized as
follows. First, we describe an analytic formulation of a JSC
decoding method to directly exploit the temporal correlation
of quantized GM samples with both uniform and Lloyd-Max
quantizers [8]. Binary irregular LDPC codes are used to
encode the bit-wise representation of the quantized samples
of the scheme. The proposed decoder is composed of a log-
domain multi-state BCJR decoder and an SP decoder which
even performs in a numerically stable way for long-length
codewords. Second, the extrinsic mutual information transfer
(EXIT) chart [9], [10] analysis for the proposed JSC decoder
is performed to optimize the asymptotic performance of the
LDPC codes in the sense that the decoding threshold [11]
of the code is minimized under the stability and convergence
constraints [10], [11] for a given code rate. Our main result is
the precise calculation of decoding thresholds of the optimized
codes under the JSC decoder for both the uniform and Lloyd-
Max quantizers at various channel code rates.

II. SYSTEM MODEL

A. Transmission Model

A simple signal model for specifying the temporal correla-
tion between samples is the first-order autoregressive process
which is denoted, with n being the discrete time index, as
follows [12]

xn = axn−1 + un n ≥ 0, (1)

where xn and un denote samples of the process output and a
white noise, respectively, and a is a correlation constant with
|a| < 1. If un and the initial value of xn, i.e., x−1, are assumed
to be independent zero mean white Gaussian with variances
σ2
u and σ2

x, respectively, the process is called Gauss-Markov
(GM) process. If the x−1 is drawn from a Gaussian distribution



with zero mean and variance σ2
x = σ2

u/(1 − a2), the process
{xn} will be wide sense stationary (WSS) 1 [12].

The source samples are clipped symmetrically at a threshold
cq and then quantized by a scalar quantization, either uni-
formly or nonuniformly, with a q bit resolution. We primarily
focus on the uniform quantization and then the derived results
for the uniform quantization are straightforwardly generalized
to the nonuniform cases such as Lloyd-Max quantization.
Consider 2q quantization levels between the range [−cq, cq]
and each of the (2q − 1) quantization intervals between the
levels is represented by a corresponding integer at the center
of the interval, called quantization index. Quantization step
size of each interval, denoted by δ, is the width of the related
interval calculated as δ =

2cq
2q−1 for the uniform quantization.

Thus, a quantization index in associated to a sample xn at the
time instant n in the uniform quantization is calculated by

in = ⌊xn

δ
+ 0.5⌋, (2)

where −(2q−1−1) ≤ in ≤ 2q−1−1 and ⌊.⌋ denotes the largest
integer not larger than its argument. Therefore, x̂n = δin
denotes the uniformly quantized value of the xn. Due to the
Gaussian distribution of the GM samples, the probability mass
function of quantization index in for the uniform quantization
is given by

p(in) =


1−Q( x̂n+δ/2

σx
) if in = −κq

Q( x̂n−δ/2
σx

)−Q( x̂n+δ/2
σx

) if −κq < in < κq

Q( x̂n−δ/2
σx

) if in = κq

,

(3)
where κq = (2q−1 − 1) and Q(z) = 1√

2π

∫∞
z

exp
(
− t2

2

)
dt

is the Q-function. On contrary, in case of Lloyd-Max quanti-
zation, the levels are optimized to minimize the quantization
error and they are not uniformly apportioned [8]. Hence, the
associated quantization levels of the nonuniform quantizer are
used to numerically calculate the probability of quantization
indices instead of x̂n ± δ/2 in (3).

Let b(i) = (b1(i), . . . , bq(i))
T denote a column vector

whose entries bk(i) ∈ {0, 1}, k ∈ {1, . . . , q}, are represen-
tative bits corresponding to its argument integer i where (.)

T

denotes the transpose of a vector. To represent a quantization
index in with q bits, we use decimal-to-bit conversion of
i′n = (in + 2q−1) instead of in to avoid negative integers.
This conversion denoted as i′n =

∑q
k=1 bk(in)2

k−1 specifies
an injective mapping2 from the quantization samples to a q bit
binary vector and the binary vectors of consecutive samples
are then converted to the serial bit string. Hence, a k-th bit
in the binary representation of a quantization index in at time
n corresponds to the v-th bit of the serial bit sequence where
v = q(n− 1) + k.

After the parallel to serial converter, the serial bit string is
encoded by a systematic binary LDPC code with rate Rc. The

1We will assume that the GM process is WSS and the correlation parameter,
a, is known to both the sender and the receiver.

2The proposed mapping is not the optimum mapping for transmission of the
quantized GM samples. Although the optimum mapping increases the coding
gain [1], devising it is out of scope of this work.

Fig. 1: Block diagram of bit-interleaved LDPC coded Gauss-
Markov source.

encoded bits are modulated using binary phase-shift keying
(BPSK) and the modulated bits are sent over AWGN channel
with the channel noise variance σ2

n and the noise power
spectral density N0 = 2σ2

n. The proposed transmission model
of the LDPC coded quantized samples is concisely presented
in Fig. 1. The average energy per source bit, Es, is related to
the energy per information bit, Eb, and the energy per sent
symbol, Esym, over the channel as follows

Es =
H(Iq)

q
Eb =

Esym

Rc
, (4)

where H(Iq) is the entropy rate of the quantization indices
and Esym = 1 with BPSK. The total information rate, R bits
per channel use, is defined as the ratio between the information
generated by the source and the total number of bits to be sent
over the channel. Hence, the source code rate, Rs, and the
total information rate, R, are calculated, respectively, as Rs =
H(Iq)/q and R = RsRc. The Shannon capacity of AWGN
channel at the specific information rate R, theoretically limits
the minimum energy Es-to-noise ratio denoted by Es

N0
|lim.

B. LDPC Codes for JSC Coding

Consider a binary systematic LDPC code C and let nI
denote the number of quantization indices to be encoded by
the C. Hence, the number of source bits K and the codeword
length N of C are qnI and K/Rc, respectively. The code
is represented by a Tanner graph G = (Vb ∪ Vc, E), where
Vb = {v1, . . . , vN} and Vc = {c1, . . . , cM} are the sets
of variable nodes and check nodes, respectively, and E is
the set of edges. The variable node set Vb is divided into
two sets, source nodes Vbs = {v1, . . . , vK} and parity nodes
Vbp = {vK+1, . . . , vN}. Corresponding to G, we have an
M × N parity-check matrix H = [hij ] of C, where hij = 1
if and only if (iff) the node ci ∈ Vc is connected to the
node vj ∈ Vb in G through an interleaver, or equivalently,
iff {vj , ci} ∈ E. Each variable node vj ∈ Vbs is bijectively
connected to a source decoder which is a multi-state BCJR
decoder in this paper. The joint graph of source and systematic
LDPC code is depicted in Fig. 2.

The degree of a variable or a check node is the number of
nodes connected to it. If the nodes in the set Vb and/or the
nodes in the set Vc have different degrees, the corresponding
LDPC code is called irregular. For an irregular systematic
LDPC code, the degree distributions of source and parity vari-
able nodes are described, respectively, by the two polynomials
λs(x) =

∑Dv

i=2 λsix
i−1 and λp(x) =

∑Dv

i=2 λpix
i−1 where

Dv is the maximum variable node degree, and λsi and λpi are,
respectively, the fractions of edges connected to the source and
parity nodes of degree i. Hence, λs(1)+λp(1) = 1. Similarly,



Fig. 2: Joint graph representation of Markov decoder and
systematic LDPC code.

the degree distribution of the check nodes is specified by a
polynomial ρ(x) =

∑Dc

i=2 ρix
i−1, where ρi is the fraction of

the edges connected to the check nodes of degree i and Dc

is the maximum check node degree. The decoding threshold
of a given degree distribution is the supremum of the channel
noise variance for which the decoding error probability can be
reduced to arbitrarily small for which, however, the number
of decoding iterations tends to infinity [11]. The decoding
threshold in terms of decibel, denoted by Es

N0

∗
, is used to

specify the asymptotic gap between the Shannon’s theoretical
limit and the decoding threshold with the optimized degree
distributions.

III. ENTROPY RATE OF THE SOURCE
To calculate the entropy rate of the source with different

numbers of quantization bits, the corresponding Markov chain
of the quantization indices are required. Consider two consec-
utive quantization indices in and in−1 associated, respectively,
to the samples xn and xn−1. Hence, the conditional probability
p(in|in−1) is given by

p(in|in−1) = p(U = x̂n − ax̂n−1), (5)

where U is a random variable corresponding to the input white
Gaussian driving noise of the GM process. Thus, we have

p(in|in−1) =


1−Q( ûn+δ/2

σu
) if in = −κq

Q( ûn−δ/2
σu

)−Q( ûn+δ/2
σu

) if −κq < in < κq

Q( ûn−δ/2
σu

) if in = κq

,

(6)
where ûn = x̂n−ax̂n−1. The associated quantization levels of
the nonuniform quantization are used instead of x̂n ± δ/2 for
the probability calculation, in the case a nonuniform quantizer
is used.

Let matrix T = [trs] denote the probability transition
matrix associated to the Markov model of the quantization
indices where trs = p

(
in = (s− 2q−1)|in−1 = (r − 2q−1)

)
,

1 ≤ r, s ≤ 2q − 1.
Lemma 1: Consider quantized samples of the GM process

with q-bit quantization. The entropy rate of the quantization
indices is

H(Iq) =
2q−1∑
r=1

p(in−1 = r − 2q−1)

(
−

2q−1∑
s=1

trs log2 trs

)
.

(7)

IV. PROPOSED DECODER AND CODE
OPTIMIZATION

A. Joint BCJR-SP Decoder

The transition matrix T describes the equivalent multi-state
Markov chain corresponding to the quantization indices of
the GM samples. Hence, an associated trellis diagram of the
source Markov model perfectly presents the source statistics.

One straightforward implementation of the JSC decoder for
the proposed transmission scheme is to exchange the output ex-
trinsic log-likelihood ratio (LLR) of the concatenated decoders
in each iteration of the JSC decoder. To devise a numerically
robust decoder, a two-level JSC decoder consisting of two
nested iteration loops [7] is applied herein. The inner loop
is called as the local iteration of the SP decoder and the outer
loop is called the global iteration exchanging the extrinsic LLR
between the source nodes of the SP decoder and the BCJR
decoder.

Since the quantization indices are converted to the bit string
before transmission, the probability of quantization indices
is calculated using the probability of the representative bits.
Hence, the probability of a quantization index in is calculated
as

p(in) =

q∏
k=1

0.5

(
1 +

(
1− 2bk(in)

)
tanh(

Lv,B

2
)

)
, (8)

where Lv,B denotes the extrinsic LLR, sent from the v-th bit
of the source node corresponding to the k-th bit of the in,
v = q(n− 1) + k, to the BCJR decoder. Then, probability of
the trellis states and correspondingly the extrinsic LLR sending
to the source nodes are calculated as (9)–(12). There is a one-
to-one correspondence between each state s, 1 ≤ s ≤ 2q − 1,
of the trellis diagram at an instant n, 1 ≤ n ≤ nI , and a
quantization index denoted by in(s) = s− 2q−1. The forward
recursion at the instant n is given by [7], [13]

α̃n(s) = max
r

∗
(
α̃n−1(r) + log trs + log p

(
in(s)

))
, (9)

where max∗(x, y) = max(x, y) + log
(
1 + e−|x−y|) is per-

formed over the states of the trellis diagram r and s. Further-
more, α̃0(s) = −∞ are the initial conditions of the above
equation. Then, the backward recursion is calculated as

β̃n−1(r) = max
s

∗
(
β̃n(s) + log trs + log p

(
in(s)

))
, (10)

with the initial conditions β̃nI (s) = −∞. Next, the log-
probability of the states is calculated as

γ̃n(s) = max
r

∗
(
α̃n−1(r) + log trs + log p

(
in(s)

)
+ β̃n(s)

)
,

(11)
and the probability of in(s) should be finally changed to the
extrinsic LLR of the associated source nodes. The extrinsic
LLR sent from the BCJR decoder to a node v ∈ Vbs is given
by

LB,v =
( ∑

s: bk(in(s))=0

γ̃n(s)−
∑

s: bk(in(s))=1

γ̃n(s)
)
− Lv,B ,

(12)



where the v corresponds to the k-th bit of the in. The above
first and second summations are performed over the states s
in which the k-th bit of the representative bits of in(s) are
zero and one, respectively.

Consider the ℓ-th local and the ℓg-th global iteration of the
proposed JSC decoder. Let L

(ℓ)
v,c and L

(ℓ)
c,v denote the LLR

messages sent from a variable node v to a check node c
and from the check node c to the variable node v at the
ℓ-th iteration, respectively. Furthermore, let Lcc

v denote the
LLR obtained from the channel, being an input to a variable
node v ∈ Vb. Thus, Lcc

v = 2rv/σ
2
n where rv is the received

noisy signal corresponding to the v-th variable node. The LLR
message L

(ℓ)
v,c is updated as

L(ℓ)
v,c = Lcc

v +
∑
c′ ̸=c

L
(ℓ−1)
c′,v + L

(ℓg−1)
B,v , (13)

where v ∈ Vbs and L
(ℓg)
B,v denotes the extrinsic LLR sent from

the BCJR decoder at the iteration ℓg. Similarly, for the v ∈ Vbp

we have
L(ℓ)
v,c = Lcc

v +
∑
c′ ̸=c

L
(ℓ−1)
c′,v . (14)

The messages L
(ℓ)
c,v are also updated in the same way as the

standard SP decoding. A posteriori LLRs L̃
(ℓ)
v of the variable

nodes at the ℓ-th iteration are calculated as

L̃(ℓ)
v = Lcc

v +
∑
c′

L
(ℓ−1)
c′,v + L

(ℓg−1)
B,v , (15)

where v ∈ Vbs and

L̃(ℓ)
v = Lcc

v +
∑
c′

L
(ℓ−1)
c′,v , (16)

where v ∈ Vbp . Thus, the estimated bit b̂(ℓ)v is given by

b̂(ℓ)v =

{
0 if L̃(ℓ)

v ≥ 0

1 if L̃(ℓ)
v < 0.

(17)

Then, a stopping criterion s
(ℓ)
c based on the parity-check

syndromes at the ℓ-th iteration is computed as

s(ℓ)c =
∑
c∈Vc

∑
v∈Vb

hcv b̂
(ℓ)
v , (18)

where hcv is the (c, v)-th entry of the parity-check matrix. If
s
(ℓ)
c = 0 happens during the local iterations, the decoder finds

a valid codeword and the decoding procedure successfully
terminates. Otherwise, the extrinsic LLR of the source nodes
are passed on to the BCJR decoder. Hence, the extrinsic LLR
sent from a source node v ∈ Vbs to the BCJR decoder is given
by

L
(ℓg)
v,B = Lcc

v +
∑
c′

L
(ℓmax)
c′,v , (19)

where ℓmax is the maximum local iteration number. Finally, the
message L

(ℓg)
v,B is used as an input LLR of the BCJR decoder

to calculate the L
(ℓg)
B,v messages through the (8)–(12). The

extrinsic LLRs are exchanged between the SP and the BCJR

decoders until either estimated bits form a valid codeword of
the LDPC code or a maximum number of global iterations is
reached.

B. EXIT Chart Analysis and Code Optimization

The EXIT chart technique is one of the most efficient
tools developed to analyze and optimize LDPC codes based
on the evolution of the extrinsic mutual information (MI)
during successive iterations of an iterative decoder [9]. An
optimization method based on the EXIT chart analysis was
recently proposed in [10] for JSC decoders comprised of
a general soft-in soft-out (SISO) source decoder and a SP
decoder of a systematic LDPC code. This method is a semi-
analytic technique which includes two major parts, the MI
calculation of the SP decoder based on Gaussian approxi-
mation [9] and the EXIT curve approximation of the SISO
source decoder. Moreover, it is assumed that the MI of the
source variable nodes of the systematic LDPC code is updated
by the source decoder in each iteration. In contrast, the LLR
message sent from the BCJR decoder does not change during
the local iterations due to practical reasoning in the proposed
JSC decoder. However, the optimized degree distributions are
achieved when the MI of the BCJR decoder is considered in
each local iteration of the SP decoder. In this paper, the same
technique described in [10] are applied to optimize the degree
distributions of LDPC codes under the JSC decoder. However,
the performance of the optimized codes is degraded when the
source decoder is just updated through the global iterations
in the two-level decoding procedure presented in the previous
section.

Consider the BCJR decoder described in (8)–(12) as a
source decoder and let Is

A and Is
E , respectively, denote the

MI of input a priori LLR and the MI of output extrinsic LLR
of the source decoder. A relationship between the source code
rate and the area under a plot of the Is

E and Is
A is given as

[14] ∫ 1

0

Is
E dIs

A = 1−Rs, (20)

when the representative bits of the source are equally likely
to be zero and one.

An optimization procedure of the degree distribution of the
LDPC codes with the JSC decoding includes the following
steps. First, the EXIT function of the source decoder, in terms
of Is

A versus Is
E , is estimated using Monte-Carlo simulations.

Then, piece-wise curve-fitting methods are applied to derive
approximate functions very close to the results of the Monte-
Carlo simulations. Next, the code rate optimization problem
is stated as a linear function of the λs(x) and λp(x) degree
distributions with subject to the convergence and stability
constraints [10], [11] using the same equation as in [10,
Eq. (6)]. Finally, a linear programming (LP) technique is
used to find the degree distributions of the variable nodes
which maximizes the code rate. In addition, ρ(x) is assumed
to be in a form of concentrated degree distribution, i.e.,
ρ(x) = ρxDc−2 + (1 − ρ)xDc−1, 0 ≤ ρ ≤ 1. Thus, we
perform the optimization algorithm for each value of ρ and
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Uniform Quant. q=4 bit
Uniform Quant. q=5 bit
Uniform Quant. q=6 bit
Uniform Quant. q=7 bit
Uniform Quant. q=8 bit

Rs = 0.5304

Rs = 0.5892

Rs = 0.4532

Rs = 0.3533

Rs = 0.2162

Fig. 3: EXIT function of the source decoder for uniformly
quantized GM samples with a = 0.98, σ2

u = 0.1, and q ∈
{5, 6, 7} numbers of quantization bits (Example 1).

Dc and select a code whose the rate is the maximum. The
code rate optimization algorithm can be simply modified to
minimize the decoding threshold of the code in a specified
code rate [11].

V. SIMULATION RESULTS AND DISCUSSION

In the following examples, the codeword length of the
LDPC codes was 21000 and the maximum number of local and
global iterations were, respectively, 30 and 10 for the proposed
JSC decoding. Furthermore, a highly correlated GM signal
with a = 0.98 and σ2

u = 0.1 was applied to emphasize the
impact of the proposed method. However, the JSC decoder
also properly performs at the smaller values of a.

Example 1: The optimized degree distributions of LDPC
codes at the rate Rc = 0.5 are presented for the uniformly
quantized GM samples in different numbers of quantization
bits. The EXIT function of the source decoder is obtained
using the method as described in the previous section with
cq = 4σx clipping threshold. The EXIT decoding trajectories
are shown in Fig. 3 for q ∈ {4, . . . , 8}. Numerical calculation
of the entropy rate of the quantized samples shows that the
rate Rs of the source increases with the higher values of q
bits. Hence, the output extrinsic LLR of the source decoder
achieves the higher MI at the lower values of q due to the
area property of the EXIT chart [14], as shown in Fig. 3. The
optimized degree distributions are given for q ∈ {5, 6, 7} bits
in Table I.

The BER performances of the optimized degree distri-
butions under the proposed JSC decoder are demonstrated
for q ∈ {5, 6, 7} bits in Fig. 4. We can see that the JSC
decoder operates on the BER 10−5 at roughly Es/N0 =
{−3.7,−2.5,−1.7} dB values for different q bits, respectively.
Since the Shannon limit at the rate Rc = 0.5 is 0.19 dB

−6 −5.5 −5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

 

 

Es/N0 (dB)

B
E
R

BER of the Proposed JSC Decoder for Uniformly Quantized GM Samples with a=0.98 and σ
u
2=0.1

Uniform Quant.− q=5 bit
Uniform Quant.− q=6 bit
Uniform Quant.− q=7 bit
Shannon limit− q=5 bit
Shannon limit− q=6 bit
Shannon limit− q=7 bit 

1.8 dB

1.8 dB1.86 dB

Fig. 4: BER performances of the proposed JSC decoder using
optimized degree distributions with Rc = 0.5 for encoding of
the uniformly quantized GM samples with a = 0.98, σ2

u = 0.1,
and q ∈ {5, 6, 7} numbers of quantization bits (Example 1).

for the sources without redundancy, the JSC decoder approxi-
mately improves {3.9, 2.7, 1.9} dB, in terms of Es

N0
values, for

q ∈ {5, 6, 7} bits, respectively, compared to the Shannon limit
of a decoder at the same rate in which the temporal correlation
is not considered. However, the gap between the simulation
results and the associated Shannon limits of q ∈ {5, 6, 7} bits
are, respectively, {1.86, 1.8, 1.8} dB.

Example 2: The Shannon limits and the decoding thresh-
olds of optimized codes are derived at different code rates Rc,
in the range of 0.2 ≤ Rc ≤ 0.9, with q ∈ {5, 6, 7} bits in both
the uniform and Lloyd-Max quantizations of the GM samples.
The gap to the Shannon limit is depicted versus channel code
rate for both the quantization schemes with q ∈ {5, 6, 7} bits
in Fig. 5. The asymptotic performance of the LDPC codes
under the JSC decoding is theoretically close to the Shannon
limits at the rates in the range of Rc ≤ 0.5. Moreover, the gap
to the Shannon limit with the Lloyd-Max quantization is either
less than or almost equal to the gap of uniform quantization
with the same Rc and q values.

VI. CONCLUSION

We proposed an efficient joint source-channel decoding
method in which the temporal correlation of the quantized
Gauss-Markov samples is directly utilized to improve the
channel coding gain over AWGN channel. The bit-wise rep-
resentation of the quantized samples are encoded by a binary
irregular LDPC code. The proposed decoding consists of a
sum-product decoder and a multi-state BCJR decoder matched
to the trellis diagram corresponding to the temporal correlation
of the quantized samples. We optimized the degree distribution
of the LDPC codes based on the EXIT function of the
proposed decoder. The decoding thresholds of the optimized



TABLE I: OPTIMIZED LDPC CODES WITH Rc = 0.5 AND Dv = 100 FOR THE UNIFORMLY QUANTIZED GM SAMPLES WITH
a = 0.98, σ2

u = 0.1, AND q ∈ {5, 6, 7} NUMBERS OF QUANTIZATION BITS (Example 1).

q = 5 bit q = 6 bit q = 7 bit
i λsi λpi λsi λpi λsi λpi
2 0.0594 0.0811 0.0455 0.0871 0.0349 0.0903
3 0.0075 0.0739 0.0465 0.0718 0.0030 0.0914
6 0.0580 0.0454
7 0.2983
8 0.2776 0.0512
9 0.3453
25 0.0167 0.0072
26 0.1284
27 0.0402
28 0.0059
100 0.3581 0.3799 0.2955

ρ13 0.62 0.97 0.76
ρ14 0.38 0.03 0.24

Es
N0

∗
(dB) −5.00 −3.61 −2.77

Es
N0

|lim (dB) −5.56 −4.31 −3.49

gap (dB) 0.56 0.70 0.72
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Fig. 5: Gap to the Shannon limit versus channel code rate of
the optimized LDPC codes for encoding of the quantized GM
samples with a = 0.98, σ2

u = 0.1, and q ∈ {5, 6, 7} numbers
of quantization bits (Example 2).

codes and the gap to the Shannon theoretical limits were
calculated at certain code rates with both the uniform and
Lloyd-Max quantization schemes. The gap is close to the
Shannon limit at the code rate Rc ≤ 0.5, but it significantly
increases at the higher code rates in both the quantization
methods. The gap to the Shannon limit with the Lloyd-Max
quantization is either less than or almost equal to that of the
uniform quantization at the same code rate and the numbers of
quantization bits. Our simulation results have confirmed that
the proposed decoder notably increases the coding gain over
AWGN channel using the optimized LDPC codes and, hence,
the proposed scheme is efficiently suited for applications with

strict power limits.

ACKNOWLEDGMENT

This work was supported by the Academy of Finland under
SWOCNET project.

REFERENCES

[1] J. Hagenauer and N. Görtz, “The turbo principle in joint source-channel
coding,” Proc. ITW2003, Paris, France, pp. 275-278, 2003.

[2] A. Guyadar, E. Fabre, C. Guillemot, and M. Robert, “Joint source-
channel turbo decoding of entropy-coded sources,” IEEE J. Select. Areas
Commun., vol. 19, no. 9, Sept. 2001.

[3] V. B. Balakirsky, “Joint source and channel coding with variable length
codes,” Problems of Information Transmission, vol. 37, pp. 12-27, 2001.

[4] J. Hagenauer and R. Bauer, “The turbo principle in joint source channel
decoding of variable length codes,” Proc. Inform. Theory Workshop
(ITW), Cairns, Australia, 2001, pp. 128-130.

[5] G.C. Zhu and F. Alajaji, “Joint source-channel turbo coding for binary
Markov sources,” IEEE Trans. Wireless Commun., vol. 5, no. 5, pp.
1065-1075, May 2006.

[6] R. Asvadi, T. Matsumoto, and M. Juntti “Joint distributed source-channel
decoding for LDPC-coded binary Markov sources,” Proc. IEEE PIMRC
2013, London, 2013, pp. 807-811.

[7] H. Kim, D. Har, Z. H. Mao, M. Sun, and H. N. Lee, “Efficient
joint source-channel decoding of multi-state Markov sequences,” IET
Commun., vol. 6, no. 9, pp. 1038-1044, Sept. 2012.

[8] N. S. Jayant and P. Noll, Digital Coding of Waveforms. USA: Prentice-
Hall, 1984.

[9] S. tenBrink, G. Kramer, and A. Ashikhmin, “Design of low-density
parity-check codes for modulation and detection,” IEEE Trans. Com-
mun., vol. 52, no. 4, pp. 670-678, April 2004.

[10] C. Poulliat, D. Declercq, C. Lamy-Bergot, and I. Fijalkow, “Analysis
and optimization of irregular LDPC codes for joint source-channel
decoding,” IEEE Commun. lett., vol. 9, no. 12, pp. 1064-1066, April
2005.

[11] T. J. Richardson, M. A. Shokrollahi, and R. Urbanke, “Design of
capacity approaching irregular low-density parity-check codes,” IEEE
Trans. Inform. Theory, vol. 47, no. 2, pp. 619-637, Feb. 2001.

[12] S. M. Kay, Fundamentals of statistical signal processing: estimation
theory. USA: Prentice Hall, Upper Saddle River, NJ, 1993.

[13] P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and
sub-optimal MAP decoding algorithms operating in the log domain,”
Proc. Intern. Conf. Commun. (ICC), pp. 1009-1013, June 1995.

[14] K. Bhattad and K. R. Narayanan, “An MSE-based transfer chart for
analyzing iterative decoding scheme using a Gaussian approximation,”
IEEE Trans. Inform. Theory, vol. 53, no. 1, pp. 22-38, Jan. 2007.


