<table>
<thead>
<tr>
<th>Title</th>
<th>Categorical characterizations of the natural numbers require primitive recursion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kolodziejczyk, Leszek Aleksander; Yokoyama, Keita</td>
</tr>
<tr>
<td>Citation</td>
<td>Annals of Pure and Applied Logic, 166(2): 219-231</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2014-10-30</td>
</tr>
<tr>
<td>Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>Text version</td>
<td>author</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10119/12317</td>
</tr>
</tbody>
</table>

Description:

NOTICE: This is the author's version of a work accepted for publication by Elsevier. Leszek Aleksander Kolodziejczyk and Keita Yokoyama, Annals of Pure and Applied Logic, 166(2), 2014, 219-231, http://dx.doi.org/10.1016/j.apal.2014.10.003
Categorical characterizations of the natural numbers require primitive recursion

Leszek Aleksander Kołodziejczyk* Keita Yokoyama†

October 14, 2014

Abstract

Simpson and Yokoyama [Ann. Pure Appl. Logic 164 (2013), 284–293] asked whether there exists a characterization of the natural numbers by a second-order sentence which is provably categorical in the theory RCA₀. We answer in the negative, showing that for any characterization of the natural numbers which is provably true in WKL₀, the categoricity theorem implies \(\Sigma^0_1 \) induction.

On the other hand, we show that RCA₀ does make it possible to characterize the natural numbers categorically by means of a set of second-order sentences. We also show that a certain \(\Pi^1_2 \)-conservative extension of RCA₀ admits a provably categorical single-sentence characterization of the naturals, but each such characterization has to be inconsistent with \(\text{WKL}_0 + \text{superexp} \).

Inspired by a question of Väänänen (see e.g. [Vään12] for some related work), Simpson and the second author [SY13] studied various second-order characterizations of \(\langle \mathbb{N}, S, 0 \rangle \), with the aim of determining the reverse-mathematical strength of their respective categoricity theorems. One of the general conclusions is that the strength of a categoricity theorem depends heavily on the characterization. Strikingly, however, each of the categoricity theorems considered in [SY13] implies RCA₀, even over the much weaker base theory RCA₀, that is, RCA₀ with \(\Sigma^0_1 \) induction replaced by \(\Delta^0_1 \) induction in the language with exponentiation. (For RCA₀*, see [SS86].)

This leads to the following question.

*Institute of Mathematics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland, lak@impan.pl. Supported in part by Polish National Science Centre grant no. 2013/09/B/ST1/04390.

†School of Information Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan, y-keita@jaist.ac.jp. Supported in part by JSPS Grant-in-Aid for Research Activity Start-up grant no. 25887026.
Question 1. [SY13, Question 5.3, slightly rephrased] Does RCA₀ prove the existence of a second-order sentence or set of sentences T such that $\langle \mathbb{N}, S, 0 \rangle$ is a model of T and all models of T are isomorphic to $\langle \mathbb{N}, S, 0 \rangle$? One may also consider the same question with RCA₀ replaced by Π^0_2-conservative extensions of RCA₀.

Naturally, to have any hope of characterizing infinite structures categorically, second-order logic has to be interpreted according to the standard semantics (sometimes also known as strong or Tarskian semantics), as opposed to the general (or Henkin) semantics. In other words, a second-order quantifier $\forall X$ really means “for all subsets of the universe” (or, as we would say in a set-theoretic context, “for all elements of the power set of the universe”).

Question 1 admits multiple versions depending on whether we focus on RCA₀ or consider other Π^0_2-equivalent theories and whether we want the characterizations of the natural numbers to be sentences or sets of sentences. The most basic version, restricted to RCA₀ and single-sentence characterizations, would read as follows:

Question 2. Does there exist a second-order sentence ψ in the language with one unary function f and one constant c such that RCA₀ proves: (i) $\langle \mathbb{N}, S, 0 \rangle \models \psi$, and (ii) for every $\langle A, f, c \rangle$, if $\langle A, f, c \rangle \models \psi$, then there exists an isomorphism between $\langle \mathbb{N}, S, 0 \rangle$ and $\langle A, f, c \rangle$?

We answer Question 2 in the negative. In fact, characterizing $\langle \mathbb{N}, S, 0 \rangle$ not only up to isomorphism, but even just up to equicardinality of the universe, requires the full strength of RCA₀. More precisely:

Theorem 1. Let ψ be a second-order sentence in the language with one unary function f and one individual constant c. If WKL₀ proves that $\langle \mathbb{N}, S, 0 \rangle \models \psi$, then over RCA₀ the statement “for every $\langle A, f, c \rangle$, if $\langle A, f, c \rangle \models \psi$, then there exists a bijection between \mathbb{N} and A” implies RCA₀.

Since RCA₀ is equivalent over RCA₀ to a statement expressing the correctness of defining functions by primitive recursion [SS86, Lemma 2.5], Theorem 1 may be intuitively understood as saying that, for provably true single-sentence characterizations at least, “categorical characterizations of the natural numbers require primitive recursion”.

Do less stringent versions of Question 1 give rise to “exceptions” to this general conclusion? As it turns out, they do. Firstly, characterizing the natural numbers by a set of sentences is already possible in RCA₀, in the following sense (for a precise statement of the theorem, see Section 4):

Theorem 2. There exists a Δ_0-definable (and polynomial-time recognizable) set Ξ of $\Sigma^1_1 \land \Pi^1_1$ sentences such that RCA₀ proves: for every $\langle A, f, c \rangle$, $\langle A, f, c \rangle$ satisfies all $\xi \in \Xi$ if and only if $\langle A, f, c \rangle$ is isomorphic to $\langle \mathbb{N}, S, 0 \rangle$.

2
Secondly, even a single-sentence characterization is possible in a Π^1_2-conservative extension of RCA$_0$, at least if one is willing to consider rather peculiar theories:

Theorem 3. There is a Σ^1_2 sentence which is a categorical characterization of $\langle \mathbb{N}, S, 0 \rangle$ provably in RCA$_0 + \neg\text{WKL}$.

Theorem 3 is not quite satisfactory, as the theory and characterization it speaks of are false in $\langle \omega, \mathcal{P}(\omega) \rangle$. So, another natural question to ask is whether a single-sentence characterization of the natural numbers can be provably categorical in a true Π^0_2-conservative extension of RCA$_0^*$. We show that under an assumption just a little stronger than Π^0_2-conservativity, the characterization from Theorem 3 is actually “as true as possible”:

Theorem 4. Let T be an extension of RCA$_0^*$ conservative for first-order $\forall \Delta_0(\Sigma_1)$ sentences. Let η be a second-order sentence consistent with WKL$_0^* + \text{superexp}$. Then it is not the case that η is a categorical characterization of $\langle \mathbb{N}, S, 0 \rangle$ provably in T.

The proofs of our theorems make use of a weaker notion of isomorphism to $\langle \mathbb{N}, S, 0 \rangle$ studied in [SY13], that of “almost isomorphism”. Intuitively speaking, a structure $\langle A, f, c \rangle$ satisfying some basic axioms is almost isomorphic to $\langle \mathbb{N}, S, 0 \rangle$ if it is “equal to or shorter than” the natural numbers. The two crucial facts we prove and exploit are that almost isomorphism to $\langle \mathbb{N}, S, 0 \rangle$ can be characterized by a single sentence provably in RCA$_0^*$, and that structures almost isomorphic to $\langle \mathbb{N}, S, 0 \rangle$ correspond to Σ^0_1-definable cuts.

The paper is structured as follows. After a preliminary Section 1, we conduct our study of almost isomorphism to $\langle \mathbb{N}, S, 0 \rangle$ in Section 2. We then prove Theorem 1 in Section 3, Theorems 2 and 3 in Section 4, and Theorem 4 in Section 5.

1 Preliminaries

We assume familiarity with subtheories of second-order arithmetic, as presented in [Sim09]. Of the “Big Five” theories featuring prominently in that book, we only need the two weakest: RCA$_0$, axiomatized by Δ^0_1 comprehension and Σ^0_1 induction (and a finite list of simple basic axioms), and WKL$_0$, which extends RCA$_0$ by the axiom WKL stating that an infinite binary tree has an infinite branch.

We also make use of some well-known fragments of first-order arithmetic, principally $\Pi_0 + \text{exp}$, which extends induction for Δ_0 formulas by an axiom exp stating the totality of exponentiation; $\mathcal{B} \Sigma_1$, which extends Π_0 by the Σ_1 collection (bounding) principle; and Σ_1. For a comprehensive treatment of these and other subtheories of first-order arithmetic, refer to [HP93].
The well-known hierarchies defined in terms of alternations of first-order quantifiers make sense both for purely first-order formulas and for formulas allowing second-order parameters, and we will need notation to distinguish between the two cases. For classes of formulas with first-order quantification but also arbitrary second-order parameters, we use the Σ_n^0 notation standard in second-order arithmetic. On the other hand, when discussing classes of first-order formulas, we adopt a convention often used in first-order arithmetic and omit the superscript "^0". Thus, for instance, a Σ_1 formula is a first-order formula (with no second-order variables at all) containing a single block of existential quantifiers followed by a bounded part. More generally, if we want to speak of a formula possibly containing second-order parameters \bar{X} but no other second-order parameters, we use notation of the form $\Sigma_n(\bar{X})$ (to be understood as Σ_n relativized to \bar{X}).

A formula is $\Delta_0(\Sigma_1)$ if it belongs to the closure of Σ_1 under boolean operations and bounded first-order quantifiers. $\forall \Delta_0(\Sigma_1)$ (respectively $\exists \Delta_0(\Sigma_1)$) is the class of first-order formulas which consist of a block of universal (respectively existential) quantifiers followed by a $\Delta_0(\Sigma_1)$ formula.

The theory RCA_0^\sharp was introduced in [SS86]. It differs from RCA_0 in that the Σ_1^0 induction axiom is replaced by $\text{IA}_0^0 + \text{exp}$. WKL_0^\sharp is RCA_0^\sharp plus the WKL axiom. Both RCA_0^\sharp and WKL_0^\sharp have $\text{BS}_1 + \text{exp}$ as their first-order part, while the first-order part of RCA_0 and WKL_0 is $\text{I} \Sigma_1$.

We let superexp denote both the “tower of exponents” function defined by $\text{superexp}(x) = \text{exp}_x(2)$ (where $\text{exp}_0(2) = 1, \text{exp}_{x+1}(2) = 2^{\text{exp}_x(2)}$) and the axiom saying that for every x, superexp(x) exists. $\Delta_0(\text{exp})$ stands for the class of bounded formulas in the language extending the language of Peano Arithmetic by a symbol for x^3. $\text{IA}_0(\text{exp})$ is a definitional extension of $\text{IA}_0^0 + \text{exp}$.

In any model M of a first-order arithmetic theory (possibly the first-order part of a second-order structure), a cut is a nonempty subset of M which is downwards closed and closed under successor. For a cut J, we sometimes abuse notation and also write J to denote the structure $\langle J, S, 0 \rangle$, or even $\langle J, +, \cdot, \leq, 0, 1 \rangle$ if J happens to be closed under multiplication.

If $\langle M, \mathcal{X} \rangle \models \text{RCA}_0^\sharp$ and J is a cut in M, then \mathcal{X}_J will denote the family of sets $\{X \cap J : X \in \mathcal{X} \}$. Throughout the paper, we frequently use the following simple but important result without further mention.

Theorem ([SS86], Theorem 4.8). If $\langle M, \mathcal{X} \rangle \models \text{RCA}_0^\sharp$ and J is a proper cut in M which is closed under exp, then $\langle J, \mathcal{X}_J \rangle \models \text{WKL}_0^\sharp$.

If $\langle M, \mathcal{X} \rangle \models \text{RCA}_0^\sharp$ and $A \in \mathcal{X}$, then A is M-finite (or simply finite if we do not want to emphasize M) if there exists $a \in M$ such that all elements of A are smaller than a. Otherwise, the set A is (M)-infinite. For each M-finite set A there is an element $a \in M$ coding A in the sense that A consists exactly of those $x \in M$ for which
the x-th bit in the binary notation for a is 1. Moreover, RCA$_0^*$ has a well-behaved notion of cardinality of finite sets, which lets us define the internal cardinality $|A|_\mathcal{M}$ of any $A \in \mathcal{X}$ as $\sup\{x \in M : A \text{ contains a finite subset with at least } x \text{ elements}\}$. $|A|_\mathcal{M}$ is an element of M if A is M-finite, and a cut in M otherwise.

\mathbb{N} stands for the set of numbers defined by the formula $x = x$; in other words, $\mathbb{N}_M = M$. To refer to the set of standard natural numbers, we use the symbol ω. The general notational conventions regarding cuts apply also to \mathbb{N}: for instance, if there is no danger of confusion, we sometimes write that some structure is “isomorphic to $\langle \mathbb{N}, S, 0 \rangle$” rather than “isomorphic to \mathbb{N}”.

We will be interested mostly in structures of the form $\langle A, f, c \rangle$, where f is a unary function and c an individual constant. The letter A will always stand for some structure of this form. A is a Peano system if f is one-to-one, $c \notin \text{rng}(f)$, and A satisfies the second-order induction axiom:

$$\forall X [X(c) \land \forall a [X(a) \rightarrow X(f(a))] \rightarrow \forall a X(a)].$$

Second-order logic is considered here in its full version — that is, non-unary second-order quantifiers are allowed — and interpreted according to the so-called standard semantics (cf. e.g. [End09]). Thus, the quantifier $\forall X$ with X unary means “for all subsets of A”, $\forall X$ with X binary means “for all binary relations on A”, etc. For instance, A satisfies (1) exactly if there is no proper subset of A containing c and closed under f. Of course, from the perspective of a model $\mathcal{M} = \langle M, \mathcal{X} \rangle$ of RCA$_0^*$ or some other fragment of second-order arithmetic, “for all subsets of A” means “for all $X \in \mathcal{X}$ such that $X \subseteq A$”. After all, according to \mathcal{M} there are no other subsets of A!

2 Almost isomorphism

A Peano system is said to be almost isomorphic to $\langle \mathbb{N}, S, 0 \rangle$ if for every $a \in A$ there is some $x \in \mathbb{N}$ such that $f^x(c) = a$. Here we take $f^x(c) = a$ to mean that there exists a sequence $\langle a_0, a_1, a_2, \ldots, a_x \rangle$ such that $a_0 = c$, $a_{z+1} = f(a_z)$ for $z < x$, and $a_x = a$. Note that we need to explicitly assert the existence of this sequence, which we often refer to as $\langle c, f(c), f^2(c), \ldots, f^x(c) \rangle$, because RCA$_0^*$ is too weak to prove that any function can be iterated an arbitrary number of times.

Being almost isomorphic to \mathbb{N} is a definable property:

Lemma 5. There exists a $\Sigma^1_1 \land \Pi^1_1$ sentence ξ in the language with one unary function f and one individual constant c such that RCA$_0^*$ proves: for every A, $A \models \xi$ if and only if A is a Peano system almost isomorphic to $\langle \mathbb{N}, S, 0 \rangle$.
By definition, A is a Peano system precisely if it satisfies the Π_1^1 sentence ξ_{peano}:

$$f \text{ is } 1-1 \land c \not\in \text{rng}(f) \land \forall X \left[X(c) \land \forall a [X(a) \to X(f(a))] \to \forall a X(a) \right].$$

The sentence ξ will be the conjunction of ξ_{peano}, the Σ_1^1 sentence $\xi_{\varphi, \Sigma}$:

there exists a discrete linear ordering \preceq
for which c is the least element and f is the successor function,

and the Π_1^1 sentence $\xi_{\varphi, \Pi}$:

for every discrete linear ordering \preceq with c as least element and f as successor
and for every a, the set of elements \preceq-below a is Dedekind-finite.

We say that a set X is Dedekind-finite if there is no bijection between X and a proper subset of X. Note that ξ involves quantification over non-unary relations: linear orderings and (graphs of) bijections.

In verifying that ξ characterizes Peano systems almost isomorphic to \mathbb{N}, we will make use of the fact that provably in RCA$_0$, for any set A and any $X \subseteq A$, $A \models "X \text{ is Dedekind-finite}"$ exactly if X is finite. To see that this is true, note that if X is infinite, then the map which takes $x \in X$ to the smallest $y \in X$ such that $x < y$ is a bijection between X and its proper subset $X \setminus \{\min X\}$, and the graph of this bijection is a binary relation on A witnessing $A \models "X \text{ is Dedekind-finite}"$. On the other hand, any witness for $A \models "X \text{ is Dedekind-finite}"$ must in fact be the graph of a bijection between X and a proper subset of X, but such a bijection cannot exist for finite X because all proper subsets of a finite set have strictly smaller cardinality than the set itself.

We first prove that Peano systems almost isomorphic to \mathbb{N} satisfy $\xi_{\varphi, \Sigma}$ and $\xi_{\varphi, \Pi}$. Let A be almost isomorphic to \mathbb{N}. Every $a \in A$ is of the form $f^x(c)$ for some $x \in \mathbb{N}$. Moreover, x is unique. To see this, assume that $a = f^x(c) = f^{x+1}(c)$ and that $\langle c, f(c), \ldots, f^x(c) = a, f^{x+1}(c), \ldots, f^{x+y}(c) = a \rangle$ is the sequence witnessing that $f^{x+y}(c) = a$ (by Δ_0^0-induction, this sequence is unique and its first $x+1$ elements comprise the unique sequence witnessing $f^x(c) = a$). If $y > 0$, then we have $c \neq f^y(c)$ and then Δ_0^0-induction coupled with the injectivity of f gives $f^w(c) \neq f^{w+y}(c)$ for all $w \leq x$. So, $y = 0$.

Because of the uniqueness of the $f^x(c)$ representation for $a \in A$, we can define \preceq on A by Δ_1^0-comprehension in the following way:

$$a \preceq b := \exists x \exists y (a = f^x(c) \land b = f^y(c) \land x \leq y).$$

Clearly, \preceq is a discrete linear ordering on A with c as the least element and f as the successor function, so A satisfies $\xi_{\varphi, \Sigma}$.

6
For each \(a \in A \), the set of elements \(\preceq \)-below \(a \) is finite. Moreover, if \(\preceq \) is any ordering of \(A \) with \(c \) as least element and \(f \) as successor, then for each \(a \in A \) the set

\[
\{ b \in A : b \preceq a \iff b \preceq a \}
\]

contains \(c \) and is closed under \(f \). Since \(\mathbb{A} \) is a Peano system, \(\preceq \) has to coincide with \(\preceq \). Thus, \(\mathbb{A} \) satisfies \(\xi_{\preceq,\Pi} \).

For a proof in the other direction, let \(\mathbb{A} \) be a Peano system satisfying \(\xi_{\preceq,\Sigma} \) and \(\xi_{\preceq,\Pi} \). Let \(\preceq \) be an ordering on \(A \) witnessing \(\xi_{\preceq,\Sigma} \). Take some \(a \in A \). By \(\xi_{\preceq,\Pi} \), the set \([c, a]_{\preceq} \) of elements \(\preceq \)-below \(a \) is finite. Let \(\ell \) be the cardinality of \([c, a]_{\preceq} \) and let \(b \) be the \(\preceq \)-maximal element of \([c, a]_{\preceq} \). By \(\Delta^0_1(\exp) \)-induction on \(x \) prove that there is an element below \(b^{x+1} \) coding a sequence \((s_0, \ldots, s_\ell) \) such that \(s_0 = c \) and for all \(y < x \), either \(s_{y+1} = f(s_y) \preceq a \) or \(s_{y+1} = s_y = a \). Take such a sequence for \(x = \ell - 1 \). If \(a \) does not appear in the sequence, then by \(\Delta^0_1(\exp) \)-induction the sequence has the form \((c, f(c), \ldots, f^{\ell-1}(c)) \) and all its entries are distinct elements of \([c, a]_{\preceq} \setminus \{ a \} \); an impossibility, given that \([c, a]_{\preceq} \setminus \{ a \} \) only has \(\ell - 1 \) elements. So, \(a \) must appear somewhere in the sequence. Taking \(w \) to be the least such that \(a = s_w \), we easily verify that \(a = f^w(c) \).

Remark. We do not know whether in \(\text{RCA}_0 \) it is possible to characterize \(\langle \mathbb{N}, S, 0 \rangle \) up to almost isomorphism by a \(\Pi^1_1 \) sentence. This does become possible in the case of \(\langle \mathbb{N}, \leq \rangle \) (given a suitable definition of almost isomorphism, cf. [SY13]), where there is no need for the \(\Sigma^1_1 \) part of the characterization which guarantees the existence of a suitable ordering.

An important fact about Peano systems almost isomorphic to \(\mathbb{N} \) is that their isomorphism types correspond to \(\Sigma^0_1 \)-definable cuts. This correspondence, which will play a major role in the proofs of our main theorems, is formalized in the following definition and lemma.

Definition 6. Let \(\mathcal{M} = \langle M, \mathcal{X} \rangle \) be a model of \(\text{RCA}_0 \). For a Peano system \(\mathbb{A} \) in \(\mathcal{M} \) which is almost isomorphic to \(\langle \mathbb{N}, S, 0 \rangle \), let \(J(\mathbb{A}) \) be the cut defined in \(\mathcal{M} \) by the \(\Sigma^0_1 \) formula \(\varphi(x) \):

\[
\exists a \in A \ f^x(c) = a.
\]

For a \(\Sigma^0_1 \)-definable cut \(J \) in \(\mathcal{M} \), let the structure \(\mathbb{A}(J) \) be \(\langle A_J, f_J, c_J \rangle \), where the set \(A_J \) consists of all the pairs \(\langle x, y_x \rangle \) such that \(y_x \) is the smallest witness for the formula \(x \in J \), the function \(f_J \) maps \(\langle x, y_x \rangle \) to \(\langle x+1, y_{x+1} \rangle \), and \(c_J \) equals \(\langle 0, y_0 \rangle \).

Lemma 7. Let \(\mathcal{M} = \langle M, \mathcal{X} \rangle \) be a model of \(\text{RCA}_0 \). The following holds:

(a) for a \(\Sigma^0_1 \)-definable cut \(J \) in \(\mathcal{M} \), the structure \(\mathbb{A}(J) \) is a Peano system almost isomorphic to \(\langle \mathbb{N}, S, 0 \rangle \), and \(J(\mathbb{A}(J)) = J \),

7
(b) if $\mathbb{A} \in \mathcal{X}$ is a Peano system almost isomorphic to $\langle \mathbb{N}, S, 0 \rangle$, then there is an isomorphism in \mathcal{M} between $\mathbb{A}(J(\mathbb{A}))$ and \mathbb{A}.

c) if $\mathbb{A} \in \mathcal{X}$ is a Peano system almost isomorphic to $\langle \mathbb{N}, S, 0 \rangle$, then there is an isomorphism in \mathcal{M} between \mathbb{A} and $J(\mathbb{A})$, which also induces an isomorphism between the second-order structures $\langle \mathbb{A}, \mathcal{P}(\mathcal{A}) \rangle$ and $\langle J(\mathbb{A}), \mathcal{P}(J(\mathbb{A})) \rangle$.

Although all the isomorphisms between first-order structures mentioned in Lemma 7 are elements of \mathcal{X}, a cut is not itself an element of \mathcal{X} unless it equals M (because induction fails for the formula $x \in J$ whenever J is a proper cut). Obviously, the isomorphism between second-order structures mentioned in part (c) is also outside \mathcal{X}.

Proof. For a Σ_1^0-definable cut $J \in \mathcal{M}$, it is clear that A_J and f_J are elements of \mathcal{X}, that f_J is an injection from A_J into A_J, and that c_J is outside the range of f_J. Furthermore, for every $(x, y_x) \in A_J$, Σ_1^0 collection in \mathcal{M} guarantees that there is a common upper bound on y_0, \ldots, y_x, so Δ_0^0 induction is enough to show that the sequence $(c_J, f_J(c_J), \ldots, f_J^n(c_J) = \langle x, y_x \rangle)$ exists. If $X \subseteq A_J, X \in \mathcal{X}$, is such that $c_J \in X$ but $f_J(c_J) \notin X$, then Δ_0^0 induction along the sequence $(c_J, f_J(c_J), \ldots, f_J^n(c_J))$ finds some $w < x$ such that $f_J^w(c_J) \notin X$ but $f_J^w(f_J^w(c_J)) \notin X$. Thus, $\mathbb{A}(J)$ is a Peano system almost isomorphic to \mathbb{N}, and clearly $J(\mathbb{A}(J))$ equals J, so part (a) is proved.

For part (b), if \mathbb{A} is almost isomorphic to \mathbb{N}, then each $a \in A$ has the form $a = f^A(c)$ for some $x \in J(\mathbb{A})$, and we know from the proof of Lemma 6 that the element x is unique. Thus, the mapping which takes $f^A(c) \in \mathbb{A}$ to $\langle x, y_x \rangle \in \mathbb{A}(J(\mathbb{A}))$ is guaranteed to exist in \mathcal{M} by Δ_0^0 comprehension. It follows easily from the definitions of $J(\mathbb{A})$ and $\mathbb{A}(J)$ that the mapping $f^A(c) \mapsto \langle x, y_x \rangle$ is an isomorphism between \mathbb{A} and $\mathbb{A}(J(\mathbb{A}))$.

For part (c), we assume that \mathbb{A} equals $\mathbb{A}(J(\mathbb{A}))$, which we may do w.l.o.g. by part (b). The isomorphism between \mathbb{A} and $J(\mathbb{A})$ is given by $(x, y_x) \mapsto x$. To prove that this also induces an isomorphism between $\langle \mathbb{A}, \mathcal{P}(\mathcal{A}) \rangle$ and $\langle J(\mathbb{A}), \mathcal{P}(J(\mathbb{A})) \rangle$, we have to show that for any $X \subseteq A$, it holds that $X \in \mathcal{X}$ exactly if $\{x : (x, y_x) \in X\}$ has the form $Z \cap J(\mathbb{A})$ for some $Z \in \mathcal{X}$. This is easy if $J(\mathbb{A}) = M$, so below we assume $J(\mathbb{A}) \neq M$.

The “if” direction is immediate: given $Z \in \mathcal{X}$, the set $\{x, y_x : x \in Z\}$ is $\Delta_0(Z)$ and thus belongs to \mathcal{X}.

To deal with the other direction, we assume that \mathcal{M} is countable. We can do this w.l.o.g. because $J(\mathbb{A})$ is a definable cut, so the existence of a counterexample in some model would imply the existence of a counterexample in a countable model by a downwards Skolem-Löwenheim argument.

By [SS86, Theorem 4.6], the countability of \mathcal{M} means that we can extend \mathcal{X} to a family $\mathcal{X}^+ \supseteq \mathcal{X}$ such that $\langle M, \mathcal{X}^+ \rangle \models \text{WKL}^\omega_0$. Note that there are no M-finite
Let it be shown in [SY13, Lemma 2.2] that in \(\mathcal{X}^+ \) there is some \(z \in M \) such that
\[
X = \{ x : \text{the } x\text{-th bit in the binary notation for } z \text{ is 1} \}.
\]
Therefore, \(X \) is \(\Delta_0 \)-definable with parameter \(z \) and so \(X \in \mathcal{X}^+ \).

Now consider some \(X \in \mathcal{X}^+ \). Write \(\langle \rangle \) addition resp. of this section, together with our Theorem 1, give precise meaning to the intuitive
\[
N \text{ which is almost isomorphic but not isomorphic to } \mathcal{X}^+ \text{ or that } \mathcal{X}^+ \text{ is actually isomorphic to } \mathcal{X}^+.
\]

Proof. \(\mathcal{M} = (M, \mathcal{X}) \) be a model of RCA\(^*_0\). Let \(\mathcal{A}_0 \in \mathcal{X}^+ \) be a Peano system almost isomorphic to \((\mathbb{N}, S, 0) \). Assume that \(J(\mathcal{A}_0) \) is a proper cut closed under exp, that \(\triangleq \) is a linear ordering on \(A \) with least element \(c \) and successor function \(f \), and that \(\oplus, \otimes \) are operations on \(A \) which satisfy the usual recursive definitions of addition resp. multiplication with respect to least element \(c \) and successor \(f \). Then \((A, \oplus, \otimes, \triangleq, c, f(c)) \text{, } \mathcal{X}^+ \cap \mathcal{P}(A) \models \text{WKL}^*_0 \).

Proof. Write \(\mathcal{A}_0 \) for \((A, \oplus, \otimes, \leq, c, f(c)) \). By Lemma 7 part (b), we can assume w.l.o.g. that \(\mathcal{A}_0 = \mathcal{A}(J(\mathcal{A})) \). Using the fact that \(\mathcal{A}_0 \) is a Peano system, we can prove that for every \(x, z \in J(\mathcal{A}_0) \):
\[
\langle x, y_x \rangle \oplus \langle z, y_z \rangle = \langle x + z, y_{x+z} \rangle,
\]
\[
\langle x, y_x \rangle \otimes \langle z, y_z \rangle = \langle x \cdot z, y_{x\cdot z} \rangle,
\]
\[
\langle x, y_x \rangle \leq \langle z, y_z \rangle \text{ iff } x \leq z.
\]

By the obvious extension of Lemma 7 part (c) to structures with addition, multiplication and ordering, \((\mathcal{A}, \mathcal{X}^+ \cap \mathcal{P}(A)) \) is isomorphic to \((J(A), \mathcal{X}(J(A))) \). Since \(J(\mathcal{A}_0) \) is proper and closed under exp, this means that \((\mathcal{A}_0, \mathcal{X}^+ \cap \mathcal{P}(A)) \models \text{WKL}^*_0 \).

Remark. It was shown in [SY13, Lemma 2.2] that in RCA\(^*_0\) a Peano system almost isomorphic to \(\mathbb{N} \) is actually isomorphic to \(\mathbb{N} \). In light of Lemma 7, this is a reflection of the fact that in RCA\(^*_0\) there are no proper \(\Sigma^0_1 \)-definable cuts.

Informally speaking, a Peano system which is not almost isomorphic to \(\mathbb{N} \) is “too long”, since it contains elements which cannot be obtained by starting at zero and iterating successor finitely many times. On the other hand, a Peano system which is almost isomorphic but not isomorphic to \(\mathbb{N} \) is “too short”. The results of this section, together with our Theorem 1, give precise meaning to the intuitive
idea strongly suggested by Table 2 of [SY13], that the problem with characterizing
the natural numbers in RCA_0 is ruling out structures that are “too short” rather than
“too long”.

3 Characterizations: basic case

In this section, we prove Theorem 1.

Theorem 1. Let ψ be a second-order sentence in the language with one unary
function f and one individual constant c. If WKL_0 proves that $(\mathbb{N}, S, 0) \models \psi$, then
over RCA_0 the statement “for every A, if $A \models \psi$, then there exists a bijection
between \mathbb{N} and A” implies RCA_0.

We use a model-theoretic argument based on the work of Section 2 and a lemma
about cuts in models of $\text{I}_\Delta_0 + \text{exp} + -\text{I}_\Sigma_1$.

Lemma 9. Let $M \models \text{I}_\Delta_0 + \text{exp} + -\text{I}_\Sigma_1$. There exists a proper Σ_1-definable cut $J \subseteq M$
closed under exp.

Proof. We need to consider a few cases.

Case 1. $M \models \text{superexp}$. Since $M \not\models \Sigma_1$, there exists a Σ_1 formula $\varphi(x)$, possibly with parameters, which defines a proper subset of M closed under successor.
Replacing $\varphi(x)$ by the formula $\hat{\varphi}(x)$: “there exists a sequence witnessing that for all $y \leq x$, $\varphi(y)$ holds”, we obtain a proper Σ_1-definable cut $K \subseteq M$. Define:

$$J := \{ y : \exists x \in K \ (y < \text{superexp}(x)) \}.$$

J is a cut closed under exp because K is a cut, and it is proper because it does not contain superexp(b) for any $b \notin K$.

The remaining cases all assume that $M \not\models \text{superexp}$. Let $\text{Log}^*(M)$ denote the
domain of superexp in M. By the case assumption and the fact that $M \models \text{exp}$, $\text{Log}^*(M)$ is a proper Σ_1-definable cut in M.

Case 2. $\text{Log}^*(M)$ is closed under exp. Define $J := \text{Log}^*(M)$.

Case 3. $\text{Log}^*(M)$ is closed under addition but not under exp. Let $\text{Log}(\text{Log}^*(M))$ be the subset of M defined as $\{ x : \text{exp}(x) \in \text{Log}^*(M) \}$. Since $\text{Log}^*(M)$ is closed under addition, $\text{Log}(\text{Log}^*(M))$ is a cut. Moreover, $\text{Log}(\text{Log}^*(M)) \subseteq \text{Log}^*(M)$, because $\text{Log}^*(M)$ is not closed under exp. Define:

$$J := \{ y : \exists x \in \text{Log}(\text{Log}^*(M)) \ (y < \text{superexp}(x)) \}.$$

J is a cut closed under exp because $\text{Log}(\text{Log}^*(M))$ is a cut, and it is proper because it does not contain superexp(b) for any $b \in \text{Log}^*(M) \setminus \text{Log}(\text{Log}^*(M))$.

10
Case 4. $\text{Log}^*(M)$ is not closed under addition. Let $\frac{1}{2}\text{Log}^*(M)$ be the subset of M defined as $\{x : 2x \in \text{Log}^*(M)\}$. Since $\text{Log}^*(M)$ is closed under successor, $\frac{1}{2}\text{Log}^*(M)$ is a cut. Moreover, $\frac{1}{2}\text{Log}^*(M) \subseteq \text{Log}^*(M)$, because $\text{Log}^*(M)$ is not closed under addition. Define:

$$J := \{y : \exists x \in \frac{1}{2}\text{Log}^*(M) \ (y < \text{superexp}(x))\}.$$

J is a cut closed under exp because $\frac{1}{2}\text{Log}^*(M)$ is a cut, and it is proper because it does not contain $\text{superexp}(b)$ for any $b \in \text{Log}^*(M) \setminus \frac{1}{2}\text{Log}^*(M)$.

Remark. Inspection of the proof reveals immediately that Lemma 9 relativizes, in the sense that in a model of $\text{I}\Delta_0(X) + \exp + -\text{I}\Sigma_1(X)$ there is a $\Sigma_1(X)$-definable proper cut closed under exp.

Remark. The method used to prove Lemma 9 shows the following result: for any $n \in \omega$, there is a definable cut in $\text{I}\Delta_0 + \exp$, provably closed under exp, which is proper in all models of $\text{I}\Delta_0 + \exp + -\text{I}\Sigma_n$. In contrast, there is no definable cut in $\text{I}\Delta_0 + \exp$ provably closed under superexp; otherwise, $\text{I}\Delta_0 + \exp$ would prove its consistency relativized to a definable cut, which would contradict Theorem 2.1 of [Pud85].

We can now complete the proof of Theorem 1. Assume that ψ is a second-order sentence true of $\langle \mathbb{N}, S, 0 \rangle$ provably in WKL$_0^\ast$. Let $\mathcal{M} = \langle M, \mathcal{X} \rangle$ be a model of RCA$_0^\ast + -\text{I}\Sigma_0^0$. Assume for the sake of contradiction that according to \mathcal{M}, the universe of any structure satisfying ψ can be bijectively mapped onto \mathbb{N}.

Let J be the proper cut in M guaranteed to exist by the relativized version of Lemma 9. Note that according to \mathcal{M}, there is no bijection between A_J and \mathbb{N}. Otherwise, for every $y \in M$ the preimage of $\{0, \ldots, y - 1\}$ under the bijection would be a finite subset of A_J of cardinality exactly y, which would imply $|A_J|_{\mathcal{M}} = M$. But it is easy to verify that $|A_J|_{\mathcal{M}} = J$.

From our assumption on ψ it follows that \mathcal{M} believes $\mathbb{A}(J) \models \neg \psi$.

By Lemma 7 and its proof, the mapping $\langle x, y \rangle \mapsto x$ induces an isomorphism between $\langle \mathbb{A}(J), \mathcal{X} \cap \mathcal{P}(A_J) \rangle$ and $\langle J, \mathcal{X} \rangle$. Since J is closed under addition and multiplication, we can define the operation \oplus on A_J by $\langle x, y \rangle \oplus \langle z, y \rangle = \langle x + z, y + z \rangle$, and we can define \otimes and \preceq analogously. By Δ^0_0 comprehension, \oplus, \otimes, \preceq are all elements of \mathcal{X}. Write $\mathbb{A}(J)$ for $\langle \mathbb{A}(J), \oplus, \otimes, \preceq, \{0, y_0\}, \{1, y_1\} \rangle$.

Clearly, A_J with the structure given by \oplus, \otimes, \preceq satisfies the assumptions of Corollary 8, which means that $\langle \mathbb{A}(J), \mathcal{X} \cap \mathcal{P}(A_J) \rangle$ is a model of WKL$_0^\ast$. We also claim that $\langle \mathbb{A}(J), \mathcal{X} \cap \mathcal{P}(A_J) \rangle$ believes $\mathbb{N} \models -\psi$. This is essentially an immediate consequence of the fact that \mathcal{M} thinks $\mathbb{A}(J) \models -\psi$, since the subsets of A_J are exactly the same in $\langle \mathbb{A}(J), \mathcal{X} \cap \mathcal{P}(A_J) \rangle$ as in \mathcal{M}. There is one minor technical annoyance related to non-unary second-order quantifiers in ψ, as the integer pairing
function in $\hat{A}(J)$ does not coincide with that of M. The reason this matters is that
the language of second-order arithmetic officially contains only unary set variables,
so e.g. a binary relation is represented by a set of pairs, but a set of M-pairs of
elements of A_J might not even be a subset of A_J. Clearly, however, since the graph
of the $\hat{A}(J)$-pairing function is $\Delta^0_0(\exp)$-definable in \mathcal{M}, a given set of M-pairs of
elements of A_J belongs to \mathcal{X} exactly if the corresponding set of \hat{A}-pairs belongs
to $\mathcal{X} \cap \mathcal{P}(A_J)$; and likewise for tuples of greater constant length.

Thus, our claim holds, and we have contradicted the assumption that ψ is true
of \mathbb{N} provably in WKL_0^*. □ (Theorem 1)

We point out the following corollary of the proof.

Corollary 10. The following are equivalent over RCA_0^*:

1. $\neg \text{RCA}_0$.
2. There exists $\mathcal{M} = \langle M, \mathcal{X} \rangle$ satisfying WKL_0^* such that $|M| \neq |\mathbb{N}|$.

Proof. RCA_0 proves that all infinite sets have the same cardinality, which gives
(2) \Rightarrow (1). To prove (1) \Rightarrow (2), work in a model of $\text{RCA}_0 + \neg \text{RCA}_0$ and take the
inner model of WKL_0^* provided by the proof of Theorem 1. □

Remark. The type of argument described above can be employed to strengthen
Theorem 1 in two ways.

Firstly, it is clear that $\langle \mathbb{N}, S, 0 \rangle$ could be replaced in the statement of Theorem
1 by, for instance, $\langle \mathbb{N}, \leq, +, - , 0, 1 \rangle$. In other words, the extra structure provided
by addition and multiplication does not help in characterizing the natural numbers
without Σ^0_1.

Secondly, for any fixed $n \in \omega$, the theories $\text{RCA}_0^* / \text{WKL}_0^*$ appearing in the statement
could be extended (both simultaneously) by an axiom expressing the totality of
f_n, the n-th function in the Grzegorczyk-Wainer hierarchy (e.g., the totality of
f_2 is \exp, the totality of f_3 is superexp). The proof remains essentially the same,
except that the argument used to show Lemma 9 now splits into $n + 2$ cases instead
of four.

By compactness, $\text{RCA}_0^* / \text{WKL}_0^*$ could also be replaced in the statement of the
theorem by $\text{RCA}_0^* + \text{PRA} / \text{WKL}_0^* + \text{PRA}$, where PRA is primitive recursive arithmetic.

4 Characterizations: exceptions

In this section, we give a precise statement of Theorem 2, and prove Theorems 2
and 3.
Theorem 2 (restated). There exists a Δ_0 formula $\Xi(x)$ defining a (polynomial-time recognizable) set of $\Sigma^1_1 \land \Pi^1_1$ sentences such that RCA_0^* proves: “for every A, A is isomorphic to $\langle \mathbb{N},S,0 \rangle$ if and only if $A \models \xi$ for all ξ such that $\Xi(\xi)$”.

This is our formulation of “there exists a set of second-order sentences which provably in RCA_0^* categorically characterizes the natural numbers”. Note that a characterization by a fixed set of standard sentences is ruled out by Theorem 1 (and a routine compactness argument).

Proof of Theorem 2. We will abuse notation and write X for the set of sentences defined by the formula $X(x)$. Let X consist of the sentence x from Lemma 5 and the sentences

$$\exists a_0 \exists a_1 \ldots \exists a_{e-1} \exists a_x [a_0 = c \land a_1 = f(a_0) \land \ldots \land a_x = f(a_{e-1})],$$

for every $x \in \mathbb{N}$. (Note that in a nonstandard model of RCA_0^*, the set X will contain sentences of nonstandard length.)

Provably in RCA_0^*, a structure A satisfies all sentences in X exactly if it is a Peano system almost isomorphic to \mathbb{N} such that for every $x \in \mathbb{N}$, $f(x) = c$ exists. Clearly then, \mathbb{N} satisfies all sentences in X. Conversely, if A satisfies all sentences in X, then $J(A) = \mathbb{N}$ and so A is isomorphic to \mathbb{N}.

Theorem 3. There is a Σ^1_2 sentence which is a categorical characterization of $\langle \mathbb{N},S,0 \rangle$ provably in $\text{RCA}_0^* + \neg \text{WKL}$.

Before proving the theorem, we verify that the theory it mentions is a Π^1_1-conservative extension of RCA_0^*.

Proposition 11. The theory $\text{RCA}_0^* + \neg \text{WKL}$ is a Π^1_1-conservative extension of RCA_0^*.

Proof. Let $X \forall Y \varphi(X,Y)$ be a Σ^1_2 sentence consistent with RCA_0^*. Take $\langle M, \mathcal{X} \rangle$ and $A \in \mathcal{X}$ such that $\langle M, \mathcal{X} \rangle \models \text{RCA}_0^* + \forall Y \varphi(A,Y)$. Let $\Delta_1(A) \cdot \text{Def}$ stand for the collection of the $\Delta_1(A)$-definable subsets of M. $\Delta_1(A) \cdot \text{Def} \subseteq \mathcal{X}$, so obviously $\langle M, \Delta_1(A) \cdot \text{Def} \rangle \models \text{RCA}_0^* + \forall Y \varphi(A,Y)$. Moreover, by a standard argument, there is a $\Delta_1(A)$-definable finite binary tree without a $\Delta_1(A)$-definable branch, so $\langle M, \Delta_1(A) \cdot \text{Def} \rangle \models \neg \text{WKL}$.

Proof of Theorem 3. Work in $\text{RCA}_0^* + \neg \text{WKL}$. The sentence ψ, our categorical characterization of \mathbb{N}, is very much like the sentence ξ described in the proof of Lemma 5, which expressed almost isomorphism to \mathbb{N}. The one difference is that the Σ^1_2 conjunct of ξ:
there exists a discrete linear ordering \preceq for which c is the least element and f is the successor function.

is strengthened in φ to the Σ^1_2 sentence:

there exist binary operations \oplus, \otimes and a discrete linear ordering \preceq such that

\preceq has c as the least element and f as the successor function,

\oplus and \otimes satisfy the usual recursive definition of addition and multiplication,

and such that $\varDelta_0 + \exp + \neg \text{WKL}$ holds.

$I\Delta_0 + \exp$ is finitely axiomatizable [GD82], so there is no problem with expressing this as a single sentence. Note that φ is Σ^1_1.

Since $\neg \text{WKL}$ holds, the usual $+ \cdot \leq$ and ordering on \mathbb{N} witness that \mathbb{N} satisfies the new Σ^1_2 conjunct of φ. Of course, \mathbb{N} is a Peano system almost isomorphic to \mathbb{N}, and thus it satisfies φ.

Now let \mathcal{A} be a structure satisfying φ. Then \mathcal{A} is a Peano system almost isomorphic to \mathbb{N}, so we may consider $J(\mathcal{A})$. As in the proof of Corollary 8, we can show that the canonical isomorphism between \mathcal{A} and $J(\mathcal{A})$ has to map \oplus, \otimes, \preceq witnessing the Σ^1_2 conjunct of φ to the usual $+, \cdot, \leq$ restricted to J. This guarantees that $J(\mathcal{A})$ is closed under \exp, because the Σ^1_2 conjunct of φ explicitly contains $I\Delta_0 + \exp$. Moreover, Corollary 8 implies that $J(\mathcal{A})$ cannot be a proper cut, because otherwise \mathcal{A} with the additional structure given by \oplus, \otimes, \preceq would have to satisfy WKL. So, $J(\mathcal{A}) = \mathbb{N}$ and thus \mathcal{A} is isomorphic to \mathbb{N}.

5 Characterizations: exceptions are exotic

To conclude the paper, we prove Theorem 4 and some corollaries.

Theorem 4. Let T be an extension of RCA_0 conservative for first-order $\forall \Delta_0(\Sigma^1_1)$ sentences. Let η be a second-order sentence consistent with $\text{WKL}_0^\ast + \text{superexp}$. Then it is not the case that η is a categorical characterization of $\langle \mathbb{N}, S, 0 \rangle$ provably in T.

Proof. Let $\mathcal{M} = \langle M, \mathcal{X} \rangle$ be a countable recursively saturated model of $\text{WKL}_0^\ast + \text{superexp} + \eta$.

Tanaka’s self-embedding theorem [Tan97] is stated for countable models of WKL_0. However, a variant of the theorem is known to hold for WKL_0^\ast as well:

Tanaka’s self-embedding theorem for WKL_0^\ast (Wong-Yokoyama, unpublished). If $\mathcal{M} = \langle M, \mathcal{X} \rangle$ is a countable recursively saturated model of WKL_0^\ast and $q \in M$, then there exists a proper cut I in M and an isomorphism $f : \langle M, \mathcal{X} \rangle \to \langle I, \mathcal{X}_I \rangle$ such that $f(q) = q$.

14
This can be proved by going through the original proof in [Tan97] and verifying that all arguments involving Σ^0_1 induction can be replaced either by $\Delta^0_0(\exp)$ induction plus Σ^0_1 collection or by saturation arguments\(^1\). A refined version of the result was recently proved by a different method in [EW14].

Thus, there is a proper cut I in M such that $\langle M, \mathcal{P} \rangle$ and $\langle I, \mathcal{P}_I \rangle$ are isomorphic. In particular, $\langle I, \mathcal{P}_I \rangle \models \eta$.

Let $a \in M \setminus I$. Define the cut K in M to be
\[
\{ y : \exists x \in I (y < \exp_{a+x}(2)) \}.
\]
Since $\exp_{a+x}(2) \in M \setminus K$, the cut K is proper and hence $\langle K, \mathcal{P}_K \rangle \models \text{WKL}_0$. The set I is still a proper cut in K, because $a \in K \setminus I$. Furthermore, I is Σ_1-definable in K by the formula $\exists x \exists y (y = \exp_{a+x}(2))$.

T is conservative over RCA_0 for first-order $\forall \Delta_0(\Sigma_1)$ sentences, so there is a model $\langle L, \mathcal{V} \rangle \models T$ such that $K \equiv_{\Delta_0(\Sigma_1)} L$. We claim that in $\langle L, \mathcal{V} \rangle$ there is a Peano system \mathcal{A} satisfying η but not isomorphic to \mathbb{N}. This will imply that T does not prove η to be a categorical characterization of \mathbb{N}. It remains to prove the claim.

We can assume that η does not contain a second-order quantifier in the scope of a first-order quantifier. This is because we can always replace first-order quantification by quantification over singleton sets, at the cost of adding some new first-order quantifiers with none of the original quantifiers of η in their scope.

Note that (K, \mathcal{P}_K) contains a proper Σ_1 definable cut, namely I, which satisfies η. Using the universal Σ_1 formula, we can express this fact by a first-order $\exists \Delta_0(\Sigma_1)$ sentence η^{FO}. The sentence η^{FO} says the following:

there exists a triple “Σ_1 formula $\varphi(x, w)$, parameter p, bound b” such that

- b does not satisfy $\varphi(x, p)$, the set defined by $\varphi(x, p)$ below b is a cut,
- and this cut satisfies η.

To state the last part, replace the second-order quantifiers of η by quantifiers over subsets of $\{0, \ldots, b-1\}$ (these are bounded first-order quantifiers) and replace the first-order quantifiers by first-order quantifiers relativized to elements below b satisfying $\varphi(x, p)$. By our assumptions about the syntactical form of η, this ensures that η^{FO} is $\exists \Delta_0(\Sigma_1)$.

L is a $\Delta_0(\Sigma_1)$-elementary extension of K, so L also satisfies η^{FO}. Therefore, $\langle L, \mathcal{V} \rangle$ also contains a proper Σ_1-definable cut satisfying η. The Peano system corresponding to this cut via Lemma 7 also satisfies η, but it cannot be isomorphic to \mathbb{N} in $\langle L, \mathcal{V} \rangle$, because its internal cardinality is a proper cut in L. The claim, and the theorem, is thus proved.

\(^1\)The one part of Tanaka’s proof that does require Σ^0_1 induction is making f fix (pointwise) an entire initial segment rather than just the single element q. See [Ena13].
Remark. The assumption that \(\eta \) is consistent with \(\text{WKL}_0^+ + \text{superexp} \) rather than just \(\text{WKL}_0 \) is only needed to ensure that there is a model of \(\text{RCA}_0^* \) with a proper \(\Sigma_1 \)-definable cut satisfying \(\eta \). The assumption can be replaced by consistency with \(\text{WKL}_0 \) extended by a much weaker first-order statement, but we were not able to make the proof work assuming only consistency with \(\text{WKL}_0^+ \).

One idea used in the proof of Theorem 4 seems worth stating as a separate corollary.

Corollary 12. Let \(\eta \) be a second-order sentence. The statement “there exists a Peano system \(A \) almost isomorphic but not isomorphic to \(\langle \mathbb{N}, S, 0 \rangle \) such that \(A \models \eta \)” is \(\Sigma_1 \) over \(\text{RCA}_0^* \).

Proof. By Lemma 7, a Peano system satisfying \(\eta \) and almost isomorphic but not isomorphic to \(\mathbb{N} \) exists exactly if there is a proper \(\Sigma_1^0 \)-definable cut satisfying \(\eta \). This can be expressed by a sentence identical to the first-order sentence \(\eta^{\text{FO}} \) from the proof of Theorem 4 except for an additional existential second-order quantifier to account for the possible set parameters in the formula defining the cut.

Theorem 4 also has the consequence that if we restrict our attention to \(\Pi_1^1 \)-conservative extensions of \(\text{RCA}_0^* \), then the characterization from Theorem 3 is not only the “truest possible”, but also the “simplest possible” provably categorical characterization of \(\mathbb{N} \).

Corollary 13. Let \(T \) be a \(\Pi_1^1 \)-conservative extension of \(\text{RCA}_0^* \). Assume that the second-order sentence \(\eta \) is a categorical characterization of \(\langle \mathbb{N}, S, 0 \rangle \) provably in \(T \). Then

(a) \(\eta \) is not \(\Pi_2^1 \).

(b) \(T \) is not \(\Pi_2^1 \)-axiomatizable.

Proof. We first prove (b). Assume that \(T \) is \(\Pi_2^1 \)-axiomatizable and \(\Pi_1^1 \)-conservative over \(\text{RCA}_0^* \). As observed in [Yok09], this means that \(T + \text{WKL}_0^+ \) is \(\Pi_1^1 \)-conservative over \(\text{RCA}_0^* \), so \(T \) is consistent with \(\text{WKL}_0^+ + \text{superexp} \). Hence, Theorem 4 implies that there can be no provably categorical characterization of \(\mathbb{N} \) in \(T \).

Turning now to part (a), assume that \(\eta \) is \(\Pi_2^1 \). Since \(T \) is \(\Pi_1^1 \)-conservative over \(\text{RCA}_0^* \) and proves that \(\mathbb{N} \models \eta \), then \(\text{RCA}_0^* + \eta \) must also be \(\Pi_1^1 \)-conservative over \(\text{RCA}_0^* \). But then, by a similar argument as above, \(\eta \) is consistent with \(\text{WKL}_0^+ + \text{superexp} \), which contradicts Theorem 4.

Acknowledgement. We are grateful to Stephen G. Simpson for useful remarks and to an anonymous referee for comments which helped improve the presentation.
References

