JAIST Repository

https://dspace.jaist.ac.jp/

Title	エルモア遅延モデルに基づく最大信号伝播遅延最小化 スタイナー配線			
Author(s)	門地,忠夫			
Citation				
Issue Date	1999-03			
Туре	Thesis or Dissertation			
Text version	author			
URL	http://hdl.handle.net/10119/1232			
Rights				
Description	Supervisor:金子 峰雄, 情報科学研究科, 修士			

Japan Advanced Institute of Science and Technology

修士論文

エルモア遅延モデルに基づく最大信号伝播遅延 最小化スタイナー配線

指導教官 金子峰雄 助教授

北陸先端科学技術大学院大学 情報科学研究科情報システム学専攻

門地忠夫

1999年2月15日

Copyright © 1999 by Kadodi Tadao

目 次

1	はじめに	1
2	準備	3
	2.1 ネットの定義	3
	2.2 各定義	3
	2.3 エルモア遅延モデル	5
	2.4 問題定式化	7
3	遅延制御に関する考察	8
	3.1 3 端子問題	8
	3.2 4 端子問題	14
4	Nodetour アルゴリズム	18
	4.1 Nodetour アルゴリズム	18
5	Svrm アルゴリズム	23
6	実験結果	26
	6.1 下界の計算	26
7	結論	31

第1章

はじめに

機器の小型化,及び大規模計算処理の要求に対応して,VLSI 設計において高集積化,高 速動作化といった,単位面積当たりの計算能力を高める研究開発がおこなわれている.デバ イス技術の進歩によりゲートスイッチング遅延は確実に小さくなってきている.一方,配線 抵抗,配線容量などに起因する配線遅延はスケーリングによる遅延改善効果が小さくゲー トスイッチング遅延に代わって,集積回路の動作速度を決める支配的な要因となってきて いる.そのため配線遅延を制御する集積回路のレイアウト設計が重要であり,最大信号伝 播遅延を最小化する配置・配線手法及びその CAD に関する研究が活発に続けられている.

配線設計における総配線長最小化は配線面積が占めるレイアウト面積を小さくする意味 で古くから研究されてきている.また,信号伝播遅延の観点からは,ゲートが駆動する総 負荷容量を最小化する意味を持ち,配線容量が支配的な状態においては,信号伝播遅延最 小化にも寄与する.一方,最大配線長制限付き総配線長最小化,距離保存総配線長最小化 は,信号源(ソース)から伝達先(シンク)までの配線長を考慮することで,配線抵抗に 起因する信号伝播遅延を制約して,信号源における総負荷容量を最小化しようとするもの である.これらの問題のうち,総配線長最小化問題はNP困難であることが知られている. また,距離保存総配線長最小化問題は,多項式時間で解けると予想されているが,現在の ところその計算複雑度はわかっていない.そのため,これらの配線問題に関しては様々な 発見的手法や確率的手法に基づくアルゴリズムの開発が行なわれている.ところで,これ ら配線問題は遅延評価に1次近似モデルを用いることから,微細化と高速化に伴って,遅 延評価が不正確となってきている.これに対して,近年,配線抵抗と配線容量を用いた2 次近似モデルであるエルモア遅延モデルが提案され,より正確な遅延評価が可能となった. しかし,エルモア遅延モデルに基づくいくつかの配線アルゴリズムが開発されているにも 関わらず,理論的解析は殆んどなされていない.より効率的なアルゴリズムを開発するた めにもエルモア遅延モデルに基づく遅延最小化配線問題の理論的解析は重要である.

以降は次のように構成されている.2章では本論文における用語の説明,定義をおこなっている.3章では,エルモア遅延モデルの解析をおこない,それに対する3端子問題,4 端子問題を紹介紹介している.4章,5章では提案したアルゴリズムを紹介する.6章では,提案したアルゴリズムを適用した結果を示す.最後に7章で,結論を述べている.

第2章

準備

2.1 ネットの定義

本研究で取り扱うネットの定義をする。ゲート出力に対応するソースと呼ばれる1つの 平面(マンハッタン平面)上の点とゲート入力に対応する複数のシンクと呼ばれる平面上 の点からなる集合をネットと呼ぶ.またネット Nを結ぶスタイナー配線上のスタイナー点 とその接続形状を表すために,2分木構造を用いる.

図 2.1において v_0 がソース、v1,v2,v3 をシンクまたはターミナルと呼ぶ。

2.2 各定義

以下の定義において,平面は *x* – *y*平面を考え,*x* 軸方向を水平方向,*y*軸方向を垂直方 向と呼ぶ.

ネット N ネットの定義参照.

- T
 N を結ぶ2分木構造.Nのソースを根とし,各シンクを葉とする.ま

 た根の次数は1で,他の点の次数は1または3である.
- *V*(*T*) *T*の点集合.
- par(v)
 vの親.つまり任意の vに対して vの隣接点のうち根に近いもの.それ

 以外の点を vの子どもと呼ぶ.vの子どもは vが葉でなければ2つ存在

 する.

スタイナー点 Tの中でNに含まれない点.

・ゲート、ネットの遅延評価: エルモア遅延モデル

図 2.1: ネット

- $\phi: V(T) \setminus N \rightarrow R^2$ スタイナー点を平面に配置する写像.すでにNに含まれる点(シンク)の位置は決まっているのでその座標自身を点とする.つまり $\phi(t) = t \forall t \in N$ とする.
- Rect(v) 任意の $v \in V(T)$ にたいしてその子u,wが写像された点 $\phi(u) = (x_u, y_u)$ と $\phi(w) = (x_w, y_w)$ が張る平面上の矩形領域
- $f_{\min}(v)$ Rect(v)のなかで par(v)の配置された位置 $\phi(par(v))$ に最も近い点
- Seg(v) $\phi(par(v)) \geq f_{min}(v)$ を結ぶ直線成分

ーつの2分木構造を持つスタイナー配線は複数存在する.あるスタイナー配線Sに対してのこれらの関数を表すときは, $Rect^{S}, f_{min}^{S}, Seg^{S}$ で表す.Seg(v)が水平方向と斜め方向の例をそれぞれ図 2.2に与える.

図 2.2: 矩形領域と直線分

2.3 エルモア遅延モデル

本研究ではネットの信号遅延を評価するために、配線の抵抗、容量を考慮したエルモア 遅延モデルを用いた。このモデルの定義を与える前に幾つかの準備を行なう.

ある頂点入力 Vに対して、ソース v0 からシンク v_i までのエルモア遅延は以下の式で表される。

- r_d : ネットのソース n_0 のアウトプットドライバ抵抗であり, 与えられているものとする.
- *C_v* : *v*をソースとする部分木としたときのシンクとエッジ 容量 の合計である.シンクにおいては,あらかじめ与えられているものとする.
- l_v : Nのスタイナー配線 Sに対し,ソース以外の任意の点 $v \in V(T)$ に対し, $v \ge v$ の親を 結ぶ辺 {par(v), v} に対応する Sの配線 (W(v))の長さ.
- r: 記線長に対する抵抗の比例定数.
- c : 配線長に対する容量の比例定数.

図 2.3: エルモア遅延の計算

またエルモア遅延モデルでは,W(v)の配線抵抗と配線容量はそれぞれ, rl_v, cl_v で表される.

各点 vにおけるエルモア遅延は、ソース $s_0 \ge v$ を結ぶ T上のパス Pの点集合から、 $s_0 \ge v$ を結ぶ T上のパス Pの点集合から、 $s_0 \ge v$ をいた集合 $V(P) \setminus s_0$ を用いて次式で与えられる.

$$t_{\rm ED}(v) = r_d C_{s_0} + \sum_{s \in V(P) \setminus \{s_0\}} r l_s(\frac{cl_s}{2} + C_s)$$
(2.1)

特にスタイナー配線 Sを強調するときは t_{ED} を t_{ED}^{S} で表す.

実際の計算は図 2.3のようになる。 r_i, c_i は配線の抵抗と容量である。ここでは、 $v_0 - v_1$ 間の遅延を求めてる。まず ソース v_0 での遅延は r_dC_1 となる。ここで C_1 というのは、 v_1, v_2, v_3 での容量 $C_{v_1}, C_{v_2}, C_{v_3}$ と $v_0 - s_1$ 間, $s_1 - v_1$ 間, $s_1 - s_2$ 間 $s_2 - v_2$ 間, $s_2 - v_3$ 間の配線容量の総和である。したがって、 r_d における遅延は $r_d \cdot C_1$ である。以下、同様にして $v_0 - s_1$ 間、 $s_1 - v_1$ 間の遅延計算はそれぞれ、 $r_1(\frac{c_1}{2} + C_2)$ 、 $r_2(\frac{c_2}{2} + C_3)$ になり $v_0 - v_1$ 間の遅延はこれらの頂点間の総和となり、 $r_d \cdot C_1 + r_1(\frac{c_1}{2} + C_2) + r_2(\frac{c_2}{2} + C_3)$ となる。

2.4 問題定式化

本論文の研究目的は、入力されたソースとシンクの集合にたいして、シンクにおける最 大の遅延を最小化するような矩形スタイナー配線(縦横成分のみ)を構成することである。 ここではスタイナー点とその接続形状を表すために,2分木構造を用いる.また,配線の 重なり,交差を許すものとする.提案するアルゴリズムは2つある。まず一つは初期解を もとめるアルゴリズムである。入力頂点集合に対して,シンクからソースまでの距離が最 小になるようにかつ,総配線長を小さくするような配線を構成する.もう一つのアルゴリ ズムは前ステップで求まった初期解(2分木構造)を入力として、エルモア遅延モデルに 基づいた最大遅延を改善するような、配線を構成する。

入力:ネットの端子集合(シンク)

出力: 平面矩形スタイナー配線

内容:シンクにおける最大遅延最小化

第3章

遅延制御に関する考察

ここでは遅延制御について,エルモア遅延モデルに基づいた3端子問題と4端子問を議論する.ただし,配線や頂点の重なりを考慮しない.また距離はマンハッタン距離とする. 式2.1と容量の定義より次の補題を得る.

補題 3.1 任意の点 vのエルモア遅延 $t_{ED}(v)$ は各配線の長さに関して単調増加である. 証明:ある頂点間の配線が増加し,他の配線長は変化しないと仮定すると,変化した配線の祖先にある全ての頂点において,容量 C_v は増加する(ソース s_0 においては,かならず C_{s_0})のですべての点におけるエルモア遅延も増加する.

3.1 3 端子問題

ここでは,配線や端子の重なり,侵入不可領域などを考慮せず,平面上の2点間の距離 はマンハッタン距離で与えられるものと仮定し,エルモア遅延モデルに基づき,信号伝播 遅延を考察する.図3.1参照

3 端子条件: 配線 Sにたいし,スタイナー点 $v \in V(T) \setminus N$ が Seg(v) 上にあるとき, vは3 端子条件を満たす.

以下にいくつかの定義をする.

*C_{sink}*シンクの容量

 $length(v_i, v_j)$ 頂点 v_i, v_j 間のマンハッタン距離

領域 A 3 点 (*par*(*v*), *u*, *w*)を囲む最小の長方形領域

領域 B 領域 A のなかで, Rect(v) を含まない領域

領域 C Rect(v) と同じ領域

- l_1 par(v) v間の距離
- l_2 v-u間の距離
- l_3 v w間の距離

図 3.1: 3 端子問題

ここで エルモア遅延モデルより得られた,次の定理を証明する.

定理 3.1 あるネットの2分木構造 Tと任意のスタイナー配線 S_0 が与えられとする.この とき,すべてのターミナルにおけるエルモア遅延が S_0 のそれ以下であり,すべてのスタイ ナー点が3端子条件を満たすスタイナー配線が存在する. 証明: すべてのターミナルにおけるエルモア遅延が S₀のそれ以下であり,3端子条件を満たす点の数が最小のものを Sとする.このとき,3端子条件を満たさない点 vが存在したと仮定して,矛盾を導く.

補題 3.2 シンクにおける遅延を悪くしないような,スタイナー点vの位置は三つの点(par(v), u, w)を囲む最小の長方形の外には存在しない.

証明: もし 図 3.3の領域 A 以外の場所にスタイナー点 vが存在すると仮定する.いま,ス タイナー点 v以外は固定なので,領域 A 以外のどの点からでも領域 A に近付けることによっ て,length(v,u),length(v,w),Seg(v) の長さはより短くなるのみである.よって補題 3.1 よ リシンクにおける遅延を悪くしないようなスタイナー点 vの位置は領域 A に存在すること がわかる.■

図 3.2に Seg(v) が水平方向の場合と斜め方向の場合の例をしめす.3端子問題においては,3点の位置関係がどのような場合であっても,この2つの場合の形となる.

補題 3.3 図 3.2において,同様にスタイナー点 v以外は固定とすると,遅延を増加させな いような,スタイナー点の場所は,太線上 (Seg(v)) もしくは領域 Cに存在する.

証明: ここでは,領域 A 内でさらに遅延を悪くしないような vの位置を特定する.領域 B に存在する vは,矢印方向に 45 度で移動をしても各頂点間の配線の長さ l_v, l_u, l_wは,いづ れも増加しない.よって,補題 3.1からすべてのシンクにおけるエルモア遅延は増加しな い.■

従って,Sは3端子条件を満たさない点の数が最小であるから, $v \in Rect(v)$ ならば,vを $f_{\min}(v)$ に移動することにより,得られる配線 S'における各シンクの遅延が Sのそれ以下であることを示せば十分である.

 $S \geq S'$ の各シンクにおけるエルモア遅延を比較する. 配線 Sにおける $l_v l_u , l_w$ をそれぞれ, l_v^S , l_u^S , l_w^S とし, 配線 S'におけるそれを, $l_v^{S'}$, $l_u^{S'}$, $l_w^{S'}$ とする.

補題 3.4 領域 Cにあるスタイナー点 v (配線 S)の各シンクにおける遅延は , $f_{\min}(v)$ に移動することによって (配線 S') 増加することはない .

証明: 今,スタイナー点vが領域Cに存在するとする(図3.2)このvを $f_{\min}(v)$ に移動する.このときの移動距離を Δ とすると,図3.3のようになる.ここで,移動前と移動後の遅延において,移動後の各シンクにおける遅延のほうが小さいことを示せばいい.

今,任意のシンクを *s* として, *s* が *v*の子孫でない場合, *u* の子孫の場合, *w*の子孫であ る場合を考察する.

(a) Seg(v)が水平方向の場

(b) Seg(v)が斜め方向の場

図 3.2: 補題2,3

sが vの子孫ではない場合: 配線 S'においては, par(v) と u と w間の配線長が Δ 減 少するため,その他は不変であるため補題 3.1よりシンク s での遅延は増加しないこ とがわかる.

s が wの子孫である場合: 配線 S'において,vにおける遅延は, 配線 Sに比べて, vより子孫にある頂点は容量が不変であり, length(par(v), v) は Δ 減少しているので, $t_{ED}^{S'}(v)$ は増加しない.wにおいても,同じ議論が言え配線 S'における遅延は増加し ないことがわかる.よって,wの子孫にあるvにおいても遅延が増加しないことがわ かる. $t_{ED}^{S'}(s) \leq t_{ED}^{S}(s)$

sが u の子孫である場合: $t_{ED}^{S'}(s), t_{ED}^{S}(s)$ について 以下の式を得る.いま,ソース の頂点を s_0 ,ソース s_0 と par(v) 間の遅延を $t_{ED}(s_0 - par(v))$ とする.

$$t_{ED}^{S}(s) = t_{ED}(s_0 - par(v)) + l_v r(\frac{l_v c}{2} + C_v) + l_u r(\frac{l_u c}{2} + C_u)$$
(3.1)

$$t_{ED}^{S'}(s) = t_{ED}(s_0 - par(v)) - \{r_d + r(\text{length}(s_0, par(v)))\}c\Delta$$
(3.2)

$$+(l_{v}-\Delta)r(\frac{l_{v}-\Delta}{2}+C_{v})+(l_{u}+\Delta)r(\frac{(l_{u}+\Delta)c}{2}+C_{u})$$
 (3.3)

配線 S'において Sと比べて増えた項は,

$$\Delta l_u rc + rc\Delta^2 + \Delta rC_u$$

一方,マイナスとなった項は
 $-\{r_d + r(\text{length}(s_0, \text{par}(\mathbf{v}))\}c\Delta - \Delta rcl_v - \Delta rC_v$
ただし,
 $C_v = C_u + C_v + c(l_v + l_u + l_w)$
であるので,
 $t_{ED}^{S'}(s) \leq t_{ED}^S(s)$
である。

これらのことより, 配線 S'において各シンクにおける遅延は Sによるそれを上回らない. したがって, S'は Sよりも3端子条件を満たさない点の数が少ないので, Sの仮定に矛盾する.■

図 3.3: 移動による配線長の変化

ここで 定理 3.1に関する考察をするため, s_0 をソースとする 3 点からなるネット $N = \{s_i | 0 \le i \le 2\}$ を考える.定理 3.1より,3 点からなるネットに対し,最大信号伝播遅延に関する最適解におけるスタイナー点 vが fminvと s_0 に配置される例はそれぞれ r_d と $C_{s_i}(i = 1, 2)$ を大きくすることによって容易に得られる.最適解におけるスタイナー点の 位置が s_0 と fminv以外の例を図に挙げる.各変数の値は次のとおりである.

$$r_{d} = 8$$

$$s_0 = (1, 0)$$

 $s_1 = (0, 3)$
 $s_2 = (3, 6)$
 $C_{s_1} = 12$
 $C_{s_2} = 1$

また,スタイナー点の位置は変数 lを用いて (1, 3 - l) で表す. $t_{ED}(s_1), t_{ED}(s_2)$ はそれぞれ

$$t_{ED}(s_1) = 256.25 - (l - \frac{1}{2})^2$$
 (3.4)

$$t_{ED}(s_2) = 256 - (l-4)^2 \tag{3.5}$$

である. $0 \le l \le 3$ であるから,(3.4), (3.5)より, $l = \frac{16}{7}$ において最大信号伝播遅延は最小値をとる.図3.4参照

図 3.4: 3 端子問題

定理 3.2 最大信号伝播遅延最小化スタイナー配線 Sにおいて, どのクリティカルパス上に も含まれないスタイナー点 vは $f_{\min}(v)$ 上に存在する.

3.2 4 端子問題

定理 3.2にもみられるように,どのクリティカルパスにも含まれないスタイナー点は配線 容量を最小化するためにも f_{\min} に配置されるのが望ましい.すべてのスタイナー点が f_{\min} に配置するようなスタイナー配線 f_{\min} 制約を満足する,あるいは f_{\min} 配線という.

クリティカルパス 最大遅延を持ったシンクとソース間のパス

この節では,親子関係にある二つのスタイナー点の位置を同時に決める手法を提案する. ここでは,スタイナー点がクリティカルパス上に含まれるか否かには無関係に常に f_{\min} に配置すると仮定し,その上で,それらに隣接する4頂点の位置から全てのシンクの遅延が最も小さくなる位置を決定する.図3.5 に4端子問題の2分木構造を与える.二つのスタイナー点 s_1, s_2 とそれらに隣接する4頂点 v_i ($0 \le i \le 3$)の位置が決定しているならば s_1, s_2 も決定する.

図 3.5:4 点問題の2分木構造

定理 3.3 S_0 を一つの f_{\min} 配線とする . S_0 から,ある隣接する $2 \leq s_1 \geq s_2$ のみを移動することにより得られるすべての集合を Sとするとき,どのシンクにおける遅延も Sに含まれる他の配線のそれ以下である f_{\min} 配線 $S \in S$ が唯一存在する.

証明: まず 図 3.6に示すように, $v_2 \ge v_3$ を含む最小の矩形領域 $Rect(s_2)$ にたいし, v_0 が 3.6(a)のA, B, Eのいづれかにある場合のみを考えれば良い. v_0 がAの領域にある場合, さらに, 対称性より, v_1 がA, B, C, E, F, Iどの領域に存在するかによって場合分けを する.ただし,境界線上の場合は隣接する領域のどちらにしても構わない.基本的には以下に示す *A*-*A*,*A*-*B*,*A*-*E* の三つのパターンで証明できる.以下では平面上の点 *u* の *x* 座標 と *y*座標をそれぞれ *x*(*u*), *y*(*u*) で表す.

場合 A-A

 s_2 は $Rect(s_2)$ 内に配置されるため, s_1 は3端子問題より, v_1 と s_2 を含む矩形領域の中で 最も v_0 に近い点は v_0, s_1 を含む矩形領域の中で最もaに近い点である.

場合 A-B

同様の議論より, $y(s_1) = miny(y_0), y(y_1)$ 及び, $y(s_2) = y(a)$ を得る. $s_1 \ge s_2$ の x 座標が 等しくなる.その座標を $l \ge \exists < . v_0, v_1, s_1$ 及び s_2 の位置関係を 3.6(c)に表す.証明の詳 細は 3 頂点定理のときと同様であるので省略する.

場合 A-E

この場合が,証明の最も複雑なパターンである. s_2 も v_1 も共に $Rect(s_2)$ 上に配置されるので, s_1 も $Rect(s_2)$ 上に存在する.よって, $Rect(s_2)$ 上で最も s_1 に近い点は s_1 自身であるから, s_1 , s_2 は重なる. s_1 , s_2 の配置位置を $Rect(s_2)$ 上のa以外の任意の点としたときのスタイナー配線 S_1 とaにとるときのスタイナー配線 s_2 においての各点の遅延を比較する.aとpとの距離を δ とする.スタイナー配線 $S_i(i = 1, 2)$ における $v \in s_1, v_1, v_2, v_3$ とその親の距離を l_v^1 とする.このとき $Rect(s_2)$ 内の任意の点と v_2, v_3 との距離の和は常に一定なので, $l_v^1 + l_{v_3}^1 = l_{v_2}^2 + l_{v_3}^2$ である.一般性を失うことなく $l_{v_2}^2 \leq l_{v_2}^1$ と仮定する.このとき $l_{v_2}^1 \leq l_{v_2}^2 + \delta$ であるから,

$$l_{n_2}^2 = l_{n_2}^1 - \delta^- \tag{3.6}$$

$$l_{v_3}^2 = l_{v_3}^1 - \delta^- \tag{3.7}$$

となる.ただし $0 \leq \delta^- \leq \delta$ である.一方aは $Rect(s_2)$ の中でも最も s_2 の親 v_0 に近い点であるから,

$$l_{s_1}^2 = l_{s_1}^1 - \delta (3.8)$$

である.さらに, v_3 とaとの距離は v_3 とpとの距離とpとaとの距離の和以下であるから,

$$l_{v_1}^2 = l_{v_1}^1 - \delta' \tag{3.9}$$

 $(\delta' \leq \delta)$ である.

図 3.7: s1と s2の移動による配線長の変化

図 3.7(a) に配線 S_1 における各配線長を表し,(b) には S_2 の S_1 との配線長の変化分を表す.このとき

$$t_{ED}^{s_2}(v_1) - t_{ED}^{s_1}(v_1) \tag{3.10}$$

$$\leq \sum_{v \in (s_1, v_1)} \left(r l_v^2 (r_v^2 + C_v^{s_2}) - r l_v^1 (r l_v^1 + C_v^{s_1}) \right)$$
(3.11)

である.(3.8)(3.9)より,この右辺は次の2次式の和となる.

$$rc(\frac{(\delta-\delta')^2}{2}-\delta l_{s_1}^1) \tag{3.12}$$

$$r(\delta' c l_{v_1}^1 + \delta' C_{v_1}^{S_1} - \delta C_{s_1}^{S_1})$$
(3.13)

$$l_{v_1}^1\geq\delta\geq\delta'$$
より , $rac{(\delta-\delta)^2}{2}-\delta l_{s_1}^1\leq 0$ であるから , (3.17) は負である.よって ,

$$C_{s_1}^{S_1} = C_{v_1}^{S_1} + C_{s_2}^{S_1} + cl_{v_1}^1 + 0 aga{3.14}$$

$$\geq C_{v_1}^{S_1} + cl_{v_1}^1 \tag{3.15}$$

したがって (3.13) も負であり, (3.11) も負である. 従って, S_2 における v_1 の遅延は S_1 における v_1 の遅延以下である. 次に, $v_2 \ge v_3$ の $S_1 \ge S_2$ における遅延の比較であるが, $s_1 \ge s_2$ を結ぶ配線長が 0 であるから, (3.6) (3.7) より, 3 点定理のときと同様に証明できる. 従って, この場合も一意に決まる.

先ほど述べたように他の場合はすべてこれらのいずれかの場合と同様に証明できる. ■

第4章

Nodetour アルゴリズム

アルゴリズムを説明する前に幾つかの定義をする.シンクとソースを結ぶ配線の長さが その2点間のマンハッタン距離と等しいとき,その配線を半径保存配線という.複数のシ ンクとスタイナー点とそのれらすべてを結ぶ配線からなるスタイナー配線を連結成分 Cと よび,連結成分上で最もソースに近い点をその連結成分のテンポラリとよび,tmp(C)ある いは単にtmpで表す. $tmpC_1$ と $tmpC_2$ を囲む矩形領域 $Rect(C_1, C_2)$ 上の最もソースに近い 点を $Tmp(C_1, C_2)$ とするとき,2つの連結成分 C_1 と C_2 の距離は,次のように定義される.

 $Rect(C_1, C_2)$ がソースを含むなら 図 4.4(d)

 $Tmp(C_1, C_2)$ が $tmp(C_1)$ と $tmp(C_2)$ のどちらとも一致しないならば, $tmp(C_1)$ と $tmp(C_2)$ のマンハッタン距離 図 4.4(b)

 $Tmp(C_1, C_2) = tmp(C_i)(i = 1, 2)$ ならば $Rect(C_1, C_2)$ に含まれる C_1 上の点で最も $tmp(C_2)$ に近い点と $tmp(C_2)$ のマンハッタン距離図 4.4(a)(c)

このアルゴリズムはソースとシンクの座標を入力としており,与えられた各シンクがソースに対して,総配線長が短くなるような半径保存配線の生成を目的としている.

4.1 Nodetour アルゴリズム

ここでは Nodetour アルゴリズムの構成方を述べる.まず,すべてのシンクを1点から 成る連結成分とし,それ自身を tmp とする.次に最も距離の小さい連結成分の組を求め, その2つの距離に対応する配線(図中の太線)で1つの連結成分を構成する.このとき図 4.4(a)(c)の場合は $Rect(C_1, C_2)$ の最もソースに近い点を新たに構成した連結成分の tmp と

図 4.1: 連結成分間の距離

し,図 4.4(b)の場合は *tmp*(*C*₁) と *tmp*(*C*₂)のうちソースに近いほうを *tmp* とする.すべての連結成分間の距離が になるまでこの操作を繰り返す.最後にすべての連結成分からなるソースへの配線を接続して終了する.これと同時に2分木構造の構成も行なう.図 4.4 参照

ソースと10のシンクを入力し,それに対して Nodetour Algorithm を適用した例を示す.図4.2が入力した状態であり,図4.3が Nodetour Algorithm を適用した図である.

図 4.2: 入力

図 4.3: Nodetour Algorithm の適用

図 4.4: 2分木の構成

第5章

Svrm アルゴリズム

ここでは、Nodetour アルゴリズムによって生成されたスタイナー配線(木構造)をもと に、最大遅延を最小にするため、Svrm アルゴリズムを適用する.このアルゴリズムは、3 端子問題の Seg(v) 上にはシンクに対する最大遅延を最小とするようなスタイナー点の位置 が存在するということと、4 点問題においては、他のどのターミナルに対しても遅延を悪く しないようなスタイナー点の位置が決まるとう事実に基づき、スタイナー頂点の移動、部 分木のつけかえをする.また部分木の付け換えの間は常にどの4点をとっても、4点問題 を満足させるように配線を行なっている.また,このアルゴリズムを適用した結果を図5.1 に示す.入力は,前節で行なった Nodetour Algorithm より得られた2分木構造とする.

図 5.1: Svrm アルゴリズムの適用

第6章

実験結果

平面上に1つのソースと10個のシンクをランダムに配置し,Ndetour アルゴリズム, Svrm アルゴリズムを適用し,最大遅延最小化となるような配線を生成する.(10パター ン入力した)表6.1は実際に用いた回路パラメータである.表6.2は,10入力に対する,シ ンクにおける最大遅延の実測値を示しており,見積もった下界の値とNodetour アルゴリ ズムを適用した値(欄Ndt),Svrm アルゴリズムを適用した値(欄Svrm)を示す.表中の r,mの記号はrならば部分木の付け換え,mならばスタイナー点の移動が行なわれたこと を示す.表6.3は,実際に計測した値と下界との比である.図6.2にそのグラフを示す.縦 軸は下界との比を表し,横軸はSvrm アルゴリズム中で行なわれた遅延改善(スタイナー 点の移動,もしくは部分木の付け換え)の回数を表す.なお横軸の0のところはNodetour アルゴリズムが適用された時の比較である(グラフ中の'sam1,sam2...'は表中の no. 1,2,... に対応)

またここでの下界の見積もりは次で説明する.

6.1 下界の計算

ここでは,最適解が不明であることから,最大遅延の下界を示す.

入力されたソースを含む端子の Boundtig box の半周長相当容量に全シンク容量を加え た負荷容量を駆動する遅延とソースから最大距離にあるシンクまでの伝播遅延を加えたも のを下界とする.

下界の計算をする前に記号の定義をする.表 6.1参照

- l₁入力された点集合を最小に囲む長方形の横の長さ
- l₂入力された点集合を最小に囲む長方形の縦の長さ
- lmax ソースから最も遠いシンクまでのマンハッタン距離

 C_{sink} シンクの容量

遅延の下界は次の式で求まる . $r_dC_0 + rl_{max}(\frac{cl_{max}}{2} + C_{sink})$

但し $C_0 = (l_1 + l_2)c + \sum C_{sink}$

図 6.1: 下界の見積もり

表 6.1: 回路パラメータ

Name	IC1
Technology	$2.0 \mu m$
$r_d(\Omega)$	164.0
unit wire resistance $\bar{r}(fF/\mu m)$	0.033
unit wire cpacitance $\bar{c}(fF/\mu m)$	0.019
load cpacitance $c_v(fF)$	5.7
chip size (cm^2)	1×1

図 6.2: 下界との比較グラフ

no.	Ndt	Svrm				下界
1	575223.8					377683.6
2	570014.0	556548.2	554268.2	554104.2		4091230.6
		r	r	r		
3	636486.2	594994.2	592286.0	586483.8	586023.4	408778.0
		r	r	r	r	
4	720508.0	710684.4	700188.4			508693.8
		r	r			
5	882129.4	874323.0				561266.2
		r				
6	823030.6	817843.2	817280.8			588595.2
		r	m			
7	823601.6	811374.2				515908.6
		r				
8	864246.6	811487.6	798321.2			524267.6
		r	m			
9	652320.6	639007.8				453350.6
		r				
10	613706.2	600924.0				461982.4
		r				

表 6.2: 遅延の実験値

no.	Ndt	Svrm				
1	1.523					
2	1.393	1.360	1.355	1.354		
		r	r	r		
3	1.557	1.456	1.449	1.435	1.434	
		r	r	r	r	
4	1.416	1.397	1.376			
		r	r			
5	1.572	1.558				
		r				
6	1.398	1.389	1.388			
		r	m			
7	1.596	1.573				
		r				
8	1.648	1.548	1.523			
		r	m			
9	1.439	1.410				
		r				
10	1.328	1.301				
		r				

表 6.3: 実験値と下界との比

第7章

結論

近年,エルモア遅延モデルが配線遅延の評価などで,用いられるようになってきている が,理論に基づいた遅延制御は行なわれていない.ここでは,エルモア遅延モデルを理論的 に解析し,それを基に遅延を制御するアルゴリズム(初期配線アルゴリズムと改善アルゴ リズム)を検討した.実験は1ソース,10シンクを平面上にランダムに入力し,Nodetour, Svrm アルゴリズムを適用し,シンクにおける遅延を計測した(10回入力)ここでの評価 は下界を見積もり,それとの比較をおこなった.今回の入力では,下界に対し最小130%, 最大157%の最大遅延が得られた.Svrm アルゴリズムにおいて,スタイナー点の移動より, 部分木の付け換えの方がより多く適用され,更にそれによる遅延改善の方が大きいことが 分かった.今回は,下界との比較をおこなった訳だが,他の配線遅延制御アルゴリズムと の比較も当然おこなう必要がある.

謝辞

本研究を行なうにあたって、常に御指導、御助言をいただきました金子 峰雄助教授、ならびに 田湯 智 助手に深く感謝の意を表します。

また、主指導教官 岡本 栄司 教授 、副テーマ指導教官 片山 卓也 教授 、村田 洋 助教授 高嶋 康裕 助手に御指導を戴きました。ここに御礼申し上げます。

- C. Chiang, C. K. Wong and M. Sarrafzadeh, "A Weighted Steiner Tree-Based Global Router with Simultaneous Length and Density Minimization," *IEEE Trans. Computer-Aided Design*, vol.13, pp.1461-1469, DEC. 1994.
- [2] K. D. Boese, A. B. Kahng, B. A. McCoy and G. Robins, "Near-Optimal Critical Sink Routing Tree Constructions," *IEEE Trans. Computer-Aided Design*, vol.14, pp.1417-1436, DEC. 1995.
- [3] J. HO, G. VIJAYAN AND C.K. WONG, "New Algorithm for the Rectilinear Steiner Tree Problem," IEEE Trans. Computer-Aided Design, vol.9, pp.185-193, DEC. 1990.
- [4] H.Mitsubayashi, A.Takahashi, Y.Kajitani, "Cost-Radius balanced spanning/Steiner trees," *IEICE Trans. Fundamentals*, vol.E80-A, no.4, pp.689-694, April 1997.
- [5] C. Yeh and C. S. Wang, "On the Integration of Partitioning and Global Routing for Rectilinear Placement Problems," *IEEE Trans. Computer-Aided Design*, vol.15, pp.83-92, JAN. 1996.