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Autonomous and Interactive Improvement of
Binocular Visual Depth Estimation through

Sensorimotor Interaction
Timothy A. Mann, Member, IEEE, Yunjung Park, Sungmoon Jeong, Minho Lee,

and Yoonsuck Choe, Member, IEEE

Abstract—We investigate how a humanoid robot with a ran-
domly initialized binocular vision system can learn to improve
judgments about egocentric distances using action and interaction
that might be available to a human infant. First, we show how
distance estimation can be improved autonomously. We find that
actions that maintain invariant distance are a powerful tool for
exposing estimation errors. These errors can be used to train
a distance estimator. Furthermore, the simple action used (i.e.
neck rotation) does not require high level cognitive processing
or fine motor skill. Secondly, we investigate how interaction with
humans can further improve visual distance estimates. We find
that human interaction can also improve distance estimates for
far targets compared to autonomous learning without human
interaction. Together these experiments suggest that both action
and interaction are important tools for improving perception.

Index Terms—vision, depth estimation, autonomy, learning,
action, perception.

I. INTRODUCTION

HOW can humans or animals learn to make sense of
the data collected by their sensory organs? There is a

lot of noisy, messy data and very little obvious meaningful
information. For example, the distance estimation problem
requires an embodied agent to estimate the distance from the
agent’s body to a target object. How does the agent learn to
make sense of these sensory signals to predict the distance to
the target object (see figure 1)?

Our hypothesis is that humans and animals employ several
strategies for detecting inconsistencies in its depth estimates
and integrates this information together. First, action can
improve distance perception by exploiting perceptual or phys-
ical invariants. Second, interaction with other social agents
can improve distance perception by providing strong cues
to the learning system that might be difficult to acquire
autonomously.

To investigate our hypothesis, we experiment with the
egocentric distance estimation problem on a humanoid robotic
platform with a binocular vision system. The objective of the
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Fig. 1. To estimate distance, sensory stimulus from the retina is encoded
by visual receptive fields. The brain must then use these neural responses to
predict a distance estimate. How does the brain learn a concept of distance
from seemingly arbitrary neural spike patterns?
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Fig. 2. A and B demonstrate the Müller-Lyer illusion. Although the center
line of A and B are the same length, the direction of the arrows on the ends
of A makes the top line appear longer, while facing the arrows in the opposite
direction (B) makes the bottom line appear shorter. C and D demonstrate
the Titchener circle illusion. Again, although the circles in the center of C
and D have the same diameter, C appears smaller than D due to the circles
surrounding their periphery.

robotic system is to make accurate estimates of the depth from
between its two cameras to a target object. Our objective is
to learn how an autonomous embodied system can learn to
make enough sense of its visual system so that it can make
distance estimates to target objects that are accurate enough
to facilitate interaction.

Several psychological studies have discovered evidence that
action is unaffected by certain visual illusions or the effect of
the illusion is measurably reduced in motor responses. These
results support the dual visual pathways hypothesis where
the consciously accessible visual pathway is affected by the
visual illusion and the visual pathway tightly coupled with
motor control is unaffected. For example, the grasp aperture of
human subjects is not found when presented with the Müller-
Lyer illusion (depicted in figure 2 A and B) [1]. The Titchener
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circles illusion (depicted in figure 2 C and D) has also not
found in grasp aperture when human subjects move their hand
to pick up the center circle [2]. The Müller-Lyer illusion
can be considered a 1-dimensional visual illusion because
it influences our perception of visual lines. The Titchener
circles illusion can be considered a 2-dimensional illusion
because it influences our perception of size. By analogy, we
can consider distance estimation as a 3-dimensional perceptual
problem with many opportunities for illusion to obscure the
true distance. Can action also minimize the perceptual error
in distance perception?

There is strong experimental evidence that action is critical
in the development of depth perception. For example, in a
classic experiment, Held and Hein [3] placed two neonatal
kittens on a circular harness surrounded by uniform visual
stimulus. An active perceiving kitten caused both kittens to
move, while the passively observing kitten was exposed to
identical stimulus. In subsequent tests of visually guided
movements, the active perceiving kitten performed normally,
while the passive observer had deficiencies. This result sug-
gests that self-driven action is important in the development
visual perception. For a discussion on recent work related to
the importance of action to depth perception, the reader is
referred to [4].

There is also a wealth of literature supporting the hypothesis
that humans understand the actions of other humans by simu-
lating those actions. Functional MRI studies have discovered
evidence that regions of the brain implicated during motor
control are active during perception of individuals engaging
in fine motor skills (e.g. [5, 6]). Furthermore, the discovery
of mirror neurons in both humans and monkeys [7] further
implicates a tight coupling between perception and action.

In this paper, we investigate the importance of the action-
perception cycle in the problem of visual distance estimation.
Although there are many heuristic strategies for visual distance
estimation, we focus on binocular distance estimation because
it has the potential to accurately estimate distance under a wide
range of circumstances.

Binocular distance estimation can be broadly divided into
two problems: the correspondence problem and distance esti-
mation from information extracted from the images. Much of
the psychological and computer vision literature has focused
on the correspondence problem of binocular vision systems
[8, 9]. The correspondence problem is the the problem of
identifying pixels or regions from both images that correspond
to the same physical entity. We focus on the distance from the
extracted information. The main problem is that the extracted
information may be biased. We develop a learning system that
can correct for this bias.

To investigate the role of action and interaction in depth es-
timation we perform two sets of experiments with a binocular
robot platform. The first set of experiments consider how an
embodied agent can autonomously learn to estimate distance
to a target object. The second set of experiments investigates
how human interaction can further improve our autonomously
learned distance estimator.

The main contribution of our work is support for the hypoth-
esis that action and interaction improve perception. Specifi-

cally, we show how an autonomous, embodied agent can use
perceptual and physical invariances to expose inconsistencies
in its distance estimates that can be used to train a distance
estimator. We also show that interaction with humans can
further improve distance estimation by providing information
that would otherwise be difficult to obtain autonomously.

The rest of this paper is organized as follows. In section
2, we provide a detailed description of the problem faced by
our autonomous agent. In section 3, we explain our approach
and experimental setup. Section 5, presents our experiment
and results on autonomously learning to estimate distance.
Section 6, describes our human interaction experiment. Section
7 discusses the importance of our findings and suggests future
work. Section 8 summaries and concludes.

II. THE PROBLEM

Distance estimation is a nontrivial problem. There are many
heuristics for distance estimation that work well under special
assumptions but fail under others. The main problem with es-
timating distance from visual images is that different physical
settings can give rise to identical visual images (see figure 3a).
Because of this, distance estimation is an ill-posed problem.
This is similar to the problem of trying to solve a singular
set of equations. There simply is not enough information to
identify a unique solution. For this reason, we investigate
learning systems with binocular vision. Because a binocular
vision system can make two simultaneous observations of the
same target object from different perspectives, this information
can be used to triangulate the distance from the observer to
the target (see figure 3b).

It is worth noting that using binocular vision for distance
estimation is related to the use of motion parallax. The main
idea behind using motion parallax for distance estimation is to
acquire images of a scene from multiple perspectives. Indeed,
there is evidence that humans treat these two techniques
similarly [10]. By studying binocular distance estimation we
may learn valuable techniques for applying motion parallax on
autonomous systems. However, we focus solely on binocular
distance estimation in this paper.

A. Correspondence Problem

Binocular systems produce two simultaneous images of a
target object. This has the advantage of providing the agent
with more data, but it comes at a cost. The problem is that
regions of both images need to be matched to each other.
However, it is not clear exactly how this should be done
because the images from the left and right cameras may differ
considerably due to to changes in illumination and perspective.

This problem however, has been studied aggressively in the
fields of psychology and computer vision (e.g. [8, 9, 11, 12,
13]). For the purposes of this study we will use a biologically
inspired attention model presented in [12]. Adopting this
mechanism allows us to focus on the other problems faced
by autonomous distance estimating systems.
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Fig. 3. (a) Two different physical settings can give rise to identical visual images. (b) This problem can be partially resolved by comparing two or more
images of the same physical setting taken from different locations. If the disparity between the two cameras is known, triangulation can be used to estimate
the target object’s distance.

B. Autonomous Units

Another problem is faced by our autonomous agent. What
units of measurement should an autonomous binocular system
use? Certainly infants and animals have no notion of the
standard units of distance, such as inches and centimeters,
that we take for granted. Instead an autonomous learner with a
binocular vision system must develop its own unit of measure.
But what should the agent base its decision on? Later, we argue
that the body itself can provide useful units of measure.

C. Learning to Estimate Distance

Finally, the main problem that we focus on is how to learn
to estimate distance accurately. There are three parts to this
problem.

1) As an embodied agent, how should that agent interact
with its environment to gain information needed to learn
to estimate distance?

2) Once information has been collected by the agent, how
should the agent use that information to derive accurate
distance estimates?

3) How can the agent evaluate whether or not its distance
estimates are accurate?

III. APPROACH

In this section, we explain our approach to the problems
described above and detail our experimental setup.

A. Robot Platform & Experimental Setting

We modified an Aldebaran Nao humanoid robot by mount-
ing left and right cameras on its head (figure 4). The robot
provides a convenient platform for interaction, while the two
cameras allow us to capture images of the environment.

In each experiment a target object is placed in the intersec-
tion of the visual fields of the left and right cameras (figure
5). The agent must detect the target in the images captured
from the left and right cameras and use information about
its location in the images (i.e. pixel coordinates) to estimate
the distance of the target object from the robot’s head. We
also allow the robot to interact with the environment either by

Fig. 4. Aldebaran Nao humanoid robot with mounted cameras.

Right 
Visual
Field

θ2

θ1

dH

dT

Left 
Visual
Field T

Stereo
Cameras

Humanoid
Robot
Head

Fig. 5. A target T is placed in the intersecting visual field of the left and
right cameras of a humanoid robot. The robot can also interact with the scene
by moving its arm or rotating is neck.

rotating its neck or moving its arm. Later we will show how
this limited ability to act is critical for learning to estimate
distance accurately.

B. Attention Mechanism & Correspondence Problem

To detect the location of the target object from the left
and right images, we use the biologically inspired attention
mechanism described in [12].

When the human eye searches a natural scene, the left
and right eyes converge on an interesting area by action of
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Fig. 6. Bottom-up and top-down visual attention saliency map model. I: intensity image, E:edge image, RG: red-green opponent coding image, BY : blue-
yellow opponent coding image, CSD&N : center-surround difference and normalization, Ī: intensity feature map, Ō: orientation feature map, S̄: symmetry
feature map, C̄: color feature map, ICA: independent component analysis, StaticSM : static saliency map, SP : saliency point, 1: first saliency point, 2:
second saliency point, L (x, y): salient location (x, y) in left image, R (x, y): salient location (x, y) in right image, IOR: inhibition of return, angle to the
target extracted from the left (θL) and right (θR) camera images.

the brain and the eyes [11, 12, 13]. With bottom-up (or
image-based) processing, the human visual system determines
salient locations obtained from features that are based on the
statistical information of an input image. Based on Treismans
feature integration theory [14], Itti et al. [15] and Park et
al. [16] used primitive features such as intensity, orientation,
symmetry and color information to construct a bottom-up SM
model as shown in Fig. 6. The four features are constructed
by a Gaussian pyramid with different scales of Gaussian
kernel functions, which mimic the on-center and off-surround
roles of the lateral geniculate nucleus (LGN). The center
surround difference and normalization (CSD & N) mimics
the on-center and off-surround processing and redundancy
reduction is performed by independent component analysis
(ICA). The LGN and primary visual cortex is implemented
in the model as the difference between fine and coarse scales
in Gaussian filtering. Various features from the CSD & N
processing are useful to detect saliency parts in complex real
world images. We regarded a localized area with the highest
intensity values in each bottom-up SM as the most salient
regions to be analyzed for attending the same location by both
cameras. After calculating a suitable size for candidates areas
based on entropy maximization [12, 17], to prevent it from
being a repetitively attended region in the vision system, the
localized region is masked by an inhibition of return (IOR)
function [16]. Then the vision system continuously searches
for a new localized region by the above procedure. To solve
the correspondence problem between the two saliency maps,
the camera with higher saliency region is selected as the
master and salient regions of the slave image are compared
to identify the corresponding region by considering the single
eye alignment hypothesis [11, 13]. Comparing the most salient

values within selective attention regions in two camera images,
we can adaptively select the master eye that has a region with
the most salient value. Then, we can obtain an estimate of
the radians of two angles (θL, θR) of the center of the salient
location (x, y) in two cameras by simple triangular equation
with focal length and CCD width of two camera [11]. Those
two angle estimates (θ̃L, θ̃R) are used to estimate the depth
information of the salient location, where the tilde above the
thetas indicates that these are estimates of the true angles.

C. Autonomous Units & Consistent Distance Estimators

What are the properties of a good distance estimator? Since
embodied agents are working with noisy sensory data we
cannot expect the agent to always predict the true distance.
At best we can hope to obtain a distance estimator that is
correct on average. Therefore we are interested in distance
estimators whose expected value is close to the true distance.

Given θ̃L and θ̃R, we define a consistent distance estimator
d̂(θ̃L, θ̃R) to have the following property

E
[
d̂(θ̃L, θ̃R)

]
= β1D + β0 (1)

where d̂(θ̃L, θ̃R) is the distance estimate, E[·] is the expected
value operator, β1 ∈ R+ is a positive scalar and β0 ∈ R is
any real number, and D is the distance in our preferred unit
of measure. For clarity of exposition, we will use centimeters
throughout this paper.

This objective requires the expected value of a distance
estimator to be a linear transformation of distance measured
in a standard unit of measure. Requiring β1 > 0 ensures that
the distance estimator increases with distances and avoids the
awkward possibility of β1 = 0, so that distance estimators
that always output zero are considered inconsistent. But this
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objective raises the question, how can an autonomous agent
evaluate for itself, whether or not its distance estimation
process satisfies this objective? Later, we show that actions
that maintain the distance from the robot to the target can be
used to learn whether or not the robot’s distance estimation
process is inconsistent.

D. Learning Framework

We would like an autonomous, embodied agent to learn a
general rule for estimating distance to a target object from
features extracted from two disparate camera images. These
features are potentially noise and are likely to have a nonlinear
relationship with the quantity that the agent is trying to
estimate (i.e. distance). To maintain any hope of extrapolating
(or even generalizing) results of a learned distance estimator
to targets at distances that were not in the training set, our
learning agent must consider a restricted family of functions.

We assume that there exists an unknown, stochastic function
of distance X : R+ → X , and the learning system is given
a parametric model f : X × Ψ → R for distance estimation,
where X is the set of possible features extracted from the
binocular images of the target and Ψ is the parameter set. We
also assume that there exists ψ∗ ∈ Ψ such that for any distance
D in centimeters

D = β1E [f(X (D);ψ∗)] + β0 (2)

for some β1, β0 ∈ R. In other words, the expected value of
the estimated distance given the optimal argument ψ∗ is a
linear transformation from the true distance in centimeters.
This satisfies our consistency objective (Eq. 1).

The learning objective is to find ψ̂ ∈ Ψ such that for all
D ∈ R+

ψ̂ ≈ arg min
ψ∈Ψ

Ex∼Pr[X (D)]

[
(f(x;ψ∗)− f(x;ψ))

2
]

(3)

that approximately minimizes the sum squared error. However,
because we only have access to a finite number of samples, the
learning system needs to estimate Eq. 3 using the following

ψ̂ ≈ arg min
ψ∈Ψ

m∑
i=1

(di − f(xi;ψ))
2 (4)

where Di ∈ R+ for i = {1, 2, . . . ,m} are true distances,
xi ∼ X (Di) and di = Di

β1
− β0. In the next section, we

address how an autonomous agent can gain access to “true”
distances by inventing its own unit of measurement.

IV. AUTONOMOUS IMPROVEMENT OF DEPTH ESTIMATION

In this section, we discuss two approaches for learning an
accurate depth estimator. Our objective here is to determine
when and how an autonomous system can learn to accurately
predict the distance to target objects. In the first subsection,
we discuss learning to maintain perceptual invariance. In the
second subsection, we explain how the invariance of physical
size can be used to train a binocular distance estimation
system.

A
B
C
D

←
↑
→
↓

↖
↗
↘
↙

(a) (b)

(c) (d)

Fig. 7. (a) Seemingly arbitrary patterns of lights. What is their intended
meaning? (b) A set of actions. What are their sensory consequences? (c) The
environment from perspective of the external observer. If the agent moves
diagonally along the line it can maintain the same sensory signal. Adapted
from [18]. (d) A table expressing the meaning of sensory states through actions
that transition to the same sensory state. Adapted from [18].

A. Sensory Invariance Driven Action

A key inspiration for our approach is the idea of Sensory
Invariance Driven Action (SIDA). Choe et al. [18] introduce
the concept of SIDA to explain how the brain can learn the
meaning of sensory stimuli. Because the brain does not have
direct access to external stimuli, a critical problem faced by
the brain is to understand the meaning of complex neural
spiking patterns and to use those patterns to make decisions
about how to act in the world. This problem is similar to
being shown seemingly arbitrary patterns of light (figure 7a)
and being asked to explain what each pattern represents. This
problem seems impossible, but it turns out that we can ground
the meaning of each pattern with action [18]. Suppose the
agent is also presented with a set of actions as in (figure 7b).
By experimenting with these actions, the agent can learn the
sensory consequences that pertain to the external environment,
which in this case is a camera moving over an image (figure
7c). The actions in this case correspond to movement in
different directions. The critical insight of Choe et al. [18] is
that learning to act in a way that maintains sensory invariance
is a useful mechanism for learning the meaning of sensory
stimuli. In the example of figure 7, by setting the learning
systems objective to maximizing invariance in the sensory
stimuli, a mapping from sensory states to actions is learned
(figure 7d). This mapping describes the sensory states in terms
of actions and the actions in terms of sensory states.

In the next section, we learn to maintain perceptual invari-
ance in situations where, although the robot has physically
moved, its action should, in principle, not alter the true
distance to the target. If the robot’s perceived distance estimate
differs, then we can use this difference as an error signal for
training.

B. Distance Invariance

One way to improve autonomous distance estimates, is to
acquire several training samples that, in principle, should have
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Fig. 8. If the origin is the axis of neck rotation, then rotating the neck does
not change the distance to the target, even though the distance from the left
and right cameras may have changed.

identical distance from the agent. As long as every sample has
identical distance from the observer, the agent can invent a
distance unit and apply that to all of the samples. Using these
samples would allow us to eliminate parameter choices θ ∈ Θ
that produce inconsistent distance estimators. Now if we have a
strong enough parametric model f , we can generalize to other
distances. The main question is: How can the agent acquire
samples that should, in principle, have identical distance from
the observer?

One idea is to have the humanoid walk around a target
object while maintaining the same distance from the object by
keeping the perceived size the same. The main problem with
this idea is that walking around an object while maintaining
the perceived size of an object in the left and right image is a
complicated task that would likely require high level cognitive
abilities. We are interested in improving perception with
simple actions. This leads us to another potential approach.

Notice that when a humanoid robot rotates its neck, the
axis of rotation remains invariant, with respect to distance, to
points that were not rotated. So if the robot rotates its neck,
the distance from the neck to the target point remains invariant
(figure 8), even though the distance from the cameras to the
target may have changed. Now, if the agent estimates distance
from the axis of neck rotation to the target, it can easily acquire
samples that should, in principle, have identical distance to the
origin.

1) Error Model: We assume the following error model

θ̃L = θL + ψL + ξL
θ̃R = θR + ψR + ξR

(5)

In this error model, the angles (θ̃L, θ̃R) to the target extracted
from the left and right camera images are biased by ψL and ψR
and corrupted by noise from the zero mean random variables
ξL and ξR.

Figure 9 shows that very small biases to θL and θR can
cause large errors in distance estimates as the distance of
the target from the observer grows. Even a bias as small as
0.05 can cause large inaccuracies when judging the distance
of targets less than two meters from the agent.

2) Estimating Distance: We assume that the learning agent
has an innate algorithm for depth estimation, but the agent
needs to tune several unknown parameters by learning from
observations. The basic depth estimation equations (figure 10)
are

y =
∆

tan (θL) + tan (θR)
(6)
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Fig. 9. Small perturbations of θL and θR cause large errors in distance
estimation for far distances.
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Fig. 10. Aerial view of binocular distance estimation. (a) The y quantity is
the vertical distance from the agent to the target. (b) The x quantity is the
horizontal distance from the point between the left and right camera and the
target point. (c) The d quantity is the distance from the center of rotation to
the target T , with radius r.

where y represents the axis aligned distance from the cameras
to the target. Once y is computed, we can calculate

x =
y

tan (θL)
− ∆

2
(7)

where x represents the base of the distance triangle. Finally,
if the radius r is known, the distance to the axis of rotation
can be computed with the following equation:

d =
√
x2 + (y + r)2 (8)

where ∆ is the disparity between the left and right camera,
θL and θR are the angles to the target object from the left
and right cameras, respectively. Once the distances along the
X-axis and Y -axis are computed (x and y, respectively), the
distance d can be computed using the basic Euclidean norm.
These equations are designed for the case where θL and θR
are both less than π

2 radians. Similar equations can be derived
for the other cases and are omitted for brevity.
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An autonomous agent also does not know the disparity
∆ between its eyes/cameras or the radius of the cameras
rotation. However, examining these equations reveals that ∆
effectively scales distance estimates, and so it can be arbitrarily
assigned. We assume that reasonable values for ∆ and r can
be established by the agent using body ratio information.
However, in our experiments, we provide provide appropriate
values. Providing these values primarily aids in comparison
with other distance estimators.

Since the agent only has access to θ̃L and θ̃R (and not
θL and θR), the equations above will not derive the correct
distance. To solve this problem, the agent must learn estimates
of ψL and ψR and subtract these from θ̃L and θ̃R before
plugging them into the distance estimation functions. Notice,
however, that learning the bias terms does not mitigate the
effect of noise. The best we can do is eliminate the bias.

3) Empirical Results: Learning to eliminate bias is done
using a heuristic search. We generated 28 training samples Θ
by rotating the robot’s neck while fixating on the robot’s hand.
Remember that, in principle, all of the target images should
have identical distance to the axis of rotation. A red circle
was placed on the robot’s hand to facilitate identification. The
learning algorithm 1 generated m = 1000 random hypotheses{

(ψ̂
(i)
L , ψ̂

(i)
R )
}m
i=1

. Using the training data, we evaluated each
hypothesis using a by identifying the sum squared error of
all training examples, where error was determined by how
far the distance estimate fell from an arbitrary constant c >
0. In practice, an autonomous agent can choose any positive
value for c, which determines the unit of measure that the
distance estimator will use. In our case, because the target
of the training samples focuses on the hand, taking c = 1
would result in a unit of measure that is naturally related to
the robots body size. However, to facilitate comparison, we
chose c = 496, which is the number of centimeters from the
axis of neck rotation to the robot’s hand.

Algorithm 1 LearnPsiBias(H,Θ,∆, c)
1: for all h ∈ H do
2: F (h)← 0
3: for all (θ̃L, θ̃R) ∈ Θ do
4:

(
ψ̂L, ψ̂R

)
← h {Extract bias hypothesis}

5: d̂← EstimateDepth
(
θ̃L − ψ̂L, θ̃R − ψ̂R,∆

)
6: F (h)← F (h) + (d̂− c)2

7: end for
8: end for
9: return arg minh∈H F (h)

Figure 11 shows that our learning algorithm is successful at
reducing the bias and improving distance estimation. The blue
circles corresponding to the distance estimates of the learning
agent are closer to the true distance than the estimates of the
distance estimates that (incorrectly) assume zero bias.

C. Size Invariance

The perceived size of an object has an interesting relation-
ship with distance. As an object moves closer or further from
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Fig. 11. Algorithm 1 corrected error introduced by bias in the estimated
θ̃L and θ̃R. Red line represents the true distance in centimeters. Blue o’s
denote distance predicted by the learned distance estimator. Green x’s denote
the distance predicted assuming ψL = ψR = 0.

an observer, the perceived size changes, while the physical size
does not. This change in perceived size is related to its change
in distance from the observer. Given that a physical object
typically maintains the same size (i.e. it is size invariant), we
may be able to use this physical invariance to learn about
distance. However, it is important to keep in mind that size
itself is not, in general, a reliable clue of distance unless we
know the size of the object at a reference distance. When an
agent is holding an object it can easily learn the perceived size
at some known reference distance and then move the object
back and forth to view the object at different distances. This
information can be used as a training set for our binocular
vision system.

Unfortunately the relationship between perceived size and
distance is not linear (see figure 12a). But there is a straight-
forward relationship between size and distance. We use a
relationship between distance and perceived size modified
from [19]

D =
(D0 × s0)

s
+ α (9)

where D is the distance given the current observation, s is
perceived size of the object given the current observation, D0

is the reference distance of the object for which the perceived
size is known, s0 is the perceived size of the object at reference
distance D0, α is a constant. Using Eq. 9, we can establish
a linear relationship for training our binocular vision system
(figure 12b).

The main problem with the use of size information is that
the accuracy of distance estimates from size quickly degrade as
distance grows. This can be seen in figure 12b. Nevertheless,
size could also be useful for deriving training data for a
distance estimator.

V. HUMAN INTERACTION

An alternative to improving distance estimation through
laborious self-experimentation is to obtain useful information
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Fig. 12. (a) The relationship between perceived size and distance of an object is a nonlinear inverted relationship. (b) However, the perceived size/distance
relationship can be reliably converted to a linearly correlated relationship.

from other agents. However, relying completely on other
agents to acquire information places too much of the burden on
other agents. Instead, we are interested in improving distance
estimation with very limited but useful information given from
humans. In this case, the information being given to the robot
is its distance from a target. We consider the case where the
distance to just one or two targets are given to the robot.

Another interesting possibility is that the robot can receive
information that it might not otherwise be capable of obtaining
on its own. For example, the robotic system described in the
previous section only learned about distance from a single
target on its own body.

In this experiment, we compared distance estimates of
two types of agents. The first learning system learned depth
autonomously (as in the previous section) by choosing a
single target (at 40cm) and rotating its neck. In this way,
the agent could generate many samples to train on, but they
were all for the same target object - the robot’s hand. Thus
all training samples were 40cm from the robot. The second
learning system used the a similar strategy, but in addition
to its autonomously selected target point (at 40cm), the robot
was told the distance to one additional target (at 1600cm) by
a human. With the second target’s distance the robot was able
to generate even more samples by rotating its neck.

In both cases, bias parameters ψ̂L and ψ̂R were learned
using algorithm 1 with 1,000 randomly generated hypotheses.
Figure 13 shows that for distant objects, the agents that
were given information from a human generated superior
hypotheses. This experiment was repeated nine times for the
autonomous learning case and three times for autonomous
learning with human input to generate estimates of the stan-
dard deviations.

VI. DISCUSSION

The main contributions of this work is the demonstration of
how action and interaction can be applied to improving per-
ception. We have specifically demonstrated these abilities on
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Fig. 13. Comparison of distance estimates from an autonomous distance
estimator, autonomous distance estimator given one additional sample from a
human, and the true distance. For long distances, the autonomous distance
estimator with human input is more accurate. Error bars depict standard
deviations.

the egocentric distance estimation task. By exploiting invariant
properties, an autonomous system can expose inconsistencies
in its perceptual processing. In the case of neck rotation, the
action leaves the true physical distance unaltered and any
disagreement between estimates provides an error signal for
training. In the case of perceived size, the physical size of
the object remains invariant, but the perceived size changes.
Since we can establish a linear relationship between a function
of perceived size and distance, we can use perceived size of
a training target object, such as the robot’s hand, to learn
appropriate parameters for the general, egocentric distance
estimation using the binocular vision system.

Interestingly, we see in figure 13 that a single input from
a human can further improve distance estimation at distant
targets. This small level of effort by the human is made
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possible by the robot taking full advantage of the single
additional piece of information, again through action.

One limitation of this work is that the error model (Eq. 5)
is quite simple. Although our algorithms were able to reduce
distance estimation error, better results may be possible by
assuming a more complex error model. For example, the bias
to θL and θR may increase as the the target object moves into
the peripheries of the image. More complex error models may
offer an interesting line of future investigation. These error
models may also incorporate lower level parameters used to
derive θ̃L and θ̃R from image data, such as the focal length.

However, these more complex error models may not be
learnable with our simple neck rotation strategy. This leads
to another important problem: integration of multiple cues for
depth. By incorporating size information and neck rotation,
as well as other strategies, it is possible to constrain more
complex error models and as a result produce better distance
estimates. Investigating integration of distance estimation cues
is an interesting area of further investigation.

Another interesting direction of future work would be to
investigate the role of action for estimating distance using a
motion parallax strategy. The method is theoretically quite
similar to that used for binocular distance estimation, but
motion parallax is more strongly coupled with action and can
be implemented on a system with only a single camera or used
in combination with binocular distance estimation to obtain
more accurate distance estimates.

VII. CONCLUSION

We have demonstrated that both action and interaction
with social agents are valuable methods for an embodied
autonomous agent to improve its perception. Actions that
maintain perceptual invariance can be used to measure the
error of a perceptual process, such as distance estimation. In-
teraction with social agents can be used to acquire information
that is difficult to obtain by oneself. Together these techniques
form a valuable toolkit for improving perception.
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and P. Haggard, “Action observation and acquired motor
skills: An fMRI study of expert dancers,” Cerebral
Cortex, vol. 15, pp. 1243–1249, 2005.

[6] T. T.-J. Chong, R. Cunnington, M. A. Williams,
N. Kanwisher, and J. B. Mattingley, “fmri
adaptation reveals mirror neurons in human
inferior parietal cortex,” Current Biology, vol. 18,
no. 20, pp. 1576 – 1580, 2008. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0960982208012426

[7] V. Gallese, L. Fadiga, L. Fogassi, and G. Rizzolatti,
“Action recognition in the permotor cortex,” Brain, vol.
119, pp. 593–609, 1996.

[8] B. Julesz, “Binocular depth perception without
familiarity cues,” Science, vol. 145, no.
3630, pp. 356–362, 1964. [Online]. Available:
http://www.sciencemag.org/content/145/3630/356.abstract

[9] G. F. Poggio and T. Poggio, “The analysis of stereopsis,”
Annual Review of Neuroscience, vol. 7, pp. 379–412,
1984.

[10] B. Rogers and M. Graham, “Similarities between mo-
tion parallax and stereopsis in human depth perception,”
Vision Research, vol. 22, pp. 261–270, 1982.

[11] S.-B. Choi, B.-S. Jung, S.-W. Ban, H. Niitsuma, and
M. Lee, “Biologically motivated vergence control system
using human-like selective attention model,” Neurocom-
puting, vol. 69, pp. 537–558, 2006.

[12] S. Jeong, S.-W. Ban, and M. Lee, “Stereo saliency
map considering affective factors and selective motion
analysis in a dynamic environment,” Neural Networks,
vol. 21, no. 10, pp. 1420–1430, 2008.

[13] F. Thorn, J. Gwiazda, A. A. V. Cruz, J. A. Bauer,
and R. Held, “The development of eye alignment, con-
vergence, and sensory binocularity in young infants,”
Investigative Ophthalmology and Visual Science, vol. 35,
pp. 544–553, 1994.

[14] A. M. Treisman and G. Gelde, “A feature-integration
theory of attention,” Cognitive Psychology, vol. 12, no. 1,
pp. 97–136, 1980.

[15] L. Itti, C. Koch, and E. Niebur, “A model of saliency-
based visual attention for rapid scene analysis,” IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 20, no. 11, pp. 1254–1259, 1998.

[16] S.-J. Park, K.-H. An, and M. Lee, “Saliency map model
with adaptive masking based on independent component
analysis,” Neurocomputing, vol. 49, no. 1, pp. 417–422,
2002.

[17] T. Kadir and M. Brady, “Scale, saliency and image
description,” International Journal of Computer Vision,
vol. 45, no. 2, pp. 83–105, 2001.

[18] Y. Choe, H.-F. Yang, and D. C.-Y. Eng, “Autonomous
learning of the semantics of internal sensory states
based on motor exploration,” International Journal of
Humanoid Robotics, vol. 4, pp. 211–243, 2007.

[19] A. S. Gilinsky, “Perceived size and distance in visual
space,” Psychological Review, vol. 58, pp. 460–482,
1951.

Jeongsm
삽입된 텍스트
(50%) and This research was supported by the Converging Research Center Program Funded by the Ministry of Education, Science and Technology (2011K000659) (50%).


