
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
動的コード生成を用いた適応的移動コードに関する研

究

Author(s) 川崎, 大輔

Citation

Issue Date 1999-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/1234

Rights

Description Supervisor:渡部 卓雄, 情報科学研究科, 修士

Mobile Code Adaptation using Dynamic Code

Generation

Daisuke Kawasaki

School of Information Science,

Japan Advanced Institute of Science and Technology

February 15, 1999

Keywords: Mobile Code, Dynamic Code Generation, Template, Java, Adaptation.

The paper is about a method for constructing e�cient adaptive mobile code. The key

technology for our goal is dynamic code generation (DCG), which is a kind of on-the-
y

specialization technique of executable codes.

Mobile code technology | e.g., TeleScript and Java | has brought a new paradigm

to design and construction of network applications. So far, the most network application

have been built upon the Remote Procedure Call (RPC) paradigm. In the RPC paradigm,

which was invented in 1970's, the communication between two processes is represented as

an action in which one process calls a procedure of the other.

A message carried through the network is the request to the procedure or a response to

the result of what the procedure has done. A request includes a procedure and data in the

form of argument. A response includes data of the result carried out, and the procedure

itself is in the computer in which it is carried out. One of the special features of remote

procedure call is that an interaction of the computers requires two communications. First,

we request the server to execute the procedure. Then the server sends us the result

of process. During this transaction of remote procedure call, computers must be kept

connected.

On the other hand, in Remote Programming (RP), in computer transaction, we can

not only call the procedure from one computer to the other, but also transfer the procedure

itself that is to be carried out. One of the striking characteristic of remote programming is

that once users send a mobile code from their computers to the server through the network,

the transaction is kept proceeding even if they shut down the network afterwards. In other

words, computers don't have to be connected during the transaction. This is the most

important advantage that has never been realized despite much of e�ort.

The mobile code has enabled us to execute the application in various computer en-

vironments. Indeed we come to be able to do in them, but the mobile code lacks the

Copyright c
 1999 by Daisuke Kawasaki

1

consideration that it is suitable for each of them. There are numerous environments of

the destination according to the purpose of the computers. (OS, CPU, network, special

device such as mpeg encoder, and so on) There are cases in which we can get the im-

provement of execution e�ciency and easier operation by doing the execution �t for the

environments of the destination. In these cases, it is e�ective that the application adapts

to change in the environments. But, it is di�cult to make the application that can cope

with a change in the environment. In order to adapt to numerous changes, we should

imagine as many environments as possible and we can use the hardware that can do such

instructions rapidly in some environments.

� An possible way is that we do drastically dispatch during the execution so that we

can do a drawing instruction chosen among many. This method has an advantage

that we can write the program easily while it has the disadvantage that the process

is slow.

� Another way us that we should write the whole method that has no support of

the hardware and one that has the support so that we start a method according

to dispatch. This way has an advantage that the process is fast while it has a

disadvantage that we are forced to make lengthy description.

Here, let us pay attention to changes in the environment. They can be divided into

two categories: "environments that have the possibility of constant change ", and "en-

vironments which is characteristic of a machine" We can cope with the changes of each

kind by dynamically adapting to changes in the environment, doing dispatch and call a

method suitable for this environment. But, it is useless in the environments characteristic

of a machine to do dispatch every time. The examples of such environments are follow as

OS, CPU, network, special device such as mpeg encoder, and so on. Recent Operating

Systems are equipped with the mechanism that enables us to dynamically change the size

of the screen or the numbers of colors, but in fact we rarely do change them dynamical-

ly. Therefore we can decide almost statically on the environment information that is to

be adapted to in the destination at the time when the mobile code is transferred in the

environment in which it is carried out. So we can get rid of the overhead that dose the

dispatch by making a new code �t for the environment in which it is carried out before

executing a mobile code.

Let us apply this fact to the examples above. We can remove those disadvantages

mentioned above while keeping those advantages by making a code �t for the environment,

by using the information statically decided when it is carried out.

The dynamic code generation is often used as the means we can make a code when it

is carried out. The dynamic code generation enables us to make the code which carry out

very quickly compared with the re-compile of the program. There are following examples

of dynamic code generation, which have their own characteristics.

� Method of generating native code by using dynamic code generation from the inter-

mediate code.

2

� The way of optimization by using partial evaluation.

� The way of code generation by using templates and code bits which �ll the templates.

This paper proposes methods for improvement of the processing speed while securing

the ability of description by making a code �t for the executive environment at the time

of the execution based on the information statically decided.

By using Java, I have made, as a prototype, the process that enables us to replace

a command with equivalent but more e�cient one and to get rid of unnecessary codes.

This prototype doesn't damage Java's advantages, because it has never altered compiler

of Java and Java Virtual Machine (JavaVM), Just In Time Compiler (JIT), and so on at

all. In dynamic code generation, we have adopted the technique of optimization such as

constant propagation，loop unrolling，the removal of the unnecessary codes by partial

evaluation. In the prototype, we have made this time we can get the improvement of

execution speed though we have done few sophisticated optimizations during dynamic

code generation. Therefore, we can expect much more improvement of execution speed by

applying sophisticated optimizations used in dynamic code generation to this prototype.

3

