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Abstract—Cloud-processing techniques in wireless network are
emerging in recent years. Due to the resource energy restriction,
power optimization schemes are demanded for designing future
transmission strategies. However, it is not realistic to consider
the techniques of the whole cloud network having massive
amount of nodes. Instead, it is quite reasonable that we first
decompose the whole network topology into several typical and
simple structures, and identify the most suitable strategies,
in general, for them. This work presents an optimal power
allocation scheme for a simple Slepian-Wolf relay system over
block Rayleigh fading channels. In the assumed decode-and-
forward relay model, the information bit sequence obtained as
the result of decoding at the relay may contains some errors,
however they are highly correlated with the original information
bit sequence sent from the source. It is well known that the
exploitation of the correlation knowledge between the sequences
from the source and relay nodes at the destination achieves
significant performance improvement, according to the Slepian-
Wolf theorem. In this paper, we obtain an approximated closed-
form outage probability expression, based on our previous work
for the outage analysis. It is shown that the power allocation for
the proposed Slepian-Wolf relay system can be formulated as a
convex optimization problem. Specifically, we aim to minimize
the outage probability while keeping the total power fixed, and
to minimize the total power under an given outage threshold. It
is shown that the data obtained from the optimization is very
close to the results of numerical calculation.

I. INTRODUCTION

Improving energy- and spectrum-efficiencies, as a whole
network, as well as achieving high reliability and robustness
against the network topology change are of crucial importance,
when designing future wireless communication networks. As
in the distributed source coding (DSC) scenarios, the spatially
distributed nodes encode the information data sequence and
cooperatively transmit them to a destination. It should be noted
that the information sent from different nodes are somehow
correlated with each other, and the correlation is depending
on the network topology and signaling schemes. According to
the Slepian-Wolf theorem [1], the DSC is able to achieve the
same compression rate as the case when information data are
jointly encoded, by best exploiting the correlation knowledge
at the destination.

This research is supported in part by the Japan Society for the Promotion of
Science (JSPS) Grant under the Scientific Research KIBAN (B) No. 2360170.
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Fig. 1: A simple Slepian-Wolf relay model

In [2], a simple Slepian-Wolf relay system is proposed
with decode-and-forward (DF) relay strategy, where the relay
only extracts the information part by performing one round of
Viterbi decoding of the channel code used, which eliminates
heavy computational complexity at the relay. With the conven-
tional DF scheme, the reconstructed information sequence at
the relay node are discarded if it is found to contain error(s).
With the system proposed in [2], the reconstructed information
sequence is interleaved, re-encoded, and forwarded to the des-
tination because the information sequence sent from the relay
is highly correlated with the original information sequence sent
from the source, even though the sequence reconstructed at
the relay may contain some errors. The correlation knowledge
is estimated and exploited at the destination node which
significantly improve the system performance.

In [3], the outage probability is theoretically derived for
the Slepian-Wolf relay system, where the source-destination
(SD) link and the relay-destination (RD) link are assumed
to suffer from block Rayleigh fading. Instead of performing
practical transmission of the source-relay (SR) link, a bit-
flipping model [4] is adopted where the correlated binary bit
sequence sent from source and relay nodes can be regarded as
bit-flipped versions with a flipping probability pe. The outage
probability can be expressed by a double integral with respect
to the probability density functions (pdfs) of the instantaneous
signal-to-noise power ratios (SNRs) of the SD and RD links,
given the achievable Slepian-Wolf rate region. However, only
numerical method is used in [3] for the calculation of the
double integral. It is shown in [3] that the second order



diversity can be achieved over entire value range of SNR only
when the data bits sent from the source and relay are fully
correlated.

This paper provides a closed-form expression of the outage
probability of the Slepian-Wolf relay system, by setting the
average SNRs of both the SD and RD links to sufficiently
large while keeping the power ratio allocated to the source and
relay constant. With a constraint that the total transmit power
allocated to both the source and relay nodes are constant, it is
shown in this paper that the optimal power allocation problem
can be formulated as a convex optimization problem based on
the asymptotic outage probability expression.

The organization of this paper is as follows. First of all, the
Slepian-Wolf relay system is briefly described in Section II.
The relationship between the relay system and the Slepian-
Wolf theorem is also provided. In III, we derive the outage
probability as well as its closed-form approximation using the
technique described above. Furthermore, the optimal power
allocation problems are formulated in IV, and solutions to the
optimization problems are also provided in IV. Finally, this
paper is concluded in V with some concluding remarks.

II. SYSTEM MODEL

This paper assumes a very simple relay system as shown
in Fig. 1. The source node broadcasts the coded original bit
sequence b1 to both the relay and the destination nodes during
the first time slot. After that, the relay node aims to recover
the original information sequence by performing one round
Viterbi decoding [5], then interleave the sequence b2 obtained
as the results of decoding, re-encodes and forwards it to the
destination node in the second time slot. The reconstructed
information sequence b2 at the relay may contain some errors
with a probability pe, but still is highly correlated with
the original information sequence b1 sent from the source.
It should be noted that we simplify the source-relay link
transmission by adopting the bit-flipping mode as b2 = b1⊕e
with Pr(e = 1) = pe, where e is the random error sequence
and e represents its element. The SD and RD links, which
are denoted as Link 1 and Link 2, are assumed to suffer
from independent block Rayleigh fading, and the distances
are assumed to be the same in this paper.

Suppose that two correlated information sequences b1 and
b2 are transmitted. According to the Slepian-Wolf theorem,
when b1 is transmitted at a rate R1 which is equal to its
entropy H(b1), then b2 can be transmitted at a rate R2 which
is lower than H(b2), but the rate R2 has to be higher than the
conditional entropy H(b2 | b1), and vice verse. Specifically,
if the three inequalities shown below are satisfied [1],

R1 > H(b1 | b2), (1)

R2 > H(b2 | b1), (2)

R1 +R2 > H(b1, b2), (3)

b1 and b2 can be recovered with arbitrary small error rate,
where H(b1, b2) denotes the joint entropy of the corre-
lated binary sequences b1 and b2. For the binary symmetric
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Fig. 2: Slepian-Wolf rate region

sources (Pr(1) = Pr(0) = 0.5) adopted in this paper, we
have H(b1) = H(b2) = 1, H(b1 | b2) = H(b2 | b1) =
H(pe), H(b1, b2) = 1+H(pe) with H(pe) = −pe log2(pe)−
(1− pe) log2(1− pe).

III. OUTAGE PROBABILITY

As shown in Fig. 2, the entire Slepian-Wolf rate region can
be divided into 4 areas. Let Pi (i = 1, 2, 3, 4) denote the
probability that the rate pair R1 and R2 are within Part i
of the whole rate region. According to Eq. (1)- (3), Part 3
indicates the admissible rate region while Part 1, Part 2 and
Part 3 represent the inadmissible portion.

Unlike the case where two correlated sequences are sent
from different users, in this paper, the Slepian-Wolf relay
system only aims to recover the original information sequence
b1, with the help of b2. It is known that b1 can be correctly
detected as long as R1 is larger than or equal to H(b1),
regardless of the value of R2. Thus, Part 4 should also
be included as the admissive region. With the mathematical
formulations described above, the outage probability is defined
as

Pout = P1 + P2. (4)

The conditions on R1 and R2 to achieve arbitrary low bit
error rate can be converted to the constraint of the instanta-
neous SNRs γ1 and γ2. Assuming that Gaussian codebook is
used for channel coding, the relationship between the rate and
the instantaneous SNRs is given by

Ri =
1

Rci
log(1 + γi), i = 1, 2, (5)

where Rci represents the spectrum efficiency of the transmis-
sion chain of Link i, including the channel coding scheme
and the modulation multiplicity. Specifically, P1 and P2 can
be expressed as

P1 =Pr [0 < R1 < H(b1 | b2), R2 > 0] ,

=Pr
[
0 < γ1 < 2Rc1H(b1|b2) − 1, γ2 > 0

]
, (6)



P2 = Pr [H(b1 | b2) < R1 < H(b1), R1 +R2 < H(b1, b2)] ,

= Pr
[
2Rc1H(b1|b2) − 1 < γ1 < 2Rc1H(b1) − 1,

0 < γ2 < 2

[
Rc2H(b1,b2)−Rc2

Rc1
log(1+γ1)

]
− 1

]
. (7)

It is found that the outage probability can be calculated by
using a double integral with respect to the joint pdf of the
instantaneous SNRs p(γ1, γ2) [3], given the range defined in
Eq. (6) and (7). Suppose that the fading variance of Link 1
and Link 2 are statistically independent, the joint pdf of γ1
and γ2 can be expressed as p(γ1, γ2) = p(γ1)p(γ2), where

p (γi) =
1

Γi
exp(− γi

Γi
), i = 1, 2, (8)

with Γi denoting the average SNRs of Link i in [6]. In the
following parts of this paper, we assume Rc1 and Rc2 are
fixed to 1 (corresponding to the case where, for example,
rate 1/2 channel codes are used with quadrature phase-shift
keying (QPSK)). According to [3], Pout can be mathematically
expressed as

Pout =1− exp

(
− 1

Γ1

)
− exp

(
1

Γ2

)
1

Γ1
·

·
∫ 1

2H(pe)−1

exp

(
− γ1
Γ1

− 21+H(pe)

Γ2(1 + γ1)

)
dγ1, (9)

Now, let’s assume that the average SNRs Γ1 and Γ2 are
brought to infinity while keeping their ratio fixed. The closed-
form expression of the outage can then be obtained as in
Eq. (10), by invoking the approximation e−x ≈ 1 − x for
a very small x.

Pout ≈
1− C1

Γ1
+

C2

Γ1
2 +

C3 − C1

Γ1Γ2
+

C2

Γ1
2Γ2

+
C3

Γ1Γ2
2 ,

(10)

where the three constants are defined as C1 = 2−2H(pe), C2 =
2H(pe) − 22H(pe)−1 and C3 = 21+H(pe)

[
ln 2− ln 2(2H(pe))

]
.

IV. OPTIMAL POWER ALLOCATION

Given the total transmit power ET fixed, the allocated trans-
mit power of the source and the relay nodes are represented
by E1 and E2, respectively. Let k (0 < k < 1) be the
transmit power ratio, as E1 = ET k and E2 = ET (1 − k).
The geometrical gain of both Link 1 and Link 2 are assumed
to be 1 without the loss of generality with the system model
described in II . By normalizing the noise variance σ2

n of both
Link 1 and Link 2 to unity, E1 and E2 are equivalent to their
corresponding average SNRs Γ1 and Γ2. Notice that the last
two terms in Eq. (10) are negligible with high SNRs, then, the
closed-form expression of Pout(k,ΓT) can be re-written as

Pout(k,ΓT) ≈
1− C1

ET k
+

C2

E2
T k

2
+

C3 − C1

ET
2k(1− k)

. (11)

Fig. 3 illustrates good matching of the outage probability
curves obtained by using the approximation method Eq. (11)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

power ratio k

ou
ta

ge
 p

ro
ba

bi
lit

y

 

 
original, p

e
 = 0.1

approximated, p
e
 = 0.1

original, p
e
 = 0.01

approximated, p
e
 = 0.01

orignal, p
e
 = 0.001

approximated, p
e
 = 0.001

Fig. 3: Comparison of outage curves obtained by using ap-
proximation method Eq. (11) and the numerical calculation
Eq. (9), when ΓT = 35 dB.

and the numerical calculations using Eq. (9). Moreover,
Eq. (11) can be proven to be convex [7], of which proof is
detailed in APPENDIX 1.

A. Total power fixed

The goal of this sub-section is to minimize the outage
probability while the total power ET is fixed. The convex
problem can be formulated as

minimize Pout(k,ΓT)
subject to k − 1 < 0

−k < 0
(12)

With the help of a convex optimization tool, the optimal
values of k can be obtained as shown in TABLE I. Obviously,
the larger the pe value, the more transmit power should be
allocated to the source node. Interestingly, it is found also
from TABLE I that the optimal power ratio k becomes larger
when increasing the total power ΓT.

TABLE I: Optimal power ratio k

ΓT(dB)
optimal k
(pe = 0.1)

optimal k
(pe = 0.01)

20 0.8904 0.7865
24 0.9316 0.8519
28 0.9575 0.9015
32 0.9735 0.9360

Fig. 4 presents the simulation results for the frame-error-rate
(FER) performance with and without optimal power allocation.
In the simulation, we employ the same transmission strategy
of a simple one-way relay system with bit-interleaved coded
modulation with iterative decoding (BICM-ID) technique pre-
sented in [8], where the correlation knowledge is utilized at
the destination node. It is found that, by selecting the optimal
k values, the Slepian-Wolf relay system can achieve roughly 2
dB gain compared with the cases with equal power allocation.
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Fig. 4: Comparison of simulated FER with and without power
allocation scheme

B. Outage probability requirement fixed

The goal of this sub-section is to minimize the total transmit
power ΓT while keeping the outage probability fixed. We
formulate the problem in the following way to find the
minimum power as well as its corresponding k, given the
outage requirement Cout:

minimize ΓT + 0k
subject to Pout(k,ΓT)− Cout 6 0

k − 1 < 0
−k < 0
−ΓT < 0

(13)

This problem is proven to be convex, of which proof is
detailed in APPENDIX 1. The Karush-Kuhn-Tucker (KKT)
conditions [7] corresponding to this problem is shown in
APPENDIX 2.

TABLE II: Optimized total power and k

Pout requirement
required ΓT

(equal power)
required ΓT
(optimized) Gain

0.01
(pe=0.1) 19 dB

17.21 dB
(k=0.85) 1.79 dB

0.001
(pe=0.01) 21 dB

19.79 dB
(k=0.8) 1.21 dB

As shown in TABLE II, for the Slepian-Wolf relay system
with equal power allocation scheme and pe = 0.1, we need
to allocate 19 dB total power in order to achieve the outage
probability Pout = 0.01. However, by using the optimal
k = 0.85 obtained as the solution to the optimization problem,
it can be reduced to 17.21 dB. Fig. 5 shows the theoretical
outage curves obtained by using numerical double integration
technique [9], with total power as a parameter. It can be clearly
seen that the optimal k values corresponding to pe and outage
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Fig. 5: Theoretical outage probabilities with different total
power

requirements of 0.01 and 0.001 are exactly consistent to the
the data obtained as the solution to the optimization problem.

V. CONCLUSION

This paper has provided an approximated closed-form ex-
pression of the outage probability for a simple Slepian-Wolf
relay system, where the received SNRs Γ1 and Γ2 are set
large enough while keeping their ratio Γ1/Γ2 constant. Based
on the closed-form expression, it has been shown that power
allocation for minimizing the outage probability while keeping
the total transmit power constant, and for minimizing the
transmit power while keeping the outage fixed are both for-
mulated as convex optimization problems. It has been shown
that the larger the error probability of the SR link, the more
power should be allocated to the source node. Moreover, when
the total transmit power becomes larger, the optimal power
ratio k needs to be increased. The power allocation method
presented in this paper can be extended to more complex
network topology, such as in the wireless cloud scenarios for
more energy savings. This is left as future study.
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APPENDIX 1

The convexity of the approximated outage probability ex-
pression Eq. (11) is proven here. It is clear to see that Eq. (11)
is comprised of three terms. If each of the three terms can be
proven to be convex, Eq. (11) is also convex because it is a
sum of the convex terms. The Hessian matrix of the first term
1−C1

kΓT
can be calculated as

H

[
1− C1

ΓT

]
=

1− C1

k3Γ3
T

[
2Γ2

T kΓT
kΓT 2k2

]
. (14)

Since 1 − C1 = 2H(pe)−1≥0, the eigenvalues λ1,2 =

0.5 1−C1

k3Γ3
T

(√
k2 + Γ2

T −
√
k2 + Γ2

T − 3k2Γ2
T

)
are clearly non-

negative. Therefore, the Hessian matrix of
[
1−C1

ΓT

]
is positive

semi-definite and hence its convexity has been proven.
The Hessian matrix of the second term C2

k2Γ2
T

can be calcu-
lated as

H

[
C2

ΓT

]
=

2C2

k4Γ4
T

[
3Γ2

T 2kΓT
2kΓT 3k2

]
. (15)

Since C2 = 2H(p) − 22H(p)=1 ≥ 0, the eigenvalues
λ1,2 = C2

k4Γ4
T

(√
6k2 + 3Γ2

T −
√
6k2 + 3Γ2

T − 56k2Γ2
T

)
are

clearly non-negative. Therefore, the Hessian matrix of C2

k2Γ2
T

is
positive semi-definite and hence its convexity has been proven.

The Hessian matrix of the third C3−C1

Γ2
Tk(k−1)

can be calculated
as

H

[
C3 − C1

ΓT
2k(1− k)

]
=

2(C3 − C1)

k3(1− k)3ΓT
4

[
k2ΓT

2 − kΓT
2 + ΓT

2 kΓT − kΓT
kΓT − kΓT 3k4 − 6k3 + 3k2

]
,

(16)

Let m(k) = 3k2(k − 1)2 + ΓT
2(k2 + 1 − k) and

n(k) = 3k4 − 9k3 + 11k2 − 7k + 2, the eigenvalues
λ1,2 = C3−C1

k3(1−k)3Γ4
T

(
m−

√
m2 − 4k2Γ2

Tn
)

. For 0 < k < 1,

obviously, m(k) > 0. Since that n(k)
′′
= 36k2−54k+22 > 0,

n(k)
′

is proven to be monotonically increasing until the
boundary n(k)

′
< n(k = 1) = 0, and furthermore n(k)

′
< 0

indicates n(k) is monotonically decreasing until the boundary
n(k) > n(k = 1) = 0. This proves the non-negativity of n(k).

Let H(pe) = x, and 0 ≤ x ≤ 1, y = C3 − C1 =
2x [2 ln 2− 2 ln(2x) + 1]− 2. Due to the fact that

y
′′
= 2x ln 2 [ln 2 (2 ln 2− 2 ln 2x + 1)− 4]

< 2x ln 2
[
ln 2

(
2 ln 2− 2 ln 20 + 1

)
− 4

]
< 0, (17)

y is concave and C3 −C1 > min(y(0), y(1)) = 0. Therefore,
the Hessian matrix of C3−C1

Γ2
Tk(k−1)

is proven to be positive semi-
definite and hence its convexity has been proven.

APPENDIX 2

The KKT condition for the optimization problem presented
in sub-section IV-B is summarized below:

Pout(k,ΓT)− Cout 6 0
k − 1 < 0
−k < 0
−ΓT < 0
λ1 ≥ 0

1 + λ1
∂Pout(k,ΓT)

∂ΓT
= 0

λ1
∂Pout(k,ΓT)

∂k = 0

(18)

The formulation and notations are all consistent to [7], where
f0 = ΓT+0k, f1 = Pout(k,ΓT)−Cout, f2 = k−1, f3 = −k,
f4 = −ΓT and they are all differentiable.


