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Abstract

Data semantics plays a fundamental role in computer science, in general, and in
computing with words, in particular. The semantics of words arises as a very so-
phisticated problem, since words being actually vague linguistic terms are pieces
of information characterized by impreciseness, incompleteness, uncertainty and/or
vagueness. The qualitative semantics and the quantitative semantics are two aspects
of vague linguistic information, which are closely related. However, the qualitative
semantics of linguistic terms, and even the qualitative semantics of the symbolic
approaches, seem to be not elaborated explicitly in the literature up to now. In
this study, we propose an interpretation of the inherent order-based semantics of
terms through their qualitative semantics modeled by hedge algebra structures. The
quantitative semantics of terms are developed based on the quantification of hedge
algebras. With such an explicit approach, we propose two concepts of assessment
scales for addressing decision problems: linguistic scales used for representing ex-
pert linguistic assessments and semantic linguistic scales based on 4-tuple linguistic
representation model, which form a formalized structure useful for computing with
words. An example of solving a simple multi-criteria decision problem is examined
via a comparative study. We also analyze of the main advantages of the proposed
approach.

Key words: Computing with words, fuzzy decision making, order-based semantics
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1 Introduction

Computing with words (CW) was firstly introduced by Zadeh [36] as a method-
ology for reasoning and computing with human-sourced information described
in natural language, of which the idea was actually rooted from his previous
work on linguistic variables, fuzzy constraints and fuzzy if-then rules [33–35].
During the last decade or so, CW has attracted considerable attention of the
fuzzy set community. In order to establish a mechanism for automated rea-
soning, computing or decision-making with words, it is necessary to establish
appropriate mathematical models for representing linguistic information and
perceptions, which would be able to capture certain semantic characteristics
of words that underline the way human beings reason or make decisions using
natural language. This is really a challenging task because of the flexibility
(e.g., context/culture dependent) of as well as fuzziness and uncertainty as-
sociated with semantic characteristics of words used in human reasoning. All
of these make the process very difficult to model and represent the meaning
of words and perceptions to carry out meaningful computing. This eventually
makes CW comprehensive research area by being open to interpretations and
different instantiations, as intensively discussed in [19].

So far, there have been numerous models developed for CW with applications
to a spectrum of practical human-centric problems. From the perspective of
modeling and reasoning application, Zadeh’s seminal work [36] is the first
one that provides a general framework for CW in which the use of fuzzy
sets becomes crucial as they provide a means of modeling the fuzziness in-
herent in natural language utterances; while its computational mechanism is
essentially based on the so-called extension principle in association with gen-
eralized rules of inference in fuzzy logic. As a matter of fact, Zadeh’s general
framework would be further developed and detailed for widely application to
human-centered modeling and reasoning problems in practice. Interestingly
also, in [14,15], Lawry proposed an alternative approach to CW based on
mass assignment theory [2] and probability theory and provided a mechanism
for reasoning with linguistic descriptions of imprecise probabilities that avoids
the computational complexity problems incurred by applying the extension
principle in Zadeh’s theory of CW.

From the perspective of decision-making application, over the last decade
much work have been done so as to develop CW approaches for solving
decision problems involving vague and imprecise information. Typically, in
decision-making applications CW is mainly involved with the problem of how
to represent and aggregate linguistic information in decision making. In rec-
ognizing that “words mean different things to different people”, Mendel [20]
proposed to use type-2 fuzzy sets for modeling words in CW for assisting peo-
ple in making subjective judgments. While most early methods for dealing
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with linguistic information in decision-making were making use of fuzzy sets
as a means of modeling linguistic terms and the corresponding CW models
were based on Zadeh’s extension principle, e.g., [1,4,12]. Clearly, the comput-
ing results of these methods, classified as semantic models [26], are also fuzzy
sets that in general do not match exactly pre-defined fuzzy sets of linguistic
terms and, therefore, a linguistic approximation process must be applied to ob-
tain linguistic recommendations for the problem at hand. Consequently, such
linguistic approximations may cause loss of information and lack of precision
in the final results as well. This has motivated Herrera and Martínez [9] to
propose a so-called 2-tuple linguistic representation model as a tool for CW,
which aims at overcoming the limitation of the loss of information caused by
the process of linguistic approximation in fuzzy set-based approaches, Prac-
tically, the 2-tuple linguistic model has been also applied to decision making
problem in various application areas, including group decision making, dis-
tributed intelligent agent systems, information filtering, information retrieval,
and engineering management [17,18].

In 2-tuple linguistic representation model or its variations such as propor-
tional 2-tuple representation model [32], which are classified as symbolic mod-
els [26], each set of the linguistic terms under consideration, denoted by S =
{s0, . . . , sg}, is assumed to be strictly ordered, i.e., we have s0 < s1 < . . . < sg.
In this study the set S is called a linguistic scale. Basically, symbolic models
aimed to map a linguistic term set into an appropriate numerical scale and
then computation for linguistic information aggregation is performed over this
numerical scale so that many numerical aggregation operators available can
be applied in a direct manner. Finally, the computing results will be converted
back to linguistic 2-tuples in the corresponding models.

As we have observed, in the fuzzy-set-based approaches, the semantic repre-
sentation of words makes them to become complicated in terms of underlying
computations and, in addition, the ordering relationships between terms of the
scale become blurred as well. While in the symbolic-model-based approaches,
although they allow directly performing computations on the set of linguistic
values in which only a totally ordered structure is assumed by mapping the
set of linguistic values into suitable numerical scale, we might be losing much
of the information we have purposely been keeping at the structural phase of
linguistic decision problems. Note that the use of a linguistic approach is only
necessary when the information in decision situations cannot be assessed pre-
cisely in a quantitative form (i.e., by numerical values). Moreover, note again
that most linguistic scales used in the previous studies of linguistic decision
analysis are assumed to be totally ordered. That is, one can recognize an order
based on the qualitative semantics of terms, called inherent order-based seman-
tics, which are directly associated with the string expression of terms regarded
as their syntax. Obviously, this qualitative semantics of terms is present in any
natural language. When experts provide their linguistic assessments, they fo-
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cus on the ordering semantics of terms of comparison with some other terms of
the linguistic scales. We may refer here to qualitative linguistic scales. Quan-
titative semantics of terms is required from computational standpoint and,
therefore, it is desirable to establish formal linkages between the quantitative
semantics with the corresponding qualitative semantics of terms. Such a con-
nection between two semantics could help to have the linguistic computational
models developed in a more interpretable and convincing fashion. However, it
seems that this observation has been overlooked in the previously developed
models for linguistic decision-making.

In light of the discussion presented above, the main objectives of this paper
are as follows:

(i) To discuss linguistic scales based on the proposed concept of qualitative
semantics of linguistic terms, namely the order-based semantics of terms.
As the terms of a linguistic scale, even equipped with such a qualitative
semantics, exhibit no computational (numeric) characteristics, the concept
of (computational) semantic linguistic scales associated with given linguistic
scales will be introduced.

(ii) Motivated by the above discussion, we first propose fundamental require-
ments for constructing legitimate linguistic scales so as to ensure the sound-
ness of constructed semantic linguistic scales such as:
– A solid identification of qualitative and quantitative semantics of terms,
which should be related to their inherent order-based semantics present
at a certain level;

– A sufficient formal basis for constructing a semantic linguistic scale associ-
ated with a given qualitative linguistic scale to ensure that the constructed
semantic linguistic scale and its respective (qualitative) linguistic scale ex-
hibit a closed relationship;

– A sufficient operational structure for the constructed semantic linguistic
scale, e.g., its closeness with respect to some typical aggregation opera-
tions.

(iii) To propose the inherent order-based semantics of terms of a linguistic vari-
able to form qualitative semantics of linguistic terms that is associated di-
rectly with linguistic terms regarded as their syntax. Here, hedge algebras
introduced in [21,24], considered as one of the feasible models of order-based
structure of term-domains, will be used as a mathematical basis to model
the qualitative semantics of terms as well as their quantitative semantics.

(iv) To develop a 4-tuple semantic representation model, based on which we will
construct a sound 4-tuple (computational) semantic linguistic scale that
meets the proposed requirements and would hopefully be useful for appli-
cations.

The rest of this paper is organized as follows. Section 2 first discusses about the
essential qualitative semantics of terms and the semantic linguistic scales that
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are useful from computational perspective, and then proposes some require-
ments for the construction of sound and legitimate semantic linguistic scales.
In Section 3, the order-based qualitative semantics of terms will be discussed
based on the basis of order-based structure of hedge algebras. Quantitative
semantic aspects of linguistic terms previously developed will be reviewed
to offer necessary background knowledge for examination of the (qualitative)
linguistic scales and for construction of semantic linguistic scales in the pro-
posed approach. The concept of a 4-tuple semantic representation model and
4-tuple semantic linguistic scales exploiting numeric quantitative semantics
and interval-semantics of terms are introduced in Section 4. It is shown that
for a given so-called superior-closed linguistic scale being considered as a term
set generated from the primary terms, its associated 4-tuple semantic linguistic
scales can be constructed, utilizing the quantitative semantics of terms pre-
sented in Section 3. Such scales can be considered as being sound since they
meet all requirements introduced in Section 2. To show the advantages of the
4-tuple semantic linguistic scales, a simple multi-criteria decision problem is
examined in Section 5. It is shown that, with the same linguistic assessments
of an expert for both given superior-closed linguistic scales, one is a proper
sub-scale of the other, the decision results produced in the 4-tuple approach
are the same, i.e. they show to depend mainly on the semantics of the terms
defined in the context of their associated semantic linguistic scales, while the
decision results produced in the 2-tuple approach are different. Finally, some
conclusions are given in the last section.

2 A concept of semantic linguistic scales and some essential re-
quirements for their construction

When dealing with linguistic scales or, more generally, with CW, the following
two aspects should be considered:

(i) the qualitative and quantitative semantics expressed by linguistic terms in a
given linguistic scale S, including the question of which qualitative semantics
of terms induces the order of S and,

(ii) the computational model of the term semantics, which is useful for devel-
oping a computing mechanism for S.

With regard to this viewpoint, it can be observed from the above analysis that
the concept of linguistic scales is still not obvious and unified. In the following
we will discuss these two aspects in more details.
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2.1 A concept of semantic linguistic scales

Our starting position to define this concept is to consider each linguistic scale
as a mechanism to generalize a numeric scale. For example, let us consider a
numeric scale consisting of numbers in the interval [0, 10] to assess the mathe-
matical ability of students on a basis of their grades obtained in mathematics
examinations. Intuitively this numeric scale exhibits two main characteristics:

(i) The elements of the scale have their own semantics, using which teachers
can express their assessments of students’ examination.

(ii) This scale has its own computational structure that allows teachers to carry
out certain operations such as aggregation. It is worth noting that this
computational structure is closed with respect to the usually considered ag-
gregation operations. In addition, in accordance with logical nature, these
operations must act on the semantics of elements of the scale, which, in fact,
are merely symbolic notation carrying their assigned semantics.

Now, in order to relate a numeric scale with its respective linguistic one,
we may imagine how teacher gives an assessment, for instance, of 7.5 to a
student’s examination. Here, the teacher realizes this assessment in a fuzzy
environment [12], and usually used to utilize vague concepts in his exami-
nation assessment process. Then he has to convert his linguistic assessments
into corresponding numbers positioned on the numeric scale. That is, linguis-
tic terms are present in the teacher’s assessment process. In practice, at the
end of a study-year, students are classified into groups, named by linguistic
terms, in accordance with an aggregation of the results of their mathematical
examination, by using a given quantitative-linguistic scale. For example, in
Vietnamese colleges, such a scale can be defined as follows:

{(Bad, [0.0, 3.5)), (Weak, [3.5, 5.0)), (Medium, [5.0, 6.5)),
(Fair, [6.5, 7.5)), (Good, [7.5, 8.5)),

(V ery Good, [8.5, 9.5)), (Excellent, [9.5, 10.0])} (1)

where intervals shown in (1), called in this study interval-semantics of terms,
are user declaration of the quantitative semantics of linguistic terms of the
scale. This means, for instance, that a student is classified into the group
“Good” with respect to the mathematical ability if the aggregated result of
all her/his mathematical examination assessments in the study-year falls into
[7.5, 8.5), which is declared as the interval-semantics of “Good” as shown in
(1). As such, the set in (1) gives an example of the semantic representation
model for the concept of “semantic linguistic scales”, which can be considered
as a generalization of the numeric scale [0, 10], although it should be extended
to include richer quantitative semantics of terms for computing with linguistic
terms. Since the terms present in (1) are only labels, treated as the syntax of
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terms, an extension of the semantic representation model given in (1) must
be adequate to guarantee that we can develop operations working usefully
on the semantics of the linguistic scale, including the ordinary aggregation
operations.

Under such an observation, it is natural to require that, for each linguistic
scale, the so-called semantic linguistic scale associated with it that we will
construct has to be characterized by the following two main properties:

Property 1. Linguistic scales should have a semantic representation model
with a clear declaration of qualitative and quantitative semantics of lin-
guistic terms of the scales. The qualitative semantics of terms is devoted
to experts to express their linguistic assessments, while the quantitative se-
mantics of terms is exploited to develop the computationally operational
mechanism on the scales.

Property 2. Linguistic scales should be associated with their respective se-
mantic linguistic scales constructed based on the proposed semantic repre-
sentation model, which is equipped with an adequate computational struc-
ture so as to be able to perform certain operations, including aggregation
operations, on it.

In addition, as we desire that the proposed linguistic computational model
would exhibit a proper relationship between the qualitative semantics of lin-
guistic terms and their suitable quantitative semantics, several requirements
for constructing semantic linguistic scales should be granted as discussed in
the following section.

2.2 Some essential requirements for construction of semantic linguistic scales

As aforementioned, the relationship between syntax, i.e. label representation,
and semantics of the linguistic terms of a linguistic variable is a fundamental
problem of linguistic decision analysis. However, it seems to be not easy to deal
with this problem for imprecise linguistic information. Therefore, it becomes
important to discuss what the actual semantics of this kind of information is.

Conventionally, fuzzy sets assigned to linguistic terms can be considered as
their semantics based on the viewpoint of a generalization of crisp concepts.
By this it is difficult to explain, for instance, what the semantics of linguistic
hedges is. On the other hand, another viewpoint on the semantics of terms
can ben observed when we follow the concept of semantics in formal logics.
Normally, the meaning of a word or a phrase is a collection of objects or phe-
nomena present in real world that the term or phrase points at. The question is
at what points a vague term in a linguistic domain of an attribute, which com-
prises terms generated from primary terms (atoms) by using hedges. “Good”
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or “very good” do not indicate concrete items or phenomena in the real world,
because we still do not know whether they indicate human or animals or other
things. However, they carry a qualitative semantics and may be used to de-
scribe different properties of different objects. The presence of these terms in
natural language aims to compare properties of distinct items. This semantics
seems to be very crucial for human decision making as it will be discussed
next.

The same argument can be applied to explain the presence of hedges in natural
languages: their presence is due to the need of the comparison of alternatives
in human decision making. So, every hedge aims to intensify vague terms to
generate new terms, which are comparable with the original ones. For example,
“very young” is comparable with “young”. Therefore, another characteristics
of the term semantics is what that provides us a basis to identify the order
relationship of terms in a term-domain.

This characteristic of the term-semantics seems to be more essential, when
we observe that there are fundamental facts supporting it: natural language
is a vehicle to cognize reality and offer a communication vehicle within the
community. Subsequently, natural language is rich enough to fully describe
phenomena of the real world serving for human activities. Life is composed
of a series of decisions. The aim of decision making in human daily life is
to choose an alternative which is better than others. Therefore, in natural
languages there should be elements to describe preference of an alternative in
comparison to other alternatives in question. Linguistic terms with their own
semantics and, in particular, hedges are elements facilitating this process.

In turn, such feature shows to be an essential characteristic of the semantics
of linguistic terms. As a consequence, we consider order-based semantics of
terms as their natural intrinsic qualitative semantics.

To ensure the soundness of the linguistic scale, we introduce three intuitively
appealing requirements for construction of semantic linguistic scales. We do
not consider them as criteria, since it is not easy to define the proper semantics
of vague linguistic terms. It depends on what the starting point of view is and
there is no exact condition for this task in such an uncertain environment.

Requirement 1 Linguistic representation models of linguistic scales should
be developed based on a clearly declared qualitative and quantitative semantics
of linguistic terms, which are related with their inherent order-based semantics
as much as possible.

This requirement seems to be natural as linguistic scales are ordered by the
semantics of their terms. In addition, as discussed above, our starting point
viewing the semantics of terms comes from the demand of decision-making
tasks: Ranking the alternatives in question in accordance with certain criteria
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based on expert linguistic evaluations. This implies that establishing an ap-
propriate formalized mechanism for comparison of the alternatives becomes
highly relevant. Following this, the semantics of terms based on their inherent
order relationships seems to be intrinsic to this research field and, thus, this
requirement is necessary.

Requirement 2 There should be a suitable formalized mechanism to con-
struct, based on the declared qualitative and quantitative semantics of terms,
a semantic linguistic scale characterized by Property 1 and Property 2 with
computational characteristics useful for practical applications.

Since the computational operations of linguistic scales should work on the
quantitative semantics of terms and there is a closed relationship between
the qualitative semantics and the quantitative semantics of each term, the
above requirement is obvious. The inherent qualitative semantics of terms is
essential and, in principle, it determines their quantitative semantics. Since,
up to now, there did not exist a mathematical structure, except the structure
of hedge algebras, to model the inherent qualitative semantics of terms, we
have no formalized mechanism to relate the qualitative semantics of terms
with their existing quantitative semantics examined in this field. The lack of
this relationship implies the lack of basic criteria to decide, which linguistic
scales are better than the others with respect to this requirement, and the
lack of formalized basis to construct appropriate semantic linguistic scales for
particular applications.

Requirement 3 The semantic linguistic scale should bring necessary advan-
tages to develop computational operations for developing decision-making meth-
ods, including aggregation operators, in particular. The constructed semantic
linguistic scales should be closed with respect to the developed aggregation
operators.

To show the usefulness of the proposed requirements, in the next section we
construct semantic linguistic scales based on hedge-algebra-structure-based
semantics of term.

3 Order-based qualitative and quantitative semantics of linguistic
terms

As discussed previously, it is observed that linguistic scales are always assumed
to be totally ordered using the inherent term meaning that is recognized nat-
urally by a human community. This suggests us to consider this term meaning
as qualitative semantics of linguistic terms of a linguistic variable, which can
be formulated in terms of an order relation on a term-set under consideration.
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That is the semantics of a given term of a linguistic variable is determined by
a collection of ordering relationships between this term and the other ones in
a term-domain of the linguistic variable. Besides, in practice, a linguistic scale
is always associated with a numeric scale, of which the values have semantic
relations with terms of the linguistic scale. Any value of the numeric scale
should be related to the semantics of terms of the linguistic scale in some
way to a certain degree. For instance, the quantitative semantic representa-
tion of terms appearing in (1) is a way to specify that values of interval [7.5,
8.5) relate more preferably to the semantics of the term “Good” than to the
others.

This section aims to establish a formal basis to relate the qualitative semantics
of terms in linguistic scales to the values of the respective associated numeric
scales, using appropriate representation of quantitative semantics of terms.
There is a mathematical foundation for realizing this purpose, since, as it
will be seen, every term-domain of an attribute can be considered as a subset
of a hedge algebra under an isomorphic mapping preserving semantic order-
based structure [13,14,16]. A computational semantic representation model of
linguistic scales can be developed based on the quantification of hedge algebras
with the concepts of fuzziness measure, fuzziness intervals, similarity intervals
and numeric quantitative values of linguistic terms [14,15]. We will give a
short overview of necessary concepts of hedge algebras and their quantification
tasks. Regarding more details and a formal presentation the reader can refer
to [14–16].

The motivation for development of hedge algebras is to discover semantic
properties of vague linguistic terms by means of order relation that can be
considered as the inherent semantic order relation on term-domains of linguis-
tic variables. This approach to linguistic semantics seems to be, on an abstract
level, compatible with the natural term semantics and quite sufficient for hu-
man fuzzy decision making tasks.

From this viewpoint, each term-domain of a linguistic variable X can be con-
sidered as an order-based structure, denoted by AX = (X,G,C,H,≤), where
X = Dom(X ) being the set of all terms of X , G = {g, g′} is the set of its
primary terms, C = {0,W,1} is the set of specific terms, called constants,
with 0 and 1 being the least and the greatest terms in the structure Dom(X ),
respectively, and W being the neutral concept positioned in between the two
primary terms, i.e. we have 0 ≤ g ≤ W ≤ g′ ≤ 1, H is the set of hedges
considered as unary operations on X and ≤ is an order relation on X. Then,
(X,≤) becomes a poset.

We also assume that the set Dom(X ) is just a set generated from the primary
terms by using hedges acting on them in concatenation, i.e. each term in
Dom(X ) can be written in a string hn . . . h1c, where hi ∈ H and c ∈ G. An
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example of a term in natural language is very-rather-small, which is a string
consisting of two hedges very and rather in concatenation and a primary term
small. So, the string representation of the elements of AX is identical with
the string representation of term expressions in natural languages and, hence,
we call its elements also terms for convenience.

Denote by H(Y ) the set of all terms generated from the terms in Y using the
hedges in H. We will often use in the sequel the notations H(G), i.e. Y = G,
and H({x}) will be written as H(x), for short.

Hedge algebras were axiomatized in such a way that they can be regarded as
the isomorphic images of the ordered-based structure of certain term-domains
of linguistic variables. This requires that the axioms of hedge algebras should
suitably be selected from the natural properties ofDom(X ) that can be formu-
lated in terms of inherent semantic ordering relationships between linguistic
terms. By this way, each element of X can be understood as conveying the
qualitative semantics of the respective linguistic term of X .

3.1 Some descriptions of qualitative term semantics

We intend to show that the qualitative semantics of linguistic terms can be
formalized based on the inherent semantic order relation and, hence, also called
the order-based semantics of linguistic terms. Indeed, let us consider an order-
based structure AX = (X,G,C,H,≤) of a linguistic variable X , as described
above. The starting point is that since the function of hedges is to intensify
linguistic terms, for any hedge h ∈ H and any term x ∈ X, hx and x should
be comparable, i.e. the (order-based) effect of h acting on x is expressed by
the fact that either hx ≥ x or hx ≤ x. In the case that kx ≥ hx ≥ x or
y ≥ hy ≥ ky, for certain x or y, we say that the effect of k is greater than h,
and write k ≥ h. For example, in this sense, we have Extremely ≥ V ery. That
is the semantics of hedges of X can be formulated in terms of the semantic
order relation ≤.

The inherent order-based semantics of terms and the linguistic hedge lead to
discovering many new notions and properties of linguistic term formulated in
terms of ≤.

1) Linguistic terms possessing their own “algebraic” sign. We observe that
the semantic order-based semantics of terms leads to the fact that terms and
hedges have the so-called semantic tendencies that can be recognized as fol-
lows:

• In practice the primary terms g, g′ ∈ G are comparable and have different
semantic tendencies recognized by different inequality directions when any
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hedge applies to them. For instance, bad ≤ good and while very_bad ≤ bad
we have very_good ≥ good. We say as a convention that the greater primary
term is of a positive semantic tendency and denoted by c+, and the other
is of a negative semantic tendency and denoted by c−. For x = c ∈ G,
the comparability of hc and c implies that H is partitioned into two sets:
H+ = {h ∈ H : hc− ≤ c− or hc+ ≥ c+}, which consists of the hedges that
increase the both semantic tendencies of the primary terms; H− = {h ∈
H : hc− ≥ c− or hc+ ≤ c+}, which consists of the hedges that decrease
these semantic tendencies. This leads to the interesting concept that the
primary terms and hedges have their own “algebraic” sign: sign(c+) = +1,
sign(c−) = −1, sign(h) = +1, for h ∈ H+, and sign(h) = −1, for h ∈ H−.
• The comparability of khx and hx implies also that either k increases or

decreases the effect of h. For instance, having x ≤ hx the inequalities x ≤
hx ≤ khx state that k increases the effect of h and x ≤ khx ≤ hx state
that k decreases the effect of h. We shall write sign(k, h) = +1, for the
former case, and sign(k, h) = −1, for the latter one. They are called the
relative sign of k with respect to h. For example, it can be verified that
sign(V, L) = +1 while sign(L, V ) = −1.
• If hh′x 6= h′x, we say that the effect of h in the expression hh′x is proper.

A string hn . . . h1c, where hi ∈ H and c ∈ G, is said to be a canonical string
representation of x if x = hn . . . h1c and the effect of all hi’s is proper in this
expression. It was proved that the canonical representation of x is unique,
for any term x, and, hence, we may define the length of x, denoted by |x|,
which is just the length of the string hm . . . h1c of x. Now, the sign of a
linguistic term x, can be defined by

Sgn(x) = sign(hm, hm−1)× . . .× sign(h2, h1)× sign(h1)× sign(c) (2)

The meaning of Sgn is expressed as follows:

Sgn(hx) = +1⇒ hx ≥ x and Sgn(hx) = −1⇒ hx ≤ x (3)

For example, since

Sgn(V L_true) = sign(V, L)sign(L)sign(true) = −1

we have V L_true ≤ L_true.

2) Semantic heredity – an essential meaning of linguistic hedges. An essential
property of hedges is the so-called semantic heredity, which states that the
terms generated from a given term x by using hedges must inherit or contain
the (genetic) core meaning of x own. This implies that hedges cannot change
the essential meaning of terms expressed in terms of the semantic order rela-
tion ≤, i.e. it results in the following:

• If the meaning of hx and kx is expressed by the order relationship hx ≤ kx,
h 6= k, then any hedges h′ and k′ cannot change this semantic relationship,
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that is
hx ≤ kx⇒ h′hx ≤ k′kx (4)

• Similarly, if the meaning of x and hx is expressed by either x ≤ hx or
hx ≤ x, then

x ≤ hx⇒ x ≤ h′hx or hx ≤ x⇒ h′hx ≤ x (5)

Assuming that H− = {h0, h−1, . . . , h−q} and H+ = {h0, h1, . . . , hp}, where
h0 = I, the artificial hedge identity, and h0 < h−1 < . . . < h−q and h0 < h1 <
. . . < hp, the hedge heredity leads to the following:

• For Sgn(hpx) = −1

H(hpx) ≤ . . . ≤ H(h1x) ≤ {x} ≤ H(h−1x) ≤ . . . ≤ H(h−qx) (6)

• For Sgn(hpx) = +1

H(h−qx) ≤ . . . ≤ H(h−1x) ≤ {x} ≤ H(h1x) ≤ . . . ≤ H(hpx) (7)

with a note that H(h0x) = H(Ix) = {x}, by convention. In particular, we
have

{0} ≤ H(c−) ≤ {W} ≤ H(c+) ≤ {1} (8)
• The sets H(hjx), j ∈ [−q, p], where [−q, p] = {j| − q ≤ j ≤ p}, constitute a

partition of H(x), i.e. they are disjoint and

H(x) =
⋃

j∈[−q,p]
H(hjx) (9)

These only such listed properties show already that term-domains of linguistic
variables with such qualitative semantics of terms possess a rich order-based
structure. Therefore, we may observe that hedge algebras are formalized struc-
tures of the qualitative semantics of term-domains, noting that the meaning
of a term represented in a formalized structure carries much information than
by a fuzzy set itself, in general.

3) The comparison criterion of hedge algebra AX . The following criterion for
comparing any two terms of AX can be proved in these formalized structures.

Let x = hm . . . h1c and y = kn . . . k1c, c ∈ G, be the canonical representations
of two terms x and y, respectively. Then, there exists a greatest integer j ≤
min{m,n} such that hi = ki, for all i ≤ j, and, moreover, putting x|j =
hj . . . h1c, called the j-suffix of x, we have

(i) x < y iff hj+1x|j < kj+1x|j, where in the case j = n or j = m, say j = m, we
understand conventionally that hm+1 = h0 = I and for j = n, kn+1 = h0,
i.e. we have hj+1x|j < x.

(ii) x = y iff n = m = j.
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3.2 Semantic quantification, fuzziness intervals and fuzziness measure of terms

From now on we always assume that the hedge algebra under consideration
is free, i.e. each term representation hn . . . h1c is a canonical and, hence, it
defines a unique term.

In hedge algebra approach, the quantitative semantics of terms comprises sev-
eral characteristics: numeric quantitative semantics, fuzziness measure, fuzzi-
ness intervals and similarity intervals of terms. They all have closed relation-
ships and are completely determined by providing fuzziness measure values of
the primary terms and hedges in question. Numeric semantic quantification
of a term x is realized by construction of a mapping f : X → [0, 1], where
unit interval [0, 1] is the normalized domain of the universe of discourse of X ,
which assigns a numeric value in [0, 1] to x. This mapping has to satisfy the
following conditions and is called a semantically quantifying mapping (SQM):

(i) It is one-to-one mapping and f(X) is dense in [0, 1], i.e. every value in the
universe is approximated by numeric semantics of terms in X;

(ii) It preserves the order of X.

Given an SQM f : X → [0, 1], denote by I(x) the least sub-interval of [0, 1]
containing the image f(H(x)), which is closed on the left and open on the
right, except the case where the right endpoint is equal to 1. This definition
ensures, by (6)− (9), that

• The family {I(y) : y ∈ H(x)} is a partition of I(x), for every x ∈ X.
• The family {I(x) : x ∈ Xk}, where Xk = {x ∈ H(G) : |x| = k}, is a

partition of [0, 1]. In particular, for k = 1, {I(c−), I(c+)} is a partition of
[0, 1].
• The family {I(y) : y ∈ Xk+1} is finer in the term of topology than {I(x) :
x ∈ Xk} and

I(x) = ∪{I(y) : y ∈ Xk+1, y = hx, h ∈ H} (10)

Since H(x) consists of the terms, which intuitively still contain a core meaning
of x, it can be considered as a fuzziness model of x. Hence, the interval I(x)
is called the fuzziness interval of x and its length, |I(x)|, is interpreted as
the fuzziness measure of term x, denoted by fm(x), for every x ∈ H(G).
Semantically, I(x) consists of numeric values that are compatible with the
semantics of x to a degree indicated by k = |x| and, hence, it is called also the
|x|-fuzziness interval of x. The larger the length of x is, the more compatible
the values of I(x) with the semantics of x to a degree |x| than with the
semantics of any y 6= x.

When particular terms associated with these intervals are not necessary to be
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mentioned, the intervals in {I(x) : x ∈ Xk} are called simply fuzziness interval
of a degree k of Xk.

Assuming that the proportion |I(hx)|
|I(x)| does not depend on a given term x, this

quantity is called the fuzziness measure of the hedge h, denoted by µ(h).

Thus, the quantitative notions of fuzziness of terms and hedges, fm(x) and
µ(h), can be defined formally in this approach and we have the following
properties:

(fm1) fm(0) = fm(W) = fm(1) = 0, fm(c−) + fm(c+) = 1.
(fm2) ∑

j∈[−q,p]
fm(hjx) = fm(x), x ∈ X, and ∑

x∈Xk

fm(x) = 1.

(fm3) fm(hx) = µ(h)fm(x), for hx 6= x, x ∈ X, and, hence, fm(y) =
µ(hm) . . . µ(h1)fm(c), where y = hm . . . h1c is the canonical representation
of y.

(fm4) ∑
−q≤i≤−1

µ(hi) = α, and ∑
1≤i≤p

µ(hi) = β, where α, β > 0 and α+ β = 1.

Thus, the fuzziness measure of the terms and the hedges, one of the afore-
mentioned characteristics of the quantitative term semantics, can be defined
based on a formalization of the qualitative semantics of terms and they will
play an important role in determining other characteristics of the quantita-
tive term semantics. The quantities fm(c−) (or fm(c+)) and µ(h), h ∈ H,
are the only parameters, called fuzziness parameters of X , for calculating the
characteristics of the quantitative semantics of terms. This may be compatible
with the intuitive idea that fuzzy information should be characterized by their
fuzziness.

3.3 SQMs induced by fuzziness measure

The SQM value of x to be defined comes with a meaning that it is the core
value of the fuzziness interval I(x), which is similar as the core of a fuzzy set.
However, in this approach, one can compute the SQM-values of terms, when
the fuzziness parameter values are given. To establish a formula for computing
an SQM ν, for a given fuzziness measure fm of AX , we look at the inequalities
given in (6) and (7) and note that ν preserves the order relationships between
terms. Then, we will see that ν(x) should be defined to assume the value lying
in between fuzziness intervals I(hx), h ∈ H−, and the ones I(hx), h ∈ H+, i.e.
in between I(h−1x) and I(h1x). Then, ν-values can be calculated recursively
as follows:

(SQM1) ν(W) = θ = fm(c−), ν(c−) = θ − αfm(c−) = βfm(c−), and
ν(c+) = θ + αfm(c+).
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(SQM2) ν(hjx) = ν(x) + Sgn(hjx)
([

j∑
i=sign(j)

fm(hix)
]
− ω(hjx)fm(hjx)

)
where ω(hjx) = 1

2 [1 + Sgn(hjx)Sgn(hphjx)(β − α)] ∈ {α, β}, for all j ∈
[−q, p].

This shows that the concept of SQMs can be defined by the fuzziness concept
of terms.

The SQM-values of terms represent numeric quantitative semantics of terms,
a characteristic of the quantitative semantics of terms, which carry also much
information about the meaning of the terms of X , since this approach guar-
antees that they are most compatible with their respective terms than other
values in the universe of discourse.

3.4 k-Similarity intervals of linguistic terms

A similarity relation [2,19], which is an equivalence relation on a universe of
discourse, is a fuzzy concept that is useful to manipulate fuzzy data in fuzzy
databases, but it has no relation with the inherent order-based semantics of
terms. To link this term semantics with this concept, the similarity intervals
of terms were defined in such a way that they are built up from fuzziness
intervals of Xk′ , for some k′ and a given fuzziness measure fm of X [14].

The problem is formulated as follows: for a given fm of X , a k > 0 and
a finite set of terms X(k) = {x ∈ X : |x| ≤ k}, construct a set of intervals,
{Tk(x)|x ∈ X(k)}, of the normalized reference domain [0, 1], called k-similarity
intervals, that satisfy the following conditions:

(S1) They form a partition of [0, 1].
(S2) Tk(x) contains one and only one the value ν(x) of the SQM ν induced
by fm and the values in Tk(x) can be considered as being similar with ν(x)
or, for convenience, compatible with the meaning of x to a degree k.

The condition (S1) guarantees that the set of k-similarity intervals of the terms
in X(k) determines a similarity relation on [0, 1] in the sense of Buckles and
Petry [2]. A crucial and important difference here is the semantic property
(S2), which states that the numeric values in each equivalence class of this
similarity relation, i.e. in each k-similarity interval, are compatible with the
semantics of a term in X(k) to a degree k.

This problem can be applied not only in the construction of semantic linguis-
tic scales in decision making, but also in other fields such as fuzzy classifica-
tion [15] and, possibly fuzzy databases.
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The idea for solving this problem is as follows. The fuzziness intervals in
{I(x) : x ∈ X ′k} of degree k′ of the terms of Xk′ , k′ > k, which in terms of
topology are finer that the fuzziness intervals of degree k, will be utilized to
be considered as elementary intervals for constructing k-similarity intervals,
noting that they constitute a partition of [0, 1]. Since each such an interval
comprises the values of [0, 1] that are similar with each other and compatible
with the semantics of its respective term in Xk′ to a degree k′, they can be
taken to form a neighbourhood basis for a topology. Similarly as generating
open sets of a topology, k-similarity interval of each term x of X(k) will be
constructed by taking the union of certain fuzziness intervals of Xk′that lie
around the SQM-value ν(x). In this way, the values of each resulting interval
can be considered as similar with each other and with ν(x) to a degree lower
than k′ but not less than k and, therefore, to the degree k. Thus, we construct
k-similarity intervals of the terms in X(k) by partitioning the set {I(x) : x ∈
Xk′} into clusters C(x), x ∈ X(k), that satisfy the following conditions:

(i) the clusters are disjoint and comprise consecutive fuzziness intervals,
(ii) each C(x) contains at least two fuzziness intervals of degree k′, whose com-

mon endpoint is ν(x), except for the clusters C(0) and C(1), they contain
at least one fuzziness interval, one of the end-points of which is 0 or 1,
respectively.

Such clusters C(x) always exist for k′ ≥ k + 1, if |H−| and |H+| ≥ 2, and
for k′ ≥ k + 2, if otherwise. Similar as in [15], for simplicity, in this study
k′ is selected to be the minimum, which satisfies the above stated conditions.
Then, Tk(x) is defined to be the set union of the intervals in C(x), x ∈ X(k).
Clearly, these intervals satisfy conditions (S1) and (S2) and, hence, they are
k-similarity intervals of X(k). For simplicity, to construct k-similarity intervals
of X(k) in this study we consider only the case that |H−| = |H+| = 1, e.g.
H− = {R} and H+ = {V }, and, hence, k′ = k+2. Then, the calculation of the
similarity intervals of terms can be established by a simple formula. In fact,
since the hedges R and V have different signs, for every term x, one of the
terms Rx and V x is smaller than x and the other is greater than x. Therefore,
it can be seen that the term-set of AX that is generated from a primary term
c ∈ G can be represented as a full binary tree: (i) c is assigned to the root of
the tree. (ii) The smaller term among Rx and V x is assigned to the left child
of the node x and the greater one is assigned to the right child of x.

The graph Gr(AX ) representing the term-set of AX comprises isolated nodes
of the constants C = {0,W,1} and the two trees associated with c ∈ G
arranged from left to right in accordance with their order. It can be checked
that this graph has the following properties:

Gr1) Xl is just the set of all terms of the same level l of the graph and X(l) is
the set of all terms assigned to the nodes of depth not greater than l (refer
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to Figure 2 for illustration).
Gr2) By the properties of the heredity of hedges exhibited in (5) and (8), we
observe recursively for any two consecutive terms xi and xi+1 in X(l), l > 0
and xi < xi+1, that

(i) There exists exactly one of them is of the length l.
(ii) For X(l), l > 0, in between any two consecutive terms xi and xi+1, xi <

xi+1, there is only one term y ∈ Xl+1, i.e. xi < y < xi+1, y ∈ {Rx, V x},
for some x ∈ Xl.

Gr3) The terms assigned to its nodes are positioned from left to right in
accordance with their linear order.

For x ∈ X(k), denote by xL and xR, respectively, the left and the right adjacent
terms of x defined in X(k). By (ii) of Gr2), there are exactly two terms xL,k+1
and xR,k+1 in Xk+1 satisfying the inequalities xL < xL,k+1 < x < xR,k+1 < xR.
Similarly, again by (ii) of Gr2) applied to the set X(k+1), there are exactly
four terms yL,k+2, zL,k+2, uR,k+2 and vR,k+2 in Xk+2 satisfying xL < yL,k+2 <
xL,k+1 < zL,k+2 < x < uR,k+2 < xR,k+1 < vR,k+2 < xR. Since the cluster C(x)
is defined based on the fuzziness intervals of Xk+2, it follows that C(x) =
{I(zL,k+2), I(uR,k+2)}. By the fact that the SQM ν preserves the order of the
terms of AX , these fuzziness intervals satisfy ν(xL,k+1) ≤ I(zL,k+2) ≤ ν(x) ≤
I(uR,k+2) ≤ ν(xR,k+1) (refer to Figure 1). Therefore, we have

Tk(x) = [ν(xL,k+1), ν(xR,k+1))
=
⋃
{I(y) : |y| = k + 2, I(y) ⊆ [ν(xL,k+1), ν(x)) or I(y) ⊆ [ν(x), ν(xR,k+1)}

(11)

� �- -

� -
Tk(x)

I(zL,k+2) I(uR,k+2)

xL,k+1 zL,k+2 uR,k+2 xR,k+1

x

Fig. 1. The k-similarity interval of x

Remark 3.1 We emphasize that all the four characteristics of the quanti-
tative semantics of terms, the fuzziness measure fm, the fuzziness intervals,
the k-similarity intervals and the fm-induced SQM ν, are completely deter-
mined, providing the values of the fuzziness parameters fm(c−), fm(c+) and
µ(h), h ∈ H, of X . Using the constraints given in (fm1) and (fm4), the nec-
essary number of such fuzziness parameters is only |H|+ |G| − 2 = |H|.
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4 4-Tuple representation of the semantics of linguistic terms and
4-tuple semantic linguistic scales

At the end of Subsection 3.4, it has been shown that we can associate every
term with a similarity interval, whose values are similar with its semantics
to a degree indicated by the maximal length of the terms in question. The
similarity interval associated with a term can be interpreted in this study as
its interval-semantics. Based on this we introduce a 4-tuple linguistic repre-
sentation model for developing semantic linguistic scales that may meet the
requirements discussed in Section 2 better than the existing linguistic scales
mentioned previously. An attempt to develop a semantic linguistic scale based
on a 3-tuple representation model was examined in [11], utilizing also order-
based semantics of terms. In that study, the linguistic scales are assumed to
be of the form X(l). In this study, the term-set T of every linguistic scale is
assumed to be a subset of X(l), T ⊆ X(l), for some positive integer l. It is
worth emphasizing that in our approach the semantics of a term in T may be
different from the semantics of the same term in X(l), since its semantics de-
pends on the presence of other terms. For instance, the semantics of “medium”
in the linguistic scale {0, bad,medium, good,1} is different from its semantics
in the case we add a term “Rather bad” more to this scale. The meaning of
“medium” in the latter scale is more specific than its meaning in the former
one. So, we may use the concept of the semantics of terms in the context of
T .

4.1 4-Tuple semantic linguistic representation model of linguistic scales

As mentioned previously, the semantics of terms is context-dependent, i.e. it
depends on which are their adjacent terms appearing together with them in
a given linguistic scales. Therefore, the semantics of each term in a linguistic
scale should be determined in the context of its adjacent terms in the scale.
From this viewpoint, we discuss fist about semantic properties that the term-
sets of linguistic scales should have.

We always assume that the term-set T intuitively should have the properties
that (i) (y = hx ∈ T ) ⇒ x ∈ T , and (ii) (h ≤ k & kx ∈ T ) ⇒ hx ∈ T .
In fact, the first property describes a practical requirement of an application.
For instance, assume that the term “very rather good” is required to use to
describe a property of certain students that they are very rather good. Then,
there are potentially also rather good students or good students in the same ap-
plication. That is the terms “rather good” and “good” should also be required
to present in T to describe the same property of certain application objects.
In other words, the term “very rather good” may have its full meaning only
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when it is present together with the terms “rather good” and “good” in T .
Similarly, Property (ii) can be explained as follows: if h ≤ k, e.g. h = rather
and k = little, we have little_good ≤ rather_good ≤ good. In term of gen-
eration of terms using hedges, the term “rather good” possesses the meaning
closer to the parent “good” than the term “little good” does and we interpret
the former term as a superior to the latter. Semantically, when both hedges
rather and little are needed to generate T , the presence of “rather good (stu-
dent)” will make the meaning of “little good student” more fully. Thus, it is
better that “little good” appears in T implies that “rather good” also does.
A term-set with these both properties is called superior-closed. For exam-
ple, the set T0 = {0, V ery_bad, bad,medium,Rather_good, V ery_good,1} ⊆
X(2) = T0 ∪ {R_bad, good} is not superior-closed since it contains the terms
Rather_good and V ery_good but not the term good.

To construct the interval-semantics of such a superior-closed term-scale T ⊆
X(l) = {x ∈ X : |x| ≤ l}, we assume that the l-similarity intervals of X(l) have
been constructed, which form a partition of [0, 1]. Since every x ∈ X(l) owns
an l-similarity interval, for x’s 6∈ T we lost their l-similarity intervals to cover
the whole interval [0, 1]. To retake the lost intervals we may link their terms
to certain terms in T , based on their semantic context and the superior-closed
property of T . For instance, the meaning of bad appearing in the context of
its adjacent terms V_bad and medium in T0 above is less specific or more
general than bad appearing together with the terms V ery_bad and R_bad
in X(2). The interval-semantics of R_bad that is absent in T0 will be gotten
back by determining the interval-semantics of bad in the context of it’s the
adjacent terms V_bad andmedium in T0, noting that bad is superior to R_bad
and, hence, to all terms, to which R_bad is superior. By the superior-closed
property of T0, these terns together with R_bad do not belong to T0. Since
bad is adjacent to V_bad in the context of the set X(2), the left part of the
similarity interval of bad should be determined in the context of X(2). While
since bad is adjacent to medium in the context of X(1) = X1, the right part of
the similarity interval of bad should be determined in the context of X1.

This suggests us the following way to define the interval-semantics of the terms
in T .

Since the qualitative semantics of a term x in T depends on the presence
of its left and right adjacent terms in T , the interval-semantics of x, I(x) =
[a, b), with ν(x) ∈ [a, b), will be defined based on the determination of its left
subinterval IL(x) = [a, ν(x)] and its right subinterval IR(x) = [ν(x), b). These
subintervals will be defined by utilizing the k-similarity intervals of X(k), for
k = 1, . . . , l. Since the specificity of a terms characterized by the number of the
occurrences of hedges in the canonical representation of terms is an important
characteristic in this definition, we suppose that T is of specificity of l > 1,
i.e. there is a term x ∈ T such that |x| = l. Given a set of the fuzziness
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parameter values of X , the k-similarity interval are completely determined
and we denote, for each x ∈ X(k), the left end-point of its similarity interval
Tk(x) by lepTk(x), where lep is an abbreviation of “left end-point”, and put
LTk(x) = [lepTk(x), ν(x)]. Similarly, the corresponding notations for the right
hand side of x are repTk(x) and RTk(x) = [ν(x), repTk(x)), where rep is an
abbreviation of “right end-point”.

For each x ∈ T , to define IL(x) and IR(x) we must determine the left adjacent
term xL of x in T , utilizing k-similarity intervals. In this study, we suppose
that the sets of hedges H− and H+ are singleton for simplification of the
proofs of the next propositions. However, such sets of hedges H− and H+ are
still sufficient for the construction of practical linguistic scales, since for X(2)
we have already a term-set with |X(2)| = 9. Moreover, if necessary, we may
extend to consider a larger set X(3).

First we show some properties of the structure of the term-scale T .

Proposition 4.1 Let T ⊆ X(l) be a superior-closed term-scale of AX with a
specificity l. For any two adjacent terms x and x′ of T , assuming x′ < x, we
have

(1) If x ∈ C = {0,W,1}, then x′ = h′q . . . h
′
1c, for some c ∈ G, and

c < h′1c < h′2h
′
1c < . . . < h′q . . . h

′
1c = x′

If x′ ∈ C, then x = hm . . . h1c, for some c ∈ G, and

c > h1c > h2h1c > . . . > hmhm−1 . . . h1c = x

(2) If x, x′ 6∈ C, then x, x′ ∈ H(c), for some c ∈ G, and, assuming x =
hm . . . h1c and x′ = h′q . . . h

′
1c, we have q 6= m and

(L1) For q < m, we have (i) x′ = x|q = hq . . . h1c, (ii) x′ < hq+1x
′ and (iii)

x′ < x = hm . . . hq+1x
′ < . . . < hq+2hq+1x

′ < hq+1x
′.

(L2) For q > m, we have (i) x = x′|m = hm . . . h1c, (ii) h′m+1x < x and (iii)
h′m+1x < h′m+2h

′
m+1x < . . . < h′q . . . h

′
m+1x = x′.

Proof : First, we prove the first statement of 1). By (8), we have {0} ≤ H(c−) ≤
{W} ≤ H(c+) ≤ {1}, which shows that x′ ∈ H(c), for some c ∈ G, i.e. it can
be written in the form x′ = h′q . . . h

′
1c. Now, suppose to the contrary that for

some j, 0 ≤ j ≤ q, we have h′jh′j−1 . . . h
′
1c ≤ h′j−1 . . . h

′
1c. From the proper effect

of h′j mentioned previously, it follows that h′jx′|j−1 < h′j−1 . . . h
′
1c = x′|j−1 < x,

which implies, by (6) or (7) and (8), that x′ ∈ H(h′jx′|j−1) < x′|j−1 < x ∈ C,
which contradict the fact that x′ and x are adjacent terms in T , as x′|j−1 ∈ T ,
by the superior-closed property of T . Since the second statement can be proved
analogously, the proof of 1) is complete. Now, we prove 2). Since x′ < x, by
the comparison criterion of hedge algebra AX given in Subsection 3.1, we have
(∃j){j ≤ min(m, q), h′i = hi, i = 1, . . . , j and h′j+1x|j < hj+1x|j}.
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Suppose firstly that j < min(m, q). This implies that h′j+1 and hj+1 are dif-
ferent from h0 = I, the identity hedge, by convention. Since H− and H+ are
singletons, hedges h′j+1 and hj+1 have different signs and, hence, h′j+1x|j <
x|j < hj+1x|j, which result in x′ ∈ H(h′j+1x|j) < x|j < H(hj+1x|j) 3 x, by (6)
or (7). From the condition x ∈ T and the superior-closed property of T , it fol-
lows that x|j ∈ T , which contradicts the assumption that x and x′ are adjacent
terms. Thus, we should have j = min(m, q). There are two possibilities:

• For j = q < m, we have x′ = x|q = hq . . . h1c, which implies that x ∈
H(hq+1x

′). By the comparison criterion of hedge algebras given in Subsec-
tion 3.1, from x′ < x one derives that x′ = h0x|q < hq+1x

′, i.e. (ii) of (L1)
holds. Using a similar argument as in the proof of 1) above, the inequalities
in (iii) can be proved and, hence, the proof of (L1) is complete.
• For j = m < q, we have x = x′|m = h′q . . . h

′
m+1x

′
|m. Then, h′m+1x < h0x|m =

x, i.e. (ii) of (L2), follows from x′ < x, by the comparison criterion. The
validity of the inequalities in (iii) of (L2) can easily be obtained in a similar
way as presented above. �

For illustration, consider the term x = V LV_bad of the linguistic scale
T ⊆ X(4), whose terms generated from the primary term “bad” are shown
in boldface in Figure 2. Consider x′ = V LV_bad and x = bad, i.e. q = 3 and
m = 0. It can be verified that (L2) is true in this case: (i) x = bad = x′|0, (ii)
h′1x = V_bad < x and (iii) h′1x = V_bad < LV_bad < V LV_bad = x′.

Before proving the next two propositions, we show the validity of the following
lemma.

Lemma 4.1 For any x, y and z, where x = hm . . . h1c, y = h′q . . . h
′
1c and z =

kn . . . k1c, the conditions that x < z < y, hi = h′i, for i = 1, . . . , p ≤ min(m, q),
and hp+1 6= h′p+1 result in ki = hi, for i = 1, . . . , p. That is, if x and y have a
maximal common suffix u = hp . . . h1c then u is also a suffix of z.

Proof : Indeed, by the comparison criterion of AX , it follows from x < z that
(∃j){j ≤ min(m,n), hi = ki, i = 1, . . . , j and hj+1x|j < kj+1x|j} and from
z < y that (∃j′){j′ ≤ min(n, q), h′i = ki, i = 1, . . . , j′ and kj′+1x|j′ < h′j′+1x|j′}.
It cannot happen that j, j′ < p and j 6= j′. In fact, for instance, if j < j′,
then we obtain h′j+1x|j = hj+1x|j < kj+1x|j, which implies by (6) or (7) that
y ∈ H(h′j+1x|j) < H(kj+1x|j) 3 z, a contradiction to the assumption made on
y and z. Similarly, if j′ < j, then kj′+1x|j′ < h′j′+1x|j′ = hj′+1x|j′ , which implies
that z < x, a contrary to the assumption. Now, assume that j = j′ < p. Then,
we have hj+1x|j < kj+1x|j < h′j+1x|j = hj+1x|j, again also a contradiction.
Thus, we should have j = j′ = p, i.e. u is also a suffix of z. �

Proposition 4.2 Let be given a superior-closed term-scale T of AX with a
specificity l. Then,
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(i) For every x ∈ T \ C, if xL (respectively xR) is the left (respectively the
right) adjacent term of x in T , then it is also the left (respectively the right)
adjacent term of x in XpL

(respectively, XpR
), where pL = max(|xL|, |x|) ≤ l

(respectively pR = max(|xR|, |x|) ≤ l).
(ii) In particular, if we have in addition that |x| = l, then xL (respectively xR)

is also the left (respectively the right) adjacent term of x in X(l).

Proof : We will only prove the proposition for the left adjacent term xL of x,
since the proof for xR can be obtained by an analogous argument.

As (ii) is a particular case of (i), we shall prove only (i).

• First we consider the case that xL ∈ C = {0,W,1}. Since xL and x are
adjacent terms in T , by 1) of Proposition 4.1, we have that x = hm . . . h1c
and h1c < c. Since |xL| = 1, we have pL = m. Suppose that there exists
z ∈ XpL

satisfying the condition xL < z < x. By (8) we have 0 < H(c−) <
W < H(c+) < 1, from which and the condition xL ∈ C, it follows that z and
x belong to the same H(c) and xL < H(c). Therefore, we may assume that
z = kn . . . k1c. By the comparison criterion given in Subsection 3.1, it follows
from z < x that (∃j){j ≤ min(n,m), hi = ki, i = 1, . . . , j and kj+1x|j <
hj+1x|j}. SinceH− andH+ are singleton, hedges kj+1 and hj+1 have different
signs and, hence, we have kj+1x|j < x|j < hj+1x|j. By (6) or (7) we obtain
z ∈ H(kj+1x|j) < {x|j} < H(hj+1x|j) 3 x, which implies that C 3 xL <
x|j < x, a contrary to the fact that x and xL are adjacent terms in T , as
x|j ∈ T , by the superior-closed property of T . This contradiction shows that
xL is also the left adjacent of x in X(pL), i.e. (i) is valid.
• Suppose that xL 6∈ C. Since, by the definition of xL, the adjacent terms x

and xL must belong to the same H(c), we may assume that x = hm . . . h1c,
xL = h′q . . . h

′
1c and m 6= q. Suppose the contrary that there exists z =

kn . . . k1c ∈ X(pL) satisfying xL < z < x.

Assume first that q < m and, hence, pL = m. By (L1) of Proposition 4.1,
xL = x|q = hq . . . h1c and xL < hq+1xL. Since |z| ≤ pL, we have n ≤ m = pL.
As xvertq is the maximal common suffix of xL and x, by Lemma 4.1, z|q = x|q.
By the comparison criterion of AX , from xL = x|q < z it follows that xL <
kq+1z|q = kq+1x|q. On the other hand, from z < x it follows that (∃j′){j′ ≤
min(n,m), hi = ki, i = 1, . . . , j′ and kj′+1x|j′ < hj′+1x|j′}. Suppose that j′ <
min(n,m) = n. Then, kj′+1 and hj′+1 are different from h0, the identity hedge,
and since H− and H+ are singleton, they have different sign and, hence,
kj′+1x|j′ < x|j′ < hj′+1x|j′ . These inequalities result in z ∈ H(kj′+1x|j′) <
{x|j′} < H(hj′+1x|j′) 3 x, based on (6) or (7). That is, by the superior-closed
property of T , there is x|j′ ∈ T lying in between xL and x, a contradiction to
the definition of xL. This shows that j′ = n, i.e. kj′+1 = kn+1 = h0 and z =
x|n = h0x|n < hn+1x|n, which implies again by (6) or (7) that z < H(hn+1x|n).
Since x ∈ H(hn+1x|n), we obtain xL < z = x|n < x, a contrary to the definition
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of xL, because x|n ∈ T .

Now, assume that m < q and, hence, pL = q. By (L2) of Proposition 4.1 we
have xL = h′q . . . h

′
m+1x and h′m+1x < x. Suppose that xL < z < x, where

z = kn . . . k1c ∈ X(pL), which implies that n ≤ q. Since x is the maximal
suffix of x and xL, it follows from Lemma 4.1 that z|m = x = xL|m. From
xL < z we infer that (∃j){j ≤ min(n, q), h′i = ki, i = 1, . . . , j and h′j+1xL|j <
kj+1xL|j}. If j < min(n, q), then h′j+1 6= h0 and kj+1 6= h0 and we have
h′j+1xL|j < xL|j < kj+1xL|j, since h′j+1 and kj+1 have different signs, by the
singleton property of H− and H+. Applying (6) or (7), these inequalities
result in H(h′j+1xL|j) < xL|j < H(kj+1xL|j). Since xL ∈ H(h′j+1xL|j) and
z ∈ H(kj+1xL|j), it follows that xL < xL|j < z < x, which contradicts the
definition of xL in T , as xL|j ∈ T , by the superior-closed property of T . Thus,
we should have j = min(n, q) = n and xL|n = z. Since xL 6= z, we have n < q,
kn+1 = h0 and h′n+1xL|n < h0xL|n = xL|n = z. Hence, again by (6) or (7),
H(h′n+1xL|n) < xL|n. As xL ∈ H(h′n+1xL|n), we obtain xL < xL|n = z < x, a
contrary to the definition of xL, since xL|n ∈ T .

Since the assumption made on z always leads to a contradiction, it is shown
that xL is also the left adjacent term of x in X(pL). �

Corollary 4.1 Proposition 4.2 is also valid for x ∈ C.

Proof : Since x ∈ C and x has the left adjacent term xL in T , we infer that
x 6= 0 and xL should be in the form xL = hm . . . h1c, as 0 < H(c−) < W <
H(c+) < 1. By the definition, the right adjacent of xL in T is just x. Therefore,
applying Proposition 4.2 to xL ∈ T \ C, x is also the right adjacent of xL in
X(pR) = X(pL) and, hence, xL is also the left adjacent term of x in X(pL).

By duality, the assertion is also true for the right adjacent term xR of x in T .
�

Proposition 4.2 and the corollary shown above come with some practical rele-
vance. As on the aforementioned discussion, the interval-semantics of a term
x in T should be defined in the context with xL and xR and the k-similarity
interval Tk(x) of a term x in X(k) is interpreted as an interval-semantics of x
defined in the context of T = X(k). Therefore, Proposition 4.2 and Corollary
4.1 provide a basis to determine the interval-semantics of x, I(x), in the con-
text of T . That is it is defined by the equality I(x) = IL(x) ∪ IR(x), where
IL(x) = LTpL

(x) and IR(x) = RTpR
(x), remembering that Tk(x), x ∈ X(k),

can be computationally determined for given k and fuzziness parameter values
of AX .

For example, let us consider again the term-set T with the specificity 4 repre-
sented in Figure 2 and the term x = V_bad. It can be seen that xL = 0 and
xR = LV_bad. Hence, pL = 2, pR = 3 and I(V_bad) = LT2(x) ∪ RT3(x).
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However, for y = LV_bad we can see that yL = V_bad and yR = V LV_bad
and, therefore, I(LV_bad) = LT3(x) ∪RT4(x).

Fig. 2. The tree structure of T ⊆ X(4)

This suggests us to introduce that following definition, which is correct based
on Proposition 4.2 and Corollary 4.1.

Definition 4.1 Let be given the fuzziness parameter values of AX . Then, for
every x ∈ T , the interval-semantics of x in the context of T is defined to be
the interval I(x) = IL(x) ∪ IR(x), where IL(x) = LTpL

(x) = [lptTpL
(x), ν(x)]

with pL = max(|xL|, |x|) and IR(x) = RTpR
(x) = [ν(x), rptTpR

(x)) with pR =
max(|xR|, |x|). Obviously, the numeric quantitative semantics ν(x) ∈ I(x) and
the similarity degree of the elements of I(x) with the semantics of x can be
indicated by p = min(pL, pR). Consequently, if both the terms xL and xR
of x in T are also the left and the right adjacent terms of x in X(k), then
I(x) = Tk(x), where k = pL = pR.

For example, in the example given just above, the degree of similarity of
I(V_bad) = 3, while the one of I(LV_bad) = 4.

Proposition 4.3 The set of the interval-semantics I(x) = IL(x) ∪ IR(x),
x ∈ T , defined as in Definition 4.1 forms a partition of [0, 1].

Proof : Since T is finite and totally ordered, we assume that T = {xj : 0 ≤
j ≤ l} and x0 = 0 < x1 < . . . < xl = 1. By the definition, ν preserves the
order relation, it follows that 0 = ν(0) < ν(x1) < . . . < ν(xl−1) < ν(1) = 1.
Thus, to prove the proposition, it is sufficient to show that for every pair of
consecutive terms xj and xj+1 in T , IR(xj) ∩ IL(xj+1) = ∅ and IR(xj) and
IL(xj+1) cover the interval [ν(xj), ν(xj+1)].

Indeed, obviously we have xj,R = xj+1 and xj+1,L = xj in T and, therefore,
IR(xj) = RTpR

(xj) and IL(xj+1) = LTpL
(xj+1), where pR = max(|xj,R|, |xj|) =

max(|xj+1|, |xj|) = max(|xj+1|, |xj+1,L|) = pL, by Definition 4.1. Since the sim-
ilarity intervals of the term in X(pL) are pairwise disjoint, we have TpR

(xj+1)∩
TpL

(xj+1) = TpR
(xj) ∩ TpL

(xj+1) = ∅ and, hence, it follows that IR(xj) ∩
IL(xj+1) = RTpR

(xj) ∩ LTpL
(xj+1) = ∅. Clearly, we have IR(xj) ∪ IL(xj+1) =

[ν(xj), ν(xj+1)], by Definition 4.1. �
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So, each term x of X can be associated with an interval I(x) which represents
an interval-semantics of x. This suggests us to introduce the following notion
of 4-tuple semantics representation model of linguistic terms for a general case.

Definition 4.2 Let be given a linguistic variable X and its numeric reference
domain U , 4-tuple semantic representation of x, x ∈ Dom(X ), is a 4-tuple
defined in the following form:

(x, I(x), Q(x), rx) (12)

where I(x) ⊆ U and Q(x) ∈ I(x) are declared to be the interval-semantics
and the numeric quantitative semantics of the term x, respectively, and rx is
an arbitrary value in I(x).

It is obvious that (12) can be considered as an extension of the linguistic
representation of terms given in (1) that one has used in practice. In gen-
eral, this 4-tuple semantic representation model of linguistic terms represent
a compound relationship, which relates the quantitative semantics with the
qualitative semantics of terms. The meaning of the components of (12) is that x
carries a qualitative meaning, which is determined in a semantic order-based
term-set. The second component represents an interval-semantics of x. The
third represents its numeric quantitative semantics of x, considered as to be
the value most compatible with x among the values of the interval-semantics
of x or the core of this interval-semantics. The fourth is intended to represent
a numeric assessment, which represents a user numeric assessment considered
as his approximation of the semantics of x. Similarly as in the case of 2-tuple
linguistic representation [8,9], the quantity rx − ν(x) reflects how large dif-
ference of a numeric assessment from the core of the interval-semantics of x.
That is (12) may bring useful information.

The concept of 4-tuple semantic representations of terms given in (12) permits
a possibility to unify the ordinary numeric scales associated with the linguistic
ones. This may be a potential demand of many practical applications. For
example, when we are required to deal with a data warehouse of historical
project bid data, the one part of which may include numeric assessments given
by certain experts for a certain criterion, while the other part of which may
include linguistic assessments for the same criterion given by other experts.
It seems to be practical to imagine that in the case of a social investigation
through social network, for flexible, we may design two parallel numeric and
linguistic scales to permit people to express their opinion by choosing numeric
or linguistic assessments.

In the case someone chooses a linguistic assessment, say xj, his opinion is au-
tomatically represented in the system as the 4-tuple (xj, I(xj), Q(xj), Q(xj)),
since Q(xj) and I(xj) have been declared in advance. In the case someone
chooses a numeric assessment, say r0 ∈ [0, 1], a normalized interval of the nu-
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meric assessments, we will show below that this opinion will be automatically
represented uniquely as the respective 4-tuple (x(r0), I(x(r0), Q(x(r0)), r0).

4.2 4-Tuple semantic linguistic scales and their computation features

In this subsection we will show that semantic linguistic scales using the above
semantic 4-tuple semantic representation model of terms will have a rich func-
tionality. In this study, we distinguish between linguistic scales, whose carry
their own order-based semantics the experts use to express their assessments,
and their respective semantic linguistic scales expressed in terms of 4-tuple se-
mantic representation model, whose 4-tuples form an underlying set of a rich
computational structure. Since the terms in linguistic scales are elements of a
hedge algebra associated with the linguistic variable in question, we introduce
the following definition, noticing that a term x is more specific than a term y
if |x| ≥ |y|, i.e. the number of hedge occurrences in x is greater than the one
in y. Thus, the length of terms characterizes their specificity level.

Definition 4.3 Given a hedge algebra AX = (X,G,C,H,≤) associated with
X . A term-set S = {s0, . . . , sg} ⊆ X is said to be a superior-closed linguistic
scale with a specificity level l if it satisfies the following conditions:

(i) ∃s ∈ S such that |s| = l and S is totally ordered by ≤.
(ii) c−, c+,0,W,1 ∈ S.
(iii) The term-set S is superior-closed.

It is different from the 2-tuple approach, in this study it is not required that
the cardinality |S| is an odd number, since S will be associated with a semantic
linguistic scale which is constructed based on only the qualitative semantics of
linguistic terms themselves. Condition (i) is a natural requirement. (ii) is nec-
essary, since they are elementary vague concepts for determining other terms
in the context of their presence. (iii) is required by the previous discussion of
the superior-closed notion.

As S is not a computational structure, a semantic linguistic scale with nec-
essary computational features in company with S will be introduced based
on 4-tuple semantic representation model of terms, called 4-tuple semantic
linguistic scale.

Definition 4.4 A 4-tuple semantic linguistic scale (4-tSLS) of a specificity
level l associated with the given linguistic scale S is the set of 4-tuples,
SQ,l = {(s, I∂(s)(s), Q(s), rs) : s ∈ S, rs ∈ I∂(s)(s)}, that satisfies the following
conditions:

(S1) S satisfies Definition 4.3.
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(S2) I∂(s)(s) and Q(s) are, respectively, the interval-semantics and numeric
quantitative semantics of s ∈ S, that are declared explicitly and uniquely
defined in some way. The values of I∂(s)(s), s ∈ S, can be interpreted as
being similar with s (i.e. with Q(s)), to a degree indicated by the numeric
value ∂(s). In addition, the interval-semantics of the terms in S form a
partition of [0, 1].

(S3) For any s, s′ ∈ S, s ≤ s′ ⇒ I∂(s)(s) ≤ I∂(s′)(s′)
(S4) Q(s) ∈ I∂(s)(s), s ∈ S.

The following proposition shows the existence of the 4-tuple semantic represen-
tation of any given numeric assessment and describes the relationship between
numeric assessments and linguistic assessments utilizing the scale SQ,l.

Proposition 4.4 Given a 4-tSLS SQ,l, every numeric assessment r is repre-
sented by a unique 4-tuple in SQ,l, denoted by (t(r), I(t(r), Q(t(r)), r), and
if r ≤ r′, then their respective terms t(r) and t(r′) satisfy the inequality
t(r) ≤ t(r′).

Proof : Since, by (S2) of Definition 4.4, the interval semantics I∂(s)(s), s ∈ S,
form a partition of [0, 1], for any r ∈ [0, 1], there exists only one term s such
that r ∈ I∂(s)(s). Moreover, its interval semantics I∂(s)(s) and its numeric
quantitative value Q(s) are uniquely defined and, hence, the first statement
of the proposition is valid.

Now, suppose that r ≤ r′. In the case that the numeric assessments r and
r′ belong to the same interval-semantics I(s) of a certain term s, we have
clearly that t(r) = t(r′) = s. In the case that r ∈ I(t(r)), r′ ∈ I(t(r′)) and
I(t(r)) 6= I(t(r′)), from r ≤ r′ and the fact that I(t(r)) and I(t(r′)) are disjoint
it follows that I(t(r)) ≤ I(t(r′)) and, therefore, t(r) ≤ t(r′) follows from (S3)
of Definition 4.4. �

Note again that Definition 4.4 and Proposition 4.4 have been examined in a
general case. In the approach based on hedge-algebra-based linguistic seman-
tics, we have the following.

Proposition 4.5 Given a hedge algebra AX = (X,G,C,H,≤) of a linguistic
variable X and S is a superior-closed linguistic scale with specificity level l
defined based on AX . Then, for each given set of fuzziness parameter values
of AX , the set Sν = {(s, I∂(s)(s), ν(s), rs) : s ∈ S, rs ∈ I∂(s)(s)}, where I∂(s)(s)
is defined as in Definition 4.1 and ν is the SQM induced by the fuzziness mea-
sure defined by the given fuzziness parameter values, satisfying the following
primary properties:

(i) Sν is 4-tuple semantic linguistic scale associated with S.
(ii) Every interval I∂(s)(s) is defined and calculated based on the semantics of
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the terms of AX : I∂(s)(s) = IL(s) ∪ IR(s) and

I∂(s)(s) =
⋃
{I(x) : x ∈ Xl+2 and I(x) ⊆ [ν(sL,pL+1), ν(sR,pR+1)} (13)

Proof : To prove (i), it is easily seen that (S2) of Definition 4.4 follows from
Definition 4.1 and Propositions 4.3. The validity of (S3) follows from the fact
that intervals I∂(s)(s), s ∈ S, are disjoint and the SQM ν preserves the order
relation of S. Since (S1) and (S4) are clearly satisfied, Sν is a 4-tuple semantic
linguistic scale, by Definition 4.4.

Now, we prove the statement (ii). Since S is a superior-closed linguistic scale
with specificity of level l, we have S ⊆ X(l) and, for every s ∈ S, the
interval-semantics I∂(s)(s) = IL(s) ∪ IR(s) defined by Definition 4.1, where
∂(s) = min(pL, pR), is well-defined based on Proposition 4.2 and Corollary
4.1. This shows that I∂(s)(s) can be calculated based on the k-similarity inter-
vals of terms and, hence, the fuzziness intervals of terms, which are two of the
characteristics of the quantitative semantics of terms examined in Section 3.
That is I∂(s)(s) is defined and calculated based on the qualitative and quan-
titative semantics of terms of AX , giving the fuzziness parameter values, by
Remark 4.1.

By Definition 4.1, we have IL(s) = LTpL
(s), where pL = max(|sL|, |s|) ≤ l

with sL is the left adjacent term of s in S. Denoting by sL,pL+1 and sR,pL+1
the left and the right adjacent terms of s in the term-set XpL+1, respectively,
by formula (11),

TpL
(s) = [ν(sL,pL+1), ν(sR,pL+1))

=
⋃
{I(z)|z ∈ XpL+2 & I(z) ⊆ [ν(sL,pL+1), ν(s)) or I(z) ⊆ [ν(s), ν(sR,pL+1))}

This implies that IL(s) = [ν(sL,pL+1), ν(s)) = ⋃{I(z) : z ∈ XpL+2 & I(z) ⊆
[ν(sL,pL+1), ν(s))}. Since pL+2 ≤ l + 2 and, by inductive derivation from (10),
each fuzziness interval of XpL+2 is the union of the fuzziness intervals of Xl+2,
we infer that

IL(s) =
⋃
{I(z) : z ∈ Xl+2 & I(z) ⊆ [ν(sL,pL+1), ν(s))}

Analogously, we have

IR(s) = RTpR
(s) = [ν(s), ν(sR,pR+1))

=
⋃
{I(z) : z ∈ Xl+2 & I(z) ⊆ [ν(s), ν(sR,pR+1))}

Since I(s) = IL(s) ∪ IR(s), the formula (13) follows. �

Before the examination of the computational structure of 4-tuple semantic
linguistic scales we consider the following example.
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Example 4.1 Construction of a 4-Tuple semantic linguistic scale: As men-
tioned previously, a practical linguistic scale used in schools of Vietnam is the
following:

{(Bad, [0.0, 3.5)), (Weak, [3.5, 5.0)), (Medium, [5.0, 6.5)), (Fair, [6.5, 7.5)),
(Good, [7.5, 8.5)), (V eryGood, [8.5, 9.5)), (Excellent, [9.5, 10.0])}

We show that this practical scale can be represented approximately as a 4-
tuple semantic linguistic scale defined above. For illustration of the proposed
method, the scale construction comprises following tasks:

��
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V_bad R_bad

@
@
@
@@

@
@
@
@@

�
�

�
��

R_good V_good

0 bad medium good 1

Fig. 3. The tree representing the structure of S ⊆ X(2)

(i) Determining a hedge algebra for this scale: Since the terms of linguistic
scales examined in this study should be certain terms of a hedge algebra, we
assume that AX = (X,G,C,H,≤) is defined with G = {bad, good}, H =
{R, V }. Let us consider the linguistic scale T , which is represented as a tree
with term labels shown in boldface in Figure 3. Then, the linguistic terms
present in (14) are converted to the terms of AX as follows:

Excellent , 1, V ery good , V ery good, Good , good,

Fair , Rather good, Medium ,W, Weak , Rather bad, Bad , {bad,0}

where Bad defined by the set {bad,0} means that the concept Bad comprises
two concepts bad and 0, since in accordance with his school education policy
the user does not require to distinguish them. So,

S = {Bad,R_bad,W, R_good, good, V_good,1} ⊆ X(2) ∪ C

(ii) The construction of 4-tuple semantic linguistic scale for the given linguistic
scale S

The question is to determine a value of the fuzziness parameter so that inter-
vals I∂(s)(s), s ∈ S, of the constructed 4-tuple semantics linguistic scale are
more or less equal to the interval-semantics of the terms given in (14).

• Construction of 4-tuple semantic linguistic scale for the given S
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Since the specificity level of S is l = 2, by (13) it is required to consider
fuzziness intervals of X4, which consists of the following terms:

V V V c−, RV V c,RRV c−, V RV c−, V RRc−, RRRc−, RV Rc−, V V Rc−,

V V Rc+, RV Rc+, RRRc+, V RRc+, V RV c+, RRV c+, RV V c+, V V V c+

+ Compute fuzziness intervals of terms in X4 and the similarity intervals of
X(2) ∪ C

Since the interval-semantics of “Medium” given in (14) is [5.0, 6.5) of the
numeric scale [0,10], the fuzziness parameter values are determined so that
the left end point of I2(W) is 0.5 in the interval [0,1]. Thus, we should have
the following equality, utilizing the constraints (fm1) – (fm4) imposed on the
fuzziness measure fm given in Subsection 3.2:

fm(c−) = 0.5/µ2(V )(1− µ(V ))

which implies that µ(V ) = 0.484 and fm(c−) = 0.5687. Then, we obtain the
values of the fuzziness measure of the terms in X4 as presented in Table 1
below.
Table 1

a) The fuzziness measure of terms in X4 generated from c−

V V V c− RV V c− RRV c− V RV c− V RRc− RRRc− RV Rc− V V Rc−

0.0645 0.0687 0.0733 0.0687 0.0733 0.0781 0.0733 0.0687
b) The fuzziness measure of terms in X4 generated from c+

V V Rc+ RV Rc+ RRRc+ V RRc+ V RV c+ RRV c+ RV V c+ V V V c+

0.0521 0.0556 0.0592 0.0556 0.0521 0.0556 0.0521 0.0489
c) SQM-values in [0, 10] of terms in the linguistic scale S

0 bad R_bad medium R_good good V _good 1
0 2.75 4.27 5.79 6.77 7.91 8.99 10.0

Using these values, we can easily calculate the fuzziness intervals of terms of
X4 and the similarity of terms in X(2) ∪C, (utilizing the fact that noting that
they form a partition of [0,1]).

+ Compute the interval-semantics of the terms in S

Now, we compute the actual intervals I2(s), s ∈ S, and obtain the following,
recalling that the maximum numeric mark is 10 and, hence, the interval-
semantics and the SQM-values in the interval [0,1] are multiplied by 10.

– I1(Bad) = I1(0) ∪ I1(bad) = [0, 3.49), as Bad = {0, bad} and IR(bad) =
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RT2(bad) and, therefore, by formula (13) of Proposition 4.5, it follows that

I1(Bad) = T1(0) ∪ LT1(bad) ∪RT2(bad) = [0.0, lptI1(Bad)) = [0, 3.49)

since from the values of the fuzziness measure of terms given in Table 1 we
have

|I1(Bad)| =[fm(V V V c−) + fm(LV V c−) + fm(LLV c−)
+ fm(V LV c−) + fm(V LLc−)]× 10.0 = 3.49

– Since the interval-semantics of the remaining terms s in S are defined in the
context of X(2), they are identical with their 2-similarity intervals. Similarly
as above, by (13), we obtain

I2(Weak) = T2(R_bad) = [3.49, 5.0); I2(Medium) = T2(W) = [5.0, 6.21)
I2(Fair) = T2(R_good) = [6.21, 7.36); I2(Good) = T2(good) = [7.36, 8.43)
I2(V ery good) = T2(V_good) = [8.43, 9.51); I2(Excellent) = T2(1) = [9.51, 10.0]

Thus, the 4-tuple semantic linguistic scale associated with the given linguistic
scale comprises the following 4-tupe-marks:

(Bad, [0, 3.49), 2.75, r1), r1 ∈ I1(Bad)

(Weak, [3.49, 5.0), 4.27, r2), r2 ∈ I2(Weak)

(Medium, [5.0, 6.21), 5.79, r3), r3 ∈ I2(Medium)

(Fair, [6.21, 7.36), 6.77, r4), r4 ∈ I2(Fair)

(Good, [7.36, 8.43), 7.91, r5), r5 ∈ I2(Good)

(V_Good, [8.43, 9.51), 8.99, r6), r6 ∈ I2(V_Good)

(Excellent, [9.51, 10.0], 10.0, r7), r7 ∈ I2(1)

Note that although the term Bad is defined to be the join of the terms
0, V_bad and bad, the 4-tuple-assessment associated with Bad still carries
specific semantic feature of term bad. In fact, similarly as for the 2-tuple
approach, utilizing the quantity (r1 − 2.75), where 2.75 = ν(bad), the core
meaning of bad, we observe that the larger the absolute value of this quantity,
the lower its compatibility with the meaning of the term bad.

We observe that these above interval-semantics are approximately equal to the
respective intervals of the given linguistic scale in practice exhibited in (14).
This highlights the advantage of the proposed approach. It is worth stressing
the flexibility of the method itself.
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4.3 The computational structure of 4-tuple semantic linguistic scales

We show that the proposed semantic linguistic scales exhibit a desired com-
putational structure. For simplicity, the indexes of interval-semantics of terms
indicating its similarity degree will be ignored, if it is not necessary that they
need to be declared explicitly.

4.3.1 Order relation on 4-tuple linguistic scales

Definition 4.5 Let two 4-tuples (x, I(x), ν(x), r) and (x′, I(x′), ν(x′), r′) be
given. We shall write

(x, I(x), ν(x), r) ≤ (x′, I(x), ν(x′), r′)

if and only if one of the following conditions holds:

(i) x ≤ x′.
(ii) x = x′ and r ≤ r′.

It can easily be seen that if

(x, I(x), ν(x), r) ≤ (x′, I(x′), ν(x′), r′) and (x, I(x), ν(x), r) ≥ (x′, I(x′), ν(x′), r′)

then (x, I(x), ν(x), r) ≡ (x′, I(x′), ν(x′), r′), i.e. all their components are re-
spectively identical. Moreover, the linearity of the sets S and [0, 1] implies the
linearity of the 4-tuple semantic linguistic scales.

The following corollary is an immediate consequence of the above definition
and Definition 4.4:

Corollary 4.2 Every 4-tuple semantic linguistic scale associated with S is
totally ordered.

4.3.2 Aggregation on 4-tuple linguistic scales

One of the main aims of the study is to construct a semantic linguistic scale
on which we can realize easily necessary operations to aggregate linguistic as
well as numeric assessments of experts properly. Related to this there are two
examination tasks. The first one that we have tried to solve up to now is to
ensure that every 4-tuple of the semantic linguistic scale represents the order-
based semantics of a term as much as possible. The second one we will show
that the developed semantic linguistic scales have necessary computational
structure.
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To realize this, we introduce the following definition.

Definition 4.6 Let be given a 4-tuple semantic linguistic scale associated
with S with a specificity of level l, SQ,l, and a numeric aggregation operator
α in Yager’s sense working on a normalized interval [0, 1]. The operator α will
induce an aggregation operation Aggα on SQ,l defined as follows:

Aggα(a) = Aggα(a1, . . . , an) = (t(ra), I(t(ra), ν(t(ra), ra)

where a = (a1, . . . , an) is a vector of 4-tuple representations of terms, i.e., ai =
(xi, I(xi), ν(xi), ri), i = 1, . . . , n, ra = α(r1, . . . , rn) and (t(ra), I(t(ra), ν(t(ra), ra)
is the 4-tuple in the scale uniquely defined by Proposition 4.4.

This definition is very similar to aggregation operators used in practical deci-
sion making applications. For instance, in evaluation of students or of bids for
project contract, experts may evaluate them with respect to different criteria
using numeric scales and then aggregate their assessments. The evaluation ob-
jects will be classified into the classes labeled by certain linguistic terms, the
semantic intervals associated with which contain their respective aggregation
results. However, with 4-tuple semantic linguistic scales experts may express
their assessments by either numeric values or linguistic values present in the
scales.

Proposition 4.6 The constructed 4-tuple semantic linguistic scale associated
with a given superior-closed linguistic scale is closed with respect to the aggre-
gation operator Aggα. Moreover, Aggα is increasingly monotonic and if the
numeric aggregation operation α strictly increases, then so does Aggα.

Proof : The first statement of the proposition is obviously true in light of the
correctness of the definition of Aggα. By Proposition 4.4 and Definition 4.5,
the monotonicity is derived from the monotonicity of Aggα. Now, using the
notations in Definition 4.6, assume that a = (a1, . . . , an) < b = (b1, . . . , bn),
which implies that ai = (xi, I(xi), ν(xi), ra,i) < bi = (yi, I(yi), ν(yi), rb,i), for
some i. From Definition 4.5, it follows that ra,i < rb,i. By the strict mono-
tonicity of α, we have ra = α(ra,1, . . . , ra,n) < rb = α(rb,1, . . . , rb,n), which by
Definition 4.5 leads to (t(ra), I(t(ra), ν(t(ra), ra) < (t(rb), I(t(rb), ν(t(rb), rb),
as the terms t(ra) and t(rb) satisfying t(ra) ≤ t(rb), by Proposition 4.4. �

Now, we can show that the proposed 4-tuple semantic linguistic scales meet
well all three requirements discussed in Section 2.

+ For Requirement 1: To meet this requirement is a main purpose of the study,
in which the qualitative semantics of linguistic scales modeled by hedge al-
gebra structure is proposed, and their quantitative semantics is declared ex-
plicitly by introducing 4-tuple representation of terms as examined above.
There is a strict formalism to relate the quantitative semantic aspects of the
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4-tuple semantic representations of the terms and their qualitative seman-
tics, as presented in Section 3. The method of the construction of semantic
linguistic scales proposed in this study is a unique approach up to now that
bases on the order-based qualitative semantics of terms.

+ For Requirement 2: It has been shown that the components I(s) and ν(s) are
computed based on essential concepts of the quantitative semantics of terms,
the SQMs, fuzziness measure, fuzziness intervals and similarity intervals of
terms, that can be determined by formal procedures, providing fuzziness
parameter values. Since once I(s) and ν(s) have been defined, every value
r ∈ I(s) determines a 4-tuple semantic representation of s, the constructed
semantic linguistic scale is completely determined by a formal procedure.
Thus, these semantic linguistic scale has the properties (Pr1) and (Pr2) and,
hence, this requirement is well satisfied.

+ For Requirement 3: The 4-tuple semantic scales have many significant ad-
vantages in the field of fuzzy decision making. The first, it can be considered
as an immediate generalization of many practical linguistic scales of simi-
lar forms as that given in (1). The second, these semantic linguistic scales
associated with a given superior-closed linguistic scale can be automati-
cally constructed, providing its fuzziness parameter values. The third, these
scales can be considered as a unification of the linguistic scales and their
numeric reference domains that allows experts to express their assessments
in terms of numeric values or linguistic values. The fourth, similarly as in
the LOWA-based or 2-tuple representation approaches, the aggregation op-
erators are defined in a very simple way, as they work on numeric values. It
is important that the scales are closed with respect to many useful aggre-
gation operations examined by Yager in [28] and it is easy to convert their
numeric results into their respective linguistic terms. These show that these
scales meet this requirement.

5 A comparative study using multi-criteria decision making

In this section, we consider a multi-criteria decision problem using two linguis-
tic scales of different cardinalities for a comparative study of two approaches,
the proposed 4-tuple based approach and the 2-tuple based approach.

A method for solving group multi-criteria decision making problems comprises
two main tasks: (i) collecting assessments of experts with respect to criteria
for the alternatives in question, utilizing the given linguistic scale, and (ii)
aggregating the collected expert assessments. For simplicity, we will consider
multi-criteria decision making problems with a unique expert, since in the case
with a group of experts it is required to implement an additional aggregation
scheme.
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Let us consider a decision making problem with two alternatives A1 and A2
and three criteria Ck, k = 1, 2, 3. For simplicity, we assume that the expert use
the same linguistic scale to express the assessments of her/his evaluation of all
the alternatives under consideration with respect to these distinct criteria. In
addition, to make a clearly visible difference of the proposed approach from
the 2-tuple based approach, two linguistic scales are applied in turn, the one
is a proper subset of the other, given as follows:

(1) The scale

S1 = {si : i = 1, . . . , 9}
= {E_bad , 0, V_bad, bad,R_bad,medium,
R_good, good, V_good, Excellent , 1}

(2) The scale examined in Example 4.1 with

S2 = {s2,i : i = 1, . . . , 5}
= {bad,R_bad,medium, good, Excellent , 1}
= S1 \ {E_bad , 0, V_bad,R_good, V_good}

The 4-tuple semantic linguistic scale associated with S1 = X(2)∪C constructed
by the method as described in Section 4, using the same fuzziness parameter
values given in Example 4.1, is exhibited as follows:

(E_b., [0, 0.65), 0.31, r1), r1 ∈ I2(0); (V_b., [0.65, 2.07), 1.33, r2), r2 ∈ I2(V_b.)
(b., [2.07, 3.49), 2.75, r3), r3 ∈ I2(b.); (R_b., [3.49, 0.5), 4.27, r4), r4 ∈ I2(Rb.)
(W, [0.5, 6.21), 5.69, r5), r5 ∈ I2(W); (R_g., [6.21, 7.36), 6.77, r6), r6 ∈ I2(Rg.)
(g., [7.36, 8.43), 7.91, r7), r7 ∈ I2(g.); (V_g., [8.43, 9.51), 8.99, r8), r8 ∈ I2(V_g.)
(Excellent, [9.51, 1.0), 10.0, r9), r9 ∈ I2(1)

The aim of the comparative study is to show that while the decision results of
the proposed method depend strongly on the inherent qualitative semantics
of terms in the context of their scale, themselves, but do not depend on the
cardinality of the scales, it does not happen for the 2-tuple based approach.
With this aim and since S2 is a proper subset of S1, we have to assume that
the hedge algebras for representing the terms in the given linguistic scales and
the fuzziness parameter values for constructing the 4-tuple semantic linguistic
scales are the same. This ensures that the linguistic assessments of the expert
using terms in S2 ⊆ S1 can be regarded as the same assessments of him-
self, when he uses the scale S1. With these assumptions, the 4-tuple semantic
linguistic scale associated with S2 can be constructed and it consists of the
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following 4-tuples:

(b., [0, 3.49), 2.75, r1), r1 ∈ I1(b.); (R_b., [3.49, 0.5), 4.27, r2), r2 ∈ I2(R_b.)
(W, [5.0, 6.77), 5.69, r3), r3 ∈ I1(W); (Good, [6.77, 8.99), 7.91, r4), r4 ∈ I1(G.)
(Excellent, [8.99, 10.0], 10.0, r7), r7 ∈ I1(Excellent)

5.1 Case 1 – the use of scale S1

Assume that the expert expresses his assessments of the two given alternatives
with respect to the three criteria as represented in Table 2, in which are
given also the weights of the criteria, supposing that the selected aggregation
operation is the weighted average.

Now, we are ready to compute the results of aggregation for both approaches
and their aggregation results are represented in Table 3. For the 2-tuple ap-
proach, the aggregation result of A1 and A2 are represented by (R_good, 0.48)
and (good,−0.45), respectively, and, therefore, A2 is the best alternative.
For the 4-tuple approach, the first alternative A1 is preferable over A2, as
(R_g., [6.21, 7.36), 6.77, 7.30) > (R_g., [6.21, 7.36), 6.77, 7.19), where the first
4-tuple is the aggregation result of A1 and the second one is the aggregation
result of A2. Note that since his assessments are linguistic, the fourth compo-
nents of the 4-tuples representing his assessments are identical with the third
components, i.e. the SQM-values of his linguistic assessments.
Table 2
The evaluation provided by experts with respect to given criteria and their weights

Alternatives
Criteria and weights

C1, w1 = 0.25 C2, w2 = 0.51 C3, w3 = 0.24
A1 s9 = Excellent s5 = medium s7 = good

A2 s4 = R_bad s9 = Excellent s4 = R_bad

So, the two approaches produce different preferable alternatives. Because the
4-tuple approach exhibits a richer semantic representation of terms and more
formalized fundamentals for constructing linguistic scales than the 2-tuple
approach does, we are convinced that the result produced by the 4-tuple ap-
proach is more appropriate than the one produced by the 2-tuple approach.

5.2 Case 2 – using the scale S2

The purpose of this subsection is to show the following situation that the result
of multi-criteria decision methods depend strongly on the number of terms in
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Table 3
The weighted average results

C1 C2 C3 Aggregation
w1 = 0.25 w2 = 0.51 w3 = 0.24

2-Tuple approach
A1 (s9, 0) (s5, 0) (s7, 0) (s6, .48)
A2 (s4, 0) (s9, 0) (s4, 0) (s7,−.45)

4-Tuple approach
A1 10.0 5.69 7.91 7.30
A2 4.27 10.0 4.27 7.19

the given linguistic scales for the 2-tuple approach, while this situation does
not occur for the proposed 4-tuple approach. So, we have assumed that S2
given above is a proper sub-scale of S1 and, hence, the number of the terms
in S1 is reduced from 9 to 5, the number of the terms in S2.

We observe that the expert’s linguistic assessments given in Table 2 are in-
cluded in S2 and, the expert tries to focus on the inherent qualitative semantics
of the terms in the given scale, when he expresses his linguistic assessments.
This is a basis to permit us consider these linguistic assessments also as being
his assessments using the linguistic scale S2, although their semantics may
be changed a bit by the influence of a possible change in their left and right
adjacent terms in S2. This constructed example aims to describe the intended
situation that while the semantics of the expert’s linguistic assessments in the
context of S1 for the 4-tuple approach can be considered as almost unchanged
in the context of S2, their semantics in the 2-tuple approach will be expected
to be changed considerably so that the decision results may also be changed.
Table 4
The weighted average results

C1 C2 C3 Aggregation
w1 = 0.25 w2 = 0.51 w3 = 0.24

2-Tuple approach
A1 (s5, 0) (s3, 0) (s4, 0) (s4,−.26)
A2 (s2, 0) (s5, 0) (s2, 0) (s4,−.47)

In fact, since in the 4-tuple approach the SQM-values depend only on the
linguistic variable X and its fuzziness parameter values provided, the SQM-
values of the expert’s linguistic assessments are identical with those that have
been computed in Case 1. Therefore, the results of the expert’s assessment ag-
gregation produced by the numeric aggregation operation in question, which
acts on the SQM-values appearing in the forth components, must be the
same as in Case 1. Only the interval-semantics of the terms in S2 here are
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changed a bit, as discussed above, and they include the interval-semantics
of the respective terms in S1, as some terms of S1 are absent in S2. Conse-
quently, the interval-semantics of S1 is finer than those of S2. For instance,
the interval-semantics of good in S1 is [7.36, 8.43), which is included in [6.77,
8.99), the interval-semantics of the same term good in S2. Hence, for the lin-
guistic scale S2, the 4-tuple representing the aggregation results of alternatives
A1 and A2 are given respectively as follows: (good, [6.77, 8.99), 7.91, 7.30) and
(good, [6.77, 8.99), 7.91, 7.19), i.e. the same results as in Case 1, except their
interval-semantics. So, A1 is still the best alternative. However, in the 2-tuple
approach the aggregation results of these alternatives are given in Table 4,
which imply that A1 is more preferable over A2, giving a solution different
from the one obtained in Case 1.

6 Conclusions

The semantics of vague linguistic terms is a complicated problem. Although in
fuzzy sets we have witnessed a significant progress, there are still a number of
open questions. For instance, we are interested in understanding the meaning
of terms of a linguistic variable in the context of relationships between terms
viewed as strings of symbols and the objects or phenomena present in the real
world they point at. In the literature of fuzzy decision making, there is a lack
of investigations on the semantics of vague linguistic terms expressed in the
linguistic scales.

In decision making, the semantics of terms should be able to serve comparison
tasks of alternatives in order to help decision makers to choose the best ones.
Thus, the meaning of terms in a term-domain aims to express semantic order
relationships between them. Note that to express expert opinions, the experts
try to focus to choose appropriate terms of the scale based on their semantic
order relationships, i.e. based on their qualitative semantics. This shows that
the qualitative semantics of terms should play a pivotal role in the development
of sound semantic linguistic scales.

In this study, we have proposed an interpretation of the inherent order-based
semantics of terms of a linguistic variable as qualitative semantics of linguistic
terms that are directly associated with the term string expressions regarded
as their syntax. The quantitative semantics of terms serves as fundamental
basis for computation on words, but it should represent the term qualitative
semantics in a certain formal way. Therefore, it becomes necessary to establish
a formal bridge to connect the quantitative semantics of terms with their
qualitative semantics, i.e., their inherent order-based semantics. However, up
to now, the examination of the semantics of linguistic terms has not been
carefully taken into consideration and the qualitative semantics of terms still
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have not been declared and, hence, there exists a visible gap between the
inherent qualitative semantics of terms and their quantitative semantics in
the literature. The lack of determination of what is the actual qualitative
semantics of linguistic terms and the lack of a formal discussions of the relation
between the qualitative semantics of linguistic terms, which one can recognize
in real world, and the quantitative semantics, which one wishes to assign to
them, might be the reason that gives rise to some sophisticated problems in
developing linguistic representation models and computation with words in
the field of decision making.

Suggested by this complex situation, we articulated some requirements, of gen-
eral nature, for construction of semantic linguistic scales for decision-making
problems. These requirements are proposed based on the analysis of the ac-
tual relation between the qualitative semantics and the quantitative semantics
of vague linguistic terms and of the relationship between linguistic scales the
experts use to express their linguistic assessments and their associated com-
putational semantic linguistic scales considered as domain of the desired oper-
ations for solving decision-making problems. These questions may be crucial
for developing a sound and legitimate semantic linguistic scale associated with
the given linguistic scale of a linguistic variable. We demonstrated that hedge
algebras, which aim to model qualitative semantics of terms, can be applied to
solve these questions. The 4-tuple (quantitatively) semantic linguistic scale has
been developed, which is able to meet all the three proposed requirements for
the construction of legitimate semantic linguistic scales. The important thing
has been shown that there exists a strict mathematical formalism to construct
a 4-tuple semantic linguistic scale, utilizing the quantitative semantic aspects
of terms, based on the proposed formalized qualitative semantics of terms and
the quantification of hedge algebras. It is natural and practical that the quali-
tative semantics of the terms in a linguistic scale is context-dependent, i.e. the
semantics of a term in the scale depends on which are its adjacent terms in
the given scale. It should be emphasized that the hedge-algebra-based quali-
tative semantics of terms provides a formalism to solve this problem. Hence,
these 4-tuple semantic linguistic scales can be computationally determined by
giving the fuzziness parameter values of the linguistic variable under consid-
eration. This demonstrates that it is able to establish a formal bridge to link
the quantitative semantics of terms in the linguistic scales to their qualitative
semantics determined in the context of the respective linguistic scales, based
on hedge algebra structures.

We showed also a number of their immediate advantages. In general, the pro-
posed methodology for construction 4-tuple semantic linguistic scales can be
considered as being characterized by several distinct aspects of the seman-
tics of terms and is based on a clear mathematical formalism. These semantic
linguistic scales can be viewed as a generalization of the respective numeric
scales and, therefore, this concept becomes natural and easy understood. They
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are completely determined based on the fuzziness intervals of terms, when the
user provides numeric values of the fuzziness parameters of linguistic variables
and, hence, they can be produced computationally. Therefore, to construct an
efficient semantic linguistic scale for a decision-making problem, the user can
concentrate on the selection of linguistic hedges for the generation of suitable
linguistics scales and the determination of appropriate values of the fuzziness
parameters.

All of these observations point out that the semantic linguistic scales are very
useful in addressing a variety of problems of decision making. For instance,
aggregation operations can be induced by the corresponding numeric ones and
work on the developed 4-tuple semantic linguistic scales, which are closed with
respect to these aggregations. An additional linguistic approximation is not
required. Since these scales can be considered as an immediate generalization
of the respective numeric scales, in further applications one may allow the
experts to express their assessments in terms of linguistic terms as well as
in terms of numeric values in their respective scales. A comparative study
examined by an example of a multi-criteria decision making problem in Section
5 illustrated these advantages.
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