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Abstract

We consider supervised dimension reduction (SDR) for problems with discrete inputs. Existing methods are
computationally expensive, and often do not take the local structure of data into consideration when searching
for a low-dimensional space. In this paper, we propose a novel framework for SDR with the aims that it can
inherit scalability of existing unsupervised methods, and that it can exploit well label information and local
structure of data when searching for a new space. The way we encode local information in this framework
ensures three effects: preserving inner-class local structure, widening inter-class margin, and reducing possible
overlap between classes. These effects are vital for success in practice. Such an encoding helps our framework
succeed even in cases that data points reside in a nonlinear manifold, for which existing methods fail.
The framework is general and flexible so that it can be easily adapted to various unsupervised topic models. We
then adapt our framework to three unsupervised models which results in three methods for SDR. Extensive
experiments on 10 practical domains demonstrate that our framework can yield scalable and qualitative
methods for SDR. In particular, one of the adapted methods can perform consistently better than the state-
of-the-art method for SDR while enjoying 30-450 times faster speed.

Keywords: supervised dimension reduction, topic models, scalability, local structure, manifold learning

1. Introduction

In supervised dimension reduction (SDR), we are
asked to find a low-dimensional space which preserves
the predictive information of the response variable.
Projection on that space should keep the discrimina-
tion property of data in the original space. While
there is a rich body of researches on SDR, our pri-
mary focus in this paper is on developing methods
for discrete data. At least three reasons motivate
our study: (1) current state-of-the-art methods for
continuous data are really computationally expensive
[1, 2, 3], and hence can only deal with data of small
size and low dimensions; (2) meanwhile, there are ex-
cellent developments which can work well on discrete
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Email addresses: khoattq@soict.hust.edu.vn (Khoat
Than), bao@jaist.ac.jp (Tu Bao Ho),
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data of huge size [4, 5] and extremely high dimensions
[6], but are unexploited for supervised problems; (3)
further, continuous data can be easily discretized to
avoid sensitivity and to effectively exploit certain al-
gorithms for discrete data [7].

Topic modeling is a potential approach to dimen-
sion reduction. Recent advances in this new area
can deal well with huge data of very high dimen-
sions [4, 6, 5]. However, due to their unsupervised
nature, they do not exploit supervised information.
Furthermore, because the local structure of data in
the original space is not considered appropriately, the
new space is not guaranteed to preserve the discrim-
ination property and proximity between instances.
These limitations make unsupervised topic models
unappealing to supervised dimension reduction.

Investigation of local structure in topic model-
ing have been initiated by some previous researches
[8, 9, 10]. These are basically extensions of probabilis-
tic latent semantic analysis (PLSA) by Hofmann [11],
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which take local structure of data into account. Lo-
cal structures are derived from nearest neighbors, and
are often encoded in a graph. Those structures are
then incorporated into the likelihood function when
learning PLSA. Such an incorporation of local struc-
tures often results in learning algorithms of very high
complexity. For instances, the complexity of each it-
eration of the learning algorithms by Wu et al. [8]
and Huh and Fienberg [9] is quadratic in the size M
of the training data; and that by Cai et al. [10] is
triple in M because of requiring a matrix inversion.
Hence these developments, even though often being
shown to work well, are very limited when the data
size is large.

Some topic models [12, 13, 14] for supervised prob-
lems can do simultaneously two nice jobs. One job is
derivation of a meaningful space which is often known
as “topical space”. The other is that supervised infor-
mation is explicitly utilized by max-margin approach
[14] or likelihood maximization [12]. Nonetheless,
there are two common limitations of existing super-
vised topic models. First, the local structure of data
is not taken into account. Such an ignorance can hurt
the discrimination property in the new space. Second,
current learning methods for those supervised models
are often very expensive, which is problematic with
large data of high dimensions.

In this paper, we approach to SDR in a novel way.
Instead of developing new supervised models, we pro-
pose the two-phase framework which can inherit scal-
ability of recent advances for unsupervised topic mod-
els, and can exploit label information and local struc-
ture of the training data. The main idea behind the
framework is that we first learn an unsupervised topic
model to find an initial topical space; we next project
documents on that space exploiting label information
and local structure, and then reconstruct the final
space. To this end, we employ the Frank-Wolfe algo-
rithm [15] for fast doing projection/inference.

The way of encoding local information in this
framework ensures three effects: preserving inner-
class local structure, widening inter-class margin, and
reducing possible overlap between classes. These ef-
fects are vital for success in practice. We find that
such encoding helps our framework succeed even in
cases that data points reside in a nonlinear manifold,
for which existing methods might fail. Further, we
find that ignoring either label information (as in [9])
or manifold structure (as in [14, 16]) can significantly
worsen quality of the low-dimensional space. This

finding complements a recent theoretical study [17]
which shows that, for some semi-supervised problems,
using manifold information would definitely improve
quality.

Our framework for SDR is general and flexible so
that it can be easily adapted to various unsupervised
topic models. To provide some evidences, we adapt
our framework to three models: probabilistic latent
semantic analysis (PLSA) by Hofmann [11], latent
Dirichlet allocation (LDA) by Blei et al. [18], and
fully sparse topic models (FSTM) by Than and Ho
[6]. The resulting methods for SDR are respectively
denoted as PLSAc, LDAc, and FSTMc. Extensive ex-
periments on 10 practical domains show that PLSAc,
LDAc, and FSTMc can perform substantially better
than their unsupervised counterparts.1 They perform
comparably or better than existing methods that
base either on max-margin principle such as MedLDA
[14], or on manifold regularization without using la-
bels such as DTM [9]. Further, PLSAc and FSTMc

consumes significantly less time than MedLDA and
DTM to learn good low-dimensional spaces. These
results suggest that the two-phase framework pro-
vides a competitive approach to supervised dimension
reduction.

Organization: in the next section, we describe
briefly some notations, the Frank-Wolfe algorithm,
and related unsupervised topic models. We present
the proposed framework for SDR in Section 3. We
also discuss in Section 4 the reasons why label infor-
mation and local structure of data can be exploited
well to result in good methods for SDR. Empirical
evaluation is presented in Section 5. Finally, we dis-
cuss some open problems and conclusions in the last
section.

2. Background

Consider a corpus D = {d1, ...,dM} consisting of
M documents which are composed from a vocabulary
of V terms. Each document d is represented as a
vector of term frequencies, i.e. d = (d1, ..., dV ) ∈ R

V ,
where dj is the number of occurrences of term j in
d. Let {y1, ..., yM} be the class labels assigned to

1Note that due to being dimension reduction methods,
PLSA, LDA, FSTM, PLSAc, LDAc, and FSTMc themselves
cannot directly do classification. Hence we use SVM with a lin-
ear kernel for doing classification tasks on the low-dimensional
spaces. Performance for comparison is the accuracy of classifi-
cation.
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those documents, respectively. The task of supervised
dimension reduction (SDR) is to find a new space
of K dimensions which preserves the predictiveness
of the response/label variable Y . Loosely speaking,
predictiveness preservation requires that projection of
data points onto the new space should preserve sep-
aration (discrimination) between classes in the origi-
nal space, and that proximity between data points is
maintained. Once the new space is determined, we
can work with projections in that low-dimensional
space instead of the high-dimensional one.

2.1. Unsupervised topic models

Probabilistic topic models often assume that a cor-
pus is composed of K topics, and each document
is a mixture of those topics. Example models in-
cludes PLSA [11], LDA [18], and FSTM [6]. Under a
model, each document has another latent representa-
tion, known as topic proportion, in the K-dimensional
space. Hence topic models play a role as dimension
reduction if K < V . Learning a low-dimensional
space is equivalent to learning the topics of a model.
Once such a space is learned, new documents can be
projected onto that space via inference. Next, we
describe briefly how to learn and to do inference for
three models.

2.1.1. PLSA

Let θdk = P (zk|d) be the probability that topic
k appears in document d, and βkj = P (wj |zk) be
the probability that term j contributes to topic k.
These definitions basically imply that

∑K
k=1 θdk = 1

for each d, and
∑V

j=1 βkj = 1 for each topic k. The
PLSA model assumes that document d is a mixture of
K topics, and P (zk|d) is the proportion that topic k
contributes to d. Hence the probability of term j ap-
pearing in d is P (wj |d) =

∑K
k=1 P (wj |zk)P (zk|d) =∑K

k=1 θdkβkj. Learning PLSA is to learn the topics
β = (β1, ...,βK). Inference of document d is to find
θd = (θd1, ..., θdK).

For learning, we use the EM algorithm to maximize
the likelihood of the training data:

E-step: P (zk|d, wj) =
P (wj |zk)P (zk |d)

PK
l=1 P (wj |zl)P (zl|d)

, (1)

M-step: θdk = P (zk|d) ∝
∑V

v=1 dvP (zk|d, wv),(2)

βkj = P (wj |zk) ∝
∑

d∈D djP (zk|d, wj).(3)

Inference in PLSA is not explicitly derived. Hof-
mann [11] proposed an adaptation from learning:
keeping topics fixed, iteratively do the steps (1)

and (2) until convergence. This algorithm is called
folding-in.

2.1.2. LDA

Blei et al. [18] proposed LDA as a Bayesian version
of PLSA. In LDA, the topic proportions are assumed
to follow a Dirichlet distribution. The same assump-
tion is endowed over topics β. Learning and inference
in LDA are much more involved than those of PLSA.
Each document d is independently inferred by the
variational method with the following updates:

φdjk ∝ βkwj
exp Ψ(γdk), (4)

γdk = α +
∑

dj>0

φdjk, (5)

where φdjk is the probability that topic i generates the
jth word wj of d; γd is the variational parameters; Ψ
is the digamma function; α is the parameter of the
Dirichlet prior over θd.

Learning LDA is done by iterating the following
two steps until convergence. The E-step does infer-
ence for each document. The M-step maximizes the
likelihood of data w.r.t β by the following update:

βkj ∝
∑

d∈D

djφdjk. (6)

2.1.3. FSTM

FSTM is a simplified variant of PLSA and LDA.
It is the result of removing the endowment of Dirich-
let distributions in LDA, and is a variant of PLSA
when removing the observed variable associated with
each document. Though being a simplified variant,
FSTM has many interesting properties including fast
inference and learning algorithms, and ability to infer
sparse topic proportions for documents. Inference is
done by the Frank-Wolfe algorithm which is provably
fast. Learning of topics is simply a multiplication of
the new and old representations of the training data.

βkj ∝
∑

d∈D

djθdk. (7)

2.2. The Frank-Wolfe algorithm for inference

Inference is an integral part of probabilistic topic
models. The main task of inference for a given docu-
ment is to infer the topic proportion that maximizes a
certain objective function. The most common objec-
tives are likelihood and posterior probability. Most
algorithms for inference are model-specific and are
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Algorithm 1 Frank-Wolfe

Input: concave objective function f(θ).
Output: θ that maximizes f(θ) over ∆.
Pick as θ0 the vertex of ∆ with largest f value.
for ℓ = 0, ...,∞ do

i′ := arg maxi ∇f(θℓ)i;
α′ := arg maxα∈[0,1] f(αei′ + (1 − α)θℓ);
θℓ+1 := α′ei′ + (1 − α′)θℓ.

end for

nontrivial to be adapted to other models. A re-
cent study by Than and Ho [19] reveals that there
exists a highly scalable algorithm for sparse infer-
ence that can be easily adapted to various models.
That algorithm is very flexible so that an adaptation
is simply a choice of an appropriate objective func-
tion. Details are presented in Algorithm 1, in which
∆ = {x ∈ R

K : ||x||1 = 1,x ≥ 0} denotes the unit
simplex in the K-dimensional space. The following
theorem indicates some important properties.

Theorem 1. [15] Let f be a continuously differen-
tiable, concave function over ∆, and denote Cf be
the largest constant so that f(αx′ + (1 − α)x) ≥
f(x)+α(x′−x)t∇f(x)−α2Cf ,∀x,x′ ∈ ∆, α ∈ [0, 1].
After ℓ iterations, the Frank-Wolfe algorithm finds a
point θℓ on an (ℓ + 1)−dimensional face of ∆ such
that maxθ∈∆ f(θ) − f(θℓ) ≤ 4Cf/(ℓ + 3).

3. The two-phase framework for supervised

dimension reduction

Existing methods for SDR often try to find directly
a low-dimensional space (called discriminative space)
that preserves separation of the data classes in the
original space. Those are one-phase algorithms as
depicted in Figure 1.

We propose a novel framework which consists of
two phases. Loosely speaking, the first phase tries to
find an initial topical space, while the second phase
tries to utilize label information and local structure
of the training data to find the discriminative space.
The first phase can be done by employing an unsuper-
vised topic model [6, 4], and hence inherits its scal-
ability. Label information and local structure in the
form of neighborhood will be used to guide projection
of documents onto the initial space, so that inner-
class local structure is preserved, inter-class margin
is widen, and possible overlap between classes is re-
duced. As a consequence, the discrimination property

Algorithm 2 Two-phase framework for SDR

Phase 1: learn an unsupervised model to get K
topics β1, ...,βK . Let A = span{β1, ...,βK} be the
initial space.
Phase 2: (finding discriminative space)

(2.1) for each class c, select a set Sc of topics which
are potentially discriminative for c.

(2.2) for each document d, select a set Nd of its
nearest neighbors which are in the same class
as d.

(2.3) infer new representation θ∗
d for each document

d in class c using the Frank-Wolfe algorithm
with the objective function

f(θ) = λL(d̂)+
1 − λ

|Nd|

∑

d
′∈Nd

L(d̂′)+R
∑

j∈Sc

sin θj,

where L(d̂) is the log likelihood of document
d̂ = d/||d||1; λ ∈ [0, 1] and R are nonnegative
constants.

(2.4) compute new topics β∗
1, ...,β

∗
K from all d and

θ∗
d. Finally, B = span{β∗

1, ...,β
∗
K} is the dis-

criminative space.

is not only preserved, but likely made better in the
final space.

Note that we do not have to design entirely a learn-
ing algorithm as for existing approaches, but instead
do one further inference phase for the training docu-
ments. Details of the two-phase framework are pre-
sented in Algorithm 2. Each step from (2.1) to (2.4)
will be detailed in the next subsections.

3.1. Selection of discriminative topics

It is natural to assume that the documents in a
class are talking about some specific topics which are
little mentioned in other classes. Those topics are
discriminative in the sense that they help us distin-
guish classes. Unsupervised models do not consider
discrimination when learning topics, hence offer no
explicit mechanism to see discriminative topics.

We use the following idea to find potentially dis-
criminative topics: a topic that is discriminative for
class c if its contribution to c is significantly greater
than to other classes. The contribution of topic k to

4



Figure 1: Sketch of approaches for SDR. Existing methods for SDR directly find the discriminative space, which is known as
supervised learning (c). Our framework consists of two separate phases: (a) first find an initial space in an unsupervised manner;
then (b) utilize label information and local structure of data to derive the final space.

class c is approximated by

Tck ∝
∑

d∈Dc

θdk,

where Dc is the set of training documents in class c,
θd is the topic proportion of document d which had
been inferred previously from an unsupervised model.
We assume that topic k is discriminative for class c if

Tck

min{T1k, ..., TCk}
≥ ǫ, (8)

where C is the total number of classes, ǫ is a constant
which is not smaller than 1.

ǫ can be interpreted as the boundary to differen-
tiate which classes a topic is discriminative for. For
intuition, considering the problem with 2 classes, con-
dition (8) says that topic k is discriminative for class
1 if its contribution to k is at least ǫ times the contri-
bution to class 2. If ǫ is too large, there is a possibility
that a certain class might not have any discriminative
topic. On the other hand, a too small value of ǫ may
yield non-discriminative topics. Therefore, a suitable
choice of ǫ is necessary. In our experiments we find
that ǫ = 1.5 is appropriate and reasonable. We fur-
ther constraint Tck ≥ median{T1k, ..., TCk} to avoid
the topic that contributes equally to most classes.

3.2. Selection of nearest neighbors

The use of nearest neighbors in Machine Learn-
ing have been investigated by various researches
[8, 9, 10]. Existing investigations often measure prox-
imity of data points by cosine or Euclidean distances.
In contrast, we use the Kullback-Leibler divergence
(KL). The reason comes from the fact that projec-
tion/inference of a document onto the topical space
inherently uses KL divergence.2 Hence the use of

2For instance, consider inference of document d by
maximum likelihood. Inference is the problem θ∗ =

KL divergence to find nearest neighbors is more rea-
sonable than that of cosine or Euclidean distances
in topic modeling. Note that we find neighbors for
a given document d within the class containing d,
i.e., neighbors are local and within-class. We use
KL(d||d′) to measure proximity from d′ to d.

3.3. Inference for each document

Let Sc be the set of potentially discriminative top-
ics of class c, and Nd be the set of nearest neighbors of
a given document d which belongs to c. We next do
inference for d again to find the new representation
θ∗

d. At this stage, inference is not done by existing
method of the unsupervised model in consideration.
Instead, the Frank-Wolfe algorithm is employed, with
the following objective function to be maximized:

f(θ) = λL(d̂)+(1−λ)
1

|Nd|

∑

d
′∈Nd

L(d̂′)+R
∑

j∈Sc

sin θj,

(9)
where L(d̂) =

∑V
j=1 d̂j log

∑K
k=1 θkβkj is the log like-

lihood of document d̂ = d/||d||1; λ ∈ [0, 1] and R are
nonnegative constants.

It is worthwhile making some observations about
implication of this choice of objective:

- First, note that function sin(x) monotonically in-
creases as x increases from 0 to 1. Therefore, the
last term of (9) implies that we are promoting
contributions of the topics in Sc to document d.
In other words, since d belongs to class c and Sc

contains the topics which are potentially discrim-
inative for c, the projection of d onto the topical

arg maxθ L(bd) = arg maxθ

PV

j=1 d̂j log
PK

k=1 θkβkj , where

d̂j = dj/||d||1. Denoting x = βθ, the inference problem is re-

duced to x∗ = arg maxx

PV

j=1 d̂j log xj = arg minx KL(bd||x).
This implies inference of a document inherently uses KL diver-
gence.

5



space should remain large contributions of the
topics of Sc. Increasing the constant R implies
heavier promotion of contributions of the topics
in Sc.

- Second, the term 1
|Nd|

∑
d
′∈Nd

L(d̂′) implies that
the local neighborhood plays a role when pro-
jecting d. The smaller the constant λ, the more
heavily the neighborhood plays. Hence, this ad-
ditional term ensures that the local structure of
data in the original space should not be violated
in the new space.

- In practice, we do not have to store all neighbors
of a document in order to do inference. In-
deed, storing the mean v = 1

|Nd|

∑
d
′∈Nd

d̂′

is sufficient, since 1
|Nd|

∑
d
′∈Nd

L(d̂′) =
1

|Nd|

∑
d
′∈Nd

∑V
j=1 d̂′j log

∑K
k=1 θkβkj =

∑V
j=1

(
1

|Nd|

∑
d
′∈Nd

d̂′j

)
log

∑K
k=1 θkβkj .

- It is easy to verify that f(θ) is continuously dif-
ferentiable and concave over the unit simplex ∆
if β > 0. As a result, the Frank-Wolfe algorithm
can be seamlessly employed for doing inference.
Theorem 1 guarantees that inference of each doc-
ument is very fast and the inference error is prov-
ably good.

3.4. Computing new topics

One of the most involved parts in our framework
is to construct the final space from the old and new
representations of documents. PLSA and LDA do not
provide a direct way to compute topics from d and
θ∗

d, while FSTM provides a natural one. We use (7)
to find the discriminative space for FSTM,

FSTM: β∗
kj ∝

∑

d∈D

djθ
∗
dk; (10)

and use the following adaptations to compute topics
for PLSA and LDA:

PLSA: P̃ (zk|d, wj) ∝ θ∗dkβkj , (11)

β∗
kj ∝

∑

d∈D

djP̃ (zk|d, wj);(12)

LDA: φ∗
djk ∝ βkwj

exp Ψ(θ∗dk), (13)

β∗
kj ∝

∑

d∈D

djφ
∗
djk. (14)

Note that we use the topics of the unsupervised
models which had been learned previously in order

to find the final topics. As a consequence, this us-
age provides a chance for unsupervised topics to af-
fect discrimination of the final space. In contrast,
using (10) to compute topics for FSTM does not en-
counter this drawback, and hence can inherit discrim-
ination of θ∗. For LDA, the new representation θ∗

d is
temporarily considered to be variational parameter in
place of γd in (4), and is smoothed by a very small
constant to make sure the existence of Ψ(θ∗dk). Other
adaptations are possible to find β∗, nonetheless, we
observe that our proposed adaptation is very reason-
able. The reason is that computation of β∗ uses as
little information from unsupervised models as pos-
sible, whereas inheriting label information and local
structure encoded in θ∗, to reconstruct the final space
B = span{β∗

1, ...,β
∗
K}. This reason is further sup-

ported by extensive experiments as discussed later.

4. Why is the framework good?

We next elucidate the main reasons for why our
proposed framework is reasonable and can result in a
good method for SDR. In our observations, the most
important reason comes from the choice of the objec-
tive (9) for inference. Inference with that objective
plays three crucial roles to preserve or make better the
discrimination property of data in the topical space.

4.1. Preserving inner-class local structure

The first role is to preserve inner-class local struc-
ture of data. This is a result of using the additional

term 1
|Nd|

∑
d
′∈Nd

L(d̂′). Remember that projection
of document d onto the unit simplex ∆ is in fact
a search for the point θd ∈ ∆ that is closest to d

in a certain sense.3 Hence if d′ is close to d, it is
natural to expect that d′ is close to θd. To respect
this nature and to keep the discrimination property,
projecting a document should take its local neigh-
borhood into account. As one can realize, the part

λL(d̂)+ (1−λ) 1
|Nd|

∑
d
′∈Nd

L(d̂′) in the objective (9)
serves well our needs. This part interplays goodness-
of-fit and neighborhood preservation. Increasing λ
means goodness-of-fit L(d̂) can be improved, but lo-
cal structure around d is prone to be broken in the
low-dimensional space. Decreasing λ implies bet-
ter preservation of local structure. Figure 2 demon-
strates sharply these two extremes, λ = 1 for (b), and

3More precisely, the vector
P

k θdkβk is closest to d in terms
of KL divergence.
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(a) (b) (c) (d)

Figure 2: Laplacian embedding in 2D space. (a) data in the original space, (b) unsupervised projection, (c) projection when
neighborhood is taken into account, (d) projection when topics are promoted. These projections onto the 60-dimensional space
were done by FSTM and experimented on 20Newsgroups. The two black squares are documents in the same class.

λ = 0.1 for (c). Projection by unsupervised models
(λ = 1) often results in pretty overlapping classes in
the topical space, whereas exploitation of local struc-
ture significantly helps us separate classes.

Since nearest neighbors Nd are selected within-
class only, doing projection for d in step (2.3) is
not intervened by documents from outside classes.
Hence within-class local structure would be better
preserved.

4.2. Widening the inter-class margin

The second role is to widen the inter-class mar-
gin, owing to the term R

∑
j∈Sc

sin(θj). As noted be-
fore, function sin(x) is monotonically increasing for
x ∈ [0, 1]. It implies that the term R

∑
j∈Sc

sin(θj)
promotes contributions of the topics in Sc when pro-
jecting document d. In other words, the projection
of d is encouraged to be close to the topics which are
potentially discriminative for class c. Hence projec-
tion of class c is preferred to distributing around the
discriminative topics of c. Increasing the constant R
implies forcing projections to distribute more densely
around the discriminative topics, and therefore mak-
ing classes farther from each other. Figure 2(d) illus-
trates the benefit of this second role.

4.3. Reducing overlap between classes

The third role is to reduce overlap between classes,

owing to the term λL(d̂) + (1 − λ) 1
|Nd|

∑
d
′∈Nd

L(d̂′)

in the objective function (9). This is a very crucial
role that helps the two-phase framework works effec-
tively. Explanation for this role needs some insights
into inference of θ.

In step (2.3), we have to do inference for the train-

ing documents. Let u = λd̂ + (1 − λ) 1
|Nd|

∑
d
′∈Nd

d̂′

be the convex combination of d and its within-class

neighbors.4 Note that

λL(d̂) + (1 − λ)
1

|Nd|

∑

d
′∈Nd

L(d̂′)

= λ

V∑

j=1

d̂j log

K∑

k=1

θkβkj

+(1 − λ)
1

|Nd|

∑

d
′∈Nd

V∑

j=1

d̂′j log

K∑

k=1

θkβkj

=

V∑

j=1



λd̂j +
1 − λ

|Nd|

∑

d
′∈Nd

d̂′j



 log

K∑

k=1

θkβkj

= L(u).

Hence, in fact we do inference for u by maximizing
f(θ) = L(u) + R

∑
j∈Sc

sin(θj). It implies that we
actually work with u in the U-space as depicted in
Figure 3.

Those observations suggest that instead of working
with the original documents in the document space,
we do work with {u1, ...,uM} in the U-space. Fig-
ure 3 shows that the classes in the U-space is often
less overlapping than those in the document space.
Further, the overlapping can sometimes be removed.
Hence working in the U-space would be probably
more effective than in the document space, in the
sense of supervised dimension reduction.

5. Evaluation

This section is dedicated to investigating effec-
tiveness and efficiency of our framework in practice.
We investigate three methods, PLSAc, LDAc, and

4More precisely, u is the convex combination of those doc-
uments in ℓ1-normalized forms, since by notation bd = d/||d||1.
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Figure 3: The effect of reducing overlap between classes. In Phase 2 (discriminative inference), inferring d is reduced to inferring
u which is the convex combination of d and its within-class neighbors. This means we are working in the U-space instead of the
document space. Note that the classes in the U-space are often much less overlapping than those in the document space.

FSTMc, which are the results of adapting the two-
phase framework to unsupervised topic models in-
cluding PLSA [11], LDA [18], and FSTM [6], respec-
tively.

Methods for comparison:

- MedLDA: the baseline which bases on max-
margin principle [14], but ignores manifold struc-
ture when learning.5

- DTM: the baseline which uses manifold regular-
ization, but ignores labels [9].

- PLSAc, LDAc, and FSTMc: the results of adapt-
ing our framework to three unsupervised models.

- PLSA, LDA, and FSTM: three unsupervised
methods associated with three models.6

Data for comparison: We use 10 benchmark datasets
for investigation which span over various domains in-
cluding news in LA Times, biological articles, spam
emails. Table 1 shows some information about those
data.7

Settings: In our experiments, we used the same crite-
ria for topic models: relative improvement of the log
likelihood (or objective function) is less than 10−4 for
learning, and 10−6 for inference; at most 1000 itera-
tions are allowed to do inference; and at most 100

5MedLDA was retrieved from www.ml-thu.net/~jun/code/

MedLDAc/medlda.zip
6LDA was taken from www.cs.princeton.edu/~blei/

lda-c/

FSTM was taken from www.jaist.ac.jp/~s1060203/codes/

fstm/

PLSA was written by ourselves with the best effort.
720Newsgroups was taken from www.csie.ntu.edu.tw/

~cjlin/libsvmtools/datasets/. Emailspam was taken
from csmining.org/index.php/spam-email-datasets-.html.
Other datasets were retrieved from the UCI repository.

Table 1: Statistics of data for experiments

Data Training Testing Dimensions Classes
size size

LA1s 2566 638 13196 6
LA2s 2462 613 12433 6
News3s 7663 1895 26833 44
OH0 805 198 3183 10
OH5 739 179 3013 10
OH10 842 208 3239 10
OH15 735 178 3101 10
OHscal 8934 2228 11466 10
20Newsgroups 15935 3993 62061 20
Emailspam 3461 866 38729 2

iterations for learning a model/space. The same cri-
terion was used to do inference by the Frank-Wolfe
algorithm in Phase 2 of our framework.

MedLDA is a supervised topic model and is trained
by minimizing a hinge loss. We used the best set-
ting as studied by [14] for some other parameters in
MedLDA: cost parameter ℓ = 32, and 10-fold cross-
validation for finding the best regularization constant
C ∈ {25, 29, 33, 37, 41, 45, 49, 53, 57, 61}. These set-
tings were chosen to avoid possibly biased compari-
son.

For DTM, we used 20 neighbors for each data in-
stance when constructing neighborhood graphs. We
also tried to use 5 and 10, but found that fewer neigh-
bors did not improve quality significantly. We set
λ = 1000 meaning that local structure plays a heavy
role when learning a space. Further, because DTM it-
self does not provide any method for doing projection
of new data onto a discriminative space. Hence we
implemented the Frank-Wolfe algorithm which does
projection for new data by maximizing their likeli-
hood.

For the two-phase framework, we set Nd = 20, λ =
0.1, R = 1000. This setting basically says that lo-
cal neighborhood plays a heavy role when projecting

8



documents, and that classes are very encouraged to
be far from each other in the topical space.

It is worth noting that the two-phase framework
plays the main role in searching for the discrimina-
tive space B. Hence, other works aftermath such as
projection for new documents are done by the infer-
ence methods of the associated unsupervised models.
For instance, FSTMc works as follows: we first train
FSTM in an unsupervised manner to get an initial
space A; we next do Phase 2 of Algorithm 2 to find
the discriminative space B; projection of documents
onto B then is done by the inference method of FSTM
which does not need label information. LDAc and
PLSAc work in the same manner.

5.1. Quality and meaning of the discriminative
spaces

Separation of classes in low-dimensional spaces is
our first concern. A good method for SDR should
preserve inter-class separation in the original space.
Figure 4 depicts an illustration of how good differ-
ent methods are, for 60 topics (dimensions). One can
observe that projection by FSTM can maintain sep-
aration between classes to some extent. Nonetheless,
because of ignoring label information, a large num-
ber of documents have been projected onto incorrect
classes. On the contrary, FSTMc and MedLDA ex-
ploited seriously label information for projection, and
hence the classes in the topical space separate very
cleanly. The good preservation of class separation
by MedLDA is mainly due to training by max mar-
gin principle. Each iteration of the algorithm tries to
widen the expected margin between classes. FSTMc

can separate the classes well owing to the fact that
projecting documents has seriously taken local neigh-
borhood into account, which very likely keeps inter-
class separation of the original data. Furthermore, it
also tries to widen the margin and reduces overlap
between classes as discussed in Section 4.

Figure 5 demonstrates failures of MedLDA and
DTM, while FSTMc succeeded. For the two datasets,
MedLDA learned a space in which the classes are
heavily mixed. These behaviors seem strange to
MedLDA, as it follows the max-margin approach
which is widely-known able to learn good classifiers.
In our observations, at least two reasons that may
cause such failures: first, documents of LA1s (and
LA2s) seem to reside on a nonlinear manifold (like
a cone) so that no hyperplane can separate well one
class from the rest. This may worsen performance

of a classifier with an inappropriate kernel. Second,
quality of the topical space learned by MedLDA is
heavily affected by the quality of the classifiers which
are learned at each iteration of MedLDA. When a
classifier is bad (e.g., due to inappropriate use of ker-
nels), it might worsen learning a new topical space.
This situation might have happened with MedLDA
on LA1s and LA2s.

DTM seems to do better than MedLDA owing to
the use of local structure when learning. Nonetheless,
separation of the classes in the new space learned by
DTM is unclear. The main reason may be that DTM
did not use label information of the training data
when searching for a low-dimensional space. In con-
trast, the two-phase framework seriously took both
local structure and label information into account.
The way it uses label can reduce overlap between
classes as demonstrated in Figure 5. While the classes
are much overlapping in the original space, they are
more cleanly separated in the discriminative space
found by FSTMc.

Meaning of the discriminative spaces is demon-
strated in Table 2. It presents contribution (in terms
of probability) of the most probable topic to a spe-
cific class.8 As one can observe easily, the content of
each class is reflected well by a specific topic. The
probability that a class assigns to its major topic is
often very high compared to other topics. The major
topics in two different classes are often have differ-
ent meanings. Those observations suggests that the
low-dimensional spaces learned by our framework are
meaningful, and each dimension (topic) reflects well
the meaning of a specific class. This would be ben-
eficial for the purpose of exploration in practical ap-
plications.

5.2. Classification quality

We next use classification as a means to quantify
the goodness of the considered methods. The main
role of methods for SDR is to find a low-dimensional
space so that projection of data onto that space pre-
serves or even makes better the discrimination prop-
erty of data in the original space. In other words,
predictiveness of the response variable is preserved
or improved. Classification is a good way to see such
preservation or improvement.

8Probability of topic k in class C is approximated by
P (zk|C) ∝

P

d∈C θdk, where θd is the projection of document
d onto the final space.
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(a) (b) (c)

Figure 4: Projection of three classes of 20newsgroups onto the topical space by (a) FSTM, (b) FSTMc, and (c) MedLDA. FSTM
did not provide a good projection in the sense of class separation, since label information was ignored. FSTMc and MedLDA
actually found good discriminative topical spaces, and provided a good separation of classes. (These embeddings were done with
t-SNE [20]. Points of the same shape (color) are in the same class.)

LA
1s

DTM FSTMc MedLDA

LA
2s

DTM FSTMc MedLDA

Figure 5: Failures of MedLDA and DTM when data reside on a nonlinear manifold. FSTMc performed well so that the classes in
the low-dimensional spaces were separated clearly. (These embeddings were done with t-SNE [20].)

Table 2: Meaning of the discriminative space which was learned by FSTMc with 60 topics, from OH5. For each row, the first
column shows the class label, the second column shows the topic that has highest probability in the class, and the last column
shows the probability. Each topic is represented by some of the top terms. As one can observe, each topic represents well the
meaning of the associated class.

Class name Topic that has highest probability in class Probability

Anticoagulants anticoagul, patient, valve, embol, stroke, therapi, treatment, risk, thromboembol 0.931771
Audiometry hear, patient, auditori, ear, test, loss, cochlear, respons, threshold, brainstem 0.958996
Child-Development infant, children, development, age, motor, birth, develop, preterm, outcom, care 0.871983
Graft-Survival graft, transplant, patient, surviv, donor, allograft, cell, reject, flap, recipi 0.646190
Microsomes microsom, activ, protein, bind, cytochrom, liver, alpha, metabol, membran 0.940836
Neck patient, cervic, node, head, injuri, complic, dissect, lymph, metastasi 0.919655
Nitrogen nitrogen, protein, dai, nutrition, excretion, energi, balanc, patient, increas 0.896074
Phospholipids phospholipid, acid, membran, fatti, lipid, protein, antiphospholipid, oil, cholesterol 0.875619
Radiation-Dosage radiat, dose, dosimetri, patient, irradi, film, risk, exposur, estim 0.899836
Solutions solution, patient, sodium, pressur, glucos, studi, concentr, effect, glycin 0.941912
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For each method, we projected the training and
testing data (d) onto the topical space, and then used
the associated projections (θ) as inputs for multi-
class SVM [21] to do classification.9 MedLDA does
not need to be followed by SVM since it can do clas-
sification itself. Varying the number of topics, the
results are presented in Figure 6.

Observing Figure 6, one easily realizes that the su-
pervised methods often performed substantially bet-
ter than the unsupervised ones. This suggests that
FSTMc, LDAc, and PLSAc exploited well label infor-
mation when searching for a topical space. FSTMc,
LDAc, and PLSAc performed better than MedLDA
when the number of topics is relatively large (≥ 60).
FSTMc consistently achieved the best performance
and sometimes reached more than 10% improvement
over MedLDA. Such a better performance is mainly
due to the fact that FSTMc had taken seriously local
structure of data into account whereas MedLDA did
not. DTM could exploit well local structure by using
manifold regularization, as it performed better than
PLSA, LDA, and FSTM on many datasets. How-
ever, due to ignoring label information of the train-
ing data, DTM seems to be inferior to FSTMc, LDAc,
and PLSAc.

Surprisingly, DTM had lower performance than
PLSA, LDA, and FSTM on three datasets (LA1s,
LA2s, OHscal), even though it spent intensive time
trying to preserve local structure of data. Such fail-
ures of DTM might come from the fact that the
classes of LA1s (or other datasets) are much over-
lapping in the original space as demonstrated in Fig-
ure 5. Without using label information, construc-
tion of neighborhood graphs might be inappropriate
so that it hinders DTM from separating data classes.
DTM puts a heavy weight on (possibly biased) neigh-
borhood graphs which empirically approximate lo-
cal structure of data. In contrast, PLSA, LDA, and
FSTM did not place any bias on the data points when
learning a low-dimensional space. Hence they could
perform better than DTM on LA1s, LA2s, OHscal.

There is a surprising behavior of MedLDA. Though
being a supervised method, it performed comparably
or even worse than unsupervised methods (PLSA,
LDA, FSTM) for many datasets including LA1s,
LA2s, OH10, and OHscal. In particular, MedLDA

9This classification method is included in Liblinear pack-
age which is available at www.csie.ntu.edu.tw/~cjlin/

liblinear/

performed significantly worst for LA1s and LA2s. It
seems that MedLDA lost considerable information
when searching for a low-dimensional space. Such
a behavior has been also observed by Halpern et al.
[22]. As discussed in subsection 5.1 and depicted in
Figure 5, various factors might affect performance
of MedLDA and other max-margin based methods.
Those factors include nonlinear nature of data mani-
folds, ignorance of local structure, and inappropriate
use of kernels when learning a topical space.

Why FSTMc often performs best amongst three
adaptations including LDAc and PLSAc? This ques-
tion is natural, since our adaptations for three topic
models use the same framework and settings. In our
observations, the key reason comes from the way of
deriving the final space in Phase 2. As noted be-
fore, deriving topical spaces by (12) and (14) directly
requires unsupervised topics of PLSA and LDA, re-
spectively. Such adaptations implicitly allow some
chances for unsupervised topics to have direct influ-
ence on the final topics. Hence the discrimination
property may be affected heavily in the new space.
On the contrary, using (10) to recompute topics for
FSTM does not allow a direct involvement of unsu-
pervised topics. Therefore, the new topics can in-
herit almost the discrimination property encoded in
θ∗. This helps the topical spaces learned by FSTMc

being more likely discriminative than those by PLSAc

and by LDAc. Another reason is that the inference
method of FSTM is provably good [6], and is often
more accurate than the variational method of LDA
and folding-in of PLSA [19].

5.3. Learning time

The final measure for comparison is how quickly
the methods do? We mostly concern on the meth-
ods for SDR including FSTMc, LDAc, PLSAc, and
MedLDA. Note that time for learning a discrimina-
tive space by FSTMc is the time to do 2 phases of
Algorithm 2 which includes time to learn an unsu-
pervised model, FSTM. The same holds for PLSAc

and LDAc. Figure 7 summarizes the overall time
for each method. Observing the figure, we find that
MedLDA and LDAc consumed intensive time, while
FSTMc and PLSAc did substantially more speedily.
One of the main reasons for slow learning of MedLDA
and LDAc is that inference by variational methods of
MedLDA and LDA is often very slow. Inference in
those models requires various evaluation of Digamma
and gamma functions which are expensive. Further,
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Figure 6: Accuracy of 8 methods as the number K of topics increases. Relative improvement is improvement of a method (A) over

MedLDA, and is defined as accuracy(A)−accuracy(MedLDA)
accuracy(MedLDA)

. DTM could not work on News3s and 20Newsgroups due to oversize
memory requirement, and hence no result is reported.
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Figure 7: Necessary time to learn a discriminative space, as the number K of topics increases. FSTMc and PLSAc often performed
substantially faster than MedLDA. As an example, for News3s and K = 120, MedLDA needed more than 50 hours to complete
learning, whereas FSTMc needed less than 8 minutes. (DTM is also reported to see advantages of our framework when the size
of the training data is large.)

MedLDA requires a further step of learning a classi-
fier at each EM iteration, which is empirically slow
in our observations. All of these contributed to the
slow learning of MedLDA and LDAc.

In contrast, FSTM has a fast inference algorithm
and requires simply a multiplication of two sparse
matrices for learning topics, while PLSA has a very
simple learning formulation. Hence learning in FSTM
and PLSA is unsurprisingly very fast [6]. The most
time consuming part of FSTMc and PLSAc is to
search nearest neighbors for each document. A mod-
est implementation would requires O(V.M2) arith-
metic operations, where M is the data size. Such a
computational complexity will be problematic when
the data size is large. Nonetheless, as empirically
shown in Figure 7, the overall time of FSTMc and
PLSAc was significantly less than that of MedLDA
and LDAc. Table 3 supports further this observa-
tion. Even for 20Newsgroups and News3s of average
size, learning time of FSTMc and PLSAc is very com-
petitive compared with MedLDA.

Summarizing, the above investigations demon-
strate that the two-phase framework can result in
very competitive methods for supervised dimen-
sion reduction. Three adapted methods, FSTMc,

Table 3: Learning time in seconds when K = 120. For each
dataset, the first line shows the learning time and the second
line shows the corresponding accuracy. The best learning time
is bold, while the best accuracy is italic.

Data PLSAc LDAc FSTMc MedLDA
LA1s 287.05 11,149.08 275.78 23,937.88

88.24% 87.77% 89.03% 64.58%
LA2s 219.39 9,175.08 238.87 25,464.44

89.89% 89.07% 90.86% 63.78%
News3s 494.72 32,566.27 462.10 194,055.74

82.01% 82.59% 84.64% 82.01%
OH0 39.21 816.33 16.56 2,823.64

85.35% 86.36% 87.37% 82.32%
OH5 34.08 955.77 17.03 2,693.26

80.45% 78.77% 84.36% 76.54%
OH10 37.38 911.33 18.81 2,834.40

72.60% 71.63% 76.92% 64.42%
OH15 38.54 769.46 15.46 2,877.69

79.78% 78.09% 80.90% 78.65%
OHscal 584.74 16,775.75 326.50 38,803.13

71.77% 70.29% 74.96% 64.99%
20Newsgroups 556.20 18,105.92 415.91 37,076.36

83.72% 80.34% 86.53% 78.24%
Emailspam 124.07 1,534.90 56.56 2,978.18

94.34% 95.73% 96.31% 94.23%
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Figure 8: Impact of the parameters on the success of our frame-
work. (left) Change the number of neighbors, while fixing
λ = 0.1, R = 0. (middle) Change λ the extent of serious-
ness of taking local structure, while fixing R = 0 and using 10
neighbors for each document. (right) Change R the extent of
promoting topics, while fixing λ = 1. Note that the interfer-
ence of local neighborhood played a very important role, since
it consistently resulted in significant improvements.

LDAc, and PLSAc, mostly outperform the corre-
sponding unsupervised ones. LDAc and PLSAc often
reached comparable performance with max-margin
based methods such as MedLDA. Amongst those
adaptations, FSTMc behaves superior in both classi-
fication performance and learning speed. We observe
it often does 30-450 times faster than MedLDA.

5.4. Sensitivity of parameters

There are three parameters that influence the suc-
cess of our framework, including the number of near-
est neighbors, λ, and R. This subsection investigates
the impact of each. 20Newsgroups was selected for
experiments, since it has average size which is ex-
pected to exhibit clearly and accurately what we want
to see.

We varied the value of a parameter while fixed the
others, and then measured the accuracy of classifi-
cation. Figure 8 presents the results of these exper-
iments. It is easy to realize that when taking lo-
cal neighbors into account, the classification perfor-
mance was very high and significant improvements
can be achieved. We observed that very often, 25%
improvement were reached when local structure was
used, even with different settings of λ. These obser-
vations suggest that the use of local structure plays a
very crucial role for the success of our framework. It
is worth remarking that one should not use too many
neighbors for each document, since performance may
be worse. The reason is that using too many neigh-
bors likely break local structure around documents.
We have experienced with this phenomenon when set-
ting 100 neighbors in Phase 2 of Algorithm 2, and got
worse results.

Changing the value of R implies changing promo-
tion of topics. In other words, we are expecting pro-

jections of documents in the new space to distribute
more densely around discriminative topics, and hence
making classes farther from each other. As shown in
Figure 8, an increase in R often leads to better re-
sults. However, too large R can deteriorate the per-
formance of the SDR method. The reason may be
that such large R can make the term R

∑
j∈Sc

sin(θj)
to overwhelm the objective (9), and thus worsen the
goodness-of-fit of inference by the Frank-Wolfe algo-
rithm. Setting R ∈ [10, 1000] is reasonable in our
observation.

6. Conclusion and discussion

We have proposed the two-phase framework for do-
ing dimension reduction of supervised discrete data.
The framework was demonstrated to exploit well la-
bel information and local structure of the training
data to find a discriminative low-dimensional space.
It was demonstrated to succeed in failure cases of
methods which base on either max-margin principle
or unsupervised manifold regularization. Generality
and flexibility of our framework was evidenced by
adaptation to three unsupervised topic models, re-
sulted in PLSAc, LDAc, and FSTMc for supervised
dimension reduction. We showed that ignoring ei-
ther label information (as in DTM) or manifold struc-
ture of data (as in MedLDA) can significantly worsen
quality of the low-dimensional space. The two-phase
framework can overcome existing approaches to result
in efficient and effective methods for SDR. As an evi-
dence, we observe that FSTMc can often achieve more
than 10% improvement in quality over MedLDA, and
meanwhile consumes substantially less time.

The resulting methods (PLSAc, LDAc, and
FSTMc) are not limited to discrete data. They can
work also on non-negative data, since their learning
algorithms actually are very general. Hence in this
work, we contributed methods for not only discrete
data but also non-negative real data. The code of
these methods is freely available at www.jaist.ac.

jp/~s1060203/codes/sdr/

There is a number of possible extensions to our
framework. First, one can easily modify the frame-
work to deal with multilabel data. Second, the frame-
work can be modified to deal with semi-supervised
data. A key to these extensions is an appropriate
utilization of labels to search for nearest neighbors,
which is necessary for our framework. Other exten-
sions can encode more prior knowledge into the ob-
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jective function for inference. In our framework, la-
bel information and local neighborhood are encoded
into the objective function and have been observed to
work well. Hence, we believe that other prior knowl-
edge can be used to derive good methods.

Of the most expensive steps in our framework is
the search for nearest neighbors. By a modest imple-
mentation, it requires O(k.V.M) to search k nearest
neighbors for a document. Overall, finding all k near-
est neighbors for all documents requires O(k.V.M2).
This computational complexity will be problematic
when the number of training documents is large.
Hence, a significant extension would be to reduce
complexity for this search. It is possible to reduce
the complexity to O(k.V.M. log M) as suggested by
[23]. Furthermore, because our framework use lo-
cal neighborhood to guide projection of documents
onto the low-dimensional space, we believe that ap-
proximation to local structure can still provide good
result. However, this assumption should be studied
further. A positive point of using approximation of
local neighborhood is that computational complexity
of a search for neighbors can be done in linear time
O(k.V.M) [24].
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