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Modeling the diversity and log-normality of data

Khoat Than∗and Tu Bao Ho†‡

July 4, 2013

Abstract

We investigate two important properties of real data: diversity and
log-normality. Log-normality accounts for the fact that data follow the
lognormal distribution, whereas diversity measures variations of the at-
tributes in the data. To our knowledge, these two inherent properties have
not been paid much attention from the machine learning community, es-
pecially from the topic modeling community. In this article, we fill in this
gap in the framework of topic modeling. We first investigate whether or
not these two properties can be captured by the most well-known Latent
Dirichlet Allocation model (LDA), and find that LDA behaves inconsis-
tently with respect to diversity. Particularly, it favors data of low diver-
sity, but works badly on data of high diversity. Then, we argue that these
two inherent properties can be captured well by endowing the topic-word
distributions in LDA with the lognormal distribution. This treatment
leads to a new model, named Dirichlet-lognormal topic model (DLN). Us-
ing the lognormal distribution complicates the learning and inference of
DLN, compared with those of LDA. Hence, we used variational method,
in which model learning and inference are reduced to solving convex op-
timization problems. Extensive experiments strongly suggest that (1) the
predictive power of DLN is consistent with respect to diversity, and that
(2) DLN works consistently better than LDA for datasets whose diversity
is large, and for datasets which contain many log-normally distributed
attributes. Justifications for these results require insights into the used
statistical distributions and will be discussed in the article.

1 Introduction

Topic modeling is increasingly emerging in machine learning and data mining.
More and more successful applications of topic modeling have been reported,
e.g., topic discovery [12], [7], information retrieval [33], analyzing social networks
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[21], [34], [27], and trend detection [6]. Although text is often the main target,
many topic models are general enough to be used in other applications with
non-textual data, e.g., image retrieval [30], [8], and Bio-informatics [16].

Topic models often consider a given corpus to be composed of latent topics,
each of which turns out to be a distribution over words. A document in that
corpus is a mixture of these topics. These in some models imply that the order
of the documents in a corpus does not play an important role. Further, the
order of the words in a specific document is often discarded.

One of the most influential models having the above-mentioned assumptions
is the Latent Dirichlet Allocation model (LDA) [7]. LDA assumes that each
latent topic is a sample drawn from a Dirichlet distribution, and that the topic
proportions in each document are samples drawn from a Dirichlet distribution as
well. This interpretation of topic-word distributions has been utilized in many
other models, such as the Correlated Topic Model (CTM) [6], the Independent
Factor Topic Model (IFTM) [20], DCMLDA [11], Labeled LDA [21], and fLDA
[1].

1.1 Forgotten characteristics of data

Geologists have shown that the concentration of elements in the Earth’s crust
distributes very skewed and fits the lognormal distribution well. The latent pe-
riods of many infectious diseases also follow lognormal distributions. Moreover,
the occurrences of many real events have been shown to be log-normally dis-
tributed, see [15] and [13] for more information. In linguistics, the number of
words per sentence, and the lengths of all words used in common telephone con-
versations, fit lognormal distributions. Recently, the number of different words
per document in many collections has been observed to very likely follow the log-
normal distribution as well [10]. These observations suggest that log-normality
is present in many data types.

Another inherent property of data is the “diversity” of features (or at-
tributes). Loosely speaking, diversity of a feature in a dataset is essentially
the number of different values of that feature observed in the records of that
dataset. For a text corpus, high diversity of a word means a high number of
different frequencies observed in the corpus.1 The high diversity of a word in a
corpus reveals that the word may play an important role in that corpus. The
diversity of a word varies significantly among different corpora with respect
to the importance of that word. Nonetheless, to the best of our knowledge,
this phenomenon has not been investigated previously in the machine learning
literature.

In the topic modeling literature, log-normality and diversity have not been
under consideration up to now. We will see that despite the inherent importance
of the diversity of data, existing topic models are still far from appropriately

1For example, the word “learning” has 71 different frequencies observed in the NIPS corpus
[4]. This fact suggests that “learning” appears in many (1153) documents of the corpus,
and that many documents contain this word with very high frequencies, e.g. more than 50
occurrences. Hence, this word would be important in the topics of NIPS.
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capturing it. Indeed, in our investigations, the most popular LDA behaved
inconsistently with respect to diversity. Higher diversity did not necessarily
assure a consistently better performance or a consistently worse performance.
Beside, LDA tends to favor data of low diversity. This phenomenon may be
reasonably explained by the use of the Dirichlet distribution to generate topics.
Such a distribution often generates samples of low diversity, see Section 5 for
detailed discussions. Hence the use of the Dirichlet distribution implicitly sets
a severe setback on LDA in modeling data with high diversity.

1.2 Our contributions

In this article, we address those issues by using the lognormal distribution. A
rationale for our approach is that such distribution often allows its samples to
have high variations, and hence is able to capture well the diversity of data. For
topic models, we posit that the topics of a corpus are samples drawn from the
lognormal distribution. Such an assumption has two aspects: one is to capture
the lognormal properties of data, the other is to better model the diversity
of data. Also, this treatment leads to a new topic model, named Dirichlet-
Lognormal topic model (DLN).

By extensive experiments, we found that the use of the lognormal distribu-
tion really helps DLN to capture the log-normality and diversity of real data.
The greater the diversity of the data, the better prediction by DLN; the more
log-normally distributed the data is, the better the performance of DLN. Fur-
ther, DLN worked consistently with respect to diversity of data. For these
reasons, the new model overcomes the above-mentioned drawbacks of LDA.
Summarizing, our contributions are as follows:

• We introduce and carefully investigate an inherent property of data, named
“diversity”. Diversity conveys many important characteristics of real data.
In addition, we extensively investigate the existence of log-normality in
real datasets.

• We investigate the behaviors of LDA, and find that LDA behaves incon-
sistently with respect to diversity. These investigations highlight the fact
that “diversity” is not captured well by existing topic models, and should
be paid more attention.

• We propose a new variant of LDA, called DLN. The new model can cap-
ture well the diversity and log-normality of data. It behaves much more
consistently than LDA does. This shows the benefits of the use of the
lognormal distribution in topic models.

Roadmap of the article: After discussing some related work in the next
section, some notations and definitions will be introduced. Some characteristics
of real datasets will be investigated in Section 4. By those investigations, we
will see the necessity of more attention to diversity and log-normality of data.
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Insights into the lognormal and Dirichlet distributions will be discussed in Sec-
tion 5. Also we will see the rationales of using the lognormal distribution to
cope with diversity and log-normality. Section 6 is dedicated to presenting the
DLN model. Our experimental results and comparisons will be described in
Section 7. Further discussions are in Section 8. The last section presents some
conclusions.

2 Related work

In the topic modeling literature, many models assume a given corpus to be
composed of some hidden topics. Each document in that corpus is a mixture of
those topics. The first generative model of this type is known as Probabilistic
Latent Semantic Analysis (pLSA) proposed by Hofmann [12]. Assuming pLSA
models a given corpus by K topics, then the probability of a word w appearing
in document d is

P (w|d) =
∑
z

P (w|z)P (z|d), (1)

where P (w|z) is the probability that the word w appears in the topic z ∈
{1, ...,K}, and P (z|d) is the probability that the topic z participates in the doc-
ument d. However, pLSA regards the topic proportions, P (z|d), to be generated
from some discrete and document-specific distributions.

Unlike pLSA, the topic proportions in each document are assumed to be
samples drawn from Dirichlet distributions in LDA [7]. Such assumption is
strongly supported by the de Finetti theorem on exchangeable random variables
[2]. Amazingly, LDA has been reported to be successful in many applications.

Many subsequent topic models have been introduced since then that differ
from LDA in endowing distributions on topic proportions. For instance, CTM
and IFTM treat the topic proportions as random variables which follow logistic
distributions; Hierarchical Dirichlet Process (HDP) considers these vectors as
samples drawn from a Dirichlet process [25]. Few models differ from LDA in
view of topic-word distributions, i.e., P (w|z). Some candidates in this line are
Dirichlet Forest (DF) [3], Markov Topic Model (MTM) [32], and Continuous
Dynamic Topic Model (cDTM) [31].

Unlike those approaches, we endow the topic-word distributions with the log-
normal distribution. Such treatment aims to tackle diversity and log-normality
of real datasets. Unlike the Dirichlet distribution used by other models, the
lognormal distribution seems to allow high variation of its samples, and thus
can capture well high diversity data. Hence it is a good candidate to help us
cope with diversity and log-normality.

3 Definitions

The following notations will be used throughout the article.
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Notation Meaning
C a corpus consisting of M documents
V the vocabulary of the corpus
wi the ith document of the corpus
wdn the nth word in the dth document
wj the jth term in the vocabulary V, represented by a unit vector

wi
j the ith component of the word vector wj ; w

i
j = 0, ∀i ̸= j, wj

j = 1

V the size of the vocabulary
K the number of topics
Nd the length of the dth document
βk the kth topic-word distribution
θd the topic proportion of the dth document
zdn the topic index of the nth word in the dth document
|S| the cardinal of the set S
Dir(·) the Dirichlet distribution
LN(·) the lognormal distribution
Mult(·) the multinomial distribution

Each dataset D = {d1, d2, ..., dD} is a set of D records, composed from a set
of features, A = {A1, A2, ..., AV }; each record di = (di1, ..., diV ) is a tuple of
which dij is a specific value of the feature Aj .

3.1 Diversity

Diversity is the main focus of this article. Here we define it formally in order to
avoid confusion with the other possible meanings of this word.

Definition 1 (Observed value set). Let D = {d1, d2, ..., dD} be a dataset, com-
posed from a set A of features. The observed value set of a feature A ∈ A,
denoted OVD(A), is the set of all values of A observed in D.

Note that the observed value set of a feature is very different from the domain
that covers all possible values of that feature.

Definition 2 (Diversity of feature). Let D be a dataset, and be composed from
a set A of features. The diversity of the feature A in the data set D is

DivD(A) =
|OVD(A)|

|D|

Clearly, diversity of a feature defined above is the normalized version of
the number of different values of that feature in the data set. This concept is
introduced in order to compare different datasets.

The diversity of a dataset is defined via averaging the diversities of the fea-
tures of that dataset. This number will provide us an idea about how variation
a given dataset is.
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Definition 3 (Diversity of dataset). Let D be a dataset, composed from a set
A of features. The diversity of the dataset D is

DivD = average{DivD(A) : A ∈ A}

Note that the concept of diversity defined here is completely different from
the concept of variance. Variance often relates to the variation of a random
variable from the true statistical mean of that variable whereas diversity provides
the extent of variation in general of a variable. Furthermore, diversity only
accounts for a given dataset, whereas variance does not. The diversity of the
same feature may vary considerably among different datasets.

By means of averaging over all features, the diversity of a dataset surfers from
outliers. In other words, the diversity of a dataset may be overly dominated by
very few features, which have very high diversities. In this case, the diversity is
not a good measure of the variation of the considered dataset. Overcoming this
situation will be our future work.

We will often deal with textual datasets in this article. Hence, for the aim
of clarity, we adapt the above definitions for text and discuss some important
observations regarding such a data type.

If the dataset D is a text corpus, then the observed value set is defined in
terms of frequency. We remark that in this article each document is represented
by a sparse vector of frequencies, each component of which is the number of
occurrences of a word occurred in that document.

Definition 4 (Observed frequency set). Let C = {d1, d2, ..., dM} be a text corpus
of size M , composed from a vocabulary V of V words. The observed frequency set
of the word w ∈ V, denoted OVC(w), is the set of all frequencies of w observed
in the documents of C.

OVC(w) = {freq(w) : ∃di that contains exactly freq(w) occurrences of w}

In this definition, there is no information about how many documents have a
certain freq(w) ∈ OVC(w). Moreover, if a word w appears in many documents
with the same frequency, the frequency will be counted only once. The observed
frequency set tells much about the behavior and stability of a word in a corpus.
If |OVC(w)| is large, w must appear in many documents of C. Moreover, many
documents must have high frequency of w. For example, if |OVC(w)| = 30,
w must occur in at least 30 documents, many of which contain at least 20
occurrences of w.

Definition 5 (Diversity of word). Let C be a corpus, composed from a vocabulary
V. The diversity of the word w ∈ V in the corpus is

DivC(w) =
|OVC(w)|

|C|

Definition 6 (Diversity of corpus). Let C be a corpus, composed from a vocab-
ulary V. The diversity of the corpus is

DivC = average{DivC(w) : w ∈ V}
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It is easy to see that if a corpus has high diversity, a large number of its
words would have a high number of different frequencies, and thus have high
variations in the corpus. These facts imply that such kind of corpora seem to
be hard to deal with. Moreover, provided that the sizes are equal, a corpus with
higher diversity has higher variation, and hence may be more difficult to model
than a corpus with lower diversity. Indeed, we will see this phenomenon in the
later analyses.

3.2 Topic models

Loosely speaking, a topic is a set of semantically related words [14]. For ex-
amples, {computer, information, software, memory, database} is a topic about
“computer”; {jazz, instrument, music, clarinet} may refer to “instruments for
Jazz”; and {caesar, pompay, roman, rome, carthage, crassus} may refer to a
battle in history.

Formally, we define a topic to be a distribution over a fixed vocabulary. Let V
be the vocabulary of V terms, a topic βk = (βk1, ..., βkV ) satisfies

∑V
i=1 βki = 1

and βki ≥ 0 for any i. Each component βki shows the probability that term i
contributes to topic k. A topic model is a statistical model of those topics. A
corpus is often assumed to be composed of K topics, for some K.

Each document is often assumed to be a mixture of the topics. In other
words, in a typical topic model, a document is assumed to be composed from
some topics with different proportions. Hence each document will have another
representation, says θ = (θ1, ..., θK) where θk shows the probability that topic
k appears in that document. θ is often called topic proportion.

The goal of topic modeling is to automatically discover the topics from a
collection of documents [5]. In reality, we can only observe the documents,
while the topic structure including topics and topic proportions is hidden. The
central problem for topic modeling is to use the observed documents to infer
the topic structure.

Topic models provide a way to do dimension reduction if setting K < V .
Learning a topic model implies we are learning a topical space, in which each
document has a latent representation θ. Therefore, θ can be used for many
tasks including text classification, spam filtering, and information retrieval [12],
[7], [26].

3.3 Dirichlet and lognormal distributions

In this article, we will often mention lognormal and Dirichlet distributions.
Hence we include here their mathematical definitions. The lognormal distribu-
tion of a random variable x = (x1, ..., xn)

T , with parameters µ and Σ, has the
following density function

LN(x;µ,Σ) =
1

(2π)
n
2

√
|Σ|x1...xn

exp {−1

2
(logx− µ)TΣ−1(logx− µ)}.
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Table 1: Datasets for experiments.
Data set AP NIPS KOS SPAM Comm-Crime
Number of documents 2246 1500 3430 4601 1994
Vocabulary size 10473 12419 6906 58 100
Document length 194.05 1288.24 136.36
#unique words per doc 134.48 497.54 102.96

Similarly, the density function of the Dirichlet distribution is

Dir(x;α1, . . . , αn) =
Γ
(∑n

i=1 αi

)∏n
i=1 Γ(αi)

n∏
i=1

xαi−1
i ,

where
∑n

i=1 xi = 1, xi > 0. The constraint means that the Dirichlet distribution
is in fact in (n− 1)-dimensional space.

4 Diversity and Log-normality of real data

We first describe our initial investigations on 5 real datasets from the UCI
Machine Learning Repository [4] and Blei’s webpage.2 Some information on
these datasets is reported in Table 1, in which the last two rows have been
averaged. In fact, the Communities and Crime dataset (Comm-Crime for short)
is not a usual text corpus. This data set contains 1994 records each of which
is the information of a US city. There are 123 attributes, some of which are
missing for some cities [22]. In our experiments, we removed the attributes
from all records if they are missing in some records. Also, we removed the
first 5 non-predictive attributes, and the remainings consist of only 100 real
attributes including crime.

Our initial investigations studied the diversity of the above data sets. These
three textual corpora, AP, NIPS, and KOS, were preprocessed to remove all
function words and stopwords, which are often assumed to be meaningless to
the gists of the documents. The remaining are content words. Some statistics
are given in Table 2.

One can easily realize that the diversity of NIPS is significantly larger than
that of AP and KOS. Among 12419 words of NIPS, 5900 words have at least 5
different frequencies; 1633 words have at least 10 different frequencies.3 These
facts show that a large number of words in NIPS vary significantly within the
corpus, and hence may cause considerable difficulties for topic models.

AP and KOS are comparable in terms of diversity. Despite this fact, AP
seems to have quite greater variation compared with KOS. The reason is that

2The AP corpus: http://www.cs.princeton.edu/∼blei/lda-c/ap.tgz
3The three words which have greatest number of different frequencies, |OV |, are “network”,

“model”, and “learning”. Each of these words appears in more than 1100 documents of NIPS.
To some extent, they are believed to compose the main theme of the corpus with very high
probability.
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Table 2: Statistics of the 3 corpora. Although NIPS has least documents among
the three corpora, all of its statistics here are much greater than those of the
other two corpora.

Data set AP KOS NIPS
Diversity 0.0012 0.0011 0.004
No. of words with |OV | ≥ 5 1267 1511 5900
No. of words with |OV | ≥ 10 99 106 1633
No. of words with |OV | ≥ 20 1 4 345
Three greatest |OV |’s {25; 19; 19} {26; 21; 21} {86; 80; 71}

although the number of documents in AP is nearly 10/15 of that in KOS,
the number of words with |OV | ≥ 5 in AP is approximately 12/15 of that
in KOS. Furthermore, KOS and AP have nearly the same number of words
with |OV | ≥ 10. Another explanation for the larger variation of AP over KOS
is is that the documents in AP are much longer on average than those of KOS,
see Table 1. Longer documents would generally provide more chances for oc-
currences of words, and thus would probably encourage greater diversity for a
corpus.

Comm-Crime and SPAM are non-textual datasets. Their diversities are
0.0458 and 0.0566, respectively. Almost all attributes have |OV | ≥ 30, except
one in each data set, and the greatest |OV | in SPAM is 2161 which is far greater
than that in the textual counterparts. The values of attributes are mostly real
numbers, and vary considerably. This is why their diversities are much larger
than those of textual corpora.

The next investigations were on how individual content words distribute in
a corpus. We found that many words (attributes) of SPAM and Comm-Crime
very likely follow lognormal distributions. Figure 1 shows the distributions
of some representative words. To see whether or not these words are likely
log-normally distributed, we fitted the data with lognormal distributions by
maximum likelihood estimation. The solid thin curves in the figure are density
functions of the best fitted lognormal distributions. We also fitted the data with
the Beta distribution.4 Interestingly, Beta distributions, as plotted by dashed
curves, fit data very badly. By more investigations, we found that more than
85% of attributes in Comm-Crime very likely follow lognormal distributions.
This amount in SPAM is 67%. For AP, NIPS and KOS, not many words seem
to be log-normally distributed.

5 Insights into the Lognormals and Dirichlets

The previous section provided us an overview on the diversity and log-normality
of the considered datasets. Diversity differs from dataset to dataset, and in some

4Note that Beta distributions are 1-dimensional Dirichlet distributions. We fitted the
data with this distribution for the aim of comparison in terms of goodness-of-fit between the
Dirichlet and lognormal distributions.
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Figure 1: Distributions of some attributes in Comm-Crime and SPAM. Bold
curves are the histograms of the attributes. Thin curves are the best fitted
Lognormal distributions; dashed curves are the best fitted Beta distributions.

respects represents characteristics of data types. Textual data often have much
less diversity than non-textual data. There are non-negligible differences in
terms of diversity between text corpora. We also have seen that many datasets
have many log-normally distributed properties. These facts raise an important
question of how to model well diversity and log-normality of real data.

Taking individual attributes (words) into account in modeling data, one may
immediately think about using the lognormal distribution to deal with the log-
normality of data. This naive intuition seems to be appropriate in the context
of topic modeling. As we shall see, the lognormal distribution is not only able
to capture log-normality, but also able to model well diversity. Justifications for
those abilities may be borrowed from the characteristics of the distribution.

Attempts to understand the lognormal and Dirichlet distributions were ini-
tiated. We began by illustrating the two distributions in 2-dimensional space.
Depicted in Figure 2 are density functions with different parameter settings.

As one can easily observe, the mass of the Dirichlet distribution will shift
from the center of the simplex to the corners as the values of the parameters
decrease. Conversely, the mass of the lognormal distribution will shift from
the origin to regions which are far from the origin as σ decreases. From more
careful observations, we realized that the lognormal distribution often has long
(thick) tails as σ is large, and has quickly-decreased thin tails as σ is small.
Nonetheless, the reverse phenomenon is the case for the Dirichlet distribution.

The tails of a density function tell us much about that distribution. A
distribution with long (thick) tails would often generate many samples which are
outside of its mass. This fact suggests that the variations of individual random
variables in such a multivariate distribution might be large. As a consequence,
such probability distributions often generate samples of high diversity.

Unlike distributions with long tails, those with short (thin) tails consider-
ably restrict variations of theirs samples. This implies that individual random
variables in such distributions may be less free in terms of variation than those
in long-tail distributions. Therefore, probability distributions with short thin
tails are likely to generate samples of low diversity.

The above arguments suggest at least two implications. First, the lognormal
distribution probably often generates samples of high diversity, and hence is
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Figure 2: Illustration of two distributions in the 2-dimensional space. The
top row are the Dirichlet density functions with different parameter settings.
The bottom row are the Lognormal density functions with parameters set as
µ = 0,Σ = Diag(σ).

capable of modeling high diversity data, since it often has long (thick) tails.
Second, the Dirichlet distribution is appropriate to model data of low diversity
like text corpora. As a result, it seems to be inferior in modeling data of high
diversity, compared with the lognormal distribution.

With the aim of illustrating the above conclusions, we simulated an exper-
iment as follows. Using tools from Matlab, we made 6 synthetic datasets from
samples organized into documents. 3 datasets were constructed from samples
drawn from the Beta distribution with parameters α = (0.1, 0.1); the others
were from 1-dimensional lognormal distribution with parameters µ = 0, σ = 1.
All samples were rounded to the third decimal. Note that the Beta distribution
is the 1-dimensional Dirichlet distribution. Some information of the 6 synthetic
datasets is reported in Table 3. Observe that with the same settings, the log-
normal distribution gave rise to datasets with significantly higher diversity than
the Beta distribution. Hence, this simulation supports further our conclusions
above.

6 The DLN model

We have discussed in Section 5 that the Dirichlet distribution seems to be inap-
propriate with data of high diversity. It will be shown empirically in the next
section that this distribution often causes a topic model to be inconsistent with
respect to diversity. In addition, many datasets seem to have log-normally dis-
tributed properties. Therefore, it is necessary to derive new topic models that
can capture well diversity and log-normality. In this section, we describe a new
variant of LDA, in which the Dirichlet distribution used to generate topics is

11



Table 3: Synthetic datasets originated from the Beta and lognormal distribu-
tions. As shown in this table, the Beta distribution very often yielded the same
samples. Hence it generated datasets with diversity which is often much less
than the number of attributes. Conversely, the lognormal distribution some-
times yielded repeated samples, and thus resulted in datasets with very high
diversity.

Dataset Drawn from #Documents #Attributes Diversity
1 lognormal 1000 200 193.034
2 beta 1000 200 82.552
3 lognormal 5000 200 193.019
4 beta 5000 200 82.5986
5 lognormal 5000 2000 1461.6
6 beta 5000 2000 456.6768

replaced with the lognormal distribution.
Similar with LDA, the DLN model assumes the bag-of-words representations

for both documents and corpus. Let C be a given corpus that consists of M
documents, composed from the vocabulary V of V words. Then the corpus is
assumed to be generated by the following process:

1. For each topic k ∈ {1, ...,K}, choose
βk|µk,Σk ∼ LN(µk,Σk)

2. For each document d in the corpus:

(a) Choose topic proportions θd|α ∼ Dir(α)

(b) For the nth word wdn in the document,

• Choose topic index zdn|θd ∼ Mult(θd)

• Generate the word
wdn|β, zdn ∼ Mult(f(βzdn

)).

Here f(·) is a mapping which maps βk to parameters of multinomial distri-
butions. In DLN, the mapping is

f(βk) =
βk∑V

j=1 βkj

.

The graphical representation of the model is depicted in Figure 3. We note
that the distributions used to endow the topics are the main differences between
DLN and LDA. Using the lognormal distribution also results in various difficul-
ties in learning the model and inferring new documents. To overcome those
difficulties, we used variational methods. For detailed description of model
learning and inference, please see Section A.
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Figure 3: Graphical model representations of DLN and LDA.

7 Evaluation

This section is dedicated to presenting evaluations and comparisons for the new
model. The topic model that will be used to compare with DLN is LDA. As pre-
viously mentioned, LDA is very popular and is the core of various topic models,
where the topic-word distributions are endowed with the Dirichlet distribution.
This view on topics is the only point in which DLN differs from LDA. Hence, any
advantages of DLN over LDA can be applied to other variants of LDA. Further,
any LDA-based model can be readily modified to become a DLN-based model.
From these observations, it is reasonable to compare performances of DLN and
LDA.

Our strategy is as follows:

• We want to see how good the predictive power of DLN is in general.
Perplexity will be used as a standard measure for this task.

• Next, stability of topic models with respect to diversity will be considered.
Additionally, we will also study whether LDA and DLN likely favor data
of low or high diversity. See subsection 7.2.

• Finally, we want to see how well DLN can model data having log-normality
and high diversity. This will be measured via classification on two non-
textual datasets, Comm-Crime and SPAM. Details are in subsection 7.3.

7.1 Perplexity as a goodness-of-fit measure

We first use perplexity as a standard measure to compare LDA and DLN. Per-
plexity is a popular measure which evaluates the goodness-of-fit of a statistical
model, and is widely used in the language modeling community. It is known
to correlate closely with the precision-recall measure in information retrieval
[12]. The measure is often used to compare predictive powers of different topic
models as well.

Let C be the training data, and D = {w1, ...,wT } be the test set. Then
perplexity is calculated by

Perp(D|C) = exp

(
−
∑T

d=1 logP (wd|C)∑T
d=1 |wd|

)
.
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Figure 4: Perplexity as the number of topics increases. Solid curves are DLN,
dashed curves are LDA. The lower is the better.

The data for this task were the 3 text corpora. The two non-textual data
sets were not considered, since perplexity is implicitly defined for text. For each
of the 3 text corpora, we selected randomly 90% of the data to train DLN and
LDA, and the remainings were used to test their predictive powers. Both models
used the same convergence settings for both learning and inference. Figure 4
shows the results as the number of topics increases. We can see clearly that DLN
achieved better perplexity for AP and NIPS than LDA. However, it behaved
worse than LDA on the KOS corpus.

Remember that NIPS has the greatest diversity among these 3 corpora as
investigated in Section 4. That is, the variations of the words in that corpus
are very high. Besides, the lognormal distribution seems to favor data of high
diversity as analyzed in Section 5. The use of this distribution in DLN aims to
capture the diversity of individual words better. Hence the better perplexity of
DLN over LDA for the NIPS corpus is apparently justified.

The better result of DLN on NIPS also suggests more insights into the LDA
model. In Section 5 we have argued that the Dirichlet distribution seems to
favor data of low diversity, and seems inappropriate for high diversity data.
These hypotheses are further supported by our experiments in this section.

Note that AP and KOS have nearly equal diversity. Nevertheless, the per-
formances of both models on these corpora were quite different. DLN was much
better than LDA on AP, but not on KOS. This phenomenon should be further
investigated. In our opinion, some explanations for this may be borrowed from
some observations in Section 4. Notice that although the number of documents
of KOS is approximately 50% larger than that of AP, the number of words
having at least 5 different frequencies (|OV | ≥ 5) in KOS is only about 20%
larger than that of AP. This fact suggests that the words in AP seem to have
higher variations than those in KOS. Besides, DivAP > DivKOS. Combining
these observations, we can conclude that AP has higher variation than KOS.
This is probably the reason why DLN performed better than LDA on AP.

7.2 Stability in predictive power

Next we would like to see whether the two models can work stably with respect
to diversity. The experiments described in the previous subsection are not good
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Figure 5: Sensitivity of LDA and DLN against diversity, measured by perplexity
as the number of topics increases. The testing sets were of same size and same
document length in these experiments. Under the knowledge of DivNIPS >
DivAP > DivKOS, we can see that LDA performed inconsistently with respect
to diversity; DLN performed much more consistently.

enough to see this. The reason is that both topic models were tested on corpora
of different numbers of documents, each with different document length. It
means comparisons across various corpora by perplexity would not be fair if
based on those experiments. Hence we need to conduct other experiments for
this task.

Perplexity was used again for this investigation. To arrive at fair comparisons
and conclusions, we need to measure perplexity on corpora of the same size and
same document length. In order to have such corpora, we did as follows. We
used 3 text corpora as above. For each corpus, 90% were randomly chosen
for training, and the remaining were used for testing. In each testing set, each
document was randomly cut off to remain only 100 occurrences of words in total.
This means the resulting documents for testing were of the same length across
testing sets. Additionally, we randomly removed some documents to remain
only 100 documents in each testing set. Finally, we have 3 testing sets which
are equal in size and document length.

After learning both topic models, the testing sets were inferred to measure
their predictive powers. The results are summarized in Figure 5. As known in
Section 4, the diversity of NIPS is greater than those of AP and KOS. However,
LDA performed inconsistently in terms of perplexity on these corpora as the
number of topics increased. Higher diversity led to neither consistently better
nor consistently worse perplexity. This fact suggests that LDA cannot capture
well the diversity of data.

In comparison with LDA, DLN worked more consistently on these corpora.
It achieved the best perplexity on NIPS, which has the largest diversity among
3 corpora. The gap in perplexity between NIPS and the others is quite large.
This implies that DLN may capture well data of high diversity. However, since
the perplexity for AP was worse than that for KOS while DivAP = 0.0012 >
DivKOS = 0.0011, we do not know clearly whether DLN can cope well with data
of low diversity or not. Answers for this question require more sophisticated
investigations.
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Another observation from the results depicted in Figure 5 is that LDA seems
to work well on data of low diversity, because its perplexity on KOS was consis-
tently better than on other corpora. A reasonable explanation for this behavior
is the use of the Dirichlet distribution to generate topics. Indeed, such distribu-
tion favors low diversity, as analyzed in Section 5. Nonetheless, it is still unclear
to conclude that LDA really works well on data of low diversity, because its
perplexity for KOS was much better than that for AP while DivAP ≃ DivKOS.

7.3 Document classification

Our next experiments were to measure how well the two models work, via clas-
sification tasks, when data have high diversity and log-normality. As is well-
known, topic models are basically high-level descriptions of data. In other words,
the most interesting characteristics of data are expected to be captured in topic
models. Hence topic models provide new representations of data. This inter-
pretation implicitly allows us to apply them to many other applications, such
as classification [26], [7].

The datasets for these tasks are SPAM and Comm-Crime. We used micro
precision [23] as a measure for comparison. Loosely speaking, precision can be
interpreted as the extent of our confidence in assigning labels to documents.
It is believed, at least in the text categorization community, that this measure
is more reliable than the accuracy measure for classification [23]. Thus it is
reasonable to use it for our tasks in this section.

SPAM is straightforward to understand, and is very suitable for the classifi-
cation task. The main objective is to predict whether a given document is spam
or not. Thus, we keep the spam attribute unchanged, and multiply all values of
other attributes in all records by 10000 to make sure that the obtained values
are integers. Resulting records are regarded as documents in which each value
of an attribute is the frequency of the associated word.

The nature of Comm-Crime is indirectly related to classification. The goal
of Comm-Crime is to predict how many violent crimes will occur per 100K
population. In this corpus, all cities have these values that can be used to train
or test a learning algorithm. Since predicting an exact number of violent crimes
is unrealistic, we predicted the interval in which the number of violent crimes
of a city most probably falls.5

Since all crime values in the original data were normalized to be in [0,1],
two issues arise when performing classification on this dataset. First, how many
intervals are appropriate? Second, how to represent crime values, each belonging
to exactly one interval, as class labels. The first issue is easier to deal with in
practice than the latter. In our experiments, we first tried 10 intervals, and
then 15 intervals. For the second issue, we did as follows: each attribute was

5Be aware that this dataset is also suitable to be used in regression, since the data were
previously normalized to be in [0, 1]. However, this section is devoted to comparing topic
models in terms of how well they can capture diversity and log-normality of data. SPAM and
Comm-Crime are good datasets for these tasks, because they both have high diversity and
many likely log-normally distributed attributes.
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Table 4: Average precision in crime prediction.
#intervals SVM DLN+SVM LDA+SVM

10 0.56 0.61 0.58
15 0.43 0.48 0.46

associated with a word except crime. The values of the attributes were scaled by
the same number to make sure that all are integers, and then were regarded as
frequencies of the associated words. For the crime attribute, we associated each
interval with each class label. Each record then corresponds to a document,
where the crime value is associated with a class label.

We considered performances on Comm-Crime of 3 approaches: SVM, DLN+SVM,
LDA+SVM. Here we used multi-class SVM implemented in the package by
Joachims.6 It was trained and tested on the original dataset to ensure fair
comparisons. DLN+SVM (and LDA+SVM) worked in the same way as in pre-
vious works [7], i.e., we first modeled the data by DLN (LDA) to find latent
representations of the documents in terms of topic proportions vectors, and
then used them as feature vectors for SVM. Note that different kernels can be
used for SVM, DLN+SVM, LDA+SVM, which could lead to different results
[24]. Nonetheless, our main aims are to compare performance of topic models.
Hence, using the linear kernel for three methods seems sufficient for our aims.
For each classification method, the regularization constant C was searched from
{1, 10, 100, 1000} to find the best one. We further used 5-fold cross-validation
and reported the averaged results.

For topic models, the number of topics should be chosen appropriately. In
[29], Wallach et al. empirically showed that LDA may work better as the number
of topics increases. Nevertheless, the subsections 7.1 and 7.2 have indicated
that large values of K did not lead to consistently better perplexity for LDA.
Moreover, the two models did not behave so badly at K = 50. Hence we chose
50 topics for both topic models in our experiments. The results are presented
in Table 4.

Among the 3 approaches, DLN+SVM consistently performed best. These
results suggest that DLN worked better than LDA did. We remark that Comm-
Crime has very high diversity and seems to have plenty of log-normality. Hence
the better performance of DLN over LDA suggests that the new model can
capture well log-normality of data, and can work well on data of high diversity.

One can realize that the precisions obtained from these approaches were
quite low. In our opinion, this may be due to the inherent nature of that
data. To provide evidence for our belief, we conducted separately regression on
the original Comm-Crime dataset with two other well-known methods, Bagging
and Linear Regression implemented in Weka.7 Experiments with these methods
used default parameters and used 5-fold cross-validation. Mean absolute errors
from these experiments varied from 0.0891 to 0.0975. Note that all values of

6Available from http://svmlight.joachims.org/svm multiclass.html
7Version 3.7.2 at http://www.cs.waikato.ac.nz/∼ml/weka/
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Table 5: Average precision in spam filtering.
SVM DLN+SVM LDA+SVM
0.81 0.95 0.92

the attributes in the dataset had been normalized to be in [0, 1]. Therefore the
resulting errors are problematic. After scaling and transforming the regression
results to classification, the consequent precisions vary from 0.3458 to 0.4112.
This variation suggests that Comm-Crime seems to be difficult for current learn-
ing methods.

The above experiments on Comm-Crime provide some supporting evidence
for the good performance of DLN. We next conducted experiments for classifi-
cation on SPAM. We used the same settings as above, 50 topics for topic models
and 5-fold cross-validation. The results are described in Table 5. One can eas-
ily observe the consistently better performance of our new model over LDA,
working in combination with SVM. Note that precisions for SPAM are much
greater than those for Comm-Crime. The reasons are that SPAM is inherently
for binary classification, which is often easier than multi-class counterparts, and
that the training set for SPAM is much bigger than that for Comm-Crime which
enables better learning.

8 Discussion

In summary, we now have strong evidence from the empirical results and anal-
yses for the following conclusions. First, DLN can get benefits from data that
have many likely log-normally distributed properties. It seems to capture well
log-normality of data. Second, DLN is more suitable than LDA on data of high
diversity, since consistently better performances have been observed. Third,
topic models are able to model well data that are non-textual, since the combi-
nations of topic models with SVM often got better results than SVM did alone
in our experiments.

LDA and DLN have been compared in various evaluations. The performance
of DLN was consistent with the diversity of data, whereas LDA was inconsis-
tent. Furthermore, DLN performed consistently better than LDA on data that
have high diversity and many likely log-normally distributed properties. Note
that in our experiments, the considered datasets have different diversities. This
treatment aimed to ensure that each conclusion will be strongly supported. In
addition, the lognormal distribution is likely to favor data of high diversity as
demonstrated in Section 5. Hence, the use of the lognormal distribution in our
model really helps the model to capture diversity and log-normality of real data.

Although the new model has many distinguishing characteristics for real ap-
plications, it suffers from some limitations. First, due to the complex nature
of the lognormal distribution, learning the model from real data is complicated
and time-consuming. Second, the memory for practical implementation is large,
O(K.V.V +M.V +K.M), since we have to store K different lognormal distri-
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butions corresponding to K topics. Hence it is suitable with corpora of average
vocabularies, and datasets with average numbers of attributes.

Some concerns may arise when applying DLN in real applications: what
characteristics of data ensure the good performance of DLN? Which data types
are suitable for DLN? The followings are some of our observations.

• For non-textual datasets, DLN is very suitable if diversity is high. Our
experiments suggest that the higher diversity the data have, the better
DLN can perform. Note that diversity is basically proportional to the
number of different values of attributes observed in a dataset. Hence, by
intuition, if there are many attributes that vary significantly in a dataset,
then the diversity of that dataset would be probably high, and thus DLN
would be suitable.

• Log-normality of data is much more difficult to see than diversity.8 Nonethe-
less, if once we know that a given dataset has log-normally distributed
properties, DLN would probably work better on it than LDA.

• For text corpora, the diversity of a corpus is essentially proportional to the
number of different frequencies of words observed in the corpus. Hence
if a corpus has words that vary significantly, DLN would probably work
better than LDA. The reason is that DLN favors data of high diversity.

• A corpus whose documents are often long will allow high variations of
individual words. This implies that such a corpus is very likely to have
high diversity. Therefore, DLN would probably work better than LDA, as
observed in the previous section. Corpora with short documents seem to
be suitable for LDA.

• A corpus that is made from different sources with different domains would
very likely have high diversity. As we can see, each domain may result in a
certain common length for its documents, and thus the average document
length would vary significantly among domains. For instance, scientific
papers in NIPS and news in AP differ very much in length; conversations
in blogs are often shorter than scientific papers. For such mixed corpora,
DLN seems to work well, but LDA is less favorable.

The concept of “diversity” in this work is limited to a fixed dataset. There-
fore, it is an open problem to extend the concept to the cases that our data is
dynamic or streams. When the data is dynamic, it is very likely that behaviors
of features often will be complex. Another limitation of the concept is that data
are assumed to be free of noises and outliers. When noises or outliers appear
in a dataset, the diversity of features will be probably high. This could cause

8In principle, checking the presence of log-normality in a dataset is possible. Indeed,
checking the log-normality property is equivalent to checking the normality property. This is
because if a variable x follows the normal distribution, then y = ex will follow the log-normal
distribution [13], [15]. Hence, checking the log-normality property of a dataset D can be
reduced to checking the normality property of the logarithm version of D.
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the modeling more difficult. In our work, we found that the lognormal distri-
bution can model well high diversity of data. Therefore, in the cases of noises
or outliers, it seem better to employ this distribution to develop robust models.
Nevertheless, this conjecture is left open for future research.

9 Conclusion

In this article, we studied a fundamental property of real data, phrased as “diver-
sity”, which has not been paid enough attention from the machine learning com-
munity. Loosely speaking, diversity measures average variations of attributes
within a dataset. We showed that diversity varies significantly among different
data types. Textual corpora often have much less diversity than non-textual
datasets. Even within text, diversity varies significantly among different types
of text collections.

We empirically showed that diversity of real data non-negligibly affects per-
formance of topic models. In particular, the well-known LDA model [7] worked
inconsistently with respect to diversity. In addition, LDA seems not to model
well data of high diversity. This fact raises an important question of how to
model well the diversity of real corpora.

To deal with the inherent diversity property, we proposed a new variant
of LDA, called DLN, in which topics are samples drawn from the lognormal
distribution. In spite of being a simple variant, DLN was demonstrated to model
well the diversity of data. It worked consistently and seemingly proportionally
as diversity varies. On the other hand, the use of the lognormal distribution
also allows the new model to capture lognormal properties of many real datasets
[15], [10].

Finally, we remark that our approach here can be readily applied to various
topic models since LDA is their core. In particular, the Dirichlet distribution
used to generate topics can be replaced with the lognormal distribution to cope
with diversity of data.
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A Variational method for learning and posterior
inference

There are many learning approaches to a given model. Nonetheless, the lognor-
mal distribution used in DLN is not conjugate with the multinomial distribution.
So learning the parameters of the model is much more complicated than that
of LDA. We use variational methods [28] for our model.

The main idea behind variational methods is to use simpler variational dis-
tributions to approximate the original distributions. Those variational distribu-
tions should be tractable to learn their parameters, but still give good approxi-
mations.

Let C be a given corpus of M documents, say C = {w1, ...,wM}. V is the
vocabulary of the corpus and has V words. The jth word of the vocabulary
is represented as the jth unit vector of the V -dimensional space RV . More
specifically, if wj is the jth word in the vocabulary V and wi

j is the ith component

of wj , then wi
j = 0 for all i ̸= j, and wj

j = 1. These notations are similar to
those in [7] for ease of comparison.

The starting point of our derivation for learning and inference is the joint
distribution of latent variables for each document d, P (zd,θd,β|α,µ,Σ). This
distribution is so complex that it is intractable to deal with. We will approximate
it by the following variational distribution:

Q(zd,θd,β|ϕd,γd, µ̂, Σ̂) = Q(θd|γd)Q(zd|ϕd)

K∏
k=1

Q(βk|µ̂k, Σ̂k)

= Q(θd|γd)

Nd∏
n=1

Q(zdn|ϕdn)

K∏
k=1

V∏
j=1

Q(βkj |µ̂kj , σ̂
2
kj)

Where Σ̂k = diag(σ̂2
k1, ..., σ̂

2
kV ), µ̂k = (µ̂k1, ..., µ̂kV )

T ∈ RV . The variational
distribution of discrete variable zdn is specified by the K-dimensional param-
eter ϕdn. Likewise, the variational distribution of continuous variable θd is
specified by the K-dimensional parameter γd. The topic-word distributions are

approximated by much simpler variational distributions Q(βk|µ̂k, Σ̂k) which
are decomposable into 1-dimensional lognormals.

We now consider the log likelihood of the corpus C given the model {α,µ,Σ}.

logP (C|α,µ,Σ) =

M∑
d=1

logP (wd|α,µ,Σ)

=

M∑
d=1

log

∫
dθd

∫
dβ
∑
zd

P (wd, zd,θd,β|α,µ,Σ)

=

M∑
d=1

log

∫
dθd

∫
dβ
∑
zd

P (wd,Ξ|α,µ,Σ)
Q(Ξ|Λ)
Q(Ξ|Λ)

.
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Where we have denoted Ξ = {zd,θd,β}, Λ = {ϕd,γd, µ̂, Σ̂}. By Jensen’s
inequality [28] we have

logP (C|α,µ,Σ) ≥
M∑
d=1

∫
dθd

∫
dβ
∑
zd

Q(Ξ|Λ) log P (wd,Ξ|α,µ,Σ)

Q(Ξ|Λ)

≥
M∑
d=1

[EQ logP (wd,Ξ|α,µ,Σ)−EQ logQ(Ξ|Λ)] . (2)

The task of the variational EM algorithm is to optimize the equation (2), i.e.,
to maximize the lower bound of the log likelihood. The algorithm alternates
E-step and M-step until convergence. In the E-step, the algorithm tries to
maximize the lower bound w.r.t variational parameters. Then for fixed values
of variational parameters, the M-step maximizes the lower bound w.r.t model
parameters. In summary, the EM algorithm for the DLN model is as follows.

• E-step: maximize the lower bound in (2) w.r.t ϕ,γ, µ̂, Σ̂.

• M-step: maximize the lower bound in (2) w.r.t α,µ,Σ.

• Iterate these two steps until convergence.

Note that DLN differs from LDA only in topic-word distributions. Thus
ϕ,γ, and α can be learnt as in [7], with a slightly different formula for ϕ.

ϕdni ∝

[
µ̂iν − log

V∑
t=1

exp(µ̂it +
1

2
σ̂2
it)

]
exp

Ψ(γdi)−Ψ(
K∑
j=1

γdj)

 (3)

To complete the description of the learning algorithm for DLN, we next deal
with the remaining variational parameters and model parameters. For the aim
of clarity, we begin with the lower bound in (2).

EQ logP (wd,Ξ|α,µ,Σ) = EQ logP (wd|zd,β) +EQ logP (zd|θd)

+EQ logP (θd|α) +EQ logP (β|µ,Σ)

EQ logQ(Ξ|ϕd,γd, µ̂, Σ̂) = EQ logQ(zd|ϕd) +EQ logQ(θd|γd)

+

K∑
i=1

EQ logQ(βi|µ̂i, Σ̂i)

Thus the log likelihood now is
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logP (C|α,µ,Σ) ≥
M∑
d=1

EQ logP (wd|zd,β)

−
M∑
d=1

[KL (Q(zd|ϕd)||P (zd|θd))−KL (Q(θd|γd)||P (θd|α))]

−
M∑
d=1

K∑
i=1

KL
(
Q(βi|µ̂i, Σ̂i)||P (βi|µi,Σi)

)
(4)

WhereKL(·||·) is the Kullback-Leibler divergence of two distributions. Since
Q(zd|ϕd) and P (zd|θd) are multinomial distributions, according to [18], we have

KL (Q(zd|ϕd)||P (zd|θd)) =

Nd∑
n=1

K∑
i=1

ϕdni log ϕdni −
Nd∑
n=1

K∑
i=1

ϕdni

[
Ψ(γdi)−Ψ(

K∑
t=1

γdt)

]
(5)

Where Ψ(·) is the digamma function. Note that the first term is the expec-
tation of logQ(zd|ϕd), and the second one is the expectation of logP (zd|θd) for
which we have used the expectation of the sufficient statistics EQ[log θdi|γd] =
Ψ(γdi)−Ψ(

∑K
t=1 γdt) for the Dirichlet distribution [7].

Similarly, for Dirichlet distributions as implicitly shown in [7],

KL (Q(θd|γd)||P (θd|α)) =

− log Γ(
K∑
i=1

αi) +
K∑
i=1

log Γ(αi)−
K∑
i=1

(αi − 1)

(
Ψ(γdi)−Ψ(

K∑
t=1

γdt)

)

+ log Γ(
K∑
j=1

γdj)−
K∑
i=1

log Γ(γdi) +
K∑
i=1

(γdi − 1)

(
Ψ(γdi)−Ψ(

K∑
t=1

γdt)

)
(6)

By a simple transformation, we can easily show that the KL divergence
of two lognormal distributions, Q(β|µ̂, Σ̂) and P (β|µ,Σ), is equal to that of

other normal distributions, Q∗(β|µ̂, Σ̂) and P ∗(β|µ,Σ). Hence using the KL
divergence of two Normals as in [19], we obtain the divergence of two lognormal
distributions.

KL
(
Q(βi|µ̂i, Σ̂i)||P (βi|µi,Σi)

)
=

1

2
log |Σ̂

−1

i Σi|+
1

2
Tr
(
(Σ̂

−1

i Σi)
−1
)
− V

2
+

1

2
(µ̂i − µi)

TΣ−1
i (µ̂i − µi) (7)

Where Tr(A) is the trace of the matrix A.
The remaining term in (4) is the expectation of the log likelihood of the

document wd. To find more detailed representations, we observe that, since βi
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is a log-normally random variable,

EQ log βij = µ̂ij , j ∈ {1, ..., V }

EQ log
V∑
t=1

βit = log exp

(
EQ log

V∑
t=1

βit

)
(8)

≤ logEQ

V∑
t=1

βit (9)

≤ log
V∑
t=1

exp(µ̂it + σ̂2
it/2) (10)

Note that the inequality (9) has been derived from (8) using Jensen’s in-
equality. The last inequality (10) is simply another form of (9), replacing the
expectations of individual variables by their detailed formulas [13].

From those observations, we have

EQ logP (wd|zd,β)

=

Nd∑
n=1

EQ logP (wdn|zdn,β) (11)

=

Nd∑
n=1

K∑
i=1

V∑
j=1

ϕdniw
j
dnEQ

[
log βij − log

V∑
t=1

βit

]
(12)

≥
Nd∑
n=1

K∑
i=1

V∑
j=1

ϕdniw
j
dn

[
µ̂ij − log

V∑
t=1

exp(µ̂it + σ̂2
it/2)

]
(13)

There is a little strange in the right-hand side of (12) resulting from (11).
The reason is that in DLN each topic βi has to be transformed by the mapping
f(·) into parameters of the multinomial distribution. Hence the derived formula
is more complicated than that of LDA.

A lower bound of the log likelihood of the corpus C is finally derived from
combining (4), (5), (6), (7), and (13). We next have to incorporate this lower
bound into the variational EM algorithm for DLN by describing how to maxi-
mize the lower bound with respect to the parameters.

Variational parameters:
First, we would like to maximize the lower bound by variational parameters,

µ̂, Σ̂. Note that the term containing µ̂i for each i ∈ {1, ...,K} is

L[µ̂i] =− M

2
(µ̂i − µi)

TΣ−1
i (µ̂i − µi)

+

M∑
d=1

Nd∑
n=1

V∑
j=1

ϕdniw
j
dn

[
µ̂ij − log

V∑
t=1

exp(µ̂it + σ̂2
it/2)

]
.

Since log-sum-exp functions are convex in their variables [9], L[µ̂i] is a con-
cave function in µ̂i. Therefore, we can use convex optimization methods to
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maximize L[µ̂i]. In particular, we use LBFGS [17] to find the maximum of
L[µ̂i] with the following partial derivatives

∂L
∂µ̂ij

= −MΣ−1
ij (µ̂i − µi) +

M∑
d=1

Nd∑
n=1

ϕdniw
j
dn −

M∑
d=1

Nd∑
n=1

ϕdni

exp(µ̂ij + σ̂2
ij/2)∑V

t=1 exp(µ̂it + σ̂2
it/2)

Where Σ−1
ij is the jth row of Σ−1

i .

The term in the lower bound of (4) that contains Σ̂i for each i is

L[Σ̂i] =
M

2
log |Σ̂i| −

M

2
Tr(Σ−1

i Σ̂i)−
M∑
d=1

Nd∑
n=1

ϕdni log

V∑
t=1

exp(µ̂it + σ̂2
it/2)

We use LBFGS-B [35] to find its maximum subject to the constraints σ̂2
ij >

0, ∀j ∈ {1, ..., V }, with the following derivatives

∂L
∂σ̂2

ij

=
M

2σ̂2
ij

− M

2
σ−2
ij − 1

2

M∑
d=1

Nd∑
n=1

ϕdni

exp(µ̂ij + σ̂2
ij/2)∑V

t=1 exp(µ̂it + σ̂2
it/2)

Where σ−2
ij is the jth element on the diagonal of Σ−1

i .
Model parameters:
We now want to maximize the lower bound of (4) with respect to the model

parameters µ and Σ, for the M-step of the variational EM algorithm. The term
containing µi for each i is

L[µi] = −M

2
(µ̂i − µi)

TΣ−1
i (µ̂i − µi)

The maximum of this function is reached at

µi = µ̂i (14)

The term containing Σ−1
i that is to be maximized is

L[Σ−1
i ] =

M

2
log |Σ−1

i | − M

2
Tr(Σ−1

i Σ̂i)

−M

2
(µ̂i − µi)

TΣ−1
i (µ̂i − µi)

And its derivative is

∂L
∂Σ−1

i

=
M

2
Σi −

M

2
Σ̂i −

M

2
(µ̂i − µi)(µ̂i − µi)

T

Setting this to 0, we can find the maximum point:

Σi = Σ̂i + (µ̂i − µi)(µ̂i − µi)
T (15)
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We have derived how to maximize the lower bound of the log likelihood of
the corpus C in (2) with respect to the variational parameters and model pa-
rameters. The variational EM algorithm now proceeds by maximizing the lower
bound w.r.t ϕ,γ, µ̂, Σ̂ under the fixed values of the model parameters, and then
by maximizing w.r.t α,µ,Σ under the fixed values of variational parameters.
Iterate these two steps until convergence. In our experiments, the convergence
criterion is that the relative change of the log likelihood was no more than 10−4.

For inferences on each new document, we can use the same iterative proce-
dure as described in [7] using the formula (3) for ϕ. The convergence threshold
for the inferences of each document was 10−6.
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