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Abstract—In this paper, we present a conceptual design for a
context-influenced Long-Term Memory architecture. The notion
of context is used as a means to organize the information
flow between the Working Memory and Long-Term Memory
components. In particular, we discuss the major influence of
the notion of context within the Episodic Memory on the
Semantic and Procedural Memory, respectively. In other words,
we address how the occurrence of specific events in time impacts
on the meaning of those events and the subsequent use of objects
through robot actions. The general architecture design and its
implementation in a simulated scenario are described. Such
issues as memory items representation, individual structures
of Long-Term Memory components, as well as memory-based
recognition and item retrieval processes, are discussed in detail.

I. INTRODUCTION

Current research activities on robot cognitive architectures
mainly aim at providing holistic conceptual models in order
to enable robots to perform cognitive tasks [1], [2]. High-
level robot cognitive tasks tacitly assume the presence of an
underlying memory-based architecture to ground perception,
representation and retrieval, as well as action-oriented be-
haviors. Although the most relevant characteristics of human
memory are far from being assessed, it constitutes a useful
source of inspiration to manage information flow in robot
cognitive architectures. Although there is no general consen-
sus about a general framework, memory models typically
assume a multi-storage organization, roughly dividing the
whole memory space in two areas, namely the Working
Memory (WM), which some authors refer to also as Short-
Term Memory (STM), and the Long-Term Memory space
(LTM), which is divided in sub-areas, e.g., the Episodic
Memory (EM), the Procedural Memory (PM) and the Se-
mantic Memory (SM).

In the literature, attempts to characterize computational
models related to individual WM components have been
pursued [3], as well as LTM components, e.g., EM [4]–[10]
and PM [11]. Among the various approaches in the literature,
Stachowicz and Kruijff provide a thorough explanation of
both design requirements and formal concepts needed to
characterize EM and its storage structure [10]. They also

provide a brief review about EM in the ISAC framework [5],
the SOAR architecture [4], and EPIROME [7], just to name
but a few. However, the focus of their work is on the notion
of event, its properties, and its use in such processes as event
recognition, event nesting, and event types of complexity.
Despite their claim of having designed an EM-like memory
structure, it is noteworthy that they do exploit the notion of
context, which is considered of the utmost importance in [12],
[13].

Given an analysis of the literature, two important topics
need to be addressed. On the one hand, no architectural model
seems to consider the explicit functional interconnection
between memory modules in a principled way. On the other
hand, when adopting a holistic approach to the definition of
the architecture itself, discrepancies between the role of each
module and its influence to other modules can be frequently
found.

In particular, if we want to design a robot able to proac-
tively understand its environment and to engage humans in
interaction tasks, the need arises to characterize the relation-
ships between the various modules within a memory-based,
robot cognitive architecture, specifically integrating the no-
tion of context. In humans, context processing is believed
to occur in the hippocampus [14]. Specifically, it refers to
those mechanisms to differentiate a particular situation from
other situations so that the correct behavior or mnemonic
output can be retrieved. In order to achieve this objective
also in robots, this paper presents and discusses an explicitly
interconnected, memory-based robot architecture explicitly
taking the notion of context into account. Such an architecture
is to be considered the foundation for the design of more
complex cognitive processes to occur in robots based on the
developmental paradigm.

Developmental does not necessarily means machine learn-
ing, and from the perspective of this work, it can be con-
sidered as a continuous knowledge acquisition that allows
progressive improvements of knowledge quality (from overall
robot motoric skills until the advance usage of knowledge
obtained from the robot’s personally experienced events) that
grows along with human interaction. The main contribution



of this paper is twofold: (i) to utilize the notion of context as
the means to interconnect EM, PM and SM; (ii) to analyze
the impact of events on the robot behavior (as mediated by
the architecture) when the notion of context is considered. It
is expected that the introduction of context-based information
affects memory retrieval processes, specifically as a means
to mimic awareness mechanisms.

The paper is organized as follows. Section II formally
introduces the envisaged architecture on the basis of available
Neuroscience and Psychology literature. Section III describes
the experimental setting and reports about the related discus-
sion. The conclusion follows.

II. A MEMORY-BASED ROBOT ARCHITECTURE

In this Section, we describe the proposed architecture
detailing each component. As previously anticipated, we con-
sider a multi-storage model where both the Working Memory
and the Long-Term Memory are explicitly represented. WM
is based on the Baddeley updated model [15], which includes
the supervisor Central Executive (CE) component, as well
as the three passive storages namely the Phonological Loop
(PL), the Visuospatial Sketchpad (VSSP) and the Episodic
Buffer (EB). The LTM consists of three basic components,
i.e., the Episodic Memory (EM), which keeps track of per-
sonally experienced events localized in time, the Procedural
Memory (PM), which stores the elementary and composite
motor skills, and the Semantic Memory (SM), which deals
with facts, their meaning and in general with common sense
knowledge.

As a working hypothesis, we assume a human-robot in-
teraction scenario where a robot is capable of perceiving
its environment by means of visual information. The robot
can perceive scenes, where simple objects of well-defined
color and shape are placed on a table. A human can pose the
robot questions related to its perceptions, such as How many
red boxes have been shown? or What is the location of the
blue box with respect to the red sphere? In order to answer
such questions, the robot must be able to recollect what it
previously saw from its memory and (although such aspect
is not covered in this paper), verbalize it.

A. Working Memory

WM is a theoretical framework which refers to both
structures and processes used to temporarily store and reason
upon information. It is believed that WM and LTM interact
continuously. However, the nature of such interaction is still
not completely clear. According to the Atkinson and Shiffrin
model, information is transferred to LTM as long as it is
attended in WM [16]. From the WM point of view, LTM
is only considered a (possibly complex) memory storage,
whose encoding and decoding processes are arranged and
managed by CE. In the proposed architecture, we address
how CE can encode memory items in LTM such that they
are interconnected with each other in EM, PM, and SM. In
human memory, CE is responsible for processing information
originating from different sources, coordinating a number of

passive slave subsystems, as well as performing selective
attention and inhibition strategies. In our architecture, we
model CE as a system able to perform a number of tasks, as
follows.

• Explicitly managing memory encoding and decoding
processes in such LTM components as EM, PM, and
SM, specifically using contextual information.

• Exhibiting familiarity-like information retrieval, i.e.,
how to identify cues to be used, based on logical pro-
cesses involving cues analysis and problem awareness
[17], [18].

• Manifesting recollection behaviors, i.e., recalling LTM
memory items from the results of familiarity retrieval
processes if they match the desired retrieval cues.

• Supervising the Phonological Loop slave component,
i.e., by analyzing verbal information related to recalled
LTM memory items, and the Visuospatial Sketchpad
slave component, related to visual information, i.e.,
object shapes, colors or locations (as perceived in a
scene).

B. Long-Term Memory

LTM is considered as a virtually infinite store of informa-
tion where memory items can be kept indefinitely through
synaptic consolidation. When considering a robot-targeted
implementation of a memory-based architecture, such issues
as efficient information storage and retrieval must be care-
fully designed. If we consider robots operating in real-world
environments, we expect their knowledge to exponentially
grow as they operate. In a memory-based robot architecture,
this means that the WM must be able to encode in and, above
all, decode from LTM a huge amount of memory items. In
order to retrieve a given memory item, in the absence of any
contextual information, it would be necessary to check all
the LTM content. Such process may seriously disrupt robot
behavior. In this paper, we focus on designing an efficient
method for information retrieval by exploiting the so-called
recognition principle.

Recognition can be further specialized in two principles,
namely familiarity and recollection, as being defined by Tul-
ving [19] and later by Mickley [20]. Recognition assumes the
availability of associative memory mechanisms. Specifically,
when a memory item is to be recollected, various related
cues in WM are used. Then, memory items in LTM that
have associations with the cues are considered. Recollected
memory items are characterized by very strong associations
(i.e., a sense of familiarity) with the used retrieval cues.
Starting from experiments with subjects, Tulving suggested
that recollection is based on EM due to autonoetic con-
sciousness properties, whereas familiarity is based on SM
given its noetic characteristics [19], [21]. In other words,
whilst familiarity corresponds to a subjective sense of having
previously encountered a stimulus, recollection refers to
specific contextual events and details obtained in the past
experience.



Based on Tulving’s definition, we further specialize the
familiarity principle in two processes: 1) being aware of the
memory item’s existence in LTM, before any recall occurs,
and 2) being able to recall the memory item independently of
the contextual information related to it. The second process
well adheres to the classical Tulving’s definition. In our
architecture, we introduce a familiarity filtering index (FFI),
with the aim of modeling the first process by limiting the
number of possible memory items that must be checked
in LTM. In particular, given an LTM memory structure, a
retrieval cue r, and a desired memory item (i.e., a content)
i, the process can be modelled as

i = recall(FFI(r, LTM)).

The FFI procedure searches for memory items character-
ized by a high level of familiarity with the provided cues.
To accurately define what familiarity is, it is necessary to
describe how memory items are represented. Each memory
item is characterized by two sets of descriptors, namely the
Body ID and the Skills ID. The first set of descriptors is
related to the robot body schema and in particular to robot
parts actually involved in the memory item (e.g., left or right
body part, hands or arms). The second set of descriptors
refers to the specific goal-oriented behaviors employed by
the robot while interacting with the environment, as well as
the goals of the interaction. FFI first seeks to satisfy cues
related to the robot body (in order to weight perceptions),
then to its actual behaviors (i.e., past experiences).

Our model is based on the notion of factor.
Definition 1 (Factor): A factor f ∈ F is a single element

that forms a SM and PM item, where F = SM ∪ PM .
A factor consists of n cue-value pairs, such as f =
{(r1, v1), . . . , (rn, vn)}.

1) Semantic Memory: We now formally define SM, where
concepts and common sense knowledge are stored, and then
PM, which stores robot motor behaviors. It is noteworthy
that SM is characterized by robot-independent knowledge,
provided that different robots have the same perception
capabilities, whereas the content of PM is robot-dependent.
In a sense, it is possible to say that PM stores information
about knowing how to do something, whereas SM stores
information about knowing what (knowing about something).

Definition 2 (Semantic Memory): A Semantic Memory
SM consists of 5 factor types, i.e., SM = {N,H,L, T,W},
where: N represents known (or previously identified) entities;
H stores information related to humans the robot may
interact with; L is related to spatial information; T represents
unexperienced factual, future time-reference (i.e., activities
to be performed in the future), and W is related to lexical
knowledge, which may be used in human-robot interaction
tasks.

Of particular interest for our discussion are the notions of
entities and locations, which we define as follows.

Definition 3 (Entity): An entity n ∈ N can be one of 5
primitive entities (i.e., cube, plane, disc, cylinder, sphere) or

(a) Initial blue
box detection

(b) Ball de-
tection

(c) Red box
detection (d) Information flow of entities by relative position

Fig. 1: Recursive memory item callback during position
recollection: the location of an entity is determined relative
to previous memory information.

a compound entity, such as N = NP ∪ NC , where NP =
{Ncu, Npl, Ndi, Ncy, Nsp}, and NC = NP

c, where NP is the
set of known primitive entities, and NC is the set of known
compound entities (i.e., complementary to Nc).

It is noteworthy that each entity is characterized by
a number of multi-valued factors, such as name, shape
and color, as well as a number of Boolean parame-
ters, e.g., graspable and manipulable. Each factor is char-
acterized by specific cues. For example, a bluebox en-
tity is characterized by {(name, bluebox), (shape, cube),
(graspable, true), (manipulable, true), (color, blue)}.

Definition 4 (Location): A spatial location l ∈ L can be
either absolute or relative, such as L = {La, Lr}, where La

and Lr are the set of items related to absolute and relative
locations, respectively. A relative location contains relative
position and its reference. It is applicable to current robot
behaviors and can be recursively used (Figure 1).

For example, further characterization of bluebox in-
cludes location information, which may be relative with
respect to the robot perspective, such as (location,<
0.72, 0.13,−0.29 >), as expressed using a robot-centered
Cartesian reference system, or a previously detected object.

In the current SM implementation, Body ID descriptors
correspond to factors for each memory item, whereas Skills
ID descriptors correspond to specific aspects of each factor.
This enables the robot to filter out cue-unrelated memory
items.

Definition 5 (Context): A context c is made up of cue-
value pairs corresponding to a particular factor f , and it is
defined as c = {(rf1 , vf1), . . . , (rfn , vfn)}, where n is the
number of desired contextual elements provided by humans
during the interaction with the robot.



Context is given by human and it is directly related to
scene and indirectly related to an event. During an event
recollection, context have the effect of filtering down the
number of personally experienced scenes, yielding a series of
matching scenes which is an event with respect to a certain
context.

Definition 6 (Retrieval Cues): A retrieval cue r ∈ R is
an element used to recollect a memory item, such as R =
Rg ∪Rc ∪Rs, where Rg is a set of general cues, Rc is a set
of context-dependent cues, and Rs is a set of state-dependent
cues.

The three types of cues are defined as follows.
Definition 7 (General Cue): A general cue r ∈ Rg is

available regardless of the type of memory it resides in.
Definition 8 (Context-dependent Cue): Given a scene δ

the robot is observing, a context-dependent cue r ∈ Rc

indirectly corresponds to an event occurring in δ.
It is noteworthy that Rc ⊂ EM , i.e., context-dependent

cues are part of the Episodic Memory.
Definition 9 (State-dependent Cue): Given a factor f and

a sequence of (possibly goal-oriented) robot behaviors Q, a
state-dependent cue r ∈ Rs corresponds to f as it is encoded
in SM and PM.

From the last definition, it follows that Rs ⊂ SM ∩ PM .
It is now possible to better define Procedural Memory.
2) Procedural memory: As a preliminary step, it is nec-

essary to specify the difference of meaning between the
concepts of movement and skill that are used in the paper. We
refer in a generic sense to movement as a robot motion not
targeted to any specific objective, whereas we refer to skill
as a goal-oriented behavior, which may be a priori known
or learned.

Definition 10 (Procedural Memory): A Procedural Mem-
ory PM consists of 3 classes of skills, namely elementary
skills Pe, alias skills Pa and composite skills Pc, such that
PM = {Pe, Pa, Pc}.

A Procedural memory item consists of general and state-
dependent cues. It is noteworthy that in this case a state-
dependent cue is a triple defined by an objective, a significant
symbolized by the cue denotes and a sequence of skills,
which are defined as follows.

Definition 11 (Objective): An objective o is the set of all
the parameters which must be grounded to perform a given
goal-oriented behavior, such that o = {x1, . . . , xn}, where
the generic x element is a name-value pair.

Definition 12 (Elementary Skill): An elementary skill p ∈
Pe is a basic and atomic goal-oriented robot behavior.

With atomic, we refer to the fact that an elementary skill
is so simple that cannot be further decomposed. Such a skill
can be performed regardless of the existence of an objective
[22].

Definition 13 (Alias Skill): An alias skill p ∈ Pa consti-
tutes a variation of any existing skill, such that some or all
of the parameters characterizing the skill may be differently
grounded. It is characterized by an additional state-dependent

cue denotes that signifies the referred basic skill, although
with a different name and objective.

Definition 14 (Composite Skill): A composite skill p ∈ Pc

is a complex skill consisting of already existing low-level
elementary, alias or recursively composite skills.

Composite skills are made up of general and state-
dependent cues.

Definition 15 (Sequence): A sequence q ∈ Rs is a state-
dependent cue that contains an ordered set of skills which
will be sequentially performed, such that q = {p1, . . . , pn},
with n > 1, where the generic p element stands for low-level
skills (i.e., elementary, alias or composite).

3) Episodic memory: Visual representation of detected en-
vironment from the robot vision system are stored in the EM.
Humans have the ability to “mentally travel through time”
to reexperience their past during event-recollection. Even
though being deducted having a relation to the EM [23]–[25]
and the process of to do so is still under investigation, we
relate the significant aspects to construct the formal design
in robotics.

Storing visual streams of information continuously in a
constant & periodic fashion is considered not an efficient
implementation, as it increases storage consumption, espe-
cially when no significant changes are detected during a
considerable period of time. Here, instead of recording the
visual stream continuously, we store the analysis results
of visual representation snapshots of the detected robot’s
environment obtained by vision systems. These snapshots are
a representation of any significant changes detected through
the robot’s Field of View (FoV). It is captured in a non-linear
fashion based on the occurrence of an event, meaning that
if changes caused internally (from the robot’s movement) or
externally (otherwise) is visually detected, a scene will be
encoded. This way solved the storage consumption problem,
as the only information during an occurrence of an event
being encoded.

Definition 16 (Episodic Memory): The Episodic Memory
EM is the set of experienced past scenes analysis results of
visual representation snapshots.

Definition 17 (Scene): A scene δ ∈ EM is the changes of
visually detected input, which indicates the occurrence of an
event at a particular time. In short, a scene is an event marker.
Anything occurs between two distinct scenes is defined as an
event. Scenes that have been captured are stored in the EM.

A scene δ consists of {t, c, ν, eT , Q, o}, where t is the
encoding time, c is the context for that event, ν is the event

name, eT ∈ ET is the event type, Q =

{
Q if eT = eA

∅ if eT = eP
,

o =

{
o if eT = eA

∅ if eT = eP
.

Definition 18 (Event): An event e is associated with, and
occurred over a period of time, which marked from two
distinct scenes correspond to the beginning & end of an event.
It consists of multiple scenes during the period of that event,
defined as e = {δ1, . . . , δn}, given n is the number of scenes



Fig. 2: The experimental scenario in simulation.

for that particular event.
Definition 19 (Type of Event): An event e can either be

an Active event eA, where the robot performs a sequence of
sensorimotor skills from the procedural memory during the
encoding of the event, or a Passive event eP , where it only
witness phenomena that change the state of the surroundings,
without performing any motoric skills from the procedural
memory. It is formally defined as ET = {eA, eP }.

III. EXPERIMENTAL VALIDATION

A. Simulated Scenario and Experiment

In order to evaluate how contexts influence the Episodic
Memory, scene-encoding experiments have been conducted.
The experimental setting is described as follows.

• Different entities are presented to the robot, which are
characterized by different color (e.g., purple or blue) and
shape (e.g., cube or ball). The scene-encoding process
starts as soon as the presented entities are detected.

• A number of robot basic skills are available (e.g., grasp,
drag left or release), which may or may not be encoded
as composite skills.

• During the experiment, the scene perceived by the
robot is expected to change (e.g., different objects are
presented or objects are displaced).

• After the experiments, the robot is requested to describe
a given scene or to explain what happened between
different scenes, on the basis of a user-provided context.

In the experiment, the robot field of view is kept fixed.
Five distinct scenes are used to demonstrate how contextual
information influences robot’s understanding about a scene,
i.e., about the replaced entities with different shapes and/or
color, as well as new entities. Scene analysis covers both
the global and the local information about each detected
entity via blob detection [26]. This algorithm is used to
get the shape features to determine each entity detected, by
dividing the image region into smaller blocks and analyze
the shape by the amount of orientation angles considered and
each of the amount detected, which the details are available

in [26]. The global information yields statistical measures
to determine whether changes are visually spotted, which
constitute a new perceived scene. Local feature extraction
analyzes each detected entity and yields entity count, blob
information, as well as grounded color and shape features
(i.e., the orientation histogram using a Gabor filter). These
information is encoded in SM.

Table I illustrates the extracted local features to be encoded
in the memories from their respective snapshots during any
visual changes detected. It is noteworthy that scenes are
independent from each other, meaning that a distinct tracking
module is applied to track a particular entity across multiple
scenes, by comparing the difference of output values of each
entity with respect to a particular threshold value. Changes in
objects configuration across scenes can be caused by either
robot actions, or external influence (i.e., a human operating
on entities).

In the first experiment, we test the recognition of entity
properties, i.e., the assessed relationships between EM and
SM. Given the whole experiment represented by the five
scenes, we first query the retrieval cue with a desired context,
then we observe the result (Table II). Currently, only a single
cue can be processed at a time with the provided context.
Note that the position is currently set as verbal cues (e.q.
leftMost and rightMost) as the representation of minimum
and maximum value of posX+sizeX respectively.

In the second experiment, in order to evaluate the inter-
connection of EM and PM, several robot skills within PM
are performed during the scene-encoding process. Performed
robot skills are associated with a particular scene, i.e., the
scene showing the outcome of robot action. In particular, we
build two composite skills, namely left skill1 and left skill2,
which are made up of basic skills as follows: left skill1 =
{confirm given entity, grasp, reach table, release, standby},
(the blue box is inserted in the scene) and left skill2 =
{grasp, drag left, release, left skill1} (first, the blue box is
removed from the robot field of view, then the blue ball
is inserted into the scene). These two composite skills are
assumed to be executed, respectively, in between scenes
3− 4, and 1− 2.

B. Discussion

As argued in Section II, one of the characteristics of EM
is that its content does not have to be deliberately encoded.
As a matter of fact, experiments show that scene-encoding
is a seamless process. Any change within the environment
that is visually detected by the robot is processed and any
past experienced event is only bounded by the strictness of
the provided context (i.e., the actual number of cues that are
used), instead of being atomic or complex as defined in [10].

The EM-SM interconnection experiment demonstrates the
ability of the robot to be able (in principle) to answer
questions like: How many colored cubes/boxes have you seen
so far? Did you see a blue ball at the right hand side when
there were five entities being presented? This can be done
since once a scene has been perceived and analyzed, the non



Blob information Color (hue)

posX, posY sizeX, sizeY mean var

Scene 1
Entity 1 172, 317 83, 97 0.637 0.0000
Entity 2 294, 257 64, 82 0.8444 0.0044
Entity 3 342, 285 71, 89 0.9905 0.0000
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Scene 1 Normalized Local Shape Features

Entity 1
Entity 2
Entity 3

Scene 2
Entity 1 162, 331 73, 71 0.636 0.0000
Entity 2 294, 259 66, 82 0.847 0.0047
Entity 3 342, 287 71, 89 0.9906 0.0000
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Scene 2 Normalized Local Shape Features

Entity 1
Entity 2
Entity 3

Scene 3
Entity 1 148, 330 73, 71 0.8151 0.0001
Entity 2 294, 258 66, 82 0.8475 0.0048
Entity 3 342, 286 71, 89 0.9909 0.0000
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Scene 3 Normalized Local Shape Features

Entity 1
Entity 2
Entity 3

Scene 4
Entity 1 150, 330 71, 71 0.815 0.0001
Entity 2 200, 238 69, 77 0.6374 0.0000
Entity 3 294, 258 66, 82 0.8478 0.0048
Entity 4 342, 286 71, 89 0.9911 0.0000
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Scene 4 Normalized Local Shape Features

Entity 1
Entity 2
Entity 3
Entity 4

Scene 5
Entity 1 212, 361 77, 75 0.6437 0.0012
Entity 2 150, 331 72, 72 0.8056 0.0017
Entity 3 200, 239 69, 77 0.6374 0.0000
Entity 4 294, 259 66, 82 0.8474 0.0047
Entity 5 342, 287 71, 89 0.9909 0.0000
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Scene 5 Normalized Local Shape Features
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Entity 4
Entity 5

TABLE I: Extracted scene local features.

No. Cue Context Matched Results

color shape count pos scene ent id value

1

Color

- ball 4 rightMost 4 1 {0.815, 0.0001}
2 - ball 3 rightMost 2,3 1,1 {0.636, 0},

{0.8151, 0.0001}
3 - - 3 rightMost 1,2,3 3,3,3 {0.990, 0}
4

Shape

- - 3 rightMost 1,2,3 3,3,3 cube
5 blue - 3 rightMost 1,2 1,1 cube,ball
6 blue - 5 rightMost 5 1 ball
7 blue ball 5 rightMost 5 1 true
8

Count
blue ball - - 2,5 1,1 3,5

9 purple ball - - 3,4,5 1,1,2 3,4,5
10 blue cube - - 1,4,5 1,2,3 3,4,5
11

Pos
purple ball 4 - 4 2 {200, 238}

12 blue ball 5 leftMost 5 1 false
13 blue ball 3 leftMost 2 1 true

TABLE II: EM-SM interconnection experimental results.

No. Cue Context Matched Results

color shape count pos scene value

1

Skill name

- ball 3 - 2,3 left skill2,-
2 - ball 5 - 5 -
3 - cube 3 - 1 left skill2
4 - cube - - 1,4 left skill2,

left skill1
5 blue cube - - 1,4 left skill2,

left skill1

TABLE III: EM-PM interconnection experimental results.

event-specific features (i.e., shape and color) of a new entity
are encoded in SM as general knowledge. Table I shows,
for all five scenes, both blob and color information for each
entity. Blob information is computed as feature vectors using
the sum of magnitudes [26]. On the one hand, the robot can
still recognize the shape of an arbitrary cube or what the blue
color means in hue space (in terms of mean and variance),
regardless the connection with any particular event. On the
other hand, the robot can recognize the blue color according
to its knowledge in SM, relate it to a specific event with the
given context, and compare it with a given numerical value.

Let us consider Table II in detail. Case 1 shows the
result of a blue color represented by mean and variance
in hue space, based on the color cue using the context
{(shape, ball), (count, 4), (position, rightmost)}. It corre-
sponds to a hypothetical question like What is the color of the
rightmost1 ball when 4 entities were presented? In case 2, the
context is changed so that (count, 3). Based on that, it yields
two different results which show that entity 1 are actually
different across two scenes (scene 2 and scene 3). If we
generalize the context as in case 3, several scenes matched,
but one result is returned due to floating point comparison,
which indicates that the three results refer to the same entity.
Hence, it is possible to say that during scenes 1−3, the color
based on that particular context is purple (see Table I).

The remainder of the Table shows different cues with
different contexts. Case 7 shows an interesting result, i.e.,

1We assume the availability of a procedure semantically mapping the word
rightmost with the proper object in the scene.



providing the robot with a shape cue with a particular context,
including the shape itself yields a false result. This shows the
robot’s ability to compare the given context and the desired
cue.

In the EM-PM interconnection experiment, the composite
skills left skill1 and left skill2 are associated with scenes
4 and 2, respectively, which means that left skill1 and
left skill2 causing scene 4 and 2 to occur. Table III lists
noteworthy results. Case 1 can be interpreted as the result of
question What did you do with the ball when three entities
were presented?, which yields only one result as opposed to
the two matched scenes, due to the direct association of the
skill left skill2 to scene 2 and the fact that no skills were
applied during scene 3. In case 2, it yields no results even
though scene 5 is identified as a matched result when queried
with that particular context. Although the robot is aware
that five entities have been presented, it did not execute any
skill, which leads it to conclude that an external influence
has changed the scene. Providing a more general or specific
context might change the result for the cue or maintain
the same result, as in case 5. These results corroborate the
interconnection between the flexibility of context adjustment
and the recollection of internally performed motor skills.

IV. CONCLUSION

In this paper, we present a developmental robot archi-
tecture specifically aimed at addressing the interconnections
between modules of Long-Term Memory, namely Episodic,
Procedural, and Semantic Memory. We formally introduce
the notion of context as a means to constraint memory-
based information retrieval in robots. The developed notion of
context can accommodate general as well as specific queries
posed to the robot memory system. In the paper, we address
how the developed notion of context influences the EM-SM
and EM-SM information flow. Results in simulation show
how this can be achieved using a scene-encoding process.
We discuss the interpretation of results and relate them to
current psychological studies. On the basis of these premises,
current work is aimed at, on the one hand, extending the basic
developed principles and, on the other hand, to work on an
implementation on a real platform.
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