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Reliability Prediction for Component-based Software Systems

Thanh-Trung Phama, Xavier Défagoa, Quyet-Thang Huynhb

aSchool of Information Science, Japan Advanced Institute of Science and Technology (JAIST), Nomi, Ishikawa, Japan
bSchool of Information and Communication Technology, Hanoi University of Science and Technology, Hanoi, Vietnam

Abstract

One of the most important quality attributes of a software system beyond its functional attributes is its
reliability. Techniques for predicting reliability of a software system based on the design models can help
software architects in evaluating the impact of their design decisions on the system reliability. This can help
to make the system more reliable and avoid costs for fixing the implementation. However, existing reliability
prediction approaches for component-based software systems are limited in their applicability because they
either neglect or do not support modeling explicitly several factors which influence the system reliability:
(i) error propagation, (ii) software fault tolerance mechanisms, and (iii) concurrently present errors. In this
paper, we present a reliability modeling and prediction approach for component-based software systems that
considers explicitly these reliability-relevant factors. Our approach offers a reliability modeling schema whose
models are automatically transformed by our reliability prediction tool into Markov models for reliability
predictions and sensitivity analyses. We evaluate our approach in two case studies with reliability predictions
and sensitivity analyses. Via these two case studies, we demonstrate its applicability in supporting design
decisions.

Keywords: Reliability modeling and prediction, component-based software systems, error propagation,
software fault tolerance mechanisms, error detection and error handling, concurrently present errors,
multiple execution models.

1. INTRODUCTION

To meet the increasing requirements for software support from many different areas, software systems
become increasingly complex. In this situation, to assure the system reliability, i.e. its ability to deliver its
intended service to users, many classes of techniques in software reliability engineering have been deployed
throughout the development process. One of such classes of techniques is the class of reliability prediction
techniques based on the design models. These techniques can help to make the system more reliable by
assisting software architects in evaluating the impact of their design decisions on the system reliability. This
can help to save costs, time, and efforts significantly by avoiding implementing software architectures that
do not meet the reliability requirements.

However, existing reliability prediction approaches for component-based software systems suffer from
the following drawbacks and therefore are limited in their applicability and accuracy. In essence, these
drawbacks are consequences of the assumption that components fail independently and each component
failure leads to a system failure, which is common to most existing reliability models for component-based
software systems [1].

1.1. Ignoring Error Propagation

According to Avizienis et al. [2], an error is defined as the part of a system’s total state that may lead
to a failure. The cause of the error is called a fault. A failure occurs when the error causes the delivered
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service to deviate from correct service. The deviation can be manifested in different ways, corresponding to
the system’s different failure types. For example, two failure types that could be defined are content failures
(the content of a system service’s output deviates from the correct one) and timing failures (the delivery
time of a system service deviates from the correct one).

Errors can arise because of internal faults. For example, a bug in the code implementing a component is
an internal fault. This fault causes an error in the internal state of the component if the code is executed.
Errors can arise because of external faults. For example, an erroneous input appears as an external fault to
a component and propagates the error into the component via its interface. Errors can also arise because of
both internal faults and external faults, e.g. an erroneous input (an external fault) is also the application
of an input (the activation pattern) to a component that causes the code with a bug (an internal fault) of
the component to be executed.

However, not all errors in a component lead to component failures. A component failure occurs only when
an error in a component propagates within the component up to its interface. Similarly, not all component
failures lead to system failures. A component failure in a component-based system is an error in the internal
state of the system. This error leads to a system failure only when it propagates through components in the
system up to the system interface.

During this propagation path, an error can be detected,1 and therefore stops from propagating, e.g. an
erroneous input is detected by error detection of components. An error can be masked, e.g. an erroneous
value is overwritten by the computations of component services before being delivered to the interface. An
error can be transformed, e.g. a timing failure received from another component service may cause the
current component service to perform computations with outdated data, leading to the occurrence of a
content failure. An error can also be concurrently present with another error, e.g. a content failure received
from another component service is also the activation pattern that causes the current component to perform
unnecessary computations with corrupted data, leading to the concurrent presence of a content failure and
a timing failure.

It is possible to see that the reliability of a component-based software system, defined as the probability
that no system failure occurs, is strongly dependent on the error propagation path. The challenge of
analyzing the reliability of a component-based software system becomes even more significant when the
system embodies parallel and fault tolerance execution models. A parallel execution model has multiple
components running in parallel, resulting in many concurrent error propagation paths. A fault tolerance
execution model has a primary component and backup components, and the order of their executions is highly
dependent on their error detection and error handling. This results in many different error propagation paths.

As an example, in a parallel execution model, an error in the input for the components running in
parallel may be masked by the computations of a certain number of components while the computations of
the other components may transform the error into multiple errors of different failure types, leading to a set
of multiple errors of different failure types in the output of the execution model. As another example, in a
fault tolerance execution model, an error of a certain failure type in the input for the primary component
and backup components may be transformed into an error of other failure type by the primary component
without being detected, leading to an error in the output of the execution model without activating the
backup components.

Although error propagation is an important element in the chain that leads to a system failure, many
approaches (e.g. [3, 4, 5, 6, 7, 8]) do not consider it. They assume that any error arising in a component
immediately manifests itself as a system failure, or equivalently that it always propagates (i.e. with proba-
bility 1.0 and with the same failure type) up to the system interface [9]. On the other hand, approaches that
do consider error propagation (e.g. [9, 10]) typically only consider it for a single sequential execution model.
Since modern software systems often embody not just a single sequential execution model, but also parallel
and fault tolerance execution models to achieve multiple quality attributes (e.g. availability, performance,
reliability), ignoring the consideration of error propagation for these two latter execution models makes these
approaches no more suitable for modeling complex software systems with different execution models.

1Software fault tolerance mechanisms, if any, can then provide error handling for the detected error.
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1.2. Ignoring Software Fault Tolerance Mechanisms

Software Fault Tolerance Mechanisms (FTMs) are often included in a software system and constitute
an important means to improve the system reliability. FTMs mask faults in systems, prevent them from
leading to failures, and can be applied on different abstraction levels (e.g. source code level with exception
handling, architecture level with replication) [11]. Their reliability impact is highly dependent on the whole
system architecture and usage profile. For example, if a FTM is never executed under a certain usage profile,
its reliability impact is considered as nothing.

Analyzing the reliability impact of FTMs becomes apparently a challenge when they are applied at
architecture level, in a component-based software system because: (1) FTMs can be employed in different
parts of a system architecture, (2) In a system architecture, there are usually multiple changeable points to
create architecture variants, e.g. substituting components with more reliable variants, running components
concurrently to improve performance.

Many approaches (e.g. [7, 12, 13]) do not support modeling FTMs. This forces modelers to implicitly
model FTMs of a software system, if any, via decreasing software failure probabilities. Some approaches
step forward and offer basic fault tolerance expressiveness which are limited to specific FTMs and failure
conditions (e.g. [14, 15]). They lack flexible and explicit expressiveness of how both error detection and
error handling of FTMs influence the control and data flow within components. For example, an undetected
error from a component’s provided service leads to no error handling, which in turn influences the control
and data flow within component services using this provided service. As a consequence, they are limited in
combining modeling FTMs with modeling the system architecture and usage profile.

Further approaches provide more detailed analysis of individual FTMs (e.g. [16, 17, 18]). But these
so-called non-architectural models do not reflect the system architecture and usage profile (i.e. component
services, control flow transitions between them and sequences of component service calls). As a consequence,
they are not suitable when analyzing how individual FTMs employed in different parts of a system archi-
tecture influence the overall system reliability, especially when evaluating for architecture variants under
varying usage profiles.

1.3. Ignoring Concurrently Present Errors

Situations involving multiple failures are frequently encountered. System failures are often turned out
on later examination to have been caused by different errors [2]. For example, (1) failures of component
services performing computations in parallel are concurrently present errors in the system, (2) a content
failure received from another component service is also the application of an input (the activation pattern)
that causes the current component to perform unnecessary computations with corrupted data, leading to
the concurrent presence of a content failure and a timing failure.

However, to the best of our knowledge, existing approaches do not support modeling concurrently present
errors. Neglecting concurrently present errors can leads to inaccurate prediction results because there exist
system failures that cannot be covered by existing approaches, which is confirmed by Hamill et al. [19] with
two large, real-world case studies (GNU Compiler Collection (GCC) and NASA Flight Software).

Contribution and Structure

The contribution of this paper is a novel approach of reliability modeling and prediction for component-
based software systems that considers explicitly error propagation, software FTMs, and concurrently present
errors. The approach supports modeling error propagation for multiple execution models, including sequen-
tial, parallel, and fault tolerance execution models. Via an explicit and flexible definition of reliability-
relevant behavioral aspects (i.e. error detection and error handling) of FTMs, the approach offers an effective
evaluation of their reliability impact in the dependence of the whole system architecture and usage profile.
The approach accounts for concurrently present errors by introducing a hierarchical tree of multiple failure
types. The approach offers a reliability modeling schema whose models are automatically transformed by
our reliability prediction tool into Markov models for reliability predictions and sensitivity analyses. We
validate our approach in two case studies and demonstrate its applicability in supporting design decisions.
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The rest of this paper is organized as follows. Section 2 surveys related work. Section 3 describes the
steps in our approach. Section 4 describes in detail modeling component reliability specifications and system
reliability models using our reliability modeling schema. Section 5 describes the transformation to create
Markov models for reliability predictions. Section 6 demonstrates our approach with case studies. Section
7 discusses our assumptions and limitations and Section 8 concludes the paper.

2. RELATED WORK

In contrast to software reliability growth models which treat software systems as black boxes, our ap-
proach belongs to the field of component-based software reliability modeling and prediction which treats
software systems as a composition of software components. Several surveys in this field are available [1, 6, 20].
In the following, we survey the most related approaches with regard to the three gaps identified above. After
the summary of the findings, we discuss our preliminary work and its relation to this paper.

2.1. Consideration of Error Propagation

Cheung’s approach [5], one of the first approaches, expresses the control flow between components in
a software system using an absorbing Discrete Time Markov Chain (DTMC). Some recent approaches
extend Cheung’s approach to support different architectural styles [15] and to combine reliability analysis
and performance analysis [8] but do not consider error propagation. Further approaches building upon
the Cheung’s model such as the approach of Lipton et al. [21] which takes interface failures and network
connection failures into account, the approach of Sharma et al. [14] which supports modeling component
restarts and retries, also do not consider error propagation.

The approach of Reussner et al. [7] is based on Rich Architecture Definition Language (RADL) but
employs the same underlying theory as Cheung’s approach for reliability prediction. The approach of
Brosch et al. [3] extends the approach of Reussner et al. to consider explicitly the influences of system usage
profile and execution environment on the system reliability. However, these approaches do not consider the
influence of error propagation on the system reliability.

The approach of Cheung et al. [4] uses hidden Markov models to determine component failure probabil-
ities and does not include calls to other components, thus ignores error propagation. The approach of Sato
et al. [22] combines a system model of interacting system services with a resource availability model but
does not consider application-level software failures, thus also ignores error propagation. The approaches of
Grassi [23] and Zheng et al. [24] aim at reliability prediction for Service-Oriented Architectures (SOA). The
approach of Grassi considers recursively composed services, where each service may invoke multiple external
services in order to complete its own execution. The approach of Zheng et al. employs a workflow description
for composite services with sequential, looping, and parallel structures. However, these approaches neglect
the impact of error propagation between services.

Scenario-based approaches such as the approach of Yacoub et al. [25] which constructs component
dependency graphs from component sequence diagrams as a basic for reliability prediction, the approaches
of Cortellessa et al. [12] and Goseva et al. [13] which employ UML diagrams annotated with reliability
properties, the approach of Rodrigues et al. [26] which is based on message sequence charts, also do not
consider error propagation.

The approaches [14, 15, 23, 27] that support modeling FTMs (see also Section 2.2) allow to express how
FTMs prevent the occurrence of system failures in the presence of faults that have already been activated
and resulted in errors within the system. However, in analogy with the approaches that do not consider error
propagation, they assume that any error arising in a component always propagates (i.e. with probability
1.0 and with the same failure type) up to the system interface or until FTMs get involved to provide error
handling. This is not always valid because the error can be masked or transformed by the computations of
components during the propagation path, leading to imperfect error propagation (i.e. with probability less
than 1.0 or with varying failure type).

Some approaches have proposed taking error propagation between components into account. The ap-
proach of Popic et al. [10] assumes that each error arising within a component always causes a system failure
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and at the same time, it can also propagate to other components to affect their reliability. According to
us, the assumption of immediate failure conflicts with the reason of error propagation to other components.
The approach of Cortellessa et al. [9] assumes that the internal failure probability and the error propaga-
tion probability of each component are independent of each other. As a consequence of this independence
assumption, they argue that when a component fails, it always transmits an error to the next component
irrespective of whether it has received or not an erroneous input from the previous component. This is not
always valid because the failed computations of a component can overwrite the error from its erroneous
input and therefore can produce a correct output. The approaches of Filieri et al. [28] and Mohamed et
al. [29] support multiple failure types when considering error propagation. However, all these approaches
consider error propagation only for a single sequential execution model, ignoring the consideration of error
propagation for parallel and fault tolerance execution models which are often used by modern software
systems.

2.2. Consideration of Software Fault Tolerance Mechanisms

Many approaches do not support modeling FTMs (e.g. [5, 7, 12]). The approaches [9, 10, 28, 29] that
consider explicitly error propagation introduce error propagation probabilities to model the possibility of
propagating component failures. The complement of an error propagation probability can be used to express
the possibility of masking component failures. However, FTMs with their error detection and error handling
cannot be considered explicitly by these approaches.

Some approaches step forward and take FTMs into account. The approach of Sharma et al. [14] supports
modeling component restarts and component retries. The approach of Wang et al. [15] supports different
architectural styles including fault tolerance architectural style. The approach of Grassi [23] introduces the
OR completion model denoting the possibility that a composed service requires only 1 out of n invoked
external services to be successful in order for its own execution to succeed. However, these approaches do
not consider the influences of both error detection and error handling of FTMs on the control and data flow
within components. The approach of Brosch et al. [27] extends Recovery Blocks (RB) to flexibly describe
error handling of FTMs but still does not consider the influences of error detection of FTMs on the control
and data flow within components. More concretely, these approaches assume that when there is an error
of a certain failure type caused by a component failure, a FTM can always handle the error if it aims to
handle errors of that failure type. This means that the FTM perfectly detects errors of that failure type
(i.e. with error detection probability 1.0). However, in reality, error detection is not perfect and therefore,
a FTM may let errors caused by component failures propagate to its output without activating its error
handling, which in turns influences the control and data flow within the component service containing this
FTM. Ignoring the influences of either error detection or error handling of FTMs on the control and data
flow within components can lead to incorrect prediction results when the behaviors of FTMs deviate from
the specific cases mentioned by the authors.

A great deal of past research effort focuses on reliability modeling of individual FTMs. Dugan et al. [16]
aim at a combined consideration of hardware and software failures for Distributed Recovery Blocks (DRB),
N-Version Programming (NVP), and N Self-Checking Programming (NSCP) through fault tree techniques
and Markov processes. Kanoun et al. [18] evaluate RB and NVP using generalized stochastic Petri nets.
Gokhale et al. [17] use simulation instead of analysis to evaluate DRB, NVP, and NSCP. Their so-called non-
architectural models do not reflect the system architecture and the usage profile. Therefore, although these
approaches provide more detailed analysis of individual FTMs, they are limited in their application scope
to system fragments rather than the whole system architecture (usually composed of different structures)
and not suitable when evaluating architecture variants under varying usage profiles.

2.3. Consideration of Concurrently Present Errors

To the best of our knowledge, existing approaches do not support modeling concurrently present errors.
In other words, they support only a single error at any time.
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Table 1: Most Related Approaches.

A
u

th
o
rs

Y
e
a
r

E
rr

o
r

p
ro

p
a
g
a
ti

o
n

S
o
ft

w
a
re

F
T

M
s

C
o
n

c
u

rr
e
n
tl

y
p

re
se

n
t

e
rr

o
rs

Grassi [23] 2004 - (X) -
Popic et al. [10] 2005 (X) - -
Wang et al. [15] 2006 - (X) -

Sharma et al. [14] 2006 - (X) -
Cortellessa et al. [9] 2007 (X) - -
Mohamed et al. [29] 2008 (X) - -

Filieri et al. [28] 2010 (X) - -
Brosch et al. [27] 2011 - (X) -

Pham et al. [This paper] 2013 X X X

2.4. Summary of Findings

With regard to three gaps identified above, our findings on most related approaches can be summarized
in Table 1. A hyphen mark means that an approach does not support the feature and a check mark in
parentheses means that an approach supports the feature but is limited in several aspects. Error propagation
are supported by some approaches but they introduce new assumptions which, according to us, deserves
further investigation about their soundness, and/or consider error propagation only for a single sequential
execution model. None of these approaches supports a combined consideration of error propagation for
sequential, parallel, and fault tolerance execution models. Some approaches support modeling software
FTMs but they lack flexible and explicit expressiveness of how both error detection and error handling of
FTMs influence the control and data flow within components. Concurrently present errors are not supported
by any approaches.

While our approach receives benefits from the experiences gained in the field by these approaches, it
also presents unique features that enhance the state of the art, including (1) a combined consideration of
error propagation for sequential, parallel, and fault tolerance execution models, (2) an explicit and flexible
expressiveness of reliability-relevant behavioral aspects (i.e. error detection and error handling) of FTMs,
and (3) the consideration of concurrently present errors.

2.5. Preliminary Work

Prevalent approaches in the field can be classified into main classes [1]: (i) path-based methods which
consider explicitly the probabilities of possible component execution paths, and (ii) state-based methods
which use probabilistic control flow graphs to model the usage of components. Our approach is in the
class of state-based methods and for sequential executions, we assume that the control transitions between
components have the Markov property.

In the first work [30], we presented a reliability prediction approach for component-based software systems
that considers error propagation for different execution models including sequential, parallel and primary-
backup fault tolerance executions. However, primary-backup is the only FTM supported by the approach
and the approach does not support modeling concurrently present errors.
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In the second work [31], we extended the core model (i.e. fundamental modeling steps and basic modeling
elements) of the first work to offer an explicit and flexible definition of error detection and error handling of
software FTMs, and an efficient evaluation of their reliability impact in the dependence of the whole system
architecture and usage profile. However, we neglected the impact of error propagation and did not consider
concurrently present errors.

This paper goes beyond our former work through an extended analysis of error propagation with a
hierarchical tree of multiple failure types for sequential, parallel, and different fault tolerance execution
models, a support for modeling concurrently present errors, a more comprehensive validation, and a far
more detailed description and discussion of our approach.

3. COMPONENT-BASED RELIABILITY PREDICTION

A component represents a modular part of a system that encapsulates its contents and whose manifesta-
tion is replaceable within its environment [32]. A component has its behavior defined in terms of provided
and required interfaces. This information is sufficient to assemble components and check their interoper-
ability. However, in order to predict the reliability of a component-based software architecture, additional
information about each component is required.

Since there exists a strict separation between component developers and software architects in Component-
Based Software Engineering (CBSE), it is necessary to consider these two roles when creating specifications
(or models) to capture the additional information. Therefore, component developers implement components
and provide not only component functional specifications but also component reliability specifications. Soft-
ware architects use these component reliability specifications and provide additionally usage profiles in
order to predict the reliability of planned system architectures. Later, they assemble the actual component
implementations.

A component reliability specification needs to describe the behaviors of services provided by the com-
ponent, i.e. how provided services of the component are related to required services and internal activities
of the components in terms of frequencies and probabilities. From that, by assembling these specifications
and providing additionally usage profiles, software architects create system reliability models reflecting the
control and data flow throughout the whole planed system architectures for reliability predictions without
referring to component internals. In Section 4, we introduce our reliability modeling schema that supports
component developers to create component reliability specifications and software architects to create system
reliability models.

Our approach follows repetitively six steps as depicted in Fig. 1. In Step 1, component developers
provide component reliability specifications. A component reliability specification includes reliability-related
probabilities (e.g. failure probabilities, error propagation probabilities) and call propagations to required
services for each provided service of the component. How to determine these probabilities (e.g. [4, 33, 34])
is beyond the scope of this paper. For already implemented components, call propagations can be derived
from static code analysis or dynamic monitoring.

In Step 2, software architects create a system reliability model by assembling component reliability
specifications following a planed system architecture and providing additionally a usage profile for the
complete system (i.e. interacting directly to users or other systems).

In Step 3, from the system reliability model, it is possible to describe the control flow throughout
the whole system architecture by propagating requests at the system boundary to individual components.
Because each component reliability specification includes call propagations to required services of the com-
ponent, this method works recursively. The resulting model can be transformed into Markov models.

In Step 4, by analyzing the Markov models, a reliability prediction for each provided services at the system
boundary can be derived, based on the reliability-related probabilities of components inside the system
architecture. To support Step 3 and Step 4, we provide a reliability prediction tool whose transformation
for reliability prediction is described in detail in Section 5. With the tool support, sensitivity analyses can
also be derived, e.g. by varying reliability-related probabilities of components inside the system architecture
to obtain corresponding reliability predictions.
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Figure 1: Component-based reliability prediction.

If the prediction results show that given reliability requirements cannot be meet, Step 5 is performed.
Otherwise, Step 6 is performed. In Step 5, there are several possible options: component developers can
revise the components, e.g. changing the configurations (e.g. the number of retries or replicated instances)
of FTMs; software architects can revise the system architecture and the usage profile, e.g. trying different
system architecture configurations, replacing some key components with more reliable variants, or adjusting
the usage profile appropriately. Sensitivity analyses can be used as a guideline for these options, e.g. to
identify the most critical parts of the system architecture which should receive special attention during
revising. In Step 6, the modeled system is deemed to meet the reliability requirements, and software
architects assemble the actual component implementations following the system architecture.

4. RELIABILITY MODELING

In this section, we describe our reliability modeling schema which supports component developers to
create component reliability specifications and software architects to create system reliability models. It
would have been possible for us to build our approach upon UML. However, by introducing our reliability
modeling schema, we avoid the complexity and the semantic ambiguities of UML which make it hard to
provide an automated transformation from UML to analysis models. With regard to our specific purposes,
our schema is more suitable than UML extended with MARTE-DAM profile2 [35] because our schema is
reduced to concepts needed for reliability prediction, and therefore our approach can support an automated
transformation for reliability prediction for the general case.

4.1. Component Reliability Specifications

4.1.1. Services, components, and service implementations

In our approach, component developers are required to provide component reliability specifications.
Fig. 23 shows an extract of our reliability modeling schema with modeling elements which supports compo-
nent developers to create component reliability specifications. Component developers model components,

2This profile provides a very comprehensive reliability modeling but its authors do not target an automated transformation
for reliability prediction for the general case.

3Refer to our project website [36] for the full reliability modeling schema.
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Modeling elements for component reliability specifications
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Figure 2: Modeling elements in our reliability modeling schema.

services, and service implementations via modeling elements: Component, Service, and ServiceImplementa-
tion, respectively. Components are associated with services via RequiredService and ProvidedService.

A service implementation (ServiceImplementation) is used to describe the behavior of each service pro-
vided by a component, i.e. describe the activities to be executed when a service (Service) in the provided
services of the component is called. Therefore, a component can contain multiple service implementations.
A service implementation can include activities (Activity) and control flow structures (Structure).

There are two activity types, namely internal activities and calling activities.

• An internal activity (InternalActivity) represents a component’s internal computation.

• A calling activity (CallingActivity) represents a synchronous call to other components, that is, the caller
blocks until receiving an answer. The called service of a calling activity is a service in the required
services of the current component and this referenced required service can only be substituted by
the provided service of other component when the composition of the current component to other
components is fixed.

There are four standard types of control flow structures supported by our reliability modeling schema,
including sequential structures, branching structures, looping structures and parallel structures (Fig. 3).

• In a sequential structure (SequentialStructure), sequential parts (SequentialPart) are executed sequen-
tially, i.e. only a single part is executed at any time. The control is transferred to one (and only
one) of its successors upon the completion of a part. The selection of the succeeding part is always
deterministic.
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Figure 3: Supported control flow structures and their execution semantics: Sequential structure, branching structure, looping
structure, and parallel structure.

• A branching structure (BranchingStructure) inherits the characteristics of a sequential structure. The
difference is that the selection of the succeeding part (IfPart or ElsePart) depends on branching
conditions (i.e. Boolean expressions).

• In a looping structure4 (LoopingStructure), there is a single looping part (LoopingPart) which is
repeated the loop count times. Infinite loop count are not allowed. Looping structures can include
other looping structures but cannot have multiple entry points and cannot be interconnected.

• Parallel structures (ParallelStructure) are commonly used in concurrent execution environments, in
which a set of parallel parts (ParallelPart) is usually executed simultaneously to improve performance.
In Fig. 3, parallel parts ParallelPart A1, ParallelPart A2, ..., ParallelPart An are running in parallel.
These parts cooperatively work on the structure’s input and synchronously release the control to end
the structure’s execution.

Example 1. Fig. 4 shows an example of component reliability specification. The component C2 provides
two services: S1 and S2 and requires three services: S3, S4, S5.

• Service implementation for provided service S1 is a sequential structure executing an internal activity,
a branching structure and another internal activity in sequence. The branching structure either leads
to a parallel structure, if [Y = true], or to a calling activity to call required service S5 otherwise. The
parallel structure executes two calling activities to call required services S3 and S4 in parallel.

• Service implementation for provided service S2 is a looping structure executing an internal activity Z
times.

4In our model, an execution cycle is also modeled by a looping structure with its depth of recursion as loop count.
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Figure 4: An example of component reliability specification.

Remark. A service implementation in our model is an abstraction of the behavior of a service provided by a
component. Control flow structures are included only when they influence calls to required services. A single
internal activity modeled with a failure model may represent thousands of line of code. This abstraction
focuses on the necessary properties for a component-based reliability prediction (i.e., failure probabilities,
error propagation probabilities, and call propagations).

4.1.2. Failure models

In this section, we revisit the definitions of terms “error”, “fault”, and “failure”, and reexamine the
“pathology of failure: relationship between faults, errors, and failures” on the abstraction level of our
approach in order to create a definition of failure models for internal activities.

In their taxonomy, Avizienis et al. [2] define an error as the part of a system’s total state that may lead
to a failure. The cause of the error is called a fault. A failure occurs when the error causes the delivered
service to deviate from correct service. The deviation can be manifested in different ways, corresponding to
the system’s different failure types. In general, characterizing the failure types which may occur in a system
is highly dependent on the specific system. For example, two failure types that could be defined are content
failures (the content of a system service’s output deviates from the correct one) and timing failures (the
delivery time of a system service deviates from the correct one).

Errors can arise because of internal faults. For example, a bug in the code implementing an internal
activity of a component is an internal fault. This fault causes an error in the internal state of the component
if the code is executed. Errors can arise because of external faults. For example, an erroneous input appears
as an external fault to a component and propagates the error into the component via its interface. Errors
can also arise because of both internal faults and external faults, e.g. an erroneous input (an external fault)
is also the application of an input (the activation pattern) to a component that causes the code with a bug
(an internal fault) of the component to be executed.

However, not all errors in a component lead to component failures. A component failure occurs only
when an error in a component propagates within the component up to its interface. Similarity, not all
component failures lead to system failures. A component failure in a component-based system is an error
in the internal state of the system. This error leads to a system failure only when it propagates through
components in the system up to the system interface.

During this propagation path, an error can be detected and therefore stops from propagating, e.g. an
erroneous input is detected by error detection of internal activities. An error can be masked, e.g. an erroneous
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Figure 5: An example of failure types.

value is overwritten by the computations of internal activities before being delivered to the interface. An
error can be transformed, e.g. a timing failure received from another component service may cause the
current component service to perform computations with outdated data, leading to the occurrence of a
content failure. An error can also be concurrently present with another error, e.g. (1) a content failure
received from another component service is also the activation pattern that causes the current component
to perform unnecessary computations with corrupted data, leading to the concurrent presence of a content
failure and a timing failure, (2) failures of component services performing computations in parallel are
concurrently present errors in the system.

In order to take into consideration explicitly the whole set of factors identified above, component de-
velopers are required to model different failure types and failure models for internal activities of service
implementations. A failure model for an internal activity captures the possibilities for errors after the in-
ternal activity’s execution, including the possibility of being detected, the possibility of being masked, the
possibility of being transformed, or the possibility of being concurrently present.

Component developers model different failure types (FailureType) by using the hierarchical tree of failure
types (cf. Fig. 2). Except failure type F0, a predefined failure type corresponding to the correct service
delivery, component developers model a failure type by extending either StoppingFailureType or Propagat-
ingFailureType. Failure types extending StoppingFailureType are related to errors that can be detected and
signaled with a warning signal by the error detection of internal activities. When a failure type extending
StoppingFailureType manifests itself after an internal activity’s execution, this immediately leads to a sig-
naled failure of this failure type. On the other hand, failure types extending PropagatingFailureType are
related to errors that cannot be detected and signaled by the error detection of internal activities. When
a failure type extending PropagatingFailureType manifests itself after an internal activity’s execution, this
propagates errors into another internal activity through an erroneous output of this failure type. For the
sake of simplicity, failure types extending StoppingFailureType are called stopping failure types and failure
types extending PropagatingFailureType are called propagating failure types.

Example 2. Fig. 5 shows an examples of failure types: F0 is the predefined failure type, FP1 and FP2 are
propagating failure types, and FS1 and FS2 are stopping failure types.

Component developers model a failure model (i.e. different failure types with their occurrence probabil-
ities) for a internal activity via a composition between InternalActivity and FailureModel. In the literature,
techniques for determining these probabilities have been discussed extensively (see Section 7 for more details)
and are beyond the scope of this paper.

Definition 1. Failure Model5

• Let F0 be a predefined failure type corresponding to the correct service delivery.

• Let FS be the set of all stopping failure types {FS1, FS2, ..., FSu}.

5From here, we utilize the introduced symbols unless otherwise stated.
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Figure 6: An example of failure model for an internal activity.

• Let FP be the set of all propagating failure types {FP1, FP2, ..., FPv}.

• Let AIOS be the Set of All sets of failure types for an internal activity’s Input or Output {{F0}} ∪(
2FP \ ∅

)
.

• Let AFS be the Set of All sets of failure types for an internal activity’s signaled Failures {{FS1} , ..., {FSu}}.

• Then, a failure model ( FailureModel) for an internal activity ( IA for short) is defined by probabilities:
PrIA(I, FO), I ∈ AIOS, FO ∈ (AFS ∪ AIOS), where PrIA(I, FO) is the probability that IA
signals a signaled failure of a failure type FO (when FO ∈ AFS) or produces an output of failure
types FO (when FO ∈ AIOS) given that IA has received an input of failure types I. It holds that∑
FO∈(AFS∪AIOS)

PrIA (I, FO) = 1 for all I ∈ AIOS.

Example 3. Fig. 6 shows an example of failure model for an internal activity with FS = {FS1, FS2},
FP = {FP1, FP2}, AFS = {{FS1} , {FS2}}, and AIOS = {{F0} , {FP1} , {FP2} , {FP1, FP2}}. It is possible
to understand the internal activity’s execution to follow its failure model as follows:

• The internal activity can receive a correct input: {F0}. In this case, errors can arise because of the
activity’s internal faults. When these errors are detected and signaled with a warning signal by the error
detection of the activity, then a signaled failure of a stopping failure type occurs: {FS1} with probability
c04 or {FS2} with probability c05. Otherwise, the activity produces an erroneous output of different
propagating failure types: {FP1} with probability c01, {FP2} with probability c02, or {FP1, FP2} (the
concurrent presence of FP1 and FP2) with probability c03. In case there is no error during the activity’s

execution, the activity produces a correct output: {F0} with probability c00 = 1−
5∑

j=1

c0j.

• The internal activity can receive an erroneous input of different propagating failure types: {FP1},
{FP2}, or {FP1, FP2}. In this case, beside the errors from the erroneous input, errors can arise
because of the activity’s internal faults. If the error detection of the activity detects and signals these
errors with a warning signal, this leads to a signaled failure of a stopping failure type: {FS1} with
probability ci4 or {FS2} with probability ci5 (with i ∈ {1, 2, 3} when the erroneous input is {FP1},
{FP2}, or {FP1, FP2}, respectively). Otherwise, an erroneous output of different propagating failure
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types is produced by the activity: {FP1} with probability ci1, {FP2} with probability ci2, or {FP1, FP2}
with probability ci3. In case these errors are masked by the activity’s execution, there is a correct

output: {F0} with probability ci0 = 1−
5∑

j=1

cij

In our model, it is assumed that an internal activity receives both data and control transfer through its
input and produces both data and control transfer through its output [9, 28]. A correct or erroneous output
(of any propagating failure types), when received by an internal activity, becomes its correct or erroneous
input (of the same propagating failure types), respectively. A signaled failure (of any stopping failure type),
without any software FTMs to handle it, immediately leads to a system failure.

Remark. Our approach supports modeling concurrently present errors via the concurrent presence of propa-
gating failure types. It also allows our approach to support modeling error propagation for parallel structures
(see Section 5.1.4). Distinguishing between stopping failure types and propagating failure types enables our
approach to support modeling error propagation for software FTMs (see Section 4.1.3). With the com-
prehensive failure model, our approach is able to model explicitly and flexibly error detection via internal
activities, including correct error detection (e.g. with an erroneous input, the internal activity signals a
signaled failure of a proper stopping failure type), a false alarm (e.g. with a correct input, the internal
activity signals a signaled failure), as well as a false signaling of failure type (e.g. with an erroneous input,
the internal activity signals a signaled failure of an improper stopping failure type).

4.1.3. Fault Tolerance Structures

In their paper [2], Avizienis et al. describe in detail the principle of FTMs. A FTM is carried out via
error detection and system recovery. Error detection is to identify the presence of an error. Error handling
followed by fault handling together form system recovery. Error handling is to eliminate errors from the
system state, e.g. by bringing the system back to a saved state that existed prior to error occurrence. Fault
handling is to prevent faults from being activated again, e.g. by either switching in spare components or
reassigning tasks among non-failed components.

To support modeling FTMs, our reliability modeling schema provides Fault Tolerance Structures (FTSs),
namely RetryStructure and MultiTryCatchStructure. Because in a FTM, error detection is a prerequisite
for error handling and not all detected errors can be handled. Therefore, at most, a RetryStructure or a
MultiTryCatchStructure can provide error handling only for signaled failures, which are consequences of
errors that can be detected and signaled by error detection.

RetryStructure. An effective technique to handle transient failures is service re-execution. A RetryStructure
is taking ideas from this technique. The structure contains a single RetryPart which, in turn, can contain
different activity types, structure types, and even a nested RetryStructure. The first execution of the
RetryPart models normal service execution while the following executions of the RetryPart model the service
re-executions.

Example 4. Fig. 7 shows a RetryStructure with a single RetryPart. After the RetryPart’s execution, pos-
sible signaled failures of stopping failure types {FS1}, {FS2}, or {FS3} (the field possibleSignaledFailures),
or possible erroneous outputs of propagating failure types {FP1}, {FP2}, or {FP1, FP2} (the field possibleEr-
roneousOutputs) can occur. The RetryStructure can handle only signaled failures of {FS1} or {FS2} (the
field handledFailures). This means that the structure handles signaled failures of these stopping failure types
and retries the RetryPart. Signaled failures of {FS3} can not be handled, and therefore lead to signaled
failures of the whole structure. Erroneous outputs of the RetryPart, which are consequences of errors that
cannot be detected and signaled by error detection, lead to erroneous outputs of the whole structure. This
procedure is repeated the number of times equal to the field retryCount (2 times in this example). For the
last retry, signaled failures of {FS1}, {FS2}, or {FS3} all lead to signaled failures of the whole structure.
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Figure 7: Semantics for a RetryStructure example.
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1
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2
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<<MultiTryCatchPart>>

3
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2
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3
{FS3}

{F0}{FP1} {FP2} {FP1, FP2} {FS1} {FS2} {FS3} {FS4}

{FS4}

Figure 8: Semantics for a MultiTryCatchStructure example.

MultiTryCatchStructure. A MultiTryCatchStructure is taking ideas from the exception handling in object-
oriented programming. The structure consists of two or more MultiTryCatchParts. Each MultiTryCatchPart
can contain different activity types, structure types, and even a nested MultiTryCatchStructure. Similar
to try and catch blocks in exception handling, the first MultiTryCatchPart models the normal service
execution while the following MultiTryCatchParts handle certain failures of stopping failure types and launch
alternative activities.

Example 5. Fig. 8 shows a MultiTryCatchStructure with three MultiTryCatchParts. After the execution
of MultiTryCatchPart 1, possible signaled failures of stopping failure types {FS1}, {FS2}, {FS3}, or {FS4},
or possible erroneous outputs of propagating failure types {FP1}, {FP2}, or {FP1, FP2} can occur. Signaled
failures of {FS1} cannot be handled by any following MultiTryCatchParts ( MultiTryCatchPart 2, MultiT-
ryCatchPart 3) and therefore lead to a signaled failures of the whole structure. MultiTryCatchPart 2 handles
signaled failures of {FS2} or {FS3}. MultiTryCatchPart 3 handles signaled failures of {FS4}. Erroneous
outputs of MultiTryCatchPart 1 lead to erroneous outputs of the whole structure.

Similarly, for MultiTryCatchPart 2, signaled failures of {FS2} cannot be handled by any following Mul-
tiTryCatchParts ( MultiTryCatchPart 3) and therefore lead to signaled failures of the whole structure. Erro-
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neous outputs of MultiTryCatchPart 2 lead to erroneous outputs of the whole structure. MultiTryCatchPart
3 handles signaled failures of {FS3}.

For the last MultiTryCatchPart ( MultiTryCatchPart 3), because there is no following MultiTryCatch-
Part to handle its signaled failure, all of its signaled failures lead to signaled failures of the whole structure.
Erroneous outputs of MultiTryCatchPart 3 lead to erroneous outputs of the whole structure.

Remark. FTSs can be employed in different parts of the system architecture and are quite flexible to model
FTMs because their inner parts (RetryPart, MultiTryCatchParts) are able to contain different activity
types, structure types, and even nested FTSs. They support enhanced fault tolerance expressiveness in
several aspects, including different recovery behaviors in response to occurrences of signaled failures, as
well as multi-type and multi-stage recovery behaviors. They allow modeling different classes of existing
FTMs, including exception handling, restart-retry, primary-backup, and recovery blocks. If a RetryPart or
a MultiTryCatchPart contains a CallingActivity, signaled failures from the provided service of the called
component (and any other component down the call stack) can be handled. The case studies in Section 6
show different possible usages of FTSs.

4.2. System Reliability Models

In our approach, software architects obtain components and their reliability specifications from public
repositories, assemble them to realize the required functionality. After that, they provide a usage profile for
the complete system to form a system reliability model.

Fig. 2 shows an extract of our reliability modeling schema with modeling elements for system reliability
models. Software architects model a system architecture via modeling element SystemArchitecture. Soft-
ware architects create component instances (ComponentInstance) and assemble them through component
connectors (ComponentConnector) to realize the required functionality. Users can access this functionality
through user interfaces (UserInterface).

After modeling system architecture, software architects model a usage profile for the user interfaces.
A usage profile (UsageProfile) contains usage profile parts (UsageProfilePart) with different probabilities,
which model different usage scenarios of the system. A usage profile part must include sufficient information
to determine the branching probabilities of branching structures and the average number of loops for each
looping structure.

Example 6. Continuing with Example 1, Fig. 9 shows an example of system reliability model. The system
architecture includes instances of components C1, C2, C3, and C4. They are connected via component
connectors. Provided service S0 of C1’s component instance is exposed as a user interface for users.

The usage profile includes two usage profile parts with probabilities 0.7 and 0.3. This means that with
probability 0.7, users access with usage profile part 1 and with probability 0.3, users access with usage profile
part 2. Each usage profile part contains probabilities and averages to determine the branching probabilities
of branching structures and the average number of loops for each looping structure.

5. RELIABILITY PREDICTION

After software architects have assembled component reliability specifications to realize the required func-
tionality and specified a usage profile to form a system reliability model, we can predict the reliability for the
complete system. The prediction process starts with the system reliability model and the component relia-
bility specifications, and ends with the system reliability prediction output. It includes the transformation
for each usage profile part and an aggregation of results.

5.1. Transformation for each usage profile part

The transformation is to derive the reliability for the provided service which the current usage profile
part refers to. It starts with the service implementation of this provided service. By design, in our reliability
modeling schema: (1) a service implementation can contain a structure of any structure type or an activity
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Figure 9: An example of system reliability model.
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Figure 10: Example of structures: (a) Sequential structure and (b) Branching structure.

of any activity type, (2) a structure’s inner part (i.e. SequentialPart, IfPart, ElsePart, LoopingPart, Paral-
lelPart, RetryPart, MultiTryCatchPart) can contain a structure of any structure type or an activity of any
activity type, and (3) a calling activity is actually a reference to another service implementation. Therefore,
the transformation is essentially a recursive procedure applied for structures.

For each structure, the transformation transforms it into an equivalent internal activity (IA, for short).

5.1.1. Sequential Structure

Considering a sequential structure with n sequential parts A1, A2, ..., An as in Fig. 10a, let PrA12...k
(I, FO),

I ∈ AIOS, FO ∈ (AFS ∪ AIOS) be the failure model for the equivalent IA of the first k sequential parts,
then the failure model for the equivalent IA of the first k + 1 sequential parts is computed as follows.

• The first k + 1 sequential parts produce a correct output if the first k sequential parts produce an
output (correct or erroneous) and after receiving this output as its input, the (k + 1)− th sequential
part produces a correct output:

PrA12...k+1
(I, {F0}) =

∑
O′∈AIOS

PrA12...k
(I,O′)PrAk+1

(O′, {F0}) (1)

• The first k + 1 sequential parts signal a signaled failure of stopping failure type F (with F ∈ AFS)
if either (1) the first k sequential parts signal a signaled failure of stopping failure type F or (2) the
first k sequential parts produce an output (correct or erroneous) and after receiving this output as its
input, the (k + 1)− th sequential part signals a signaled failure of stopping failure type F :

PrA12...k+1
(I, F ) = PrA12...k

(I, F ) +
∑

O′∈AIOS
PrA12...k

(I,O′)PrAk+1
(O′, F ) (2)

• The first k+ 1 sequential parts produce an erroneous output of propagating failure types O ∈ AIOS \
{{F0}} if the first k sequential parts produce an output (correct or erroneous) and after receiving this
output as its input, the (k + 1) − th sequential part produces an erroneous output of propagating
failure types O:

PrA12...k+1
(I,O) =

∑
O′∈AIOS

PrA12...k
(I,O′)PrAk+1

(O′, O) (3)

By using Equations (1), (2), and (3), the transformation recursively computes the failure model for
the equivalent IA of all n sequential parts (i.e. the failure model for the equivalent IA of the sequential
structure): PrIA (I, FO) = PrA12...n

(I, FO), I ∈ AIOS, FO ∈ (AFS ∪ AIOS).

5.1.2. Branching Structure

Considering a branching structure with n − 1 if parts A1, A2, ..., An−1 and a single else part An as in
Fig. 10b, its equivalent IA has the failure model as follows (with I ∈ AIOS, FO ∈ (AFS ∪ AIOS)):

PrIA (I, FO) =

n−1∑
i=1

p(bci)PrAi (I, FO) +

(
1−

n−1∑
i=1

p(bci)

)
PrAn (I, FO) (4)
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Figure 11: Unrolling a looping structure: (a) Looping structure and (b) Its equivalent sequential structure.
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Figure 12: Using inputs and outputs in a parallel structure.

where p(bci) (with i = 1, 2, ..., n − 1) is the probability of the branching condition bci (i.e. the execution
probability of the if part Ai) which is obtained from the current usage profile part.

5.1.3. Looping Structure

Considering a looping structure with a single looping part A1 as in Fig. 11a, this looping structure can be
unrolled to a sequential structure with lc sequential parts A1 (as in Fig. 11b). Then, with the average of loop
count, average (lc), obtained from the current usage profile part, the failure model for the equivalent IA of
the looping structure can be computed by applying the same transformation, as for a sequential structure,
on the equivalent sequential structure of the looping structure. However, because all sequential parts of
the equivalent sequential structure are the same A1, the transformation also employs the exponentiation by
squaring6 for fast transforming.

5.1.4. Parallel Structure

For a parallel structure, the transformation transforms it into an equivalent IA based on the following
arguments:

• The parallel structure (therefore the equivalent IA) signals a signaled failure if at least one parallel
branch has a signaled failure.

• The parallel structure (therefore the equivalent IA) produces a correct output if all parallel branches
produce correct outputs.

• The parallel structure (therefore the equivalent IA) produces an erroneous output if no parallel branch
has a signaled failure and at least one parallel branch produces an erroneous output.

and the following assumptions:

6http://en.wikipedia.org/wiki/Exponentiating by squaring
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• Reliability-related behaviors of parallel branches are independent7.

• In case a parallel structure receives an erroneous input of certain propagating failure types, each of
its parallel branch receives an erroneous input of the same propagating failure types. And in case a
parallel structure produces an erroneous output, the propagating failure types of the parallel structure’s
erroneous output is a union of propagating failure types of the parallel branches’ erroneous outputs.
Fig. 12 shows a usage8 of inputs and outputs that satisfies the assumption for a parallel structure:
each Ak receives the whole input of the parallel structure as its input, and all outputs of Ak(s) are
joined to form the structure’s output.

• When parallel branches signal signaled failures of different stopping failure types, the stopping failure
type of the signaled failure of the whole parallel structure is the stopping failure type of the signaled
failure of the lowest index parallel branch9.

Considering a parallel structure with n parallel branches A1, A2, ..., An as in Fig. 12, let PrA12...k
(I, FO),

I ∈ AIOS, FO ∈ (AFS ∪ AIOS) be the failure model for the equivalent IA of the first k parallel branches,
then the failure model for the equivalent IA of the first k + 1 parallel branches is computed as follows.

• The first k + 1 parallel branches produce a correct output if the first k parallel branches produce a
correct output and the (k + 1)− th parallel branch produces a correct output:

PrA12...k+1
(I, {F0}) = PrA12...k

(I, {F0})PrAk+1
(I, {F0}) (5)

• The first k + 1 parallel branches signal a signaled failure of stopping failure type F (with F ∈ AFS)
if either (1) the first k parallel branches signal a signaled failure of stopping failure type F or (2) the
first k parallel branches produce an output (correct or erroneous) and the (k + 1)− th parallel branch
signals a signaled failure of stopping failure type F :

PrA12...k+1
(I, F ) = PrA12...k

(I, F ) +

( ∑
O′∈AIOS

PrA12...k
(I,O′)

)
PrAk+1

(I, F ) (6)

• The first k+1 parallel branches produce an erroneous output of propagating failure types O ∈ AIOS\
{{F0}} if (1) the first k parallel branches produce a correct output and the (k+1)− th parallel branch
produces an erroneous output of propagating failure types O, or (2) the first k parallel branches produce
an erroneous output of propagating failure types O and the (k + 1) − th parallel branch produces a
correct output, or (3) the first k parallel branches produce an erroneous output of propagating failure
types O1 ∈ AIOS \ {{F0}} and the (k + 1) − th parallel branch produces an erroneous output of
propagating failure types O2 ∈ AIOS \ {{F0}} such that O1 ∪O2 = O:

PrA12...k+1
(I,O) = PrA12...k

(I, {F0})PrAk+1
(I,O) + PrA12...k

(I,O)PrAk+1
(I, {F0})

+
∑

O1∪O2=O
O1,O2∈AIOS\{{F0}}

(
PrA12...k

(I,O1)PrAk+1
(I,O2)

)
(7)

7Our method does not explicitly consider errors caused by shared resource access or thread interaction, which can be removed
by existing techniques before the analysis [37], or implicitly included in probabilities of the failure models for IA(s) in parallel
branches.

8This is one of the most common scenarios in parallel executions. Our method for transforming parallel structures can be
extended to include other common scenarios in parallel executions.

9We could have supported modeling the concurrent presence of stopping failure types caused by parallel branches signaling
signaled failures of different stopping failure types (using the same method as for propagating failure types). However, the fact
that in practice, FTMs, if any, to handle errors of parallel executions are often put inside each parallel execution could make
the support useless in modeling FTMs. Whereas, supporting modeling the concurrent presences of both stopping failure types
and propagating failure types could increase quickly the danger of state-space explosion for our method. Moreover, using the
stopping failure types of the signaled failure of the lowest index parallel branch is simply our design choice to avoid introducing
the concurrent presence of stopping failure types. Another possible design choice could be using the highest stopping failure
type among different stopping failure types of signaled failures of parallel branches given that the stopping failure types are
sorted in a certain order (e.g. according to their severities).
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Table 2: An Example of Transformation Results.

Execution Results Transformation Results
A1 A2 Result Occurrence Probability (with I ∈ AIOS)

F ∈ AFS - F PrA1
(I, F )

O ∈ AIOS F ∈ AFS F PrA1 (I,O)PrA2 (I, F )
{F0} O ∈ (AIOS \ {{F0}}) O PrA1

(I, {F0})PrA2
(I,O)

O ∈ (AIOS \ {{F0}}) {F0} O PrA1
(I,O)PrA2

(I, {F0})
{F0} {F0} {F0} PrA1 (I, {F0})PrA2 (I, {F0})

O1 ∈ (AIOS \ {{F0}}) O2 ∈ (AIOS \ {{F0}}) O1 ∪O2 PrA1
(I,O1)PrA2

(I,O2)

<<RetryPart>>
RP

RP

(retry 0)

RP

(retry 1)

RP

(retry rc)

-retryCount: rc

-handledFailures: FH

<<RetryStructure>>

...

...

...

structure’s 

input

structure’s 

output

RP (retry rc)’s 

input

RP (retry rc)’s 

output

RP (retry 0)’s 

input
RP (retry 0)’s 

output

Figure 13: Using inputs and outputs in a RetryStructure.

By using Equations (5), (6), and (7), the transformation recursively computes the failure model for the
equivalent IA of all n parallel branches (i.e. the failure model for the equivalent IA of the parallel structure):
PrIA (I, FO) = PrA12...n

(I, FO), I ∈ AIOS, FO ∈ (AFS ∪ AIOS).

Example 7. Assume we have a parallel structure with two parallel branches A1 and A2. Each parallel
branch has a failure model as in Example 3. Table 2 shows the transformation results. From this table,
the transformation can build up the failure model for the equivalent IA of the parallel structure. For exam-

ple, PrIA (I, {FS1}) = PrA1 (I, {FS1}) +

( ∑
O∈AIOS

PrA1 (I,O)

)
PrA2 (I, {FS1}) for all I ∈ AIOS (as in

Equation (6)).

5.1.5. RetryStructure

Considering a RetryStructure, let rc be the retry count, FH ⊆ AFS be the set of handled failures,
PrRP (I, FO) for all I ∈ AIOS, FO ∈ (AFS ∪ AIOS) be the failure model of RetryPart (abbreviated as
RP ).

Fig. 13 shows the usage of inputs and outputs in a RetryStructure. The structure’s input is the input
for all RetryPart ’s executions and the structure’s output is the output of a RetryPart ’s execution. For the
sake of uniformity, we consider the first execution of the RetryPart as RP (retry 0).

For each possible input I ∈ AIOS of a RetryStructure, the transformation builds a Markov model that
reflects all the possible execution paths of the RetryStructure with the input I and their corresponding
probabilities, and then build up the failure model for the equivalent IA from this Markov model.

Step 1 , the transformation builds a Markov block for each retry. The Markov Block for the i-th retry
(MB (I,RPi)) reflects its possible execution paths for signaled failures (Fig. 14). It includes a state labeled
“I,RPi” ([I,RPi], for short) as an initial state, states [RPi, F ] for all F ∈ AFS as states of signaled failures.
The probability of reaching state [RPi, F ] from state [I,RPi] is PrRP (I, F ) for all F ∈ AFS.

Step 2 , the transformation assembles these Markov blocks into a single Markov model that reflects all
the possible execution paths of the RetryStructure with the input I ∈ AIOS as follows.
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I,RPi

RPi,{FS1} RPi,{FS2} RPi,{FSu}

PrRP(I,{FS1})

PrRP(I,{FS2})

PrRP(I,{FSu})

...

MB(I,RPi)

Figure 14: Markov block for i-th retry.

• Add a state [I, START ].

• Add states [F ] for all F ∈ AFS.

• Add states [O] for all O ∈ AIOS

• Add a transition from state [I, START ] to state [I,RP0] with probability 1.0.

• For all Markov block MB (I,RPi) with i ∈ {0, 1, ..., rc}, add transitions from state [I,RPi] to state
[O] with probability PrRP (I,O) for all O ∈ AIOS. This is because a correct (resp. erroneous) output
of the RetryPart ’s execution leads to a correct (resp. erroneous) output of the whole RetryStructure.

• For Markov block MB (I,RPrc) (i.e. the Markov block of the last retry), add transitions from state
[RPrc, F ] to state [F ] with probability 1.0 for all F ∈ AFS.

• For other Markov blocks, i.e. MB (I,RPi) with i ∈ {0, 1, ..., rc− 1}, add transitions from state [RPi, F ]
to (1) state [I,RPi+1] with probability 1.0 if F ∈ FH, or otherwise to (2) state [F ] with probability
1.0 for all F ∈ AFS, .

Step 3 , after the transformation generated the Markov model, the failure model for the equivalent IA
is built up as follows.

• For all F ∈ AFS, PrIA (I, F ) is the probability of reaching absorbing state [F ] from transient state
[I, START ].

• For all O ∈ AIOS, PrIA (I,O) is the probability of reaching absorbing state [O] from transient state
[I, START ].

The transition matrix for the generated Markov chain has the following format:

P =

(
Q R
0 I

)
where the upper left transition matrix Q is a square matrix representing one-step transitions between
transient states [I, START ], [I,RPi], and [RPi, F ] for all F ∈ AFS (with i ∈ {0, 1, ..., rc}), the upper right
transition matrix R represents one-step transitions from the transient states to absorbing states [F ] for all
F ∈ AFS and [O] for all O ∈ AIOS, I is an identify matrix with size equal the number of the absorbing
states.

Let B =(I−Q)
−1

R be the matrix computed from the matrices I, Q and R. Because this is an absorbing
Markov chain, the entry bij of the matrix B is the probability that the chain will be absorbed in the absorbing
state sj if it starts in the transient state si [38]. Thus, the failure model of the equivalent IA can be obtained
from the matrix B.

Example 8. Fig. 15 shows an example of transformation for a RetryStructure (Several transition probabil-
ities are omitted for the sake of clarity). In this example, we assume that the RetryPart has a failure model
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1.01.0

<<RetryPart>>

RP

-retryCount: 2

-handledFailures: {FS2}

<<RetryStructure>>

Figure 15: An example of transformation for a RetryStructure.

as in Example 3. Therefore, AFS = {{FS1} , {FS2}} and AIOS = {{F0} , {FP1} , {FP2} , {FP1, FP2}}. rc
of the RetryStructure is 2 and FH of the RetryStructure is {{FS2}}. From the resulting Markov model,
the failure model for the equivalent IA of the RetryStructure can be built up, e.g. PrIA (I, {F0}) is the
probability of reaching absorbing state [{F0}] from transient state [I, START ].

5.1.6. MultiTryCatchStructure

Considering a MultiTryCatchStructure, let n be the number of MultiTryCatchParts. For each i ∈
{1, 2, ..., n}, let FHi ⊆ AFS be the set of handled failures of MultiTryCatchPart i, PrMPi

(I, FO) for
all I ∈ AIOS, FO ∈ (AFS ∪ AIOS) be the failure model of MultiTryCatchPart i (abbreviated as MPi).

Fig. 16 shows the usage of inputs and outputs in a MultiTryCatchStructure. The structure’s input is the
input for all MultiTryCatchParts’ executions and the structure’s output is the output of a MultiTryCatch-
Part ’s execution.

Similar to the case of RetryStructures, for each possible input I ∈ AIOS of a MultiTryCatchStructure,
the transformation builds a Markov model that reflects all the possible execution paths of the MultiTryCatch-
Structure with the input I and their corresponding probabilities, and then build up the failure model for
the equivalent IA from this Markov model.

Step 1 , the transformation builds a Markov block for each MultiTryCatchPart. The Markov Block for
the MultiTryCatchPart i (MB (I,MPi)) reflects its possible execution paths for signaled failures (Fig. 17).
It includes a state [I,MPi] as an initial state, states [MPi, F ] for all F ∈ AFS as states of signaled failures.
The probability of reaching state [MPi, F ] from state [I,MPi] is PrMPi (I, F ) for all F ∈ AFS.

Step 2 , the transformation assembles these Markov blocks into a single Markov model that reflects all
the possible execution paths of the MultiTryCatchStructure with the input I ∈ AIOS as follows.

• Add a state [I, START ].

• Add states [F ] for all F ∈ AFS.
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Figure 16: Using inputs and outputs in a MultiTryCatchStructure.

I,MPi

MPi,{FS1} MPi,{FS2} MPi,{FSu}
...

MB(I,MPi)

1( ,{ })
iMP SPr I F

2( ,{ })
iMP SPr I F

( ,{ })
iMP SuPr I F

Figure 17: Markov block for MultiTryCatchPart i.

• Add states [O] for all O ∈ AIOS

• Add a transition from state [I, START ] to state [I,MP1] with probability 1.0.

• For all Markov blocks MB (I,MPi) with i ∈ {1, 2, ..., n}, add transitions from state [I,MPi] to state
[O] with probability PrMPi

(I,O) for all O ∈ AIOS. This is because a correct (resp. erroneous)
output of a MultiTryCatchPart ’s execution leads to a correct (resp. erroneous) output of the whole
MultiTryCatchStructure.

• For Markov block MB (I,MPn) (i.e. the Markov block of the last MultiTryCatchPart), add transitions
from state [MPn, F ] to state [F ] with probability 1.0 for all F ∈ AFS.

• For other Markov blocks, i.e. MB (I,MPi) with i ∈ {1, 2, ..., n− 1}, add transitions from state
[MPi, F ] to (1) state [I,MPx] with probability 1.0 where x ∈ {i + 1, i + 2, ..., n} is the lowest index
satisfying F ∈ FHx, or to (2) state [F ] with probability 1.0 if no such index x ∈ {i + 1, i + 2, ..., n}
satisfying F ∈ FHx for all F ∈ AFS.

Step 3 , because the resulting Markov model is an absorbing Markov chain, the failure model for the
equivalent IA is built up as follows.

• For all F ∈ AFS, PrIA (I, F ) is the probability of reaching absorbing state [F ] from transient state
[I, START ].

• For all O ∈ AIOS, PrIA (I,O) is the probability of reaching absorbing state [O] from transient state
[I, START ].

Example 9. Fig. 18 shows an example of transformation for a MultiTryCatchStructure (Several tran-
sition probabilities are omitted for the sake of clarity). In this example, we assume that each MultiT-
ryCatchPart has a failure model as in Example 3. Therefore, AFS = {{FS1} , {FS2}} and AIOS =
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Figure 18: An example of transformation for a MultiTryCatchStructure.

{{F0} , {FP1} , {FP2} , {FP1, FP2}}. FH2 of the MultiTryCatchPart 2 is {{FS1}} and FH3 of the MultiT-
ryCatchPart 3 is {{FS2}}. From the resulting Markov model, the failure model for the equivalent IA of the
MultiTryCatchStructure can be built up, e.g. PrIA (I, {F0}) is the probability of reaching absorbing state
[{F0}] from transient state [I, START ].

Finally, in our approach, we define the reliability as R = 1−POFOD, where POFOD is the probability
of failure on demand, given that the input of a service provided by the system is correct (i.e., as defined
by its specification). Therefore, the reliability for the provided service which the current usage profile part
refers to is the probability that this service produces a correct output given that it has received a correct
input: PrIA ({F0} , {F0}) of the failure model for the equivalent IA of the service implementation of this
service.

5.2. Aggregation of Results

The results of the reliability of provided services which the usage profile parts in the usage profile refer
to are aggregated as follows: Let R(UPPj) be the reliability of the provided service which usage profile
part UPPj refers to, m be the number of usage profile parts in the usage profile, Pj be the probability that

users access with usage profile part UPPj such that
m∑
j=1

Pj = 1, then the overall system reliability can be

determined as a weighted sum over all usage profile parts in the usage profile:

R =

m∑
j=1

Pj R(UPPj) (8)

Example 10. Continuing with Example 6, the overall system reliability is determined as R = 0.7R(UPP1)+
0.3R(UPP2).
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Table 3: Running Times of the Transformation Algorithm for Different Structure Types.

Structure type Running time

Sequential structure O
(
nS |AIOS|2 (|AIOS|+ |AFS|)

)
Branching structure O (nB |AIOS| (|AIOS|+ |AFS|))
Looping structure O

(
log2 (lc) |AIOS|2 (|AIOS|+ |AFS|)

)
Parallel structure O

(
nP

(
|AIOS|3 + |AFS|

))
RetryStructure O

(
|AIOS|

(
rc2|AFS|2 (rc |AFS|+ |AIOS|)

))
MultiTryCatchStructure O

(
|AIOS|

(
n2
M |AFS|

2
(nM |AFS|+ |AIOS|)

))

5.3. Proving the Correctness of the Transformation Algorithm

The transformation algorithm described above is a matter of complicated bookkeeping, generating all
possible execution paths with their corresponding probabilities for a structure and computing the failure
model for the equivalent IA of the structure via summation of multiplied probabilities over the available
paths. Therefore, under all the stated assumptions, we argue for the correction of the algorithm as “by
construction”. This means that once the underlying ideas are understood, anyone would agree that the
algorithm can be made to work. A more formal proof could be given by induction on the size of the instance
(here possibly the number of inner parts of a structure and the number of called and nested structures
throughout the whole system model). However, we deem such a proof “uninformative”, i.e. it does not help
in understanding the algorithm.

5.4. Complexity

Regarding space-effectiveness, by transforming a structure into an equivalent IA, the transformation
algorithm no longer needs to store the structure with its inner parts in the memory, but can efficiently
transform the outer structure using the equivalent IA. Due to its recursive nature, the algorithm transforms
a structure as soon as its inner parts have been transformed into equivalent IA(s), therefore, can efficiently
reduce the possibility of state-space explosion.

At any point in time, the number of structures present in the memory is limited by the maximum depth
of the stack of called and nested structures throughout the whole system model. The amount of memory
required by the algorithm for a structure is almost equal to the amount of memory required to store the
equivalent IA(s) of its inner parts, apart from the fact that for a RetryStructure or a MultiTryCatchStructure,
the algorithm requires an additional amount of memory for a Markov chain. The aggregation of results over
all usage profile parts in the usage profile can be calculated one after another, without the need to store
each result separately.

Regarding time-effectiveness, it is assumed that the running time of the transformation algorithm is a
function of the structure type, the number of stopping failure types, and the number of propagating failure
types. Based on Equations (1), (2), (3), (4), (5), (6), and (7), it is possible to obtain the running times
of the algorithm for the sequential, branching, looping, and parallel structure types. The running times of
the algorithm for a RetryStructure or MultiTryCatchStructure can be obtained from the process of creating
and solving Markov chains (see Section 5.1.5 or 5.1.6, respectively). Table 3 shows the running times of
the algorithm for structure types given that their inner parts have been transformed into equivalent IA(s).
Abbreviations used in the table are as follows:

• |AFS|: cardinality of AFS, equal to u which is the number of stopping failure types;

• |AIOS|: cardinality of AIOS, equal to 2v with v is the number of propagating failure types;

• nS : number of sequential parts of a sequential structure;

• nB : number of branching parts (i.e. if and else parts) of a branching structure;
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• lc: loop count of a looping structure;

• nP : number of parallel parts of a parallel structure;

• rc: retry count of RetryStructure;

• nM : number of MultiTryCatchParts of a MultiTryCatchStructure.

The running time of the algorithm for any structure type is exponential time in the number of propagating
failure types and polynomial time in the number of stopping failure types. For a sequential, branching, or
parallel structure, the running time of the algorithm is linear time in nS , nB , or nP , respectively. Thanks
to exponentiation by squaring, the running time of the algorithm for a looping structure is logarithmic time
in lc. The fact that the algorithm for a RetryStructure (resp. MultiTryCatchStructure) involves calculations
on matrices (i.e. matrix subtraction, inversion, and multiplication)10 leads to a cubic time of the algorithm
in rc (resp. nM ). The aggregation of results over m usage profile parts in the usage profile has a running
time of O (m).

The complexity of the algorithm presents an issue regarding the scalability of our approach. Therefore,
we include scalability considerations into our case study (see Section 6 for more details)).

5.5. Implementation

We have implemented the transformation algorithm in our reliability prediction tool. The tool receives a
system reliability model as an input, validates this input against a set of predefined semantic constraints in
our reliability modeling schema (e.g. the total probability of all usage profile parts must be 1), and produces
the system reliability prediction as an output. This output includes not only the predicted system reliability
but also predicted failure probabilities of user-defined failure types.

We also implemented a reliability simulator as a part of our tool. It also receives a system reliability
model as an input. It has the abilities to control the execution of each internal activity to follow its failure
model, and the execution of each provided service to follow its implementation and the provided usage
profile. To simulate the failure model for an internal activity, we implemented a method as follows: (1) The
method receives an input, returns an output and may throw exceptions, (2) If the method receives an input
marked as I ∈ AIOS, it throws an exception marked as F ∈ AFS with probability PrIA (I, F ) or returns
an output marked as O ∈ AIOS with probability PrIA (I,O). We also implemented a method to simulate
each provided service of a component. This method also receives an input, returns an output and may throw
exceptions. The body of this method includes statements directing the data and control flow according to
the provided service’s implementation and the provided usage profile. Finally, the simulator determines the
system reliability as the ratio of successful service executions (starting with inputs marked as correct {F0}
and ending with outputs marked as correct {F0}) to the overall execution count.

Compared to our analytical method, the simulation is significantly slower and cannot be used as our
main prediction method. However, we can use it for validation purposes. By comparing prediction results
obtained by our analytical method with simulations of the systems, it is possible for us to provide evidence
for the correctness of the transformation algorithm and the validity of prediction results (see Section 6 for
more details).

Our reliability modeling schema and reliability prediction tool are open source and available at our
project website [36].

6. CASE STUDY EVALUATION

The goal of the case study evaluation described in this section is (1) to assess the validity of our prediction
results, and (2) to demonstrate the capabilities of our reliability modeling and prediction approach in
supporting design decisions.

10We assumed that the running time for subtracting two n× n matrices is O
(
n2

)
, the running time for inverting one n× n

matrix is O
(
n3

)
, and the running time for multiplying rectangular matrices (one m × p matrix with one p × n matrix) is

O (mnp).
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Table 4: Reporting Service: Different Propagating Failure Types and Their Symbols.

Propagating Failure Type Symbol
ContentPropagatingFailure FP1

TimingPropagatingFailure FP2

There are several aspects to validate a reliability prediction result. First, varying the input parameters
should result in a reasonable change of the prediction result. Second, the accuracy of the prediction results
should be validated, in an ideal manner, against measured values. However, validating prediction results
against measured values is such a strong challenge that, in practice, validations of prediction results are much
weaker and mostly are only done at a reasonable level (i.e. with sensitivity analyses, reliability simulations)
(e.g. [3, 12, 13, 14, 22, 28]). The main reason lies in the difficulty of estimating reliability-related probabilities
(e.g. failure probabilities, error propagation probabilities) for a software system. It is well known that setting
tests to achieve a statistically significant amount of measurement on which the estimation can be based is
non-trivial for high-reliability software systems [39] because the necessary number of tests and the necessary
time for this are prohibitive. Therefore, in this paper, we validate our prediction results at a reasonable
level, i.e. by comparing the prediction results against the results of reliability simulations and by conducting
sensitivity analyses to variations in the input parameters.

In the following, we describe the predictions and sensitivity analyses for the reporting service of a docu-
ment exchange server (Section 6.1) and the WebScan system (Section 6.3), and present the scalability of our
approach (Section 6.2). Both case studies include comparisons between prediction results with simulations
while different sensitivity analyses are presented by the case studies. The case study based on the WebScan
system presents how to introduce a FTS as an additional component while in the case study based on the
reporting service, FTSs are within the service implementations of the existing components.

6.1. Case study I: Reporting Service of a Document Exchange Server

6.1.1. Description of the Case Study

The program chosen for the first case study is the reporting service of a document exchange server [30].
The document exchange server is an industrial system which was designed in a service-oriented way. Its
reporting service allows generating reports about pending documents or released documents.

The system reliability model of the reporting service11 is shown in Fig. 19 using our reliability modeling
schema. At the architecture level, the reporting service consists of four components: ReportingMedia-
tor, ReportingEngine, SourceManager, and DestinationManager. The component SourceManager provides
two services to get information about pending documents: getAttachmentDocumentInfo to get information
about pending documents attached in emails and getFileDocumentInfo to get information about pending
documents stored in file systems. The component DestinationManager provides two services to get in-
formation about released documents: getReleasedDocumentInfoFromLogs to get the information from the
logs, getReleasedDocumentInfoFromDB to get the information from the database (DB). The component
ReportingEngine provides two services: generateReport to generate a new report (either about pending doc-
uments (aboutPendingDocuments=true) or about released documents (aboutPendingDocuments=false)) and
viewRecentReports to view recently generated reports (with the number of reports specified by numberOfRe-
centReports). The component ReportingMediator provides the service processReportRequest for handling
incoming report request from clients. An incoming report request can be about generating a new report
(requestType=generate) or viewing recently generated reports (requestType=view).

In this case study, we are interested in validity of the predictions and sensitivity analyses. We set the
usage profile for the reporting service as shown in Fig. 19. The usage profile contains two usage profile parts
that present different usage scenarios of the service. Staffs use the service mainly for generating reports
while managers use the service mainly for viewing recently generated reports.

11The model can be retrieved from our project website [36].
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Figure 19: The system reliability model of the reporting service (overview).

Table 5: Reporting Service: Different Stopping Failure Types and Their Symbols.

Stopping Failure Type Symbol
ProcessingRequestFailure FS1

ViewingReportFailure FS2

GeneratingReportFailure FS3

AttachmentInfoFailure FS4

FileInfoFailure FS5

InfoFromLogFailure FS6

InfoFromDBFailure FS7
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Table 6: Reporting Service: Internal Activities, Their Symbols, and Involved Failure Types.

Symbol Provided service/Internal activity (ia) Involved Failure Types
a1 processReportRequest/ia FS1, FP1, FP2

a2 viewRecentReports/ia FS2, FP1, FP2

a3 generateReport/ia 1 FS3, FP1, FP2

a8 generateReport/ia 2 FS3, FP1, FP2

a4 getAttachmentDocumentInfo/ia FS4, FP1, FP2

a5 getFileDocumentInfo/ia FS5, FP1, FP2

a6 getReleasedDocumentInfoFromLogs/ia FS6, FP1, FP2

a7 getReleasedDocumentInfoFromDB/ia FS7, FP1, FP2
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Figure 20: Reporting service: Failure model for internal activity ai.

There are different errors which may occur in the component instances during the operation of the re-
porting service. For example, during processing client requests in service processReportRequest, errors can
arise because of its internal activity’s faults. When these errors are detected and signaled with a warn-
ing signaled by the error detection of the internal activity, then a signaled failure of a stopping failure
type occurs: {ProcessingRequestFailure}. Otherwise, the internal activity produces an erroneous output
of different propagating failure types: {ContentPropagatingFailure}, {TimingPropagatingFailure}, or
{ContentPropagatingFailure, T imingPropagatingFailure}. Different propagating (resp. stopping) fail-
ure types and their symbols are given in Table 4 (resp. Table 5). Table 6 shows internal activities, their
symbols, and involved failure types.

Determining the probabilities of the failure models for the internal activities is beyond the scope of this
paper. However, in order to make our model as realistic as possible, we aligned the probabilities with the
remarks by Cortellessa et al. [9]: (1) With modern testing techniques, it is practically always to produce a
software component with a failure probability lower than 0.001, and (2) It is very likely to find and build
software components with values of error propagation probabilities very close to 1. For the sake of simplicity,
we assumed the probabilities of the failure model for the internal activity ai (with i ∈ {1, 2, ..., 8}) as in
Fig. 20 where FSx is the involved stopping failure type for ai.

In the system reliability model, there are two FTSs. The first is the RetryStructure in the implementation
of service viewRecentReports. This structure has the ability to retry in case there is a signaled failure of
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Table 7: Reporting Service: Predicted vs. Simulated Reliability

Predicted reliability Simulated reliability Difference Error(%)
0.996527 0.996652 0.000125 0.012542

{V iewingReportFailure}. The number of times to retry of this structure is 1 (retryCount=1). The second is
the MultiTryCatchStructure in the implementation of service generateReport. This structure has the ability
to handle a signaled failure of {InfoFromLogFailure} of the service getReleasedDocumentInfoFromLogs
by redirecting calls to the service getReleasedDocumentInfoFromDB.

6.1.2. Validity of Predictions

To validate the accuracy of our prediction results, we used the system reliability model of the reporting
service as an input for our reliability prediction tool to get the reliability prediction result, then compared
this prediction result to the result of a reliability simulation. Notice that the goal of our validation is not to
justify the probabilities of the failure models for internal activities. Instead, we validate that our method
produces an accurate system reliability prediction if the system reliability model is provided accurately.

With the system reliability model of the reporting service as an input, our reliability prediction tool
predicted the system reliability as 0.996527 after 1 second on an Intel Core 2 Duo 2.26 GHz and 4 GB of
RAM while the simulation took more than 30 minutes to run with overall execution count 1,000,000 and
produced the simulated system reliability 0.996652.

Table 7 shows the comparison between the predicted reliability and the reliability from the simulation.
From this comparison, we deem that for the system reliability model described in this paper, our analytical
method is sufficiently accurate.

6.1.3. Sensitivity analyses and the Impacts of FTSs

To demonstrate the capabilities of our approach in supporting design decisions, we present the results of
sensitivity analyses of the reliability of the reporting service to changes in probabilities of failure models of
internal activities, and the analysis of how the predicted reliability of the reporting service varies for fault
tolerance variants.

First, we conducted a sensitivity analysis modifying probabilities PrIA ({F0} , {FSx}) of the internal
activities (Fig. 21a). The reliability of the reporting service is most sensitive to the probability of inter-
nal activity a1 of service processReportRequest provided by the component instance of ReportingMediator
because its corresponding curve has the steepest slope. The reliability of the reporting service is most ro-
bust to the probabilities of internal activities a2, a6, a7 of the services related to the two FTSs, namely
service viewRecentReports containing the RetryStructure; service getReleasedDocumentInfoFromLogs and
service getReleasedDocumentInfoFromDB in the MultiTryCatchStructure. Based on this information, the
software architect can decide to put more testing effort into component ReportingMediator, to exchange the
component with another component from a third party vendor, or run the component redundantly.

Second, we conducted a sensitivity analysis modifying probabilities PrIA ({F0} , {FP1, FP2}) of the in-
ternal activities (Fig. 21b). Again, the reliability of the reporting service is most sensitive to the probability
of internal activity a1 because its corresponding curve has the steepest slope. However, the reliability of
the reporting service is not as robust to the probabilities of internal activities a2, a6, a7 of the services
related to the two FTSs as in the first sensitivity analysis because the FTSs cannot provide error handling
for erroneous outputs of propagating failure types {FP1, FP2}. Between these three internal activities a2,
a6, a7, the reliability of the reporting service is most sensitive to the probability of internal activity a2. This
information may be valuable to the software architect when considering putting more development effort to
improve the error detection (therefore limit the ability to produce erroneous outputs) of internal activities
within the FTSs in the system.

Third, we conducted an analysis of how the predicted reliability of the reporting service varies for fault
tolerance variants. These variants include: without the FTSs (No FTSs), using only the RetryStructure
(Only RS ), using only the MultiTryCatchStructure (Only MTCS ) and using both the FTSs (Both RS and
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Figure 21: Reporting service: Sensitivity analyses.

32



MTCS ) (Fig. 21c). In general, introducing FTSs brings increases in reliability for staffs, managers, or all
(when aggregated). Variant Both RS and MTCS is predicted as being the most reliable. Comparing between
variants Only RS and Only MTCS shows that using the RetryStructure brings higher reliability impact than
using the MultiTryCatchStructure in this case. From the result of this type of analysis, the software architect
can assess the impact on the system reliability of fault tolerance variants and hence can decide whether the
additional costs for introducing FTSs, increasing the number of retry times in a RetryStructure, adding
replicated instances in a MultiTryCatchStructure, ... are justified.

With this type of analysis, it is also possible to see the ability to reuse modeling parts of our approach
for evaluating the reliability impacts of fault tolerance variants or system configurations. For variant Only
MTCS, only a single modification to the RetryStructure is necessary (namely, setting the handledFailures of
the structure to ∅ or the retryCount of the structure to 0 to disable the structure). For variant Only RS, also
only a single modification to the MultiTryCatchStructure is necessary (namely, setting the handledFailures
of the second MultiTryCatchPart to ∅ to disable the structure). For variant No FTSs, the two above
modifications are included.

6.2. Scalability analyses

The scalability of our approach requires special attention. To examine it, for each structure type, we
generated a number of simple system reliability models with different numbers of u, v, and nS , nB , lc, nP ,
rc, or nM (cf. Section 5.4)), analyzed these system reliability models using our reliability prediction tool,
and recorded the running times of the transformation algorithm. For example, for the sequential structure
type, with given numbers of u, v, and nS , the generated system reliability model includes the following
elements:

• u stopping failure types and v propagating failure types.

• One service.

• One component with a provided service referring the service. The service implementation for the
provided service is a sequential structure of nS sequential parts. Each of the sequential parts contains
an internal activity with a failure model of random probabilities.

• One system architecture with a component instance of the component.

• One user interface referring to the provided service of the component instance.

• One usage profile with a usage profile part referring to the user interface.

Fig. 22a shows the running times of the algorithm for structure types with different numbers of u while
v = 7, nS = nB = nP = rc = nM = 25, and lc = 225. With the same numbers of nS , nB , nP , rc, nM , and lc
as above, in Fig. 22b are the running times of the algorithm for structure types with different numbers of v
while u = 28. The running times of the algorithm for structure types with different numbers of nS , nB ,nP ,
rc, nM , and lc while u = 28 and v = 7 are shown in Fig. 22c. These results not only provide evidence for the
correctness of our complexity analysis for the transformation algorithm as in Section 5.4 but also indicate
that the algorithm can analyze system reliability models with up to approximately 28 stopping failure types
and 7 propagating failure types within 20 minutes.

Therefore, we deem that the capacity of our approach is sufficient for typical small-sized and mid-sized
software systems, including information systems (e.g. business reporting systems), e-commerce applications
(e.g. online shops), device control systems (e.g. the WebScan system introduced in Section 6.3), as well
as other types of software systems. A more effective strategy for large-scale software systems with more
propagating failure types remains as a goal for future research. In the meantime, for large-scale software
systems with large numbers of failure types, multiple failure types can be grouped together and aggregated
into one failure type before the analysis.
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Figure 23: The system reliability model of the WebScan system (overview).

6.3. Case study II: WebScan system

As the second case study, we analyzed the reliability of a WebScan system. The system allows users
at desktop to scan one or more images into a document management system using a browser, such as
Internet Explorer, and a locally attached TWAIN scanner. Fig. 23 shows the system reliability model for
this system12.

The WebScan system can be accessed via provided service serveClientRequest of the instance of compo-
nent ClientInteraction. An incoming request can be a request to configure the settings of the scanner (clien-
tRequest=configure) or a request to scan (clientRequest=scan). With a request to scan, it can be a request
to scan a single page (scanType=singlePage) or a request to scan multiple pages (scanType=multiPage).
With a request to scan multiple pages, numberOfPages is to specify the number of pages.

About the system architecture, the system includes three core components, namely ClientInteraction,
WebScanControl, and DocumentManager. Component DocumentManager provides services: createNewDoc-
ument to create a new document , addPageToDocument to add a page to a document, and saveDocument

12The model can also be retrieved from our project website [36].
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Table 8: WebScan System: Propagating Failure Type and Its Symbol.

Propagating Failure Type Symbol
ContentPropagatingFailure FP1

Table 9: WebScan System: Different Stopping Failure Types and Their Symbols.

Stopping Failure Type Symbol
ServingRequestFailure FS1

ConfiguringScanFailure FS2

ScanningFailure FS3

CreatingDocumentFailure FS4

AddingPageFailure FS5

SavingDocumentFailure FS6

to save a document. All these three provided services are modeled through single internal activities. Com-
ponent WebScanControl provides services: configureScanSettings to configure the settings of the scanner,
and scan to scan.

During the operation of the WebScan system, there are different errors which may occur in the in-
volved component instances. For example, bugs in the code implementing the internal activity of ser-
vice addPageToDocument may lead to errors. If the error detection of the internal activity detects and
signals these errors with a warning message, this leads to a signaled failure of stopping failure type:
{AddingPageFailure}. Otherwise, an erroneous output of a propagating failure type is produced by the
internal activity: {ContentPropagatingFailure}. Table 8 shows a propagating failure type and its symbol
and Table 9 shows different stopping failure types and their symbols. Internal activities, their symbols, and
involved failure types are given in Table 10.

The usage profile consists of a single usage profile part with 28% of requests to configure the settings of
the scanner, probability of 31% for scanning a single page per request to scan, an average of 8 pages per
request to scan multiple pages.

For illustrative purpose, we set the probabilities of the failure model for the internal activity ai (with
i ∈ {1, 2, ..., 7}) as in Fig. 24 where FSx is the involved stopping failure type for ai. Table 11 shows the
specific values for the probabilities in the failure models of the internal activities.

A FTS can be optionally introduced into the WebScan System, in terms of an additional component
which is shown in grey in Fig. 23. Component WebScanControlFaultTolerance can be put in the middle
of component WebScanControl and component ClientInteraction. It has the ability to retry in case there
is a signaled failure of {ConfiguringScanFailure}. The number of times to retry of this structure is 1
(retryCount=1).

For a comparison between predicted system reliability and simulated system reliability, we ran a simu-
lation with execution count 1,000,000. The simulation produced the simulated system reliability 0.998041
while our reliability modeling tool predicted the system reliability as 0.998187. Table 12 compares the

Table 10: WebScan System: Internal Activities, Their Symbols, and Involved Failure Types.

Symbol Provided service/Internal activity (ia) Involved Failure Types
a1 serveClientRequest/ia FS1, FP1

a2 configureScanSettings/ia FS2, FP1

a3 scan/ia 1 FS3, FP1

a4 scan/ia 2 FS3, FP1

a5 createNewDocument/ia FS4, FP1

a6 addPageToDocument/ia FS5, FP1

a7 saveDocoument/ia FS6, FP1
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Figure 24: WebScan system: Failure model for internal activity ai.

Table 11: WebScan System: Internal Activities and the Probabilities in Their Failure Models.

Internal activity c01 (ai) c02 (ai) c11 (ai) c12 (ai)
a1 0.0000205 0.000225 0.99908 0.000119
a2 0.000107 0.00151 0.99819 0.00171
a3 0.0000183 0.0000713 0.9991 0.000125
a4 0.0000209 0.0000737 0.9991 0.000114
a5 0.000027 0.000219 0.99901 0.000221
a6 0.0000199 0.0000693 0.99925 0.000101
a7 0.0000265 0.00021 0.99914 0.000108

Table 12: WebScan System: Predicted vs. Simulated Reliability

Predicted reliability Simulated reliability Difference Error(%)
0.998187 0.998041 0.000146 0.014629
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Figure 25: WebScan system: Sensitivity analyses.

predicted system reliability and the simulated system reliability. This comparison gives evidence that our
approach accurately predicts the system reliability in this case.

Fig. 25a provides more detail and shows the probability of a system failure due to a certain failure type.
{FS2}, {FS3}), and {FS5} are the most frequent failure types. Thus, the software architect can recognize
the need to introduce FTSs for these failures. For example, the software architect puts an instance of
component WebScanControlFaultTolerance in the middle of the instance of component ClientInteraction and
the instance of component WebScanControl as in Fig. 23. With this modification, the predicted reliability
of the WebScan system increases by 0.042277%, from 0.998187 to 0.998609. Via this example, it is possible
to see that a FTS can be introduced into the system without modifying the existing service implementations
and with just a few changes necessary while nearly all modeling parts can be reused.

Fig. 25b shows the impact of different PrIA ({F0} , {FP1}) of the internal activities to the reliability
of the WebScan system. The slopes of the curves indicate that the reliability of the WebScan system is
most sensitive to the probabilities of internal activities: a4 of service scan provided by the instance of
component WebScanControl and a6 of service addPageToDocument provided by the instance of component
DocumentManager. Thus, it is most beneficial to focus on the improvements for these two services.

Fig. 25c shows the sensitivity of the failure probability per failure type to the number of pages (i.e., a
change to the usage profile). As expected, only the failure probabilities for {FS3}, {FS5}, and {FP1} rise
because they are the only failure types related to activities within the looping structure with loop count
numberOfPages.
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7. ASSUMPTIONS AND LIMITATIONS

In this section, we discuss assumptions and limitations of our approach. We focus on three central issues:
(1) The provision of proper inputs for our method, (2) the Markovian assumption of our approach, and (3)
the limitations in the expressiveness of the model.

7.1. Provision of inputs

Perhaps, the most critical assumption lies in the provision of inputs for our method. The predicted
reliability can only be close to reality when inputs are provided accurately for the method.

Call propagations in a component reliability specification can be provided by component developers or
determined through reverse engineering. Monitoring inputs and outputs of the component by running it as a
black box in a test-bed can be used to determine call propagations in case the source code of the component
is not available. Besides call propagations, probabilities of the failure models for internal activities also
need to be given as an input for the method. Because failures and error propagations are rare events,
and the exact circumstances of their occurrences are unknown, it is difficult to measure these probabilities.
However, there are techniques [1, 4, 6, 33, 34, 39] that particularly target the problem of estimating these
probabilities, such as fault injection, statistic testing, or software reliability growth models. Further sources
of information can be expert knowledge or historical data from components with similar functionalities. In
case these probabilities are only estimated roughly, our approach can be used in comparing alternatives of
system architectures or determining acceptable ranges for probabilities.

Our approach assumes that software architects can provide a usage profile reflecting different usage
scenarios of the system. Similar to the problem of estimating probabilities of the failure models for internal
activities, no methodology is always valid to deal with the problem. In early phases of software development,
the estimation can be based on historical data from similar products or on high level information about
software architecture and usage obtained from specification and design documents [40]. In the late phases
of the software development, when testing or field data become available, the estimation can be based on
the execution traces obtained using profilers and test coverage tools [1].

7.2. Markovian assumption

Our approach assumes that control transitions between components have the Markov property. This
means that operational and reliability-related behaviors of a component are independent of its past execution
history. This Markovian assumption limits the applicability of our approach on different application domains.
However, the Markovian assumption has been proved to be valid at the component level for many software
systems [5]. Moreover, the problem of the Markovian assumption in reliability modeling and prediction
was treated deeply by Goseva et al. [1], where the authors took the execution histories of components into
account by using higher order Markov chains and recalled that a higher order Markov chain can be mapped
into a first order Markov chain. Therefore, our approach can also be adapted to any higher order Markov
chains, broadening the applicability of our approach to a large number of software systems.

7.3. Expressiveness of the model

With regard to the expressiveness of our approach, we face a general trade-off between the model com-
plexity and its suitability for real-world software systems. A more complex model not only increases the
possibility of state-space explosion of the underlying analytical model but also requires more modeling efforts
as well as more fine-grained inputs. Therefore, in analogy to related approaches (see [1, 6, 20]), we have
restricted our approach to the most important concepts from our point of view (see Section 4). In particular,
we do not distinguish between control flow and data flow, and assume that data errors always propagate
through control flow. Moreover, we assume that probabilities of the failure models for internal activities are
stochastically independent. Currently, input parameters are fixed constants. They cannot be adapted to
take into consideration factors such as component state or system state at run-time. Such considerations
are left as an extension for future work.
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8. CONCLUSIONS

In this paper, we present a reliability modeling and prediction approach for component-based software
systems that explicitly considers error propagation, software fault tolerance mechanisms, and concurrently
present errors. Our approach supports modeling error propagation for multiple execution models, including
sequential, parallel, and fault tolerance execution models. Via an explicit and flexible definition of reliability-
relevant behavioral aspects (i.e. error detection and error handling) of FTMs, our approach offers an effective
evaluation of their reliability impact in the dependence of the whole system architecture and usage profile.
Our approach accounts for concurrently present errors by introducing a hierarchical tree of multiple failure
types.

To apply our approach, component developers create component reliability specifications and software
architects create a system reliability model using our reliability modeling schema. Then, these artifacts
are transformed automatically to Markov models for reliability predictions and sensitivity analyses by our
reliability prediction tool. Via case studies, we demonstrated the applicability of our approach, e.g. the
ability of supporting design decisions and reusing modeling parts for evaluating architecture variants under
the usage profile. This kind of helps can lead to more reliable software systems in a cost-effective way
because potentially high costs for late life-cycle changes for reliability improvements can be avoided.

We plan to extend our approach with more complex error propagation for concurrent executions, to
include more software FTSs, and to validate further our approach. We also plan to extend our reliability
modeling schema and prediction tool for automated sensitivity analyses and design optimization. These
extensions will further increase the applicability of our approach.
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