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Chapter 1

Introduction

In Kripke semantics which is well-known as semantics for modal logics, each formula is

interpreted on triples consisting of a set of possible worlds, a binary relation (called an

accessibility relation) on the set, and a valuation which assigns to each possible world the

basic propositions that hold at the world. In Kripke semantics for non-modal proposi-

tional logics such as intuitionistic logic, intermediate logics, and weak logics with strict

implication [1], a formula A! B is true at a possible world if and only if at every possible

world accessible from there, whenever A is true, also B is true. In the case of intuitionistic

logic an accessibility relation is a partial order, so regarding it as the order of time we may

consider that A ! B is true if and only if at any future world (including the present),

whenever A is true, also B is true.

In this paper, we propose new Kripke semantics in which interpretation of implication

is di�erent from that in intuitionistic logic etc. In that semantics, an accessibility relation

is a partial order as in intuitionistic logic, but the informal meaning of A ! B is \B

holds as long as A holds (in the future)." This interpretation of implication enables us to

express temporality by comparing how long each formula remains true.

This paper consists of comparative studies between intuitionistic logic and the logic

corresponding to the new Kripke semantics. In Chapter 3, we de�ne each Kripke seman-

tics and discuss their properties. The following is some informal motivation of Kripke

semantics for intuitionistic logic. Think of an idealized mathematician (in this context

traditionally called the creative subject), who extends his knowledge in the course of time.

At each moment x he has a stock of sentences, which he, by some means, has recognized

as true. Since at every moment x the idealized mathematician has various choices for

his future activities (he may even stop altogether), the stages of his activity must be

thought of as being partially ordered, and not necessarily linearly ordered. How will the

idealized mathematician interpret the logical connectives? Evidently the interpretation of

a composite statement must depend on the interpretation of its parts, e.g. the idealized

mathematician has established A or (and) B at stage x if he has established A at stage x

or (and) B at stage x. The implication is more cumbersome, since A! B may be known

at stage x without A or B being known. Clearly, the idealized mathematician knows

A ! B at stage x if he knows that if at any future stage (including x) A is established,

also B is established.
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On the other hand, new Kripke semantics we propose deals with not only mathematical

statements but also propositions whose truth and falsity may depend on time, so we make

no assumption that if a propositional variable p is true at stage x, then p is true at any

future stage (including x). Furthermore, we modify the interpretation of implication

in intuitionistic logic, so that we can express temporality by comparing how long each

formula remains true. Namely, the informal meaning of A ! B is \B holds as long as

A holds (in the future)." In this interpretation, there exist Kripke models with possible

worlds at which formulas A ! (B ! A) or (A ! C) ^ (B ! C) ! (A _ B ! C) is

not true, while those are valid in any Kripke model of intuitionistic logic. Conversely, in

this interpretation, A _ :A and ::A ! A are valid in any Kripke model, while there

exist Kripke models of intuitionistic logic such that those formula is not valid. Therefore,

neither of intuitionistic logic and the new logic contains the other in Kripke validity.

In Chapter 4, we provide formal systems for each Kripke semantics, which are denoted

by the generic name of Hilbert-type systems. The Hilbert-type system of intuitionistic

logic contains nine axioms and one inference rule (modus ponens). Soundness Theorem

which says that any formula derivable in this system is intuitionistically Kripke valid, is

proved as usual by induction on derivation. Every axiom is intuitionistically Kripke valid

and the inference rule (modus ponens) preserves the validity. Conversely, for the Com-

pleteness Theorem which says that any intuitionistically Kripke valid formula is derivable

in the system, we need some notions and a few lemma's. To prove this theorem, we

construct so-called canonical model whose possible worlds are the sets of all maximal

consistent sets, whose accessibility relation is including relation on those sets, and whose

valuation is de�ned such that a basic proposition is a member of a maximal consistent

set if and only if the proposition is true at the maximal consistent set. Now if a formula

is not derivable in the system above, then there exists a maximal consistent set such that

the formula is not an element in it. Therefore the formula is not true at the possible

world, so it is not valid in the canonical model. In this way, the Completeness Theorem

is proved in the case of intuitionistic logic. On the other hand, the Hilbert-type formal

system of the new logic is based on eleven axioms and four inference rules. We can prove

that the system is also sound for the new Kripke semantics in the same way as that in

intuitionistic logic. To prove the Completeness Theorem we try to construct the canonical

model as in intuitionistic logic, but a problem rise as follow. A Kripke model in which

(p! q)^ (q ! p)! (p_ q ! q) is not valid requires in�nitely many elements at which p

is true and q is not true as the example above. This implies that one set of formulas have

to be recognized as di�erent elements in the canonical model, so we cannot construct the

canonical model in the same way as that in intuitionistic logic.

In Chapter 5, we discuss relationships between intuitionistic logic and the new logic.

As we see in the examples of formulas above, neither intuitionistic logic nor the new logic

contains the other in Kripke validity. We can, however, consider some connections between

intuitionistic logic and the new logic. Namely, we can try to embed intuitionistic logic into

the new logic in the sense that there is a translation Tr such that for every formula A, A

is intuitionistically Kripke valid if and only if Tr(A) is Kripke valid in the new logic. Such

a relation holds between classical propositional logic and intuitionistic propositional logic,

where the translation is a simple one from a formula A of classical propositional logic to
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::A of intuitionistic propositional logic. The translation presented in this paper is one

of such translations, and makes it possible to interpret logical connectives in intuitionistic

logic in terms of those in the new logic.
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Chapter 2

Preliminaries

First we will de�ne our propositional language and formulas, and give some notational

conventions.

De�nition 2.1 The propositional language has an alphabet consisting of

1. the propositional variables: p0; p1; p2; . . .,

2. the propositional constant: ? (falsehood),

3. the logical connectives: ^ (conjunction), _ (disjunction), ! (implication),

4. the auxiliary symbols: (, ).

De�nition 2.2 The formulas are de�ned inductively:

1. the propositional variables and the propositional constant are atomic formulas (or

simply atoms),

2. if A and B are formulas, then so are (A ^ B), (A _ B), and (A! B).

We will denote propositional variables by the small Roman letters p, q, r, possibly with

subscripts or superscripts, the capital Roman letters A, B, C and maybe some others are

reserved for formulas, and capital Greek letters like �, �, � are used for denoting sets of

formulas.

The sets of all propositional variables and all formulas are denoted by Vars and �,

respectively.

De�nition 2.3 The logical connectives : (negation), $ (equivalence) and the proposi-

tional constant > (truth) are de�ned as abbreviations:

(:A) := (A! ?),

(A$ B) := ((A! B) ^ (B ! A)),

> := (? ! ?).
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In bracketing we adopt the usual convention that : bind stronger than any of the

binary connectives, and that ^, _ bind stronger than !, $.

We need the following notion to de�ne Kripke semantics.

De�nition 2.4 A structure hX;�i is a partially ordered set if � is a relation on X

(� � X �X) such that

1. x � x,

2. x � y and y � x) x = y,

3. x � y and y � z ) x � z.
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Chapter 3

Kripke semantics

In this chapter, we introduce Kripke semantics for intuitionistic logic and new Kripke

semantics we propose in this paper, and discuss properties that hold on each Kripke

semantics.

3.1 Kripke semantics for intuitionistic logic

We will �rst give some informal motivation of Kripke semantics for intuitionistic logic.

Think of an idealized mathematician (in this context traditionally called the creative

subject), who extends his knowledge in the course of time. At each moment x he has

a stock of sentences, which he, by some means, has recognized as true. Since at every

moment x the idealized mathematician has various choices for his future activities (he

may even stop altogether), the stages of his activity must be thought of as being partially

ordered, and not necessarily linearly ordered. How will the idealized mathematician inter-

pret the logical connectives? Evidently the interpretation of a composite statement must

depend on the interpretation of its parts, e.g. the idealized mathematician has established

A or (and) B at stage x if he has established A at stage x or (and) B at stage x. The

implication is more cumbersome, since A! B may be known at stage x without A or B

being known. Clearly, the idealized mathematician knows A! B at stage x if he knows

that if at any future stage (including x) A is established, also B is established.

Now we will formalize the above sketched semantics.

De�nition 3.1 hX;�; j=i is an intuitionistic Kripke model if

1. hX;�i is a non-empty partially ordered set,

2. j= is a binary relation on X and Vars such that

x j= p and x � y ) y j= p:

j= can be extended to a binary relation on X and � as follow

not x j= ?,
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x j= A ^ B := x j= A and x j= B,

x j= A _ B := x j= A or x j= B,

x j= A! B := for all y � x, if y j= A then y j= B.

If x j= A does not hold then we write x 6j= A.

It follows from this de�nition that

x j= :A, for all y � x; y 6j= A:

The monotonicity of j= for atoms is carried over to arbitrary formulas.

Lemma 3.2 Let hX;�; j=i be an intuitionistic Kripke model, let x; y 2 X, and let A be

a formula. Then

x j= A and x � y ) y j= A:

Proof. By induction on A.

atomic A: the lemma holds by De�nition 3.1.

A � B^C: let x j= B^C and x � y, then x j= B^C , x j= B and x j= C ) (induction

hypothesis) y j= B and y j= C , y j= B ^ C.

A � B _ C: mimic the conjunction case.

A � B ! C: let x j= B ! C, y � x. Suppose z � y and z j= B then, since z � x,

z j= C. Hence y j= B ! C.

De�nition 3.3 Let hX;�; j=i be an intuitionistic Kripke model, and let A be a formula.

Then we say

� A is true at x 2 X if x j= A,

� A is valid in hX;�; j=i if x j= A for all x 2 X,

� A is intuitionistically Kripke valid (notation: j=
i
A) if A is valid in every intuition-

istic Kripke model.

Example 3.4 6j=
i
::p ! p. To see this, we specify an intuitionistic Kripke model by

indicating the partially ordered structure as a diagram, writing next to each element the

propositional variables which are true at that element

u1 p

u0

Since 1 j= p, we have 1 6j= :p, 0 6j= :p and so 0 j= ::p. We also have 0 6j= p, and hence

0 6j= ::p! p.
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Example 3.5 6j=
i
(p ! q) _ (q ! p). We see this by the following intuitionistic Kripke

model.

u1 p u2 q

@
@
@
@@

�
�
�
��

u0

We have 1 j= p and 1 6j= q, so 0 6j= p ! q. Similarly, 0 6j= q ! p since 2 j= q and 2 6j= p.

Hence 0 6j= (p! q) _ (q ! p).

Lemma 3.6 Let hX;�; j=i be an intuitionistic Kripke model. Then

A! B is valid in hX;�; j=i , for all x 2 X; if x j= A then x j= B:

Proof. ()) By de�nition, for all x 2 X , x j= A ! B i.e. for all x 2 X, for all y � x, if

y j= A then y j= B. So, for all x 2 X, if x j= A then x j= B.

(() For all y � x, if y j= A then by assumption y j= B. This holds for all x 2 X , hence

A! B is valid in hX;�; j=i.

3.2 Kripke semantics for the new logic

Now we will introduce new Kripke semantics we propose, which is di�erent from that for

intuitionistic logic in the following two respects. First, we make no assumption that if a

propositional variable p is true at stage x, then p is true at any future stage (including x).

Furthermore, we modify the interpretation of implication in intuitionistic logic, so that

we can express temporality by comparing how long each formula remains true.

De�nition 3.7 hX;�; j=i is a Kripke model if

1. hX;�i is a non-empty partially ordered set,

2. j= is a binary relation on X and Vars.

j= can be extended to a binary relation on X and � as follow

x 6j= ?,

x j= A ^ B := x j= A and x j= B,

x j= A _ B := x j= A or x j= B,

x j= A! B := for all y � x, if for all z(y � z � x) z j= A then y j= B.
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In the de�nition of x j= A ! B, we can replace y j= B with for all z0(y � z0 �

x) z0 j= B. Indeed, let for all z(y � z � x) z j= A and y � z0 � x. Then for all

z(z0 � z � x) z j= A, so if x j= A! B already holds then z0 j= B.

Hence the de�nition of x j= A! B is equivalent to

for all y � x; if for all z(y � z � x) z j= A then for all z(y � z � x) z j= B:

Thus the informal meaning of A! B is \B holds as long as A holds (in the future)."

Lemma 3.8 Let hX;�; j=i be a Kripke model, let x 2 X , and let A be a formula. Then

x j= :A, x 6j= A:

Proof. ()) By de�nition, for all y � x, if for all z(y � z � x) z j= A then y j= ?. Take x

for y, then if for all z(x � z � x) z j= A then x j= ?. Since hX;�i is a partially ordered

set, this means that if x j= A then x j= ?. By de�nition, x 6j= ?, so we have x 6j= A.

(() Let y � x and for all z(y � z � x) z j= A. Take x for z, then x j= A contrary to

x 6j= A. Thus, for all y � x, if for all z(y � z � x) z j= A then y j= ?. Hence x j= :A.

De�nition 3.9 Let hX;�; j=i be a Kripke model, and let A be a formula. Then we say

� A is true at x if x j= A,

� A is valid in hX;�; j=i if x j= A for all x 2 X,

� A is Kripke valid (notation: j= A) if A is valid in every Kripke model.

Example 3.10 6j= p! (q ! p). We see this by the following Kripke model.

u q1

u0 p q

We have 0 j= q, 1 j= q, but 1 6j= p, and so 0 6j= q ! p. We also have 0 j= p, and hence

0 6j= p! (q ! p).

Example 3.11 6j= (p! r)^ (q ! r)! (p_ q ! r). We see this by the following Kripke

model.

u1 q

u0 p r

Clearly, 0 j= p ! r and 0 j= q ! r, so 0 j= (p ! r) ^ (q ! r). We, however, have

0 6j= p_ q ! r, since 0 j= p_ q, 1 j= p_ q, but 1 6j= r. Therefore 0 6j= (p! r)^ (q ! r)!

(p _ q ! r).
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Lemma 3.12 Let hX;�; j=i be a Kripke model. Then

A! B is valid in hX;�; j=i , for all x 2 X; if x j= A then x j= B:

Proof. ()) By de�nition, for all x 2 X, x j= A ! B i.e. for all y � x, if for all

z(y � z � x) z j= A then y j= B. Take x for y, then if for all z(x � z � x) z j= A then

x j= B. So, if x j= A then x j= B.

(() Let y � x and for all z(y � z � x) z j= A. Take y for z, then y j= A, and so by

assumption y j= B. Thus, for all y � x, if for all z(y � z � x) z j= A then y j= B. This

holds for all x 2 X, and hence A! B is valid in hX;�; j=i.
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Chapter 4

Formal systems

In this chapter, we present Hilbert-type formal systems of intuitionistic logic and the

new logic, and investigate their soundness and completeness for each Kripke semantics

introduced in the previous chapter.

4.1 A formal system of intuitionistic logic

De�nition 4.1 The Hilbert-type system of intuitionistic logic contains the following ax-

iom schemata:

I1. A! (B ! A),

I2. (A! (B ! C))! ((A! B)! (A! C)),

I3. A ^ B ! A,

I4. A ^ B ! B,

I5. A! (B ! A ^ B),

I6. A! A _ B,

I7. B ! A _B,

I8. (A! C)! ((B ! C)! (A _ B ! C)),

I9. ? ! A,

and the following inference rule:

A A! B

B
(modus ponens).

A formula A is said to be derivable in this system (notation: `
i
A) if there is a derivation

of A in this system, i.e., a sequence A1; . . . ; An
of formulas such that A

n
= A and for

every k, 1 � k � n, A
k
is either an axiom schema or obtained from some of the preceding

formulas in the sequence by the inference rule.
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We will give a few examples needed for the Completeness Theorem.

Example 4.2 The following sequence is a derivation of A! A, for any formula A:

1. (A! ((A! A)! A))! ((A! (A! A))! (A! A)) (I2)

2. A! ((A! A)! A) (I1)

3. (A! (A! A))! (A! A) (by modus ponens from 1, 2)

4. A! (A! A) (I1)

5. A! A (by modus ponens from 3, 4)

Example 4.3 Below is a derivation of A ^ (A! B)! B, for any formulas A and B:

1. A ^ (A! B)! (A! B) (I4)

2. A ^ (A! B)! A (I3)

3. (A ^ (A! B)! (A! B))! ((A ^ (A! B)! A)! (A ^ (A! B)! B)) (I2)

4. (A ^ (A! B)! A)! (A ^ (A! B)! B) (by modus ponens from 1, 3)

5. A ^ (A! B)! B (by modus ponens from 2, 4)

Example 4.4 The following sequence shows that ` A^B ! C implies ` A! (B ! C),

for any formulas A, B and C:

1. A ^ B ! C

2. (B ! (A ^ B ! C))! ((B ! A ^B)! (B ! C)) (I2)

3. (A ^ B ! C)! (B ! (A ^ B ! C)) (I1)

4. B ! (A ^ B ! C) (by modus ponens from 1, 3)

5. ((B ! (A ^ B ! C))! ((B ! A ^B)! (B ! C)))!

(A! ((B ! (A ^ B ! C))! ((B ! A ^ B)! (B ! C)))) (I1)

6. A! ((B ! (A ^ B ! C))! ((B ! A ^B)! (B ! C)))

(by modus ponens from 2, 5)

7. (B ! (A ^ B ! C))! (A! (B ! (A ^B ! C))) (I1)

8. A! (B ! (A ^ B ! C)) (by modus ponens from 4, 7)

9. (A! ((B ! (A ^ B ! C))! ((B ! A ^B)! (B ! C))))!

((A! (B ! (A ^ B ! C)))! (A! ((B ! A ^ B)! (B ! C)))) (I2)
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10. (A! (B ! (A ^ B ! C)))! (A! ((B ! A ^ B)! (B ! C)))

(by modus ponens from 6, 9)

11. A! ((B ! A ^ B)! (B ! C)) (by modus ponens from 8, 10)

12. A! (B ! A ^ B) (I5)

13. (A! ((B ! A ^ B)! (B ! C)))!

((A! (B ! A ^ B))! (A! (B ! C))) (I2)

14. (A! (B ! A ^ B))! (A! (B ! C)) (by modus ponens from 11, 13)

15. A! (B ! C) (by modus ponens from 12, 14)

Example 4.5 The following sequence shows that ` A! B _C and ` A^C ! B imply

` A! B, for any formulas A, B and C:

1. A! B _ C

2. A ^ C ! B

3. A! (C ! B) (by Example 4.4 from 2)

4. B ! B (by Example 4.2)

5. (B ! B)! ((C ! B)! (B _ C ! B)) (I8)

6. (C ! B)! (B _ C ! B) (by modus ponens from 4, 5)

7. ((C ! B)! (B _ C ! B))! (A! ((C ! B)! (B _ C ! B))) (I1)

8. A! ((C ! B)! (B _ C ! B)) (by modus ponens from 6, 7)

9. (A! ((C ! B)! (B _ C ! B)))!

((A! (C ! B))! (A! (B _ C ! B))) (I2)

10. (A! (C ! B))! (A! (B _ C ! B)) (by modus ponens from 8, 9)

11. A! (B _ C ! B) (by modus ponens from 3, 10)

12. (A! (B _ C ! B))! ((A! B _ C)! (A! B)) (I2)

13. (A! B _ C)! (A! B) (by modus ponens from 11, 12)

14. A! B (by modus ponens from 1, 13)

Theorem 4.6 (Soundness)

`
i
A) j=

i
A:

Proof. By induction on `
i
A.

Base case: We verify that all axiom schemata are intuitionistically Kripke valid. By

Lemma 3.6 if for every intuitionistic Kripke model hX;�; j=i and every x 2 X, x j= A

implies x j= B, then j=
i
A! B.
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I1. Let hX;�; j=i be an intuitionistic Kripke model, and let x 2 X. Suppose x j= A,

then by Lemma 3.2 for all y � x, y j= A, and so x j= B ! A. Therefore j=
i
A !

(B ! A).

I2. Let hX;�; j=i be an intuitionistic Kripke model, and let x 2 X. Suppose x j= A!

(B ! C), y � x and y j= A ! B. Then if z � y and z j= A then z j= C since

z j= B ! C and z j= B. So y j= A ! C, and hence x j= (A ! B) ! (A ! C).

Therefore j=
i
(A! (B ! C))! ((A! B)! (A! C)).

I3. Let hX;�; j=i be an intuitionistic Kripke model, and let x 2 X. Then x j= A^B )

x j= A and x j= B ) x j= A. Therefore j=
i
A ^ B ! A.

I4. Let hX;�; j=i be an intuitionistic Kripke model, and let x 2 X. Then x j= A^B )

x j= A and x j= B ) x j= B. Therefore j=
i
A ^ B ! B.

I5. Let hX;�; j=i be an intuitionistic Kripke model, and let x 2 X. Suppose x j= A,

then by Lemma 3.2 for all y � x, if y j= B then y j= A^B, and so x j= B ! A^B.

Therefore j=
i
A! (B ! A ^ B).

I6. Let hX;�; j=i be an intuitionistic Kripke model, and let x 2 X . Then x j= A )

x j= A or x j= B ) x j= A _ B. Therefore j=
i
A! A _B.

I7. Let hX;�; j=i be an intuitionistic Kripke model, and let x 2 X. Then x j= B )

x j= A or x j= B ) x j= A _ B. Therefore j=i B ! A _ B.

I8. Let hX;�; j=i be an intuitionistic Kripke model, and let x 2 X. Suppose x j= A!

C, y � x and y j= B ! C. Then if z � y and z j= A _ B i.e. z j= A or z j= B then

z j= C since x j= A ! C and y j= B ! C. So y j= A _ B ! C, and hence x j=

(B ! C)! (A _ B ! C). Therefore j=
i
(A! C)! ((B ! C)! (A _ B ! C)).

I9. Let hX;�; j=i be an intuitionistic Kripke model, and let x 2 X. Then x 6j= ?, and

so x j= ? ) x j= A. Therefore j=
i
? ! A.

Induction step: We show that the inference rule preserves the validity. Suppose that j=
i
A

and j=
i
A ! B. Then for every intuitionistic Kripke model hX;�; j=i and every x 2 X,

x j= A and x j= A! B, and so x j= B. Therefore j=
i
B.

For the Completeness Theorem we need some notions and a few lemmas.

De�nition 4.7 Let �, � be sets of formulas. The pair (�;�) is consistent if for any

�nite subset fA1; . . . ; Am
g of � and fB1; . . . ; Bn

g of �,

6` A1 ^ . . . ^ A
m
! B1 _ . . . _ B

n
:

Here the conjunction of the empty set of formulas is > and the disjunction ?. (�;�) is

maximal consistent if (�;�) is consistent and � [� = �.
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Lemma 4.8 Let �0, �0 be sets of formulas such that (�0;�0) is consistent. Then there

exists a maximal consistent pair (�;�) such that �0 � � and �0 � �.

Proof. Let C1; C2; . . . be an enumeration of all formulas. De�ne a sequence of pairs

t0 = (�0;�0); t1 = (�1;�1); . . . by taking

t
i+1 :=

(
(�i;�i [ fCi+1g) if (�i;�i [ fCi+1g) is consistent

(�
i
[ fC

i+1g;�i
) otherwise:

Let � :=
S
f�

i
j i < !g, � :=

S
f�

i
j i < !g. Notice that � [ � = �. Let us show

that t
i+1 is consistent whenever ti is consistent. Indeed, otherwise we could �nd formulas

A1; . . . ; Am
2 �

i
and B1; . . . ; Bn

2 �
i
such that

` A1 ^ . . . ^ A
m
! B1 _ . . . _ B

n
_ C

i+1;

` A1 ^ . . . ^ A
m
^ C

i+1 ! B1 _ . . . _B
n
:

But then, by Example 4.5,

` A1 ^ . . . ^ A
m
! B1 _ . . . _ B

n
;

contrary to the consistency of t
i
. Therefore (�;�) is consistent.

Lemma 4.9 Let �, � be sets of formulas such that (�;�� �) and (�;���) are both

maximal consistent. Then

1. A ^ B 2 �, A 2 � and B 2 �.

2. A _ B 2 �, A 2 � or B 2 �.

3. A! B 2 �, if � � � and A 2 � then B 2 �.

Proof.

1. ()) Suppose that A ^ B 2 � and A =2 �. However by I3, `
i
A ^ B ! A, which

is a contradiction, since (�;� � �) is consistent. Hence A ^ B 2 � ) A 2 �.

A ^ B 2 � ) B 2 � is checked analogously with the help of I4. Therefore

A ^ B 2 �) A 2 � and B 2 �.

(() Suppose that A 2 � and B 2 � and A ^ B =2 �. However by Example 4.2,

`
i
A ^ B ! A ^ B, which is a contradiction, since (�;� � �) is consistent.

Hence A 2 � and B 2 �) A ^ B 2 �.

2. ()) Suppose that A _ B 2 � and A =2 � and B =2 �. However by Example 4.2,

`
i
A _ B ! A _ B, which is a contradiction, since (�;� � �) is consistent.

Hence A _ B 2 �) A 2 � or B 2 �.

(() Suppose that A 2 � and A _ B =2 �. However by I6, `
i
A ! A _ B, which

is a contradiction, since (�;� � �) is consistent. Hence A 2 � ) A _ B 2 �.

B 2 � ) A _ B 2 � is checked analogously with the help of I7. Therefore

A 2 � or B 2 �) A _ B 2 �.

15



3. ()) Suppose that A ! B 2 �, � � �, A 2 � and B =2 �. Then A ! B 2 �,

A 2 � and B =2 �. However by Example 4.3, `
i
A ^ (A ! B) ! B, which is

a contradiction, since (�;���) is consistent. Hence A! B 2 �) if � � �

and A 2 � then B 2 �.

(() Suppose that A! B =2 �. Then (�[fAg; fBg) is consistent, for otherwise we

would have formulas A1; . . . ; An
2 � such that ` A1 ^ . . . ^ A

n
^ A ! B and

so, by Example 4.4, ` A1 ^ . . . ^ A
n
! (A ! B), contrary to the consistency

of (�;�� �). Therefore, by Lemma 4.8, (� [ fAg; fBg) can be extended to a

maximal consistent pair (�;���) such that � � �, A 2 � and B =2 �.

De�nition 4.10 hX�;�; j=�i is the canonical model if

1. X� = f�(� �) j (�;�� �) is maximal consistentg,

2. j=� is the binary relation on X� and Vars such that � j=� p if and only if p 2 �.

Lemma 4.11 Let hX�;�; j=�i be the canonical model, let � 2 X�, and letA be a formula.

Then

� j=� A, A 2 �:

Proof. By induction on A, using Lemma 4.9.

Theorem 4.12 (Completeness)

j=
i
A) `

i
A:

Proof. Suppose 6`
i
A. Then (;; fAg) is consistent, hence by Lemma 4.8 there is a maximal

consistent pair (�;���) such that A =2 �. By Lemma 4.11 A is not valid in the canonical

model. Therefore 6j=
i
A.

4.2 A formal system of the new logic

De�nition 4.13 The Hilbert-type system of the new logic contains the following axiom

schemata:

A1. A! A,

A2. (A! B) ^ (B ! C)! (A! C),

A3. A ^ B ! A,

A4. A ^ B ! B,

A5. (A! B) ^ (A! C)! (A! B ^ C),

A6. A! A _ B,

A7. B ! A _ B,
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A8. A ^ (B _ C)! (A ^ B) _ (A ^ C),

A9. ? ! A,

A10. A ^ (A! B)! B,

A11. ::A! A,

and the following inference rules:

A A! B

B
(modus ponens),

A

B ! A
(a fortiori),

A B

A ^ B
(adjunction),

A! C B ! C

A _ B ! C
(_-elimination).

A formula A is said to be derivable in this system (notation: ` A) if there is a derivation

of A in this system.

Theorem 4.14 (Soundness)

` A) j= A:

Proof. By induction on ` A.

Base case: We verify that all axiom schemata are Kripke valid. By Lemma 3.12 if for

every Kripke model hX;�; j=i and every x 2 X, x j= A implies x j= B, then j= A! B.

A1. For every Kripke model hX;�; j=i and every x 2 X, x j= A implies x j= A. Therefore

j= A! A.

A2. Let hX;�; j=i be a Kripke model, and let x 2 X . Suppose x j= (A! B)^ (B ! C)

i.e. x j= A! B and x j= B ! C. Then

for all y � x; if for all z(y � z � x) z j= A then for all z(y � z � x) z j= B;

and

for all y � x; if for all z(y � z � x) z j= B then for all z(y � z � x) z j= C:

So,

for all y � x; if for all z(y � z � x) z j= A then for all z(y � z � x) z j= C;

and hence x j= A! C. Therefore j= (A! B) ^ (B ! C)! (A! C).
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A3. Let hX;�; j=i be a Kripke model, and let x 2 X. Then x j= A ^ B ) x j= A and

x j= B ) x j= A. Therefore j= A ^ B ! A.

A4. Let hX;�; j=i be a Kripke model, and let x 2 X. Then x j= A ^ B ) x j= A and

x j= B ) x j= B. Therefore j= A ^B ! B.

A5. Let hX;�; j=i be a Kripke model, and let x 2 X. Suppose x j= (A! B)^ (A! C)

i.e. x j= A ! B and x j= A ! C. Then for all y � x, if for all z(y � z � x) z j= A

then y j= B and y j= C. Hence x j= A ! B ^ C. Therefore j= (A ! B) ^ (A !

C)! (A! B ^ C).

A6. Let hX;�; j=i be a Kripke model, and let x 2 X. Then x j= A ) x j= A or

x j= B ) x j= A _ B. Therefore j= A! A _ B.

A7. Let hX;�; j=i be a Kripke model, and let x 2 X. Then x j= B ) x j= A or

x j= B ) x j= A _ B. Therefore j= B ! A _ B.

A8. Let hX;�; j=i be a Kripke model, and let x 2 X. Then x j= A ^ (B _ C)) x j= A

and (x j= B or x j= C) ) (x j= A and x j= B) or (x j= A and x j= C) ) x j=

(A ^ B) _ (A ^ C). Therefore j= A ^ (B _ C)! (A ^ B) _ (A ^ C).

A9. Let hX;�; j=i be a Kripke model, and let x 2 X . Then x 6j= ?, and so x j= ? )

x j= A. Therefore j= ? ! A.

A10. Let hX;�; j=i be a Kripke model, and let x 2 X. Then x j= A^ (A! B)) x j= A

and x j= A! B ) x j= B. Therefore j= A ^ (A! B)! B.

A11. Let hX;�; j=i be a Kripke model, and let x 2 X . Then by Lemma 3.8 x j= ::A,

x 6j= :A, x j= A. Therefore j= ::A! A.

Induction step: We show that the inference rules preserve the validity.

(modus ponens) Suppose that j= A and j= A ! B. Then for every Kripke model

hX;�; j=i and every x 2 X, x j= A and x j= A ! B, and so x j= B. Therefore

j= B.

(a fortiori) Suppose that j= A. Then for every Kripke model hX;�; j=i and every

x 2 X , x j= A. By Lemma 3.12 we have j= B ! A.

(adjunction) Suppose that j= A and j= B. Then for every Kripke model hX;�; j=i

and every x 2 X, x j= A and x j= B, and so x j= A ^ B. Therefore j= A ^B.

(_-elimination) Suppose that j= A ! C and j= B ! C. Then by Lemma 3.12 for

every Kripke model hX;�; j=i and every x 2 X , x j= A implies x j= C and x j= B

implies x j= C, and so x j= A _ B implies x j= C. Therefore j= A _ B ! C.

To see a problem on completeness, we will consider the following example.
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Example 4.15 6j= (p ! q) ^ (q ! p) ! (p _ q ! q). Let hQ;�; j=i be a Kripke model,

where Q is the set of rational numbers, � is the ordinary order on Q, and p, q are true

at 0, p is true at 1=10n(n = 0; 1; . . .), and q is true at all the other elements in Q.

u1 p

q

u0.1 p
ppp
u

0 p q

Clearly, x j= p _ q for all x 2 Q. We have 0 j= p ! q, since for all x > 0, there

exists a y(x � y � 0) such that y 6j= p. Similarly, we also have 0 j= q ! p, and so

0 j= (p ! q) ^ (q ! p). We, however, have 0 6j= p _ q ! q since 1 6j= q. Therefore

0 6j= (p! q) ^ (q ! p)! (p _ q ! q).

A Kripke model in which (p! q)^(q ! p)! (p_q ! q) is not valid requires in�nitely

many elements at which p is true and q is not true as the example above. This implies that

one set of formulas have to be recognized as di�erent elements in the canonical model, so

we cannot construct the canonical model in the same way as that in intuitionistic logic.
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Chapter 5

An embedding of intuitionistic logic

In this chapter, we will consider some connections between intuitionistic logic and the new

logic. As we see in the preceding chapters, neither of them contains the other in Kripke

validity. We can, however, try to embed intuitionistic logic into the new logic in the sense

that there is a translation Tr such that for every formula A, A is intuitionistically Kripke

valid if and only if Tr(A) is Kripke valid in the new logic. The following is one of such

translations, and makes it possible to interpret logical connectives in intuitionistic logic

in terms of those in the new logic.

Theorem 5.1 Let Tr be a mapping from � to � de�ned as follow

Tr(p) := > ! p, for all p 2Vars,

Tr(?) := ?,

Tr(A ^ B) := Tr(A) ^ Tr(B),

Tr(A _ B) := Tr(A) _ Tr(B),

Tr(A! B) := > ! (:Tr(A) _ Tr(B)).

Then for every formula A,

j=
i
A, j= Tr(A):

Proof. ()) Suppose 6j= Tr(A). Then there is a Kripke model hX;�; j=i in which Tr(A)

is not valid. Let j=0 be a relation on X and Vars such that

x j=0 p i� x j= > ! p:

Then hX;�; j=0i is an intuitionistic Kripke model, since

x j=0 p and x � y ) x j= > ! p and x � y

) for all z � x; z j= p and x � y

) for all z � y; z j= p

) y j= > ! p

) y j=0 p:
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We show that for every x 2 X and every formula B,

x j=0 B , x j= Tr(B)

by induction on B.

If B is an atomic formula then it is clear.

If B � C ^D then

x j=0 B , x j=0 C and x j=0 D

, x j= Tr(C) and x j= Tr(D) (by induction hypothesis)

, x j= Tr(B):

The case B � C _D is considered in the same way.

If B � C ! D then

x j=0 B , for all y � x; y 6j=0 C or y j=0 D

, for all y � x; y 6j= Tr(C) or y j= Tr(D) (by induction hypothesis)

, for all y � x; y j= :Tr(C) or y j= Tr(D) (by Lemma 3.8)

, for all y � x; y j= :Tr(C) _ Tr(D)

, x j= Tr(B):

Thus for every x 2 X and every formula B, x j=0 B , x j= Tr(B). Now we have

x 6j= Tr(A) for some x 2 X and so x 6j=0 A for some x 2 X. Hence A is not valid in

hX;�; j=0i and therefore 6j=
i
A.

(() Suppose 6j=
i
A. Then there is an intuitionistic Kripke model hX;�; j=i in which A is

not valid. Let j=00 be a relation on X and Vars such that

x j=00 p i� x j= p:

Then hX;�; j=00i can be treated as a Kripke model. We show that for every x 2 X and

every formula B,

x j= B , x j=00 Tr(B)

by induction on B.

For every propositional variable p, we have

x j= p , for all y � x; y j= p

, for all y � x; y j=00 p

, x j=00 > ! p

, x j=00 Tr(p):

The case B � ? is clear.

If B � C ^D then

x j= B , x j= C and x j= D

, x j=00 Tr(C) and x j=00 Tr(D) (by induction hypothesis)

, x j=00 Tr(B):
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The case B � C _D is considered in the same way.

If B � C ! D then

x j= B , for all y � x; y 6j= C or y j= D

, for all y � x; y 6j=00 Tr(C) or y j=00 Tr(D) (by induction hypothesis)

, for all y � x; y j=00 :Tr(C) or y j=00 Tr(D) (by Lemma 3.8)

, for all y � x; y j=00 :Tr(C) _ Tr(D)

, x j=00 Tr(B):

Thus for every x 2 X and every formula B, x j= B , x j=00 Tr(B). Now we have

x 6j= A for some x 2 X and so x 6j=00 Tr(A) for some x 2 X. Hence Tr(A) is not valid in

hX;�; j=00i and therefore 6j= Tr(A).
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Chapter 6

Concluding remarks

In this paper, we proposed new Kripke semantics in which implication is interpreted to

express temporality, and provided a formal system which is sound for the semantics, while

completeness remains a problem.

We also showed that intuitionistic logic can be embedded into the logic corresponding

to the new semantics. Thus, in that logic it is certainly possible to express further details

than in intuitionistic logic.
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