
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
POND: A Novel Protocol for Network Coding based

on Hybrid Cryptographic Scheme

Author(s)
Huang, Cheng-Qiang; Miyaji, Atsuko; Li, Long-Hai;

Xu, Shang-Mei

Citation
2014 IEEE International Conference on Computer

and Information Technology (CIT): 373-380

Issue Date 2014-09

Type Conference Paper

Text version author

URL http://hdl.handle.net/10119/12370

Rights

This is the author's version of the work.

Copyright (C) 2014 IEEE. 2014 IEEE International

Conference on Computer and Information Technology

(CIT), 2014, 373-380. Personal use of this

material is permitted. Permission from IEEE must

be obtained for all other uses, in any current or

future media, including reprinting/republishing

this material for advertising or promotional

purposes, creating new collective works, for

resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work

in other works.

Description

POND: A Novel Protocol for Network Coding
based on Hybrid Cryptographic Scheme

Cheng-Qiang Huang∗†, Atsuko Miyaji†, Long-Hai Li∗, and Shang-Mei Xu∗
∗School of Computer Science and Technology, Xidian University

†School of Information Science, Japan Advanced Institute of Science and Technology
cq.huang@stu.xidian.edu.cn miyaji@jaist.ac.jp lhli@xidian.edu.cn xsm@stu.xidian.edu.cn

Abstract—Network coding has been shown to have a lot
of positive effects on networks. However, its mixing nature
contributes to its vulnerability to pollution attacks. Two kinds
of schemes, homomorphic MAC based schemes and homomor-
phic signature based schemes, have been proposed to achieve
secure random linear network coding. In this paper, we present
POND, a novel protocol using RIPPLE transmission protocol
and homomorphic signature in the areas near and far from the
source respectively. POND theoretically achieves better overall
communication efficiency. And by utilizing neoteric symmetric
key distribution method, it is immune to key related attacks.
To the best of our knowledge, our work is the first solution
which uses different authentication schemes in different parts of
a network for network coding.

Keywords-Network Coding, Homomorphic MAC, Homomor-
phic Signature, Hybrid Scheme

I. INTRODUCTION

Network coding, in recent years, has shown its great ability
in maximizing the throughput of networks. By combining
packets together, random linear network coding allows a router
to enhance its performance as well as security. However, due
to the combining nature of random linear network coding, it is
inevitably vulnerable to pollution attacks, in which a malicious
node tries to inject corrupted packets into or modify existing
packets in the network. Pollution attacks, as we know, can
cause significant effects on the performance of the network.
In some specific cases, a single polluted packet can end up
corrupting all the information reaching a destination. Hence,
network coding schemes should utilize some strategies [3]
- [7], such as source authentication , to deal with pollution
attacks.

Previous researches, which focus on solving the pollution
attack problem by in-network packet authentication, fall into
two main categories: public key based schemes and symmetric
key based schemes. Actually, various public key signature
schemes [12] [13] have been proposed so far. However, they
are quite slow when networks require fast processing of pack-
ets. On the other hand, symmetric key MAC based schemes
are popular as well because of their good computation perfor-
mance. Nevertheless, MAC based schemes always encounter
key distribution problems. How to distribute the symmetric
key for verifying MACs becomes a critical problem, because
it greatly influences the performance of the whole network.
Meanwhile, some MAC based schemes, such as [10], are
deemed not secure enough when they utilize subspace key

distribution method. That is, they are only c-collusion resistant,
where the c is pre-determined by the choice of key space and
distribution method. Moreover, these schemes may also be
vulnerable to tag pollution attack in which a MAC is tampered
by an attacker and found far down the stream.

In this paper, we propose POND which is based on homo-
morphic MAC and homomorphic signature, two cryptographic
primitives in in-network schemes for network coding. We try
to take both the advantages of homomorphic MAC based
and homomorphic signature based schemes. As a result, our
scheme, similar to RIPPLE [1], provides arbitrarily collusion
and tag pollution resistance. What’s more, POND enables (a)
RIPPLE replay attack resistance; and (b) better overall
efficiency.

By proposing POND, we make three main contribution in
this paper. Firstly, we theoretically compare RIPPLE and basic
homomorphic signature scheme, showing that the performance
of these schemes, to a large extend, relates to network condi-
tions. Secondly, we show that RIPPLE, under some specific
condition, is not applicable if pipeline strategy is utilized.
Thirdly, to the best of our knowledge, our protocol, POND,
is the first protocol which leverages different authentication
schemes in different parts of network for network coding.
And by properly choosing parameters, POND can be used in
different kinds of networks to achieve better overall efficiency.

A. Organization of the paper

In next section, we give our system setting of network cod-
ing and threat model. In section 3, we discuss the basic ideas
of our protocol. The chosen homomorphic MAC scheme and
homomorphic signature scheme in our protocol are presented
afterwards. The details of POND, our new hybrid design of
network coding system, will be presented in section 5. In
section 6, we will discuss why better overall efficiency is
possible and how to chose adequate parameters in POND.
Section 7 lists our security analysis and efficiency analysis.
We conclude in section 8 at last.

II. PROBLEM STATEMENT

A. System Setting

Our network model is a directed acyclic graph denoted as
G = (V,E). In the network, a source S needs to multicast
a stream of packets through intermediate nodes to multiple

receivers. All intermediate nodes and receivers v ∈ V − {S}
perform random linear network coding.

We consider random linear network coding based on gener-
ations in this paper. Following the treatment in [1], we focus
on the coding and transmission of a single generation which
normally contains m messages. Formally, a message M ∈ Fnq
is a vector of n numbers from finite field Fq . All arithmetic
operations are done over Fq hereafter. Note that only messages
in the same generation can be operated together. Messages
from different generations are treated separately.

Actually, to help receivers decode the messages, each orig-
inal message Morigin

i is expanded as:

Mi = (Morigin
i ,

m︷ ︸︸ ︷
0, 0, · · · , 0, 1︸ ︷︷ ︸

i

, 0, · · · , 0) ∈ Fn+m
q . (1)

Here, i denotes the index of message in the whole generation.
The source in the network starts to multicast messages by

sending them to its neighbors. Messages are received, random
linearly combined, and then transmitted from one node to its
children. More precisely, for a node v ∈ V − {S} which gets
w messages of a same generation, it combines the messages
random linearly with chosen coefficient ci ∈ Fq:

M =

w∑
i

ciMi. (2)

Thus, the expanded part of a message carries the coefficients
of random linear combination. Any node who receives the
message with a full ranked extended part can recover the
original messages of a whole generation successfully.

In the following parts of this paper, we call a message
packet when it is expanded again by signature scheme or MAC
scheme. And to measure the whole efficiency of any scheme,
we consider the situation of transferring N generations of
packets using pipeline strategy. This is because pipeline strat-
egy has been shown that it can help the network to achieve
optimal multicast throughput.

B. Threat Model

In POND, the adversaries we considered can only perform
polynomial-time algorithms. However, they can control arbi-
trary numbers of nodes in the network and observe, modify,
or even change the packets in the network. More precisely,
the malicious behaviors the adversaries may attempt to do
includes injecting corrupted packets into the network, or just
simply modifying existing packets in the network. Moreover,
we assume that sources in the network is trusted and an
adversary does not have access to the key materials hold by
sources. In our setting, an adversary is more prone to fake
packets and deceive the other nodes to pass the corrupted
packets for it so as to corrupt the information flow. In other
words, the adversary may not want to totally block out the
network. As it is clear that, if the adversaries can control
an arbitrary subset of nodes in the network, blocking out the
network would be no hardness.

III. DESIGN GOALS AND BASIC IDEAS

A. Design Goals

Under our settings, the goal of our protocol, i.e. POND, are
as follows:
• In-network source authentication. The source and integri-

ty of data can be verified by any node in the network.
• Arbitrary collusion resistant. No matter how many adver-

saries are there in the network, the authenticity of data
can still be verified by honest nodes.

• Replay attack resistance. Any adversary can not use
previous keys and corresponding packets to fool the nodes
who have received the packets before.

• High system efficiency. The materials used for authentica-
tion in data are limited, thus causing little communication
overhead even when the network is large. And the authen-
tication of data requires adequate computing resources,
efficiently helping forward the data to its destination.
Hence, the whole system performs in an efficient manner.

B. Basic Ideas

Normally, arbitrary collision resistant network coding
schemes, which are based on homomorphic MAC, need to
separate the time for sending packets and the keys for au-
thenticating the corresponding packets. A good example is
RIPPLE [1]. In RIPPLE, to flush data from one level to the
next level, corresponding key materials should be flushed as
well to drive data forward. However, the key disclosure delay
greatly reduces the communicate efficiency when the delay
time is longer than the processing time of using homomorphic
signature. Our idea comes when we try to utilize homomorphic
signature instead of homomorphic MAC in some specific areas
of a network. That is, when a network is big enough, we
may want to use homomorphic MAC in the area near sender.
But, instead of using homomorphic MAC, we may want
to chose homomorphic signature as the scheme to perform
network coding in the areas which are far from the sender.
By leveraging better schemes in specific areas, we could
probably achieve pretty good overall efficiency for a specific
network. Through properly choosing different schemes, we can
successfully pick diverse properties for a network.

POND, thus, utilizes the forementioned ideas and contains
three main components: homomorphic MAC, homomorphic
signature, and POND transmission protocol. The homomor-
phic MAC is the same as the one in RIPPLE [1] for now,
because we want the property of arbitrary collision resistance
without centralized authority. We will recall the details in
section IV. The homomorphic signature is alterable as well. In
this paper, we use the homomorphic signature scheme similar
to that in [2] for explanation because of its simplicity.

IV. REVIEW

Specifically, in POND, two kinds of schemes are used
in different zones of network to achieve better efficiency.
We briefly describe the two schemes in this part and omit
them when the details of POND transmission protocol are
elaborated.

A. RIPPLE Homomorphic MAC

Firstly, POND currently inherits the homomorphic MAC
scheme from RIPPLE. More specifically, for a message M ∈
Fn+m
q the scheme works as follows.
• Generate: Sample a sequence K = (K1,K2, · · · ,KL),

where Kj R← Fn+m+L−j
q , L is the max level of the whole

network, and j ∈ [1, L].
• MAC: Given a message M ∈ Fn+m

q and the keys K,
compute L tags:

tL = < M,KL >
tL−1 = < (M, tL),KL−1 >
...
t1 = < (M, tL, tL−1, · · · , t2),K1 > .

(3)

Hence the final output is a packet which is formally
defined as: P ∆

= (M, tL, tL−1, · · · , t1) ∈ Fn+m+L
q .

• Verify: Given P , check whether the following equation
holds: tj =< (M, tL, tL−1, · · · , tj+1),Kj >.

• Combine: Given input (Mi, t
L
i , t

L−1
i , · · · , tli, ci)wi=1 with

w ≤ m, compute a tag t = (tL, tL−1, · · · , tl), where
j ∈ [l, L] and tj =

∑w
i=1 cit

j
i , for M =

∑w
i=1 ciMi.

B. Homomorphic Signature

Secondly, POND currently uses the basic homomorphic
signature scheme similar to that in [2]. It works as follows.
• Setup: Find a multiple cyclic group G of order q and

one of its generator g. Then sample the secret key like
α = (α1, α2, · · · , αm+n+1)

R← Fm+n
q F∗q . Compute the

public key β = gα
∆
= (gα1 , gα2 , · · · , gαm+n , gαm+n+1).

• Sign: Given message M = (x1, · · · , xn+m) and secret
key α, compute signature as: σ = −(

∑n+m
i=1 xiαi)/αi+1.

Hence, the output packet is like P ∆
= (M,σ) ∈ Fn+m+1

q .
• Verify: Given packet P = (x1, x2, · · · , xn+m, σ) and

public key β = (β1, β2, · · · , βn+m+1), check whether
the following equation holds:

∏n+m
i=1 βxi

i · βσn+m+1 = 1.
• Combine: Given (Mi, σi, ci)

w
i=1 with w ≤ m, compute

signature σ =
∑w
i=1 ciσi for M =

∑w
i=1 ciMi.

Note that, although we describe these two schemes separate-
ly, they are both utilized by POND in a nested manner. That
is, POND produces signature for a message in the first place
and then conducts MACs to authenticate the message and its
signature. After successfully signed and MAC generated, an
original message M ∈ Fn+m

q should be turned into a packet

P
∆
= (M,σ, tL, tL−1, · · · , t1) ∈ Fn+m+1+L

q .

V. POND TRANSMISSION PROTOCOL

In POND, a source S hierarchically organizes the network
by assigning nodes with different levels according to the
distance of nodes. The distance of a node is measured by
the maximum hop count from the source to the node. Hence
a node is further called in level-j if it takes at most j hops
from the source to the node. And, actually in our protocol,
the maximum level S cares about is Lmax. Thus, the whole
network is organized as two different zones: a layered zone

Fig. 1. Network Overview of POND

with Lmax levels and a free zone outside level-Lmax. To help
comprehend the notions, Fig.1 illustrates the basic skeleton
of a network in the view of a sender. As you may find out,
we name our protocol POND just because of the structure
of the layered network with a boundary, and we currently
use RIPPLE unchanged inside the boundary. Homomorphic
signature is utilized outside the boundary.

Besides organizing the network, the source S also divides
time into uniform intervals just like the way RIPPLE did. S
could send zero or multiple packets in a single interval. We
also note different intervals with the index of them among all
the intervals in a session. Thus, in a specific session, interval-i
would be the ith interval. We further assume that some basic
knowledge about the network, such as the average transmission
time between two contiguous hops Ttrans, are well known. In
fact, to obtain the tight estimation of the time consumption
of sending data in the network, it is needed that the interval
length δ is equal to average transmission time Ttrans.

We now firstly describe POND in a high level and then
elaborate the details in the next several sub-sections. For ease
of understanding, we will simply use some parameters without
detailed elaboration and leave the details about how to choose
them in next section.

To begin with, a source S chooses adequate parameters to
setup its multicast session. After setting up the network, S
broadcasts a batch of packets in each interval of a session.
Packets are driven by delayed keys till they reach level bound
Lmax. After that, packets are transmitted regardless of the
delayed keys. More precisely, assume that S sends a batch of
packets in interval-k. Each packet contains a real message m,
a signature σ of m, and Lmax MACs ti (1 ≤ i ≤ Lmax).
The signature σ can be verified by any node which has
the announced public key of S. The MACs ti are used by
nodes in level-i to authenticate the packet. S will disclose
the seed of the symmetric key for authenticating packets
sent in interval-k and arrive at level-i after a fixed amount
of time. Upon receiving the seed, level-i nodes generate

the corresponding key for MAC ti, verify its correctness,
and encode the authenticated packets to forward. Encoding
packets utilizes the homomorphic nature of homomorphic
MAC and homomorphic signature. Thus the properly encoded
packets are valid packets. Hence, packets are buffered, verified,
encoded, and forwarded level by level till the level bound
level-Lmax. After that, packets peel off all the MACs and are
authenticated only by signatures. Eventually, all the packets
will reach their destination, even though some destinations are
reached before level-Lmax, some are after.

A. Sender Setup

Now we describe the first stage of POND transmission
protocol. Recall that time in a session (multicast transmission
of a file) is divided into uniform intervals. Same notions as
that in RIPPLE are used here: T0 is the starting time of a
session, Ti is the starting time of interval-i in the session, and
δ is the interval length. Hence we have the following equation
holds:

Ti = T0 + i · δ, 1 ≤ i ≤ N. (4)

N denotes the maximum number of intervals in a session.
In addition, in the setup stage, S decides the proper interval
length δ, the maximum network level Lmax, key disclosure
delay d, and a seed chain as well as a public key pair (sk, pk).
Also, we use W to denote the maximum number of packets
sent in an interval. We now describe them into details.

1) Interval Length δ: As we have mentioned, to have a
tight estimation of our protocol, currently the interval length
δ is set as the average transmission time Ttrans between two
contiguous hops. Note that in our network, we assume that the
transmission time between two adjacent routers are nearly the
same and it is well known. Hence, we have:

δ = Ttrans. (5)

2) Maximum Network Level Lmax: In our protocol, S will
set an adeqaute1 maximum network level Lmax. We actually
inherit the definition about level in RIPPLE which need to
be measured by running Dijistra’s algorithm or other existing
shortest path algorithms in the network, and redefine the level
of node v with Lmax:

Lv
∆
=

{
Lv(v) if Lv(v) ≤ Lmax,
none if Lv(v) > Lmax.

(6)

Here, for node v ∈ V −{S}, Lv(v) denotes the longest path,
i.e. maximum hop count, from S to v. For example, in Fig. 1,
the network is divided into two zones, red zone and green
zone, based on the boundary, i.e. level max. In red zone,
nodes do not have exact levels. While in green zone, nodes
are assigned levels based on their distance from the source.
And this distance is measured by hop count.

1We will discuss how to chose Lmax in section VI.

3) Symmetric Seed Disclosure Delay d: Symmetric seed
disclosure delay is set as follows:

d = d
(
LmaxTtrans + Tp

)
/δe+ 1. (7)

Here, Tp denotes the maximum processing time of packets in
a single node using homomorphic MAC scheme like RIPPLE.
The processing details may include authenticating all the W
packets sent in an interval and encoding authenticated ones.
Hence, for packets sent in interval-i, S delays the symmetric
seed for level-j nodes until interval i+ d · j. This is because
we are sure that by the interval i+ d · j, nodes in level j have
received the interval-i packets. Note that j ≤ Lmax, and for
level none, we do not have seeds for them.

4) One-way Seed Chain: In POND, we use a one-way
seed chain to generate symmetric keys used for authenticating
MACs of messages. For each interval in a multicast session,
we assign a seed to that interval. Thus, there are N seeds
in total. These seeds are a sequence of random values gener-
ated by a pseudo-random function F . More precisely, seeds
s1, s2, · · · , sN−1 are generated by the following equation:

si = F (si+1, sid, timestamp), (8)

where 1 ≤ i < N , sid is the identity of S , timestamp is the
identifier of a multicast session, and sN are randomly chosen
by S. Seeds are used reversely as key materials in each level
for different interval. The usage of seeds is discussed later.

All the seeds form a one-way seed chain whose first
(actually last) element s1 is signed by normal public key
signature scheme, such as DSA [14]. To verify that a value si
is in the one-way seed chain, one can check that

s1 = F i−1(si, sid, timestamp), (9)

where Fn(x, y, z) denotes n consecutive application of func-
tion F with the given y and z unchanged, and every intermedi-
ate result as x. Of course, the first x is si and F 0(x, y, z) = x.

5) Asymmetric Key Pair (sk, pk): To setup the asymmetric
key pair, S finds a multiplicative cyclic group G of order q,
and select a g which is a generator of G. A secret key is:

α = (α1, α2, · · · , αm+n+1)
R← Fm+n

q F∗q . (10)

Its corresponding public key is like:

β = gα
∆
= (gα1 , gα2 , · · · , gαm+n+1). (11)

Hence, the final key pair is (sk, pk) = (α, β).

B. Initializing Nodes

Before any transmission is performed, all the nodes in
the network should loosely synchronize their clocks. This is
because we currently utilize RIPPLE as our scheme inside the
boundary. Thus, all the nodes run a synchronization protocol
before other operation. And the assumption is also inherited
that clock drifts among nodes are negligible during a multicast
session.

Besides time synchronization, an authorized initialization
packet should be sent by S to each other nodes in the network.

This packet contains all the public parameters chosen by S.
That is, by the end of initializing nodes, any node v ∈ V −{S}
who accepts the initialization packet will obtain the following
materials: T0, δ,N, Lv, d, authenticated s1, and public key β
for homomorphic signature.

C. Sending Hybrid Authenticated Packets

To apply different strategies in different network zones, S
leverages two methods to authenticate a message. It firstly
signs a message with its secret key α and then generate Lmax
MACs for the message and its signature in a nested manner
for different levels. For a message M ∈ Fm+n

q which includes
the interval index i, its corresponding packet would be like:

P
∆
= (M,σ, tL, tL−1, · · · , t1) ∈ Fm+n+1+L, (12)

where L denotes the maximum level, i.e. Lmax, σ is the signa-
ture of M , and ti represents the MAC for level-i nodes. Note
that, the mentioned signature and MACs are homomorphic. In
later subsections, we will describe how to generate the exact
keys used for producing and verifying MACs.

D. Packet Authentication and Coding

A node v ∈ V − {S} in POND should acts accordingly
based on its level. We now describe different actions for
distinct levels respectively.

Upon receiving a packet P = (M,σ, tL, tL−1, · · · , tLv), a
node with normal level should buffer valid packets, authenti-
cate them, and forward the authenticated ones. More precisely,
for a node v ∈ V −{S} whose Lv ≤ Lmax, it will buffer the
packet P only when the seed for the sending interval of the
packet, say i, and v’s level, say Lv , is not released by S. In
other words, if the equation

Ti ≤ Tk + ∆k ≤ Ti+d·Lv
(13)

holds, node v buffers the packet and waits for the symmetric
seed to generate the key for authenticating it. In the above
equation, Ti and Ti+d·Lv

are the starting time of interval-i
and interval-(i + dLv) respectively, Tk represents the local
time of node v when it receive the packet, and ∆k denotes the
synchronization error, i.e. time difference. After buffering the
packet, node v waits for the seeds to generate the symmetric
key to verify the MAC tLv . After being verified, authenticated
packets of the same interval will be combined together and
forwarded. Here we omit the details of how to verify MACs
and how to combine them, please refer to section IV for the
exact process. Note that key generation will be told in next
subsection.

On the other hand, if a node v’s level is equal to none,
then it should verify packets by their signature σ instead of
MACs. Using the public key β of S, it can authenticate the
packet correctly. In this case, node v does not need to wait
for the seeds to generate any keys for MACs. Similarly, after
authenticating the packet, v combines the related packets and
forwards them to its children.

Upon receiving a seed packet K = (i, si, sid, timestamp),
a node v stores it when Lv ≤ i, and forwards it to the next

level (Lv + 1) when Lv < i. The details about how to deal
with the seeds will be told in next subsection.

E. Key Distribution

In this subsection, we illustrate how to generate symmetric
keys by using the seed packets received in a node. Firstly, we
describe how S generates all the keys. How to reproduce the
keys in a node is given later. For ease of understanding, we
assume d = 1 and consider packets sent in a single interval i.

In S, once it has determined d,N , and the one-way seed
chain, it starts to generate all the keys for packets sent in
different intervals. Here we assume d = 1 for simplicity. The
keys are generated by following equations.{

F ′(s1, sid, timestamp, 1) = K1
1{

F ′(s2, sid, timestamp, 1) = K1
1 +K1

2

F ′(s2, sid, timestamp, 2) = K2
1

...

F ′(sk, sid, timestamp, 1) = K1
1 +K1

2 + · · ·+K1
k

F ′(sk, sid, timestamp, 2) = K2
1 + · · ·+K2

k−1
...

F ′(sk, sid, timestamp, k − 1) = Kk−1
1 +Kk−1

2

F ′(sk, sid, timestamp, k) = Kk
1 .

Here, Kj
i denotes the key used for producing MAC tj of

interval-i messages. In other words, Kj
i is used by level-j

nodes to verify interval-i messages. si is the seed whose index
is i in the one-way seed chain. sid and timestamp are S’s
identity and timestamp respectively. And we should also note
that, F ′(x, y, z, k) ∈ Fm+n+k

q because, normally, a message
M ∈ Fm+n

q and (M, δ) ∈ Fm+n+1
q . Hence, from the above

equations, we can easily compute Kj
i as

Kj
i = F ′(sj+i−1, sid, timestamp, j)
− F ′(sj+i−2, sid, timestamp, j),

(14)

for i > 1 and j ≥ 1. When i = 1 and j ≥ 1, we have

Kj
1 = F ′(sj , sid, timestamp, j). (15)

Actually, here we infer these equations because we assume
that d = 1. For other d, condition will be similar. Thus we
omit them for brevity. By this way, S can compute all the keys
for different intervals and different levels. It then uses these
keys to generate MACs accordingly.

For a level-j node, it need to have Kj
i to verify tj of

interval-i packets. Hence, it calculate Kj
i according to (14)(15)

as well. The problem is that the node should get sj for i = 1,
or sj+i−1, sj+i−2 for i > 1. According to seed disclosure
delay d = 1, sj+i is disclosed in interval j + i + 1. Thus,
level-j nodes can gain Kj

i through sj+i−1 and sj+i−2 which
are released in interval i+ j and i+ j − 1 respectively. This
matches the result that Kj

i can be gain after interval i + j
which can be regarded as the key disclosure interval i + dj
with d = 1.

Time Estimation of Situation: TpMAC < Ttrans < TpSIG

Time Estimation of using Homomorphic Signature Scheme (T3)
Approximate Time Estimation of using Homomorphic MAC Scheme - RIPPLE (T4)

 0.5
 1

 1.5
 2

 2.5The length of interval Ttrans (ms) 0
 5

 10
 15

 20
 25

 30

Different levels L

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

T
im

e
es

tim
at

io
n

(s
)

Fig. 2. When TpMAC < Ttrans < TpSIG, using which scheme is better
depends on the choice of Ttrans and Lmax.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 5 10 15 20 25 30

T
im

e
es

tim
at

io
n

(s
)

Different levels L

Time Estimation of Situation: TpMAC < Ttrans < TpSIG

Time Estimation of using Homomorphic Signature Scheme (T3)
Approximate Time Estimation of using Homomorphic MAC Scheme - RIPPLE (T4)

Time Estimation of using Homomorphic MAC Scheme - RIPPLE (T1)

Fig. 3. Estimate Lmax and time consumption comparison

VI. DISCUSSION

As we have mentioned before, in POND, different strategies
are used in different zones to improve the efficiency of the
whole network. Because, we notice that homomorphic signa-
ture schemes, such as [2], trigger high computation delay for
networks using network coding. However, homomorphic MAC
schemes, such as [1], always have difficulties in distributing
symmetric keys which cause a lot of communication delay.
Thus, we try to combine two main kinds of schemes and
use them under different occasions. In a specific network,
to transmit packets from a source to its surrounding nodes,
homomorphic MAC schemes are used because the communi-
cation delay will be smaller than computation delay. If packets
are supposed to be transmitted to a node which is far from
the source, in which case the communication delay will be
dominant, homomorphic signature schemes are preferred. But
where is the boundary for using these two kinds of schemes?
In other words, how to set Lmax?

Recall that the following notions are important when com-
paring the time consumption of different schemes.

1) TpMAC , TpSIG: the average time of processing a gener-
ation of packets in a node using the scheme of homo-
morphic MAC and homomorphic signature respectively.

2) Ttrans: the average time of transmitting a generation of
packets from one level to the next level. Actually it is
needed that δ = Ttrans, so as to get a tight boundary.
Recall that δ is the interval length.

3) Td: the delay time when using homomorphic MAC
scheme. Formally, that is Td = dδ = dTtrans, where
d = d

(
LmaxTtrans + TpMAC

)
/δe+ 1.

4) Lv: the level of node v in POND.
5) N : the number of total generations in a multicast ses-

sion.
Normally, in a specific network with similar routers, TpMAC

and TpSIG are fixed. In addition, we also assume Ttrans
is constant in a specific network. Thus, N , Lv , Lmax are
essential variables.

A. Estimating the time consumption of different schemes

To estimate the time consumption of RIPPLE and basic
homomorphic signature scheme(HSS), Fig.4 tries to depict the
transmission processes of generations of packets from a sender
to nodes in each level under different occasions. Note that in
all the sub-figures in Fig.4, δ = Ttrans is set to get the tight
estimation for time consumption.

When using RIPPLE, the time consumption T of success-
fully transmitting N generations of packets to the nodes in
Lv is like follows. When TpMAC < Ttrans, key disclosure
delay d = 5, thus the time consumption can be measured
straightforwardly from Fig.4(a) as:

T1 = (N + Lv − 1) · Ttrans + Lv · TpMAC

+ Lv · Td.
(16)

When TpMAC > Ttrans, key disclosure delay d = 6, and
we can realize from Fig.4(b) that the queueing delay in a
single router can cause fatal consequence which makes its
children reject all the packets because they are outdated (their
corresponding key materials have already been released). This
is obvious when TpMAC is far bigger than Ttrans. Thus, under
this situation, RIPPLE transmission protocol is not applicable
at all.

Similarly, when using basic homomorphic signature scheme
(HSS), the time consumption T can be easily measured from
Fig.4(c) and (d). When TpSIG < Ttrans,

T2 = (N + Lv − 1) · Ttrans + Lv · TpSIG; (17)

When TpSIG > Ttrans,

T3 = (N + Lv − 1) · TpSIG + Lv · Ttrans. (18)

B. Determining Lmax
1) : It is obvious that, while TpMAC < TpSIG < Ttrans,

T1 > T2. This indicates that HSS is preferred in the whole
network because of its lower time consumption. Hence, we
set Lmax = 0 to show that POND utilizes HSS entirely.

Level

Time

……

……

……

L1

L2

L3

…

L1 get first

generation of

packets

L2 get first

generation of

packets

Average Transmission Time
Symmetric Key Delay Time

Average MAC Processing Time

(a) Time consumption of RIPPLE when Ttrans > TpMAC and Lmax = 3.

Level

Time

……

……

L1

L2

L3

…

L1 get first

generation of

packets

L2 get first

generation of

packets

Average Transmission Time
Symmetric Key Delay Time

Average MAC Processing Time

……

(b) Time consumption of RIPPLE when Ttrans < TpMAC and Lmax = 3.

Level

Time

……

……

……

L1

L2

L3

(c) Time consumption of HSS when Ttrans > TpSIG.

Level

Time

……

……

……

L1

L2

L3

(d) Time consumption of HSS when Ttrans < TpSIG.

Fig. 4. Estimating the time consumption for different schemes under different situation.

2) : When TpMAC < Ttrans < TpSIG, differences between
T1 and T3 are complicated. Another function as follows is set
to simplify the comparison.

T4 = (N + Lv − 1) · Ttrans + Lv · TpMAC

+ Lv ·
(
LvTtrans + TpMAC + Ttrans

)
.

(19)

By fixing variable N = 500, the data we obtain in section
VII-B for TpMAC and TpSIG, and setting Ttrans as x-axis,
Lv y-axis, and T z-axis, relations between T3 and T4 are
depicted in Fig.2. Further, when Ttrans of a network is stable,
for example Ttrans = 2ms, Fig.3 is presented. An intersection
point is found in Fig.3 whose x-coordinate Linter is:

Linter = (A+
√
A2 −B)/(2Ttrans),where

A = TpSIG − Ttrans − 2TpMAC , and
B = 4Ttrans(N − 1)(Ttrans − TpSIG).

(20)

It can be easily prove that T3 > T1 before the intersection
point by verifying (T3 − T4) > (T1 − T4). And after the
intersection point, (T3 − T4) < (T1 − T4), hence T3 < T1.
This indicates that, under this condition, Lmax = Linter.

Note that, in equation (20), when variable N is too large,
setting Lmax = Linter is not applicable because Linter may
have exceed the maximum hop counts in a network. In this
case, Lmax should be set as the maximum hop count from a
sender to the farthest node which means the whole network
utilizes RIPPLE only.

VII. ANALYSIS

A. Security Analysis

Theorem 1: The hybrid scheme of POND is a secure
homomorphic scheme.

Proof: Homomorphism: Given (Mi, σi, t
1
i , · · · , tLi , αi)wi=1,

where Mi = (xi1, · · · , xi(n+m)), we have combination results
M =

∑w
i=1Mi = (x1, · · · , xn+m), where xj =

∑w
i=1 xij ,

j ∈ [1, n + m]; and σ =
∑w
i=1 αiσi; t = (t1, · · · , tL) where

tk =
∑w
i=1 αit

k
i , k ∈ [1, L]. Firstly, with the given public key

β = (β1, · · · , βn+m) and the equation β
∑

i αixi

j =
∏
i β

αixi
j ,

the homomorphic signature holds:∏n+m
j=1 β

xj

j β
σ
n+m+1

=
∏n+m
j=1 β

∑w
i=1 αixij

j β
∑w

i=1 αiσi

n+m+1

=
∏w
i=1

(∏n+m
j=1 β

xij

j βσi
n+m+1

)αi

=
∏w
i=1 1αi = 1

(21)

Secondly, the homomorphic MAC holds:

tk =
∑w
i=1 αit

k
i

=
∑w
i=1 αi〈(Mi, σi, t

L
i , · · · , t

k+1
i),Kk〉

= 〈
∑w
i=1 αi(Mi, σi, t

L
i , · · · , t

k+1
i),Kk〉

= 〈(M,σ, tL, · · · , tk+1),Kk〉.

(22)

Hence, (M,σ, tL, · · · , t1) =
∑w
i=1 αi(Mi, σi, t

L
i , · · · , t1i)

pass the homomorphic verification for σ and tk.

Scheme Generate Verify and Combine Size
MAC 2.96 ms 231 us 16 · Lmax bytes
SIG 129 us 2.935 ms 16 bytes

TABLE I
COMPUTATION AND COMMUNICATION OVERHEAD FOR DIFFERENT

SCHEME

Security: An adversary who can forge a valid packet for
M /∈ Span(M1, · · · ,Mw) should be able to forge σ and tk

where k ∈ [1, L]. However, as proved in [1] and [2], one could
forge σ or tk with a probability at most 1/q, where q is a big
prime number. Thus our scheme is secure. �

Arbitrary Collusion and Tag Pollution Attack Resistance:
POND inherits this property directly from the nested inner-
product scheme in RIPPLE and normal signature scheme.

RIPPLE Replay Attack Resistance: In RIPPLE, a one-
way key chain is generated to provide keys for producing
and verifying MACs. However, the security of the key chain
is only protected by the signature of the last key. Without
other authentication methods, an adversary can easily replay
messages of a sender by signing a key in the key chain and use
the partial key chain (the chosen key and its previous keys).
That is, the adversary can peel off the MACs in a message
of the sender which is not generated by keys in the partial
key chain, and keep the remaining part as its own message.
In this case, the adversary can replay messages of the original
sender without knowing the details of the original message.
If the original messages are sensitive, for example, commands
from director in an army, it would cause fatal effects.

In our scheme, a one-way seed chain is utilized. Although
an adversary can still sign a seed in the seed chain, it would not
have any practical effect due to the time-related and identity-
related key generating method. The key generating method
also links seeds. To fool a node with partial seeds, an adversary
should be able to fool nodes with the first chosen seed as the
first seed. This is impossible because level is a parameter in
the key generating function and even though the adversary can
fool nodes with their level, the seed verification would indicate
the mismatch of the index of seeds and levels. Note that the
replay attack of signing the first seed or key can be easily
detected by recording previous first seeds or keys.

B. Efficiency Analysis

TABLE I presents the comparison between the homomor-
phic MAC scheme and homomorphic signature scheme in
POND. We set in our experiment that q = 2128, original
message size n = 64 · 16 bytes, size of generation m = 6,
levels L = 32, and the number of parents per node w = 6. In
our experiment, OpenSSL library [15] is used on the platform
of 32bits GNU/Linux system with 1.73GHz Intel Pentium(R)
Dual CPU T2370. By theoretically comparing using different
schemes for network coding, we gain the theoretical estimation
of the time consumption for different schemes when leveraging
pipeline strategy. It is obvious in Fig.3 that under the condition
of TpMAC < Ttrans < TpSIG, hybrid scheme is able to

gain better efficiency than any single scheme. Note that, in a
network with many levels, POND is able to limit the number
of MACs in a message by setting Lmax so as to reduce the
communication overhead.

VIII. CONCLUSION

In this paper, we present POND, a novel hybrid scheme
for network coding. POND theoretically achieve better com-
munication efficiency by using different schemes in different
parts of a network and it disables RIPPLE replay attack by
proposing new key distribution method. We prove that POND
is correct and secure, and give exact regulations of how to
choose scheme in POND. Also, we discover that, under some
situations, RIPPLE is not applicable because of the message
queuing delay.

ACKNOWLEDGEMENT

This work was supported by National Natural Science
Foundation of China under grant 61101142 and the Funda-
mental Research Funds for the Central Universities under grant
K50510030012.

REFERENCES

[1] Li Y., Yao H., Chen M., Jaggi S., Rosen A. RIPPLE authentication for
network coding. In INFOCOM, 2010 Proceedings IEEE (pp. 1-9).

[2] Zhang P., Jiang Y., Lin C., Yao H., Wasef A., Shen X. Padding for
orthogonality: Efficient subspace authentication for network coding. In
INFOCOM, 2011 Proceedings IEEE (pp. 1026-1034).

[3] Guangjun L., Bin W. Secure network coding against intra/inter-
generation pollution attacks. Communications, China, 10(8), 100-110.

[4] Perrig A., Canetti R., Song D., Tygar J. D. Efficient and secure
source authentication for multicast. In Network and Distributed System
Security Symposium, NDSS (Vol. 1, pp. 35-46).

[5] Le A., Markopoulou, A. Cooperative defense against pollution attacks
in network coding using SpaceMac. Selected Areas in Communications,
IEEE Journal on, 30(2), 442-449.

[6] Le A., Markopoulou, A. TESLA-based defense against pollution attacks
in p2p systems with network coding. In Network Coding (NetCod), 2011
International Symposium on (pp. 1-7). IEEE.

[7] Agrawal S., Boneh D., Boyen X., Freeman D. M. Preventing pollution
attacks in multi-source network coding. In Public Key CryptographyCP-
KC 2010 (pp. 161-176). Springer Berlin Heidelberg.

[8] Perrig A., Canetti R., Tygar J. D., Song D. Efficient authentication and
signing of multicast streams over lossy channels. In Security and Privacy,
2000. S&P 2000. Proceedings. 2000 IEEE Symposium on (pp. 56-73).

[9] Le A., Markopoulou A. Locating byzantine attackers in intra-session
network coding using spacemac. In Network Coding (NetCod), 2010
IEEE International Symposium on (pp. 1-6). IEEE.

[10] Agrawal S., Boneh, D. Homomorphic MACs: MAC-based integrity for
network coding. In Applied Cryptography and Network Security (pp.
292-305). Springer Berlin Heidelberg.

[11] Cheng C., Jiang T. An efficient homomorphic MAC with small key size
for authentication in network coding. IEEE Transactions on Computers,
VOL. 62, No. 10. Oct. 2013.

[12] Charles D., Jain K., Lauter K. Signatures for network coding. Interna-
tional Journal of Information and Coding Theory, 1(1), 3-14.

[13] Boneh D., Freeman D., Katz J., Waters B. Signing a linear subspace:
Signature schemes for network coding. In Public Key CryptographyCP-
KC 2009 (pp. 68-87). Springer Berlin Heidelberg.

[14] U. S. National Institute of Standards and Technology(NIST). Digital
Signature Standard (DSS), Federal Register 56. FIPS PUB 186.

[15] https://www.openssl.org

