
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title

Reliability Prediction for Component-Based

Software Systems with Architectural-Level Fault

Tolerance Mechanisms

Author(s) Pham, Thanh-Trung; Defago, Xavier

Citation

2013 Eighth International Conference on

Availability, Reliability and Security (ARES):

11-20

Issue Date 2013-09

Type Conference Paper

Text version author

URL http://hdl.handle.net/10119/12373

Rights

This is the author's version of the work.

Copyright (C) 2013 IEEE. 2013 Eighth

International Conference on Availability,

Reliability and Security (ARES), 2013, 11-20.

Personal use of this material is permitted.

Permission from IEEE must be obtained for all

other uses, in any current or future media,

including reprinting/republishing this material

for advertising or promotional purposes, creating

new collective works, for resale or

redistribution to servers or lists, or reuse of

any copyrighted component of this work in other

works.

Description

Reliability Prediction for Component-based Software Systems
with Architectural-level Fault Tolerance Mechanisms

Thanh-Trung Pham, Xavier Défago

School of Information Science,
Japan Advanced Institute of Science and Technology (JAIST),

Nomi, Ishikawa, Japan
Email: {thanhtrung.pham,defago}@jaist.ac.jp

Abstract—This paper extends the core model of a recent
component-based reliability prediction approach to offer an
explicit and flexible definition of reliability-relevant behavioral
aspects (i.e. error detection and error handling) of software fault
tolerance mechanisms, and an efficient evaluation of their relia-
bility impact in the dependence of the whole system architecture
and usage profile. Our approach is validated with the reporting
service of a document exchange server, by modeling the reliability,
conducting a reliability prediction and sensitivity analyses, and
demonstrating its ability to support design decisions.

Index Terms—component-based reliability prediction, software
fault tolerance mechanisms, error detection, error handling.

I. INTRODUCTION

Reliability is one of the most important quality attributes
of a software system. To improve the system reliability, fault
tolerance mechanisms (FTMs) are often used. FTMs provide
the ability to mask faults in systems, prevent them from
leading to failures, and can be applied on different abstraction
levels (e.g. source code level, architecture level) [1]. Analyzing
the impact of architectural-level FTMs on the reliability of a
component-based system is a challenge because: (1) FTMs
can be employed in different parts of a system architecture,
(2) usually, in a system architecture, there are multiple points
which can be changed to create architecture variants, e.g.
substituting components with more reliable variants, running
components concurrently to improve performance, and (3)
besides the reliability of its components, the system reliability
depends on the system architecture and usage profile [2].

Existing reliability prediction approaches for component-
based systems often do not allow modeling FTMs (e.g. [3]–
[5]) or have limited expressiveness of FTMs (e.g. [6], [7]).
These approaches lack flexible and explicit expressiveness of
how error detection and error handling of FTMs influence the
control and data flow within components. As a result, these
approaches are limited in combining modeling FTMs with
modeling the system architecture and the usage profile.

Further approaches provide more detailed analysis of in-
dividual FTMs (e.g. [8]–[10]). But these so-called non-
architectural models do not reflect the system architecture
and the usage profile, and therefore are not suitable when
evaluating architecture variants under varying usage profiles.

Contribution: In this paper, we extend the core model (i.e.
fundamental modeling steps and basic modeling elements) of
our former work [11] to offer an explicit and flexible definition

of reliability-relevant behavioral aspects (i.e. error detection
and error handling) of software FTMs, and an efficient evalu-
ation of their reliability impact in the dependence of the whole
system architecture and usage profile.

Structure: The rest of this paper is organized as follows.
Section II surveys related work. Section III describes the steps
in our approach. Section IV describes in detail modeling com-
ponent reliability specifications and system reliability models,
and the transformation to create Markov models for reliability
prediction. Section V demonstrates our approach with a case
study. Section VI discusses our assumptions and limitations
and Section VII concludes the paper.

II. RELATED WORK

Our approach belongs to the field of architecture-based
software reliability modeling and prediction, and is related to
approaches on reliability modeling for FTMs.

The field has been surveyed by several authors [12]–[14].
One of the first approaches is Cheung’s approach [2] that
uses Markov chains. Recent work extends Cheung’s work to
combine reliability analysis with performance analysis [15],
and to support compositionality [5], but does not consider
FTMs. Further approaches such as Cheung et al. [16] focusing
on the reliability of individual components, Zheng et al. [17]
aiming at service-oriented systems, Cortellessa et al. [3] and
Goseva et al. [4] applying UML modeling language, also do
not consider FTMs.

Some approaches consider explicitly error propagation to
relax the assumption that a component failure immediately
leads a system failure [18]–[21]. To model the possibility of
propagating component failures, they introduce error propaga-
tion probabilities. The complement of these probabilities can
be used to express the possibility of masking component fail-
ures. However, FTMs (with error detection and error handling)
cannot be considered explicitly by these approaches.

Several approaches take into consideration FTMs. Sharma
et al. [6] allow modeling component restarts and component
retries. Wang et al. [7] support different architectural styles
including fault tolerance architectural style. However, these
approaches do not consider the influences of both error de-
tection and error handling of FTMs on the control and data
flow within components. Brosch et al. [22] offer a flexible
way to include FTMs but do not consider the influences

Modeling system

architecture.

Modeling usage

profile.

Creating a system reliability model

(by software architects)

2.22.1

2

System

reliability model Result OK?

Yes

Assembling

actual component

implementations

6

No

Revising components,

architecture, usage profile

5

Transforming model

3

Analyzing Markov

models

4

Predicted

reliability

Sensitivity

analyses

Modeling components,

services, service

implementations.

Modeling failure models

for internal activities in

service implementations.

Creating component reliability specifications (by component developers)1

1.1 1.2

Component reliability

specifications

Modeling fault tolerance

structures in service

implementations.

1.3

Markov

models

Fig. 1. Component-based reliability prediction.

of error detection of FTMs on the control and data flow
within components. The same holds for our former work [11]
which incorporates error propagation analysis for multiple
execution models including primary-backup fault tolerance
executions. Ignoring the influences of either error detection or
error handling of FTMs on the control and data flow within
components can lead to incorrect prediction results when the
behaviors of FTMs deviate from the specific cases mentioned
by the authors.

A great deal of past research effort focuses on reliability
modeling of individual FTMs. Dugan et al. [8] aim at a
combined consideration of hardware and software failures for
distributed recovery blocks (DRB), N-version programming
(NVP), and N self-checking programming (NSCP) through
fault tree techniques and Markov processes. Kanoun et al.
[10] evaluate recovery blocks and NVP using generalized
stochastic Petri nets. Gokhale et al. [9] use simulation instead
of analysis to evaluate DRB, NVP, and NSCP. Their so-called
non-architectural models do not reflect the system architecture
and the usage profile. Therefore, although these approaches
provide more detailed analysis of individual FTMs, they are
limited in their application scope to system fragments rather
than the whole system architecture (usually composed of dif-
ferent structures) and not suitable when evaluating architecture
variants under varying usage profiles.

III. COMPONENT-BASED RELIABILITY PREDICTION

Fig. 1 shows six main steps in our approach. In Step 1,
component developers create component reliability specifica-
tions. Component developers model components, services and
service implementations (Step 1.1), and then failure models
(i.e. different failure types with their occurrence probabilities)
for internal activities in service implementations (Step 1.2).
Component developers can introduce different fault tolerance
structures (FTSs) in service implementations, e.g. RetryStruc-
tures or MultiTryCatchStructures (Step 1.3). FTSs support
different configurations, e.g. the number of times to retry for
a RetryStructure or the number of replicated instances for
handling certain failure types in a MultiTryCatchStructure.

In Step 2, software architects create a system reliability
model. Software architects model the system architecture (Step
2.1) and then the usage profile (Step 2.2). Step 1 and 2 are
supported by our reliability modeling schema including all
necessary modeling elements (Section IV-B and IV-C).

In Step 3, the system reliability model, combined with the
component reliability specifications, is transformed automati-
cally into Markov models. In Step 4, by analyzing the Markov
models, a reliability prediction and sensitivity analyses can be
deduced. To support Step 3 and 4, we provide a reliability
prediction tool whose transformation for reliability prediction
is explained in Section IV-D.

If the predicted reliability does not meet the reliability
requirement, Step 5 is performed. Otherwise, Step 6 is per-
formed. In Step 5, there are several possible options: com-
ponent developers can revise the components, e.g. changing
the configurations of FTSs; software architects can revise the
system architecture and the usage profile, e.g. trying different
system architecture configurations, replacing some key compo-
nents with more reliable variants, or adjusting the usage profile
appropriately. Sensitivity analyses can be used as a guideline
for these options, e.g. to identify the most critical parts of
the system architecture which should receive special attention
during revising. In Step 6, the modeled system is deemed
to meet the reliability requirement, and software architects
assemble the actual component implementations following the
system architecture model.

IV. RELIABILITY MODELING

A. Basic Concepts

According to Avizienis et al. [23], an error is defined as
the part of the system state that may lead to a failure. The
cause of the error is called a fault. A failure occurs when
the error causes the delivered service to deviate from correct
service. The deviation can be manifested in different ways,
corresponding to the system’s different failure types.

In the same paper, the authors describe in detail the principle
of FTMs. A FTM is carried out through error detection and
system recovery. Error detection is to determine the presence
of an error. System recovery is to transfer a system state
containing one or more errors and (possibly) faults to a state
without detected errors and without faults that can be activated
again. Error handling and fault handling form system recovery.
Error detection itself also has two different failure types: (1)
signaling the presence of an error when no error has actually
occurred, i.e. false alarm, (2) not signaling the presence of an
error, i.e. an undetected error.

From that, to model and predict better the reliability of
component-based systems with architectural-level FTMs, it is
necessary to support multiple failure types of a component
service and different failure types of different component
services, and to consider both the influences of error detection
and error handling of FTMs on the control and data flow within
components.

In the next section, we introduce our reliability modeling
schema for describing reliability-relevant characteristics of

Service

ProvidedService

RequiredService

Component

0..*

0..*

ServiceImplementation

0..*

Activity

-calledService

CallingActivity

InternalActivity

FailureType
-probability

OccurringFailureType

0..*

ThrownFailureType

0..*

Structure

SequentialStructure

-branchingConditions

BranchingStructure

-loopCount

LoopingStructure

ParallelStructure

-errorDetectionMatrix

-possiblyHandledFailureTypes

-retryCount

RetryStructure

-possibleFailureTypes

RetryPart

-errorDetectionMatrices

MultiTryCatchStructure

-possiblyHandledFailureTypes

-possibleFailureTypes

MultiTryCatchPart

2..*

[...][...]

[...]

[...]

[...]

[...]

Fig. 2. Modeling elements for component reliability specifications.

component-based systems. With regard to our specific pur-
poses, our schema is more suitable than UML extended with
MARTE-DAM profile [24]. This profile focuses on modeling
rather than prediction. Its authors do not propose a transforma-
tion for prediction for the general case. According to us, the
complexity and the semantic ambiguities of UML make it hard
to provide an automated transformation from UML to analysis
models. On the contrary, our schema uses concepts needed
for the reliability modeling and prediction, and therefore
our approach can support an automated transformation for
reliability prediction for the general case.

B. Component Reliability Specifications

1) Components, services and service implementations:
Fig. 2 shows an extract of our reliability modeling schema
with modeling elements for component reliability specifica-
tions. In Step 1.1, component developers model components,
services and service implementations via modeling elements:
Component, Service and ServiceImplementation, respectively.
Components are associated with services via RequiredService
and ProvidedService.

To analyze reliability, component developers are required
to describe the behavior of each service provided by a com-
ponent, i.e. describe the activities to be executed when a
service (Service) in the provided services of the component
is called. Therefore, a component can contain multiple ser-
vice implementations. A service implementation can include
activities (Activity) and structures (Structure). There are two
activity types: internal activities (InternalActivity) and calling
activities (CallingActivity). An internal activity represents a
component’s internal computation. A calling activity repre-
sents a synchronous call to other components, that is, the
caller blocks until receiving an answer. The called service
of a calling activity is a service in the required services of
the current component and this referenced required service
can only be substituted by the provided service of other
component when the composition of the current component to
other components is fixed. Some structure types are sequential
structures (SequentialStructure), branching structures (Branch-
ingStructure), looping structures (LoopingStructure) and par-
allel structures (ParallelStructure). For branching structures,
branching conditions are Boolean expressions. For looping

-possibleFailureTypes: F1, F2, F3

Activity i
ai

Success

(F0: FailureType)

F1: FailureType

F2: FailureType

F3: FailureType

Detected as F0

Detected as F1

Detected as F2

Detected as F3

Fig. 3. Error detection semantics for an activity example.

structures1, the number of loops is always bound, infinite loops
are not allowed. Looping structures may include other looping
structures but cannot have multiple entry points and cannot be
interconnected. For parallel structures, parallel branches are
supposed to be executed independently, i.e. their reliability
behaviors are independent.

2) Failure Models: In Step 1.2, component developers
model failure models (i.e. different failure types with their
occurrence probabilities) for internal activities of service
implementations via an association between InternalActivity
and FailureType. Different techniques such as fault injection,
statistic testing, or growth reliability modeling can be used to
determine these probabilities [12], [16].

3) Fault Tolerance Structures:
a) Error detection: In FTMs, correct error detection is

the prerequisite condition for a correct error handling. On the
contrary, an undetected error leads to no error handling and a
false alarm leads to an incorrect error handling.

Example 1: Fig. 3 shows an activity with three possible
failure types: F1, F2 and F3 (a new failure type, F0, is
introduced, corresponding to the correct service delivery). To
provide error handling for these failure types, it is necessary
to detect them correctly. From that, for each Fi, fraction cij
of being detected as Fj needs to be provided. Therefore, the
error detection can be described by the following matrix:

c00 c01 c02 c03
c10 c11 c12 c13
c20 c21 c22 c23
c30 c31 c32 c33

 ,
∑
j

cij = 1

Rows (columns) 0, 1, 2 and 3 correspond to F0, F1, F2

and F3, respectively. The elements of row 0 (except c00)
correspond to false alarms. The elements of column 0 (except
c00) correspond to undetected errors. The elements outside the
diagonal of the matrix correspond to false signaling of failure
type. In case of perfect error detection, the error detection
matrix is an identity matrix.

b) RetryStructure: An effective technique to handle tran-
sient failures is service re-execution. A RetryStructure is taking
ideas from this technique. The structure contains a single
RetryPart which, in turn, can contain different activity types,
structure types and even a nested RetryStructure. The first
execution of the RetryPart models normal service execution
while the following executions of the RetryPart model the
service re-executions.

1In our model, an execution cycle is also modeled by a looping structure
with its depth of recursion as loop count.

-possibleFailureTypes: F1, F2, F3

RetryPart

RetryPart

(retry 0)

Success (F0)F1 F2 F3

RetryPart

(retry 1)

Detected as F1

Detected as F2

RetryPart

(retry 2)

Detected as F1

Detected as F2

-retryCount: 2

-possiblyHandledFailureTypes: F1, F2

-errorDetectionMatrix:

RetryStructure

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

c c c c

c c c c

c c c c

c c c c

Fig. 4. Semantics for a RetryStructure example.

-possiblyHandledFailureTypes: None

-possibleFailureTypes: F1, F2, F3, F4

MultiTryCatchPart 1

-errorDetectionMatrices

MultiTryCatchStructure

00 01 02 03 04

10 11 12 13 14

20 21 22 23 24

30 31 32 33 34

40 41 42 43 44

c c c c c

c c c c c

c c c c c

c c c c c

c c c c c

-possiblyHandledFailureTypes: F2, F3

-possibleFailureTypes: F2, F3

MultiTryCatchPart 2

00 02 03

20 22 23

30 32 33

' 0 ' ' 0

0 0 0 0 0

' 0 ' ' 0

' 0 ' ' 0

0 0 0 0 0

c c c

c c c

c c c

-possiblyHandledFailureTypes: F3, F4

-possibleFailureTypes: F4

MultiTryCatchPart 3

MultiTryCatchPart 1

Success (F0)F1 F2 F3

MultiTryCatchPart 2
Detected as F2

Detected as F3

MultiTryCatchPart 3
Detected as F3

F4

Detected as F4

None

Fig. 5. Semantics for a MultiTryCatchStructure example.

Example 2: Fig. 4 shows a RetryStructure with a single
RetryPart having three possible failure types: F1, F2 and
F3, an error detection matrix (as in Fig. 4), two possibly
handled failure types: F1 and F2 and retry count: 2. During
the execution of the RetryPart, all failure types F1, F2 and
F3 can occur. The field possiblyHandledFailureTypes of this
structure shows that only failure types that are detected as F1

and F2 lead to retry the RetryPart. This is repeated with the
number of times equal to the field retryCount of the structure.

c) MultiTryCatchStructure: A MultiTryCatchStructure is
taking ideas from the exception handling in object-oriented
programming. The structure consists of two or more MultiT-
ryCatchParts. Each MultiTryCatchPart can contain different
activity types, structure types and even a nested MultiT-
ryCatchStructure. Similar to try and catch blocks in exception
handling, the first MultiTryCatchPart models the normal ser-
vice execution while the following MultiTryCatchParts handle
certain failure types by launching alternative activities.

Example 3: Fig. 5 shows a MultiTryCatchStructure with
three MultiTryCatchParts and four possible failure types F1,
F2, F3 and F4. During the execution of the first MultiT-
ryCatchPart, all failure types can occur. Because the possibly
handled failure types of MultiTryCatchPart 2 are F2, F3

and of MultiTryCatchPart 3 are F3, F4, only failure types
of MultiTryCatchPart 1 that are detected as F2, F3 and F4

Service

ProvidedService

RequiredService

Component

0..*

0..*

ComponentInstance ComponentConnector

SystemArchitecture

0..* 0..*

UserInterface
-probabilities

-averages

UsageProfile

Fig. 6. Modeling elements for system reliability models.

lead to finding MultiTryCatchParts to handle detected failure
types. In particular, the failure types of MultiTryCatchPart
1 that are detected as F2 and F3 lead to MultiTryCatchPart
2, the failure types of MultiTryCatchPart 1 that are detected
as F4 lead to MultiTryCatchPart 3. During the execution of
MultiTryCatchPart 2, possible failure types are F2 and F3.
Therefore, rows and columns corresponding to F1 and F4 of
the error detection matrix for MultiTryCatchPart 2 contain all
0. The error detection matrix for MultiTryCatchPart 2 can be
simplified by eliminating the rows and columns corresponding
to the impossible failure types of MultiTryCatchPart 2: c′00 c′02 c′03

c′20 c′22 c′23
c′30 c′32 c′33

The former error detection matrix for MultiTryCatchPart

2 can be restored by using the possible failure types of
MultiTryCatchPart 2. Because the possibly handled failure
types of MultiTryCatchPart 3 are F3 and F4, only failure
types of MultiTryCatchPart 2 that are detected as failure type
F3 lead to MultiTryCatchPart 3. Notice that error detection
cannot prevent failures and it should be followed by an error
handling, therefore, in this case, an error detection matrix
for MultiTryCatchPart 3 is not required because there is no
MultiTryCatchPart to handle failures of MultiTryCatchPart 3.

Remark: FTSs can be employed in different parts of
the system architecture and are quite flexible to model FTMs
because their inner parts (RetryPart, MultiTryCatchParts) are
able to contain different activity types, structure types, and
even nested FTSs, e.g. if a RetryPart or a MultiTryCatchPart
contains a CallingActivity, errors from the provided service of
the called component can also be handled.

C. System Reliability Models

1) System Architecture: Fig. 6 shows an extract of our relia-
bility modeling schema with modeling elements for system re-
liability models. Software architects model system architecture
via modeling element SystemArchitecture. Software architects
create component instances (ComponentInstance) and assem-
ble them through component connectors (ComponentConnec-
tor) to realize the required functionality. Users can access this
functionality through a user interface (UserInterface).

2) Usage Profile: After modeling system architecture, soft-
ware architects model a usage profile for the user interface
of the required functionality. A usage profile (UsageProfile)
includes probabilities and averages. The usage profile must
include sufficient information to determine the branching

probabilities of branching structures and the average number
of loops for each looping structure.

D. Transformation for Reliability Prediction

Our transformation2 is to derive the reliability for the service
provided to users via the user interface from the system
reliability model and the component reliability specifications.
It is implemented in our reliability prediction tool in order to
offer an automated transformation for reliability prediction.

The transformation starts with the service implementation
of the service provided to users. By design, in our reliability
modeling schema: (1) a service implementation can contain a
structure of any structure types or an activity of any activity
types, (2) a structure type can contain structures of any
structure types and activities of activity types, and (3) a calling
activity is actually a reference to another service implemen-
tation. Therefore, the transformation is essentially a recursive
procedure applied for structures and internal activities.

For an internal activity (abbreviated as ia), its probabilities
of different failure types are provided as a direct input: fpj(ia).
The success probability of the ia can be calculated by sp(ia) =
fp0(ia) = 1−

∑m
j=1 fpj(ia) where m is the number of failure

types.
For each structure, the transformation transforms it into an

equivalent ia.
1) Sequential Structure: With a sequential structure as in

Fig. 7a, its equivalent ia has:

sp = fp0 =

n∏
i=1

sp(ai) (1)

and for 1 ≤ j ≤ m

fpj =

n∑
i=1

((
i−1∏
k=1

sp(ak)

)
fpj(ai)

)
(2)

Equation (2) can be obtained from the following disjoint cases:
• Activity a1 fails with failure type j: fpj(a1).
• Activity a1 succeeds, activity a2 fails with failure type j:

sp(a1)fpj(a2).
• ...
• Activities a1, a2, ..., an−1 succeed, activity an fails with

failure type j:
(

n−1∏
k=1

sp(ak)

)
fpj(an).

2) Branching Structure: For a branching structure as in
Fig. 7b, its equivalent ia has:

sp = fp0 =

n∑
i=1

p(bci)sp(ai) (3)

and for 1 ≤ j ≤ m

fpj =

n∑
i=1

p(bci)fpj(ai) (4)

where p(bci) is the probability of the branching condition bci
which is obtained from the usage profile.

2We argue for the correctness of the transformation as “by construction”.

3) Looping Structure: For a looping structure as in Fig. 7c,
it is can be seen as a sequential structure of activity a1
appearing lc times, therefore, its equivalent ia has:

sp = fp0 = sp(a1)
average(lc) (5)

and for 1 ≤ j ≤ m

fpj =

average(lc)∑
i=1

sp(a1)
i−1

fpj(a1) (6)

where average(lc) is the average number of lc which is also
obtained from the usage profile.

4) Parallel Structure: For a parallel structure, to avoid
introducing additional failures types for the parallel structure
when its parallel branches fail in different failure types, we
assume that the failure types are sorted in a certain order
(e.g. according to their severity). Therefore, when its parallel
branches fail in different failure types, the failure type of the
parallel structure is the highest failure type of its parallel
branches. Without loss of generality, we assume that the
failures types are sorted in the following order: F1 ≤ F2 ≤
. . . ≤ Fm. Considering a parallel structure as in Fig. 7d, its
equivalent ia has:

sp = fp0 =

n∏
i=1

sp(ai) (7)

and for 1 ≤ j ≤ m

fpj =

n∑
i=1

i−1∏
k=1

(
1−

m∑
l=j

fpl(ak)

)
× fpj(ai)

×
n∏

k=i+1

(
1−

m∑
l=j+1

fpl(ak)

)
 (8)

Equation (8) can be obtained from the following disjoint cases:

• Activity a1 fails with failure type j, activities a2,
a3, ..., an do not fail with failure type l > j:

fpj(a1)
n∏

k=2

(
1−

m∑
l=j+1

fpl(ak)

)
.

• Activity a1 fails with failure type l < j, activ-
ity a2 fails with failure type j, activities a3, a4,
..., an do not fail with failure type l > j:(
1−

m∑
l=j

fpl(a1)

)
fpj(a2)

n∏
k=3

(
1−

m∑
l=j+1

fpl(ak)

)
.

• ...
• Activities a1, a2, ..., an−1 fail with failure type

l < j, activity an fails with failure type j:(
n−1∏
k=1

(
1−

m∑
l=j

fpl (ak)

))
fpj(an).

5) RetryStructure and MultiTryCatchStructure: For a
RetryStructure or a MultiTryCatchStructure, the transformation
builds a Markov model reflecting all of its possible execution
paths and their corresponding probabilities, and then derives
the equivalent ia from this Markov model.

SequentialStructure

Activity 1 Activity i Activity n
... ...

(a)

branchingConditions:

bc1; … ; bci; … ; bcn

BranchingStructure

Activity 1 Activity i Activity n
... ...

bc1

bci

bcn

(b)

loopCount: lc

LoopingStructure

Activity 1

(c)

ParallelStructure

Activity 1 Activity i Activity n
... ...

(d)

Fig. 7. Example of structures: (a) Sequential structure, (b) Branching structure, (c) Looping structure, and (d) Parallel structure.

STARTi

RPretry i

1.0

SUCCESSi

(Fi0)

Fi1

Fij

Fim

fp1(RP)

fpj(RP)

fpm(RP)

...

1
1 ()

m

jj
fp RP

...

MM(RPi)

(a)

STARTi

MTCPi

1.0

SUCCESSi

(Fi0)

Fi1

Fij

Fim

fp1(MTCPi)

fpj(MTCPi)

fpm(MTCPi)

...

1
1 ()

m

j ij
fp MTCP

...

MM(MTCPi)

...

STARTn

MTCPn

1.0

SUCCESSn

(Fn0)

Fn1

Fnj

Fnm

fp1(MTCPn)

fpj(MTCPn)

fpm(MTCPn)

...

1
1 ()

m

j nj
fp MTCP

...

MM(MTCPn)

START1

MTCP1

1.0

SUCCESS1

(F10)

F11

F1j

F1m

fp1(MTCP1)

fpj(MTCP1)

fpm(MTCP1)

...

11
1 ()

m

jj
fp MTCP

...

MM(MTCP1)

...

(b)

Fig. 8. Markov models: (a) for i-th retry and (b) for MultiTryCatchParts.

a) RetryStructure: Considering a RetryStructure, let rc
be the number of times to retry, FH be the set of possibly han-
dled failure types, C be the error detection matrix represented
by {crs} with r, s = 0, 1, . . .m. The RetryPart (abbreviated
as RP) has m different failure types numbered from 1 to m,
and failure type j with probability fpj (RP).

The i-th retry is represented by a Markov model MM (RP i)
as in Fig. 8a. Markov model MM (RP i) has a start state
START i, a success state SUCCESS i (or Fi0) and a failure
state Fij for each failure type j. The probability of reaching
Fi0 from RPretry i is fp0(RP) = 1 −

∑m
j=1 fpj(RP). With

the number of times to retry rc, there are rc+1 Markov models
MM (RP i), i from 0 to rc. The problem is how to connect
these Markov models MM (RP i) (i = 0, 1, . . . rc) into one
Markov model representing the whole structure. To solve the
problem, we add m + 2 states, namely one state START ,
one state SUCCESS (or F0) and states Fj for failure types
(j = 1, 2, . . .m), and the following transitions:
• From START to START 0 with probability 1.
• For MM (RPrc) (i.e. the Markov model of the last retry),

for all 0 ≤ j ≤ m: from Frcj to Fj with probability 1.
• For the other Markov models, i.e. MM (RP i) with i

from 0 to rc − 1, for all 0 ≤ j ≤ m: from Fij to
START i+1 with probability

∑
Fk∈FH

cjk; from Fij to Fj

with probability 1−
∑

Fk∈FH

cjk

As the resulting Markov model is an absorbing Markov chain,
the success probability of the equivalent ia, which is the
probability of reaching SUCCESS from START , and the
failure probability of failure type j of the equivalent ia,
which is the probability of reaching Fj from START , can
be calculated [25].

b) MultiTryCatchStructure: For a MultiTryCatchStruc-
ture, let n be the number of MultiTryCatchParts, FHi be the

set of possibly handled failure types of MultiTryCatchPart
i (i = 1, 2, . . . n), Ci be the error detection matrix for
MultiTryCatchPart i which is represented by

{
cirs

}
with

r, s = 0, 1, . . .m. The MultiTryCatchPart i (abbreviated as
MTCP i) has m different failure types, numbered from 1 to
m, failure type j with probability fpj (MTCP i).

MultiTryCatchParts are represented by Markov models as
in Fig. 8b. Markov model MM (MTCP i) has a start state
START i, a success state SUCCESS i (or Fi0) and failure
states Fij for each failure types j. The probability of reaching
Fi0 from MTCP i is fp0(MTCP i) = 1−

∑m
j=1 fpj(MTCP i).

To connect these Markov models MM (MTCP i) (i =
1, 2, . . . n) into one Markov model representing the whole
structure, we add m + 2 state, namely one state START ,
one state SUCCESS (or F0) and states Fj for failure types
(j = 1, 2, . . .m), and the following transitions:
• From START to START 0 with probability 1.
• For MM (MTCPn) (i.e. the Markov model of the last

MultiTryCatchPart), for all 0 ≤ j ≤ m: from Fnj to Fj

with probability 1.
• For other Markov models, i.e. MM (MTCP i) with i

from 1 to n − 1, for all 0 ≤ j ≤ m: from Fij to
STARTx with probability

∑
Fk∈FHix

cijk where FHix =

FHx −
⋃

i<y<x

FHy; from Fij to Fj with probability

1−
∑

i<x≤n

(∑
Fk∈FHix

cijk

)
.

With the Markov model representing the whole structure,
the probability of reaching SUCCESS from START is the
success probability of the equivalent ia and the probability of
reaching Fj from START is the failure probability of failure
type j of the equivalent ia.

Finally, the reliability of the service provided to users is

TABLE I
DIFFERENT FAILURE TYPES AND THEIR SYMBOLS.

Failure Type Symbol
ProcessingRequestFailure F1

ViewingReportFailure F2

GeneratingReportFailure F3

AttachmentInfoFailure F4

FileInfoFailure F5

InfoFromLogFailure F6

InfoFromDBFailure F7

the success probability of the equivalent ia of the service
implementation of this service.

Remark: By transforming structures to equivalent ia(s),
the transformation no longer needs these structures’ informa-
tion, but can efficiently transform the outer structure using
these equivalent ia(s). Because of the recursive nature, the
transformation transforms a structure as soon as its inner parts
have been transformed into equivalent ia(s), therefore, can
reduce the possibility of state-space explosion.

V. CASE STUDY

A. Description of the Case Study

The program chosen for the case study is the reporting
service of a document exchange server [11]. The server is
an industrial system which was designed in a service-oriented
way. Its reporting service allows generating reports about
pending documents or released documents. This service was
written in Java and consists of about 2,500 lines of code.

By analyzing the code, it was possible to create the system
reliability model of the reporting service as in Fig. 9 using
our reliability modeling schema. At the architecture level, the
reporting service consists of four components: ReportingMedi-
ator, ReportingEngine, SourceManager and DestinationMan-
ager. Component SourceManager provides two services to get
information about pending documents: getAttachmentDocu-
mentInfo to get information about pending documents attached
in emails and getFileDocumentInfo to get information about
pending documents stored in file systems. Component Desti-
nationManager provides two services to get information about
released documents: getReleasedDocumentInfoFromLogs to
get the information from the logs, getReleasedDocumentIn-
foFromDB to get the information from the database (DB).
Component ReportingEngine provides two services: gener-
ateReport to generate a new report (either about pending
documents (aboutPendingDocuments=true) or about released
documents (aboutPendingDocuments=false)) and viewRecen-
tReports to view recently generated reports (with the number
of reports specified by numberOfRecentReports). Component
ReportingMediator provides the service processReportRequest
for handling incoming report request from clients. An in-
coming report request can be about generating a new report
(requestType=generate) or viewing recently generated reports
(requestType=view).

There are different types of failures which may occur in
the component instances during the operation of the reporting

<<Service>>

viewRecentReports

<<Service>>

generateReport <<FailureType>>

ViewingReportFailure

-loopCount:

numberOfRecentReports

<<LoopingStructure>>

failure probability

<<ServiceImplementation>>

<<InternalActivity>>

-retryCount: 1

-possiblyHandledFailureTypes:

ViewingReportFailure

-errorDetectionMatrix:

<<RetryStructure>>

<<RetryPart>>

00c

<<Service>>

getAttachmentDocumentInfo

<<Service>>

getFileDocumentInfo

<<FailureType>>

AttachmentInfoFailure

<<InternalActivity>>

failure probability

<<ServiceImplementation>>

<<FailureType>>

FileInfoFailure

<<InternalActivity>>

failure probability

<<ServiceImplementation>>

<<InternalActivity>>

failure probability

<<ServiceImplementation>>

<<Service>>

getReleasedDocumentInfoFromDB

<<FailureType>>

InfoFromDBFailure

<<Service>>

processReportRequest

<<FailureType>>

ProcessingRequestFailure

<<SequentialStructure>>

failure probability

<<ServiceImplementation>>

<<InternalActivity>>

-branchingConditions:

[requestType=’generate’] [requestType=’view’]

<<BranchingStructure>>

-calledService:

generateReport

<<CallingActivity>>

-calledService:

viewRecentReports

<<CallingActivity>>

<<ComponentInstance>>

ReportingMediator

<<ComponentInstance>>

ReportingEngine

<<ComponentInstance>>

SourceManager

<<ComponentInstance>>

DestinationManager

<<SoftwareArchitecture>>

probability(requestType=’view’)

probability(aboutPendingDocuments=false)

average(numberOfRecentReports)

<<UsageProfile>>

<<InternalActivity>>

failure probability

<<ServiceImplementation>>

<<Service>>

getReleasedDocumentInfoFromLogs

<<FailureType>>

InfoFromLogFailure

<<FailureType>>

GeneratingReportFailure

<<SequentialStructure>>

failure probability

<<ServiceImplementation>>

<<InternalActivity>>

1

<<ParallelStructure>>

-branchingConditions:

[aboutPendingDocuments=true] [aboutPendingDocuments=false]

<<BranchingStructure>>

-possiblyHandledFailureTypes:

None

<<MultiTryCatchPart>> 1

-possiblyHandledFailureTypes:

InfoFromLogFailure

<<MultiTryCatchPart>> 2

-errorDetectionMatrices:

<<MultiTryCatchStructure>>

None

<<FailureType>>

GeneratingReportFailure

failure probability

<<InternalActivity>>

2

-calledService:

getAttachmentDocumentInfo

<<CallingActivity>>

-calledService:

getFileDocumentInfo

<<CallingActivity>>

-calledService:

getReleasedDocumentInfoFromDB

<<CallingActivity>>

-calledService:

getReleasedDocumentInfoFromLogs

<<CallingActivity>>

00c

Fig. 9. The system reliability model of the reporting service.

service. For example, a ProcessingRequestFailure may occur
during processing client requests in service processReportRe-
quest; bugs in the code of service generateReport may lead
to a GeneratingReportFailure. Table I shows different failure
types and their symbols.

In the system reliability model, there are two FTSs. A
RetryStructure in the implementation of service viewRecen-
tReports. This structure has the ability to retry in case there
is a ViewingReportFailure (with retryCount=1). And a Mul-
tiTryCatchStructure in the implementation of service gener-
ateReport. This structure has the ability to handle a InfoFrom-
LogFailure of service getReleasedDocumentInfoFromLogs by
redirecting calls to service getReleasedDocumentInfoFromDB.

The current version of the reporting service has been used
without having new failures. We used this gold version of the
service as an oracle in our case study. We obtained a faulty

TABLE II
NO. OF REINSERTED FAULTS INTO INTERNAL ACTIVITIES.

Symbol Provided service/Internal activity (ia) No. of
reinserted faults

a1 processReportRequest/ia 0
a2 viewRecentReports/ia 2
a3 generateReport/ia 1 0
a8 generateReport/ia 2 1
a4 getAttachmentDocumentInfo/ia 1
a5 getFileDocumentInfo/ia 1
a6 getReleasedDocumentInfoFromLogs/ia 2
a7 getReleasedDocumentInfoFromDB/ia 1

TABLE III
FAILURE PROBABILITIES OF INTERNAL ACTIVITIES

Symbol fpj (ai)
a1 fpj (a1) = 0 ∀j
a2 fp2 (a2) = 0.26087; fpj (a2) = 0 ∀j 6= 2
a3 fpj (a3) = 0 ∀j
a8 fp3 (a8) = 0.0549451; fpj (a8) = 0 ∀j 6= 3
a4 fp4 (a4) = 0.111111; fpj (a4) = 0 ∀j 6= 4
a5 fp5 (a5) = 0.0277778; fpj (a5) = 0 ∀j 6= 5
a6 fp6 (a6) = 0.339286; fpj (a6) = 0 ∀j 6= 6
a7 fp7 (a7) = 0.0909091; fpj (a7) = 0 ∀j 6= 7

version of the service by reinserting faults discovered during
operational usage and integration testing (Table II shows the
number of reinserted faults).

B. Parameter Estimation and Validity of Predictions

To validate the accuracy of our prediction approach, we es-
timated the input parameters of the model. With the estimated
input parameters, the system reliability model of the reporting
service is complete to be transformed to compute the predicted
reliability. The predicted reliability was then compared with
the actual reliability of the reporting service. Notice that the
goal of our validation is not to justify the input parameters of
the model or to imply any accuracy in their estimates but to
show that if the system reliability model is provided accurately,
our method gives a reasonably accurate reliability prediction.

The faulty version of the reporting service and the oracle
were executed on the same test cases for the reporting service.
By comparing their outputs and investigating the executions
of test cases, we were able to estimate the input parameters
of the model. Faults have not been removed and the number
of failures includes recurrences because of the same fault.

We estimate the failure probability of failure type j (Fj , j =
1, 2, ...7) of internal activity ai (i = 1, 2, . . . 8) as: fpj (ai) =
fji/ni where fji is the number of failures of the failure type
j of the internal activity ai and ni is the number of runs
of the internal activity ai in the set of test cases for the
reporting service. Failure probabilities of different failure types
of internal activities are given in Table III. Because no fault
was injected into the two internal activities a1 and a3, their
failure probabilities are assumed to be 0.

The error detection matrix of a FTS was estimated as
(crs) = (dafrs/fr); r, s = 0, 1, ...7 where fr is the number
of failures of the failure type r (Fr) of the inner part of the
FTS (i.e. RetryPart for a RetryStructure or MultiTryCatchPart

TABLE IV
ERROR DETECTION MATRICES.

Provided service/FTS Error detection matrix

viewRecentReports/RetryStructure
(

1.0 0.0
0.222222 0.777778

)
generateReport/MultiTryCatchStructure

(
1.0 0.0

0.421053 0.578947

)
TABLE V

USAGE PROFILE.

Usage profile element Value
p(requestType=view) 0.178571
p(aboutPendingDocuments=false) 0.608696
average(numberOfRecentReports) 2

i for a MultiTryCatchStructure) and dafrs is the number of
failures of the failure type r of the inner part detected as the
failure type s (Fs). The simplified error detection matrices for
the two FTSs are given in Table IV.

Branching probabilities of a branching structure was esti-
mated as p(bci) = ni/n where ni is the number of times
control was transferred along the branch with branching con-
dition bci and n is the total number of times control reached
the branching structure.

The average number of loops of a looping structure was
estimated as average (lc) = nir/n where nir is the number
of runs of the inner part of the looping structure, n is the
number of times control reached the looping structure.

The usage profile including the branching probabilities of
the branching structures and the average number of loops of
the looping structure is given in Table V.

We estimate the actual reliability of the reporting service as
R = 1−F/N where F is the number of failures of the report-
ing service in N test cases for the reporting service. Table VI
shows the comparison between the predicted reliability and the
actual reliability for the faulty version. From this comparison,
we deem that for the system reliability model described in this
paper, our analytical method is sufficiently accurate.

Notice that different from our former work [11] which set
the input parameters for illustrative purpose, in this paper, we
estimated the input parameters by using the method above.
Therefore, these estimates and the predicted reliability are for
the faulty version. This means that our prediction result does
not contradict the prediction result of our former work.

C. Sensitivity Analyses and the Impact of FTSs

In this subsection, we first present the results of sensitivity
analyses of the reliability of the reporting service to changes
of probabilities in the usage profile, to changes of failure
probabilities of internal activities and to changes of error

TABLE VI
PREDICTED VS. ACTUAL RELIABILITY FOR THE FAULTY VERSION

Component Instance Predicted Actual Difference Error
/Provided service reliability reliability (%)

ReportingMediator/ 0.800261 0.794643 0.005618 0.707
processReportRequest

detection probabilities of FTSs. Then, we present the analysis
of how the predicted reliability of the reporting service varies
for fault tolerance variants.

First, we conducted a sensitivity analysis modifying the
usage probabilities (Fig. 10a). The reliability of the reporting
service is more sensitive to the portion of report types to
generate (aboutPendingDocuments=true or false) because its
corresponding curve has the steepest slope.

Second, we conducted a sensitivity analysis modifying
failure probabilities of the internal activities (Fig. 10b). The
reliability of the reporting service is most sensitive to the
failure probability of ProcessingRequestFailure (F1) of the
internal activity (a1) of service processReportRequest provided
by component instance ReportingMediator because its corre-
sponding curve has the steepest slope. The reliability of the
reporting service is most robust to the failure probabilities
of the internal activities (a2, a6, a7) of the services related
to the two FTSs, namely service viewRecentReports con-
taining the RetryStructure; service getReleasedDocumentIn-
foFromLogs and service getReleasedDocumentInfoFromDB in
the MultiTryCatchStructure. Based on this information, the
software architect can decide to put more testing effort into
component ReportingMediator, to exchange the component
with another component from a third party vendor, or run the
component redundantly.

Third, we conducted a sensitivity analysis modifying error
detection probabilities of the two FTSs (Fig. 10c). The relia-
bility of the reporting service is most sensitivity to the element
c66 of the error detection matrix of the MultiTryCatchStructure
(i.e. the probability to detect correctly InfoFromLogFailure
failures (F6) from service getReleasedDocumentInfoFrom-
Logs) because its corresponding curve has the steepest slope.
This information may be valuable to the software architect
when considering putting more development effort to improve
the correct error detections of the FTSs in the system.

Fourth, we conducted an analysis of how the predicted
reliability of the reporting service varies for fault tolerance
variants. These variants include: without the FTSs (No FTSs),
using only the RetryStructure (Only RS), using only the Multi-
TryCatchStructure (Only MTCS) and using both the FTSs (RS
and MTCS) (Fig. 10d). Variant RS and MTCS is predicted as
being the most reliable. Comparing between variants Only RS
and Only MTCS shows that using the MultiTryCatchStructure
brings higher reliability impact than using the RetryStructure
in this case. From the result of this type of analysis, the soft-
ware architect can assess the impact on the system reliability
of fault tolerance variants and hence can decide whether the
additional costs for introducing FTSs, increasing the number
of retry times in a RetryStructure, adding replicated instances
in a MultiTryCatchStructure... are justified.

With this type of analysis, it is also possible to see the
ability to reuse modeling parts of our approach for evaluating
the reliability impacts of fault tolerance variants or system
configurations. For variant Only MTCS, only a single mod-
ification to the RetryStructure is necessary (namely, setting
the retryCount of the structure to 0 to disable the structure).

For variant Only RS, also only a single modification to the
MultiTryCatchStructure is necessary (namely, setting the value
1 to all the elements of the column 0 and the value 0 to all the
elements of the other columns of the error detection matrix for
the MultiTryCatchPart 1 to disable the structure). For variant
No FTSs, the two above modifications are included.

VI. ASSUMPTIONS AND LIMITATIONS

Our approach assumes that the components fail indepen-
dently. This means that the error propagation impact is ne-
glected. We refer to our former work [11] for an analysis of
error propagation for different execution models in reliability
prediction of component-based systems.

Our approach assumes that control transitions between com-
ponents have the Markov property. This means that operational
and failure behaviors of a component are independent of its
past. However, our approach can be adapted to any higher
order Markov models to consider correlations between compo-
nent executions because the problem of Markovian assumption
in reliability modeling and prediction was treated deeply by
Goseva et al. [13].

Another assumption lies in the estimation of failure prob-
abilities for internal activities, error detection matrices for
FTSs, and usage profile. No methodology is always valid to
deal with the problem. Most of the approaches are based on
setting up tests to achieve a statistically significant amount
of measurement which the estimation can be based on [26].
Besides, component reuse may allow exploiting the historical
data which the estimation can be based on. In early design
phases, the estimation can be based on the available specifi-
cation and design documents of the system [16]. In the late
phases of the software development, when testing or field data
become available, the estimation can be based on the execution
traces obtained using profilers and test coverage tools.

VII. CONCLUSION

In this paper, we presented our extended model for an
explicit and flexible definition of reliability-relevant behavioral
aspects (i.e. error detection and error handling) of software
FTMs, and an efficient evaluation of their reliability impact
in the dependence of the whole system architecture and usage
profile. To apply our approach, component developers create
component reliability specifications and software architects
create a system reliability model using our reliability modeling
schema. Then these artifacts are transformed automatically
to Markov models for reliability prediction and sensitivity
analyses by our reliability prediction tool3. Via a case study,
we demonstrated our approach’s applicability, especially, the
ability to support design decisions and reuse modeling parts
for evaluating architecture variants under the usage profile.

We plan to completely integrate with our former work
[11], to extend with the more complex error propagation for
concurrent executions, to include more software FTSs, and to
validate further our approach.

3Our reliability modeling schema and prediction tool are open source and
available at our project website [27].

0.79

0.795

0.8

0.805

0.81

0.815

0 0.2 0.4 0.6 0.8 1

Se
rv

ic
e

re
lia

b
il

it
y

Usage probability

Service reliability vs. Usage probabilities

p(requestType=view)
p(aboutPendingDocuments=false)

(a)

0.63

0.68

0.73

0.78

0.83

0.88

0 0.05 0.1 0.15 0.2

Se
rv

ic
e

 r
el

ia
b

ili
ty

Failure probability

Service reliability vs. Failure probabilities

a₁ a₂
a₃ a₄
a₅ a₆
a₇ a₈

(b)

0.71

0.73

0.75

0.77

0.79

0.81

0.83

0.85

0.87

0 0.2 0.4 0.6 0.8 1

Se
rv

ic
e

 r
el

ia
b

ili
ty

Error detection probability

Service reliability vs. Error detection probabilities

c₀₀ of RetryStructure
c₂₂ of RetryStructure
c₀₀ of MultiTryCatchStructure
c₆₆ of MultiTryCatchStructure

(c)

0.672277

0.715881

0.756657

0.800261

0.6

0.65

0.7

0.75

0.8

0.85

No FTSs Only RS Only MTCS RS and MTCS

Se
rv

ic
e

re
lia

b
ili

ty

System configurations

Service reliability vs. System configurations

(d)

Fig. 10. Sensitivity analyses.

ACKNOWLEDGMENTS
This work was supported by 322 FIVE-JAIST (Vietnam-

Japan) program and JSPS KAKENHI Grant Number
23500060. We are grateful to François Bonnet for his invalu-
able comments that greatly helped improve this manuscript.

REFERENCES

[1] L. Pullum, Software fault tolerance techniques and implementation.
Artech House, 2001.

[2] R. C. Cheung, “A user-oriented software reliability model,” IEEE Trans.
Softw. Eng., vol. 6, no. 2, pp. 118–125, 1980.

[3] V. Cortellessa, H. Singh, and B. Cukic, “Early reliability assessment of
UML based software models,” in Proc. of the 3rd Intl. Workshop on
Softw. and Performance, 2002, pp. 302–309.

[4] K. Goseva-Popstojanova, A. Hassan, A. Guedem, W. Abdelmoez,
D. Nassar, H. Ammar, and A. Mili, “Architectural-level risk analysis
using UML,” IEEE Trans. on Softw. Eng., vol. 29, pp. 946–960, 2003.

[5] R. H. Reussner, H. W. Schmidt, and I. H. Poernomo, “Reliability
prediction for component-based software architectures,” J. Syst. Softw.,
vol. 66, no. 3, pp. 241–252, 2003.

[6] V. S. Sharma and K. S. Trivedi, “Reliability and performance of
component based software systems with restarts, retries, reboots and
repairs,” in Proc. of the 17th Intl. Symp. on SRE, 2006, pp. 299–310.

[7] W.-L. Wang, D. Pan, and M.-H. Chen, “Architecture-based software
reliability modeling,” J. Syst. Softw., vol. 79, no. 1, pp. 132–146, 2006.

[8] J. B. Dugan and M. R. Lyu, “Dependability modeling for fault-tolerant
software and systems,” in Software Fault Tolerance, M. R. Lyu, Ed.
John Wiley & Sons, 1995, pp. 109–138.

[9] S. Gokhale, M. Lyu, and K. Trivedi, “Reliability simulation of fault-
tolerant software and systems,” in Pacific Rim International Symposium
on Fault-Tolerant Systems (PRFTS), 1997, pp. 167–173.

[10] K. Kanoun, M. Kaaniche, C. Beounes, J.-C. Laprie, and J. Arlat,
“Reliability growth of fault-tolerant software,” IEEE Transactions on
Reliability, vol. 42, no. 2, pp. 205–219, Jun 1993.

[11] T.-T. Pham and X. Défago, “Reliability prediction for component-based
systems: Incorporating error propagation analysis and different execution
models,” in Proc. of 12th Intl. Conf. on Quality Softw., 2012, pp. 106–
115.

[12] S. S. Gokhale, “Architecture-based software reliability analysis:
Overview and limitations,” IEEE Trans. Dependable Secur. Comput.,
vol. 4, no. 1, pp. 32–40, 2007.

[13] K. Goseva-Popstojanova and K. S. Trivedi, “Architecture-based ap-
proaches to software reliability prediction,” Computers and Mathematics
with Applications, vol. 46, no. 7, pp. 1023–1036, 2003.

[14] A. Immonen and E. Niemel, “Survey of reliability and availability
prediction methods from the viewpoint of software architecture,” Softw.
and Systems Modeling, vol. 7, no. 1, pp. 49–65, 2008.

[15] V. S. Sharma and K. S. Trivedi, “Quantifying software performance,
reliability and security: An architecture-based approach,” J. Syst. Softw.,
vol. 80, no. 4, pp. 493–509, 2007.

[16] L. Cheung, R. Roshandel, N. Medvidovic, and L. Golubchik, “Early
prediction of software component reliability,” in Proc. of the 30th Intl.
Conf. on Softw. Engineering, 2008, pp. 111–120.

[17] Z. Zheng and M. R. Lyu, “Collaborative reliability prediction of service-
oriented systems,” in Proc. of 32nd ACM/IEEE Intl. Conf. on Softw. Eng.
- Vol. 1, 2010, pp. 35–44.

[18] P. Popic, D. Desovski, W. Abdelmoez, and B. Cukic, “Error propagation
in the reliability analysis of component based systems,” in Proc. of 16th
IEEE Intl. Symp. on Softw. Reliability Engineering, 2005, pp. 53–62.

[19] V. Cortellessa and V. Grassi, “A modeling approach to analyze the
impact of error propagation on reliability of component-based systems,”
in Proc. of 10th Intl. Conf. on CBSE, 2007, pp. 140–156.

[20] A. Mohamed and M. Zulkernine, “On failure propagation in component-
based software systems,” in Proc. of the 8th Intl. Conf. on Quality Softw.,
2008, pp. 402–411.

[21] A. Filieri, C. Ghezzi, V. Grassi, and R. Mirandola, “Reliability analysis
of component-based systems with multiple failure modes,” in Proc. of
13th Intl. Conf. on CBSE, 2010, pp. 1–20.

[22] F. Brosch, B. Buhnova, H. Koziolek, and R. Reussner, “Reliability
prediction for fault-tolerant software architectures,” in Intl. Conf. on the
Quality of Softw. Architectures - QoSA 2011, 2011, pp. 75–84.

[23] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE Trans.
Dependable Secur. Comput., vol. 1, no. 1, pp. 11–33, 2004.

[24] S. Bernardi, M. Jos, and D. C. Petriu, “A dependability profile within
MARTE,” Softw. Syst. Model., vol. 10, no. 3, pp. 313–336, 2011.

[25] K. S. Trivedi, Probability and Statistics with Reliability, Queueing,
and Computer Science Applications, 2nd Edition, 2nd ed. Wiley-
Interscience, 2001.

[26] M. Lyu, Handbook of software reliability engineering. IEEE Computer
Society Press, 1996.

[27] (2013) Reliability modeling and prediction. [Online]. Available:
http://srmp.codeplex.com/

