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Chapter 0

Introduction

Our interest in this paper is to study the expressive power of second-order logic in �nite

structures, using the methodology of �nite model theory, a branch of model theory.

Model theory or the theory of models, �rst named by Tarski in 1954, is the part of

the semantics of formalized languages that is concerned with the relationships between

syntactic constructions of axiom systems and (mainly algebraic) properties of mathemat-

ical structures (\models"). In classical model theory, the expressive power of �rst-order

language has been studied extensively already, for it obeys some fundamental principles

such as the compactness theorem, which says that if each �nite subset of a set � of sen-

tences has a model then the whole set � has a model. Another typical classical result is

L�owenheim's theorem: if a sentence has an in�nite model, then it has a countable model.

These results help us to observe some limitations of the expressive power of �rst-order

logic; L�owenheim's theorem shows that no consistent set of sentences can imply that a

model is uncountable, and the compactness theorem has been used to show that many

mathematical properties cannot be expressed by a set of �rst-order sentences { for in-

stance, there is no set of sentences whose models are precisely all the �nite models. These

two theorems we have stated are proved using classical methods of model constructions,

which rest essentially upon the realm of in�nite structures.

However, principal theorems of �rst-order logic fail and important methods become

useless when we restrict ourselves to �nite structures. The �rst landmark is Trakhtenbrot's

Theorem (1950) which implies that �rst-order logic, when restricted to the �nite, does not

admit a complete proof calculus. Later, for the last twenty years we really come to ask

questions of a modeltheoretic avor with the restriction to �nite structures, and it turned

out that the questions are deeply connected to computational aspects, as the proof of

Trakhtenbrot's theorem is based on the undecidability of the halting problem for Turing

machines. The following facts of great importance have been shown in the �eld, which

show evidence of the close relation between �nite model theory and complexity theory.

Theorem Let K be a class of ordered �nite structures.

K 2 LOGSPACE i� K is axiomatizable in FO(DTC)

K 2 NLOGSPACE i� K is axiomatizable in FO(TC)

K 2 PTIME i� K is axiomatizable in FO(IFP)
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K 2 NPTIME i� K is axiomatizable in �1
1

K 2 PSPACE i� K is axiomatizable in FO(PFP)

(�1
1 denotes the fragment of second-order logic consisting of the sentences of the form

9X1 � � � 9Xn , where  is �rst-order) 2

The logics listed on the right sides of the equivalences except �1
1 are called �xed-point

logics, which have been introduced to strengthen the expressive power of �rst-order logic

by adding the operations that represent recursive procedures. This theorem provides the

logical characterizations of complexity classes, therefore we are in a position to obtain

logical analogies of major problems in complexity theory. For example, the P 6= NP-

problem now amounts to the question whether two logics FO(IFP) and �1
1 have the same

expressive power in �nite structures or not.

From the point of view indicated in the theorem mentioned above, one will be con-

vinced that it is of great use to inquire the expressive powers of the logics in �nite struc-

tures, for it resolves itself to check up the relations among complexity classes. However,

as already stated above, many important methods to serve this purpose in classical model

theory become useless when restricting oneself to �nite structures. Still, the gametheo-

retic method of Ehrenfeucht survives, which in fact is almost the only technique available

in �nite model theory. The Ehrenfeucht method provides a simple characterization of the

de�nability in �rst-order logic in terms of a game. Therefore it has been one of the major

issue in this area to investigate the applications of the Ehrenfeucht method and to gener-

alize the method for some extensions of �rst-order logic. For example, the straightforward

generalization for MSO (monadic second-order logic), that is, second-order logic in which

only unary relation variables are allowed, has been known already (see [5]).

Our goal in the present paper is to propose some generalizations of the Ehrenfeucht

method and to give some applications. This paper is divided into several chapters, and

the contents of each chapter are constructed in the following way.

In Chapter 1 we introduce some basic notions related to �rst-order logic, that are

needed in the following chapters.

In Chapter 2 we give further informations concerned with the theorem described above.

There the precise de�nitions of second-order logic and �xed-point logics are given, and

then what is known as the theory of descriptive complexity is surveyed.

In Chapter 3 we present the Ehrenfeucht method for �rst-order logic and give some

examples of mathematical properties that are known to be inexpressible in �rst-order

logic. For instance, it has been shown in [5] that the class of �nite structures of even

cardinality is not expressible in �rst-order logic.

Chapter 4 forms the core of this paper, where we attempt to generalize the method

of Ehrenfeucht, mainly for second-order logic. After we mention the method for MSO we

give a new application of it, where we show that, even in MSO, the class of �nite structures

of even cardinality is not expressible. Further, we show that the method for MSO can

be extended to the method for general second-order logic, removing the limitation on the

arity of relation variables. And the extension enables us to introduce a new method for

�1
1, which provides us a gametheoretic characterization of �1

1-axiomatizability. From the
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viewpoint of the theorem mentioned above, it corresponds precisely to the computability

in NPTIME. Therefore it contains a potential for throwing a new light on the problems

concerned with NPTIME in complexity theory.

The contents of Chapter 2 and Chapter 3 are based on [5].
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Chapter 1

Preliminaries

The purpose of this section is to �x notations and terminology for the basic notions related

to �rst-order logic. For more details, see [4][15].

1.1 Structures

A vocabulary is a �nite nonempty set that consists of relation symbols P , Q, R, . . . and

constant symbols c, d, . . .. Every relation symbol is equipped with a natural number,

called its arity. Vocabularies are denoted by � , �, . . .. A vocabulary is relational if it

does not contain constants.

A structure A of a vocabulary � (for short: a � -structure) consists of the following things:

(a) A nonempty set A, called the universe of A.

(b) For each n-ary relation symbol R of � , an n-ary relation RA in A.

(c) For each constant symbol c of � , an element cA of A.

Two � -structures A and B are isomorphic, written A �= B, if there is an isomorphism

from A to B, that is, a bijection � : A! B preserving relations and constants:

{ for n-ary R 2 � and a1; . . . ; an 2 A,

RAa1 . . . an i� RB�(a1) . . .�(an)

{ for c 2 � , �(cA) = cB.

We give some examples of structures.
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Graphs

Let � = fEg with a binary relation symbol E. A graph is a � -structure G = (G;EG)

satisfying

(a) for all a 2 G, not EGaa

(b) for all a; b 2 G, if EGab then EGba.

If only (a) is required, we call it a digraph (or, a directed graph).

Let G be a digraph. If n � 1 and

EGa0a1; E
Ga1a2; . . .E

Gan�1an

then a sequence a0; . . . ; an is a path from a0 to an of length n. If a0 = an then a path

a0; . . . ; an is a cycle. G is acyclic if there is no cycle. A path a0; . . . ; an is Hamiltonian if

G = fa0; . . . ; ang and ai 6= aj for i 6= j. If EGana0 in addition, we call it a Hamiltonian

circuit.

Let G be a graph. Write a � b if a = b or if there is a path from a to b. Clearly, � is an

equivalence relation. The equivalence class of a is called the (connected) component of a.

G is connected if a � b for all a; b 2 G, that is, if there is only one connected component.

We denote by d(a; b) the length of a shortest path from a to b; more precisely,

d(a; b) =1 i� a =� b; d(a; b) = 0 i� a = b;

and otherwise,

d(a; b) = minfn � 1 j there are a0; . . . ; an 2 G such that

a = a0; b = an; and E
Gaiai+1 for i < ng

Obviously,

d(a; c) � d(a; b) + d(b; c);

where we use the natural conventions for 1.

Orderings

Let � = f<g with a binary relation symbol <. A � -structure A = (A;<A) is called an

ordering if for all a, b, c 2 A:

(a) not a <A a

(b) a <A b or b <A a or a = b

(c) if a <A b and b <A c then a <A c

6



Sometimes we consider �nite orderings also as f<, S, min, maxg-structures. Here S is a

binary relation symbol representing the successor relation, and min and max are constants

for the �rst and the last element of the ordering, respectively (note that the successor

relation is always possible in a �nite ordering, the �rst and the last elements are as well).

Thus, a �nite f<, S, min, maxg-structure A is an ordering if, in addition to (a), (b), (c),

for all a, b 2 A:

(d) SAab i� (a <A b and for all c, if a <A c then b <A c or b = c)

(e) minA <A a or minA = a

(f) a <A maxA or a = maxA

Suppose that �0 is a vocabulary with f<g � �0 � f<;S;min;maxg and let � be an

arbitrary vocabulary with �0 � �. A �nite �-structure A is said to be ordered if the

reduct Aj�0 (i.e. the �0-structure obtained from A by omitting the interpretations of the

symbols in �n�0) is an ordering.

1.2 First-Order Logic

Fix a vocabulary � . A �rst-order language has symbols as the following.

{ the variables v1, v2, v3, . . .

{ the symbols :, _, and 9

{ the equality symbol =

{ ), (

{ the symbols in �

A term of vocabulary � is a variable or a constant in � . Henceforth, we will often use

letters x, y, z, . . . for variables and t, t1, t2, . . . for terms.

The formulas of �rst-order logic of vocabulary � are de�ned by the following inductive

de�nition:

(a) If t0 and t1 are terms, then t0 = t1 is a formula.

(b) If R in � is n-ary and t1; . . . ; tn are terms, then Rt1 . . . tn is a formula.

(c) If ' is a formula, then :' is a formula.

(d) If ' and  are formulas, then (' _  ) is a formula.

(e) If ' is a formula and x a variable, then 9x' is a formula.
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We denote by FO[� ] the set of formulas of �rst-order logic of vocabulary � . Formulas

obtained by (a) or (b) are called atomic formulas. We use some de�ned symbols; ('^  )

is an abbreviation of :(:'_: ); ('!  ) is an abbreviation of (:'_ ); ('$  ) is an

abbreviation of ((:' _  ) ^ (: _ ')); and 8x' is an abbreviation of :9x:'.

We will often omit parentheses in formulas if they are not essential like the outermost

parenthesis in the disjunction (' _  ).

The set free(') of free variables of a formula ' is de�ned by:

{ If ' is atomic then the set free(') of free variables of ' is the set of variables

occurring in '

{ free(:') := free(')

{ free(' _  ) := free(') [ free( )

{ free(9x') := free(') n fxg

We use the notation '(x1; . . . ; xn) to indicate that x1; . . . ; xn are distinct and free(')

� fx1; . . . ; xng without implying that all of x1; . . . ; xn are actually free in '. Often

we abbreviate an n-tuple x1; . . . ; xn of variables by �x, for example, writing '(�x) for

'(x1; . . . ; xn).

Let A be a � -structure. An assignment in A is a function � with domain of the set

of variables and with values in A, � : fvn j n � 1g ! A. Extend � to a function de�ned

for all terms by setting �(c) := cA for c in � . We denote by �ax the assignment that agree

with � except �ax(x) = a.

We de�ne the relation

A j= '[�]

(\' is true in A under �") as follows:

A j= t1 = t2[�] i� �(t1) = �(t2)

A j= Rt1 . . . tn[�] i� RA�(t1) . . .�(tn)

A j= :'[�] i� not A j= '[�]

A j= (' _  )[�] i� A j= '[�] or A j=  [�]

A j= 9x'[�] i� there is an a 2 A such that A j= '[�ax]

Note that the truth or falsity of A j= '[�] depends only on the values of � for those

variables which are free in '. That is, if �1(x) = �2(x) for all x 2 free('), then A j= '[�1]

i� A j= '[�2]. Thus, if ' = '(x1; . . . ; xn) and a1 = �(x1); . . . ; an = �(xn), then we may

write A j= '[a1; . . . ; an] for A j= '[�]. In particular, if ' is a sentence, then the truth or

falsity of A j= '[�] is completely independent of �. Thus, we may write A j= ' (A is a
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model of '). For a set � of formulas, A j= �[�] means that A j= '[�] for all ' 2 �. � is

satis�able if there is a structure A and an assignment � in A such that A j= �[�].

A formula  is a consequence of �, written � j=  , if A j=  [�] whenever A j= �[�].

The formula  is logically valid , written j=  , if ; j=  , that is, if  is true in all structures

under all assignments. Formulas ' and  are logically equivalent if j= '$  . When only

taking into consideration �nite structures, we use the notations � j=�n  and j=�n  .

At some places it will be convenient to assume that �rst-order logic contains two zero-ary

relation symbols T, F. In every structure, T and F are interpreted as TRUE and FALSE,

respectively. Hence, the atomic formula T is logically equivalent to 9x(x = x) and F to

:9x(x = x). If � = f'1; . . . ; 'ng we sometimes write
V
� for '1 ^ . . . ^ 'n and

W
� for

'1 _ . . . _ 'n. In case � = ; we set
V
� =T and

W
� =F.

The quanti�er rank qr(') of a formula ' is the maximum number of nested quanti�ers

occurring in it:

qr(') := 0 if ' is atomic; qr(:') := qr(');

qr(' _  ) := maxfqr('), qr( )g; qr(9x') := qr(') + 1

It can be shown that every �rst-order formula is logically equivalent to a formula in

prenex normal form, that is, a formula of the form Q1x1 . . .Qsxs , where Q1; . . . ; Qs 2

f8;9g and  is quanti�erfree. Such a formula is called �n, if the string of quanti�ers

consists of n consecutive blocks, where in each block all quanti�ers are of the same type

(i.e. all universal or all existential), adjacent blocks contain quanti�ers of di�erent type,

and the �rst block is existential. �n-formulas are de�ned in the same way, but now we

require that the �rst block consists of universal quanti�ers. A �n-formula is a formula

logically equivalent to both a �n-formula and a �n-formula.

Given a formula '(x; �z) and n � 1, 9�nx'(x; �z) is an abbreviation for the formula

9x1 . . .9xn(
^

1�i�n

'(xi; �z) ^
^

1�i<j�n

:xi = xj)

expressing that there are at least n elements x with '(x; �z). Similarly, 9�nx'(x; �z) is de-

�ned by :9�n+1x'(x; �z), and 9=nx'(x; �z) is de�ned by 9�nx'(x; �z)^9�nx'(x; �z). More-

over, we set

'�n := 9�nx(x = x); '�n := 9�nx(x = x); '=n := 9=nx(x = x)

Clearly,

A j= '�n i� kAk � n

and similarly for '�n and '=n.

1.3 Model Classes

Fix a vocabulary � . For a sentence ' of FO(�) we use notations arbMod(') and Mod('),

which denote the class of arbitrary (�nite and in�nite) models of ' and the class of �nite

9



models of ', respectively. If � is an isomorphism from A to B, '(x1; . . . ; xn) 2 FO[� ],

and a1; . . . ; an 2 A, then

A j= '[a1; . . . ; an] i� B j= '[�(a1); . . . ; �(an)]

In particular, if ' is a sentence, then

A j= ' i� B j= '

Hence, arbMod(') and Mod(') are closed under isomorphism, that is,

A 2 Mod(') and A �= B imply B 2 Mod(') (1:1)

and similarly for arbMod('). Later we will discuss various logics extended from �rst-

order logic. In all of these logics only structural properties, that is, properties invariant

under isomorphisms, will be expressible. In fact, (1.1) says that only classes of structures

closed under isomorphisms can be axiomatizable. We therefore agree upon the following

convention: All classes K of structures considered will tacitly be assumed to be closed

under isomorphism, that is

A 2 K and A �= B imply B 2 K

In the following, axiomatizability by a single sentence in �nite structures will be a

major issue.

De�nition 1.3.1 Let K be a class of � -structures and L be a logic. K is axiomatizable

in L, if there is a sentence ' of L of vocabulary � such that K = Mod('). 2
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Chapter 2

Some Extensions of First-Order

Logic

2.1 Second-Order Logic

Second-order logic, SO, is an extension of �rst-order logic which allows to quantify over

relations. In addition to the symbols of �rst-order logic, its vocabulary contains, for each

n � 1, countably many relation variables V n
1 ; V

n
2 ; . . .. We use letters X;Y; . . . for relation

variables.

We de�ne the set of second-order formulas of a vocabulary � to be the set generated by

the rules for �rst-order formulas extended by:

{ If X is n-ary and t1; . . . ; tn are terms then Xt1 . . . tn is a formula.

{ If ' is a formula and X is a relation variable then 9X' is a formula.

To de�ne the free occurrence of a variable or of a relation variable in a second-order

formula, we add the following rule:

{ free(9X') := free(') n fXg

Before we de�ne the notion of satisfaction, we need to extend the assignment function

� to a function de�ned also for relation variables, but now �(X), a value of a relation

variable X , is a relation over A of arity corresponding to X . The satisfaction relation j=

is extended by the following rule:

A j= 9X'[�] i� there is a relation R over A of arity corresponding to X

such that A j= '[�
R

X ]

Then, given ' = '(x1; . . . ; xn; Y1; . . . ; Yk) with free (individual and relation) variables

among x1; . . . ; xn; Y1; . . . ; Yk, a � -structure A, elements a1; . . . ; an 2 A, and relations

R1; . . . ; Rk over A of arities corresponding to Y1; . . . ; Yk, respectively,

A j= '[a1; . . . ; an; R1; . . . ; Rk]

11



means that a1; . . . ; an together with R1; . . . ; Rk satisfy ' in A.

When we allow only unary relation variables (\set variables"), we get the fragment

MSO of second-order logic known as monadic second-order logic.

Using equivalences such as

j= :9X'$ 8X:'; j= (' _ 8Y  )$ 8Y (' _  ) if Y is not free in '

we can show that each (M)SO-formula is logically equivalent to an (M)SO-formula in

prenex normal form, that is, to a formula of the form

Q1�1; . . . ; Qs�s 

where Q1; . . . ; Qs 2 f8;9g, and where �1; . . . ; �s are �rst-order or second-order variables

and  is quanti�erfree. Moreover, since

j= 9xQ1�1; . . . ; Qs�s $ 9XQ1�1; . . . ; Qs�s (9
=1xXx ^ 8x(Xx!  ))

j= 8xQ1�1; . . . ; Qs�s $ 8XQ1�1; . . . ; Qs�s (9
=1xXx! 8x(Xx!  ))

every (M)SO-formula is logically equivalent to one in prenex normal form in which each

second-order quanti�er precedes all �rst-order quanti�ers. Such a formula is called (M)�1
n,

if the string of second-order quanti�ers consists of n consecutive blocks, where in each

block all quanti�ers are of the same type (i.e. all universal or all existential), adjacent

blocks contain quanti�ers of di�erent type, and the �rst block is existential. (M)�1
n-

formulas are de�ned in the same way, but now we require that the �rst block consists of

universal quanti�ers.

Clearly, the negation of a �1
n-formula is logically equivalent to a �1

n-formula, and the

negation of a �1
n-formula is logically equivalent to a �1

n-formula. �1
n denotes the set of

formulas that are logically equivalent to both a �1
n-formula and a �1

n-formula.

2.2 Logics with Fixed-Point Operators

In this section we introduce �xed-point logics, such as inationary �xed-point logic, partial

�xed-point logic, deterministic transitive closure logic and transitive closure logic. These

logics are obtained from �rst-order logic by adding operations well-suited to describe

iterative and recursive procedures.

FO(IFP) and FO(PFP)

Let M be a �nite nonempty set. Pow(M) denotes the power set of M . A function

F : Pow(M) ! Pow(M), de�ned by F0 = ; and Fn+1 = F (Fn), induces a sequence

;; F (;); F (F (;)); . . . of subsets of M . Suppose there is an n0 � 0 such that Fn0+1 = Fn0 ,

that is, F (Fn0) = Fn0 , then Fm = Fn0 for all m � n0. Then Fn0 is denoted by F1, and

we say that the �xed-point F1 of F exists . In case the �xed-point F1 does not exist, we

agree to set F1 := ;.

F is said to be inationary if for all X � M , then X � F (X).
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Lemma 2.2.1 (a) If F1 exists then F1 = F2kMk�1.

(b) If F is inationary then F1 exists and F1 = FkMk.

(c) If F is arbitrary and F 0 : Pow(M)! Pow(M) is given by F 0(X) := X [F (X) then

F 0 is inationary.

Proof. (a) Suppose F1 exists. As Pow(M) has 2kMk elements, there are m < 2kMk and

l � 1 such that Fm = Fm+l. If l = 1 then Fm = Fm+1, and hence, Fm = F1 = F2kMk�1. If

Fm 6= Fm+1 then for all k � 0 we have Fm+k�l 6= Fm+k�l+1 , so F1 does not exist.

(b) By assumption, F0 � F1 � . . . � M . Since M has kMk elements, this sequence

must get constant before FkMk.

(c) Trivial. 2

Let '(x1; . . . ; xk; X) be a formula in the vocabulary � , where the relation variable X

has arity k, and let A be a � -structure. Then ' and A give rise to an operation F' :

Pow(Ak)! Pow(Ak) de�ned by

F'(R) := f(a1; . . . ; ak) j A j= '(a1; . . . ; ak; R)g.

Note that for the function (F')0 obtained from F' as in part (c) of the preceding lemma

we have (F')0 = F (X�x_').

One obtains Inationary Fixed-Point Logic FO(IFP) and Partial Fixed-Point Logic

FO(PFP) by closing �rst-order logic FO under inationary and arbitrary �xed-points of

de�nable operations, respectively. We state the precise de�nitions.

For a vocabulary � the class FO(IFP)[� ], which is the set of FO(IFP) formulas of vocab-

ulary � , is given by the following calculus.

� An atomic second-order formula over � is a formula.

� If ' ,  are formulas, then :' , ' _  , 9x' are formulas.

� If ' is a formula, then [IFP�x;X']�t is a formula.

(where the length of �x and �t are the same and coincide with the arity of X)

For FO(PFP) we replace the last rule by

� If ' is a formula, then [PFP�x;X']�t is a formula.

(where the length of �x and �t are the same and coincide with the arity of X)

Sentences are formulas without free �rst-order and second-order variables, where the free

occurrence of variables is de�ned in the standard way, adding, for example, for FO(IFP)

the clause

free([IFP�x;X']�t) := free(�t) [ (free(')nf�x;Xg)

The semantics is de�ned inductively with respect to the calculus above, the meanings

of sentences [IFP�x;X']�t and [PFP�x;X']�t being as follows.

A j= [IFP�x;X']�t i� �t 2 F (X�x_')
1

A j= [PFP�x;X']�t i� �t 2 F'
1
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Example 2.2.2 Let G = (G;EG) be a graph and

'(x; y;X) := (Exy _ 9z(Xxz ^ Ezy))

with xy corresponding to �x above. Then for n � 1,

F'
n = f(a; b) j there is a path of length � n from a to bg

and hence,

F '
1 = f(a; b) j there is a path from a to bg

Therefore, the formula

 0(x; y) := [IFPxy;XExy _ 9z(Xxz ^Ezy))]xy

of FO(IFP) expresses that x, y are connected by a path. Hence, the class of connected

graphs is axiomatizable in FO(IFP) by 8x8y(:x = y !  0(x; y)) (and the graph axioms).

However, the class of connected graphs is not axiomatizable in �rst-order logic (even in

M�1
1), as we will show in the next chapter (see Proposition 3.4.5). 2

FO(TC) and FO(DTC)

Let R be a binary relation on a set M , R � M2. The transitive closure TC(R) of R is

de�ned by

TC(R) = f(a; b) 2M2 j there exist n > 0 and e0; . . . ; en 2 M such that

a = e0; b = en; and for all i < n; (ei; ei+1) 2 Rg

And the deterministic transitive closure DTC(R) is de�ned by

DTC(R) = f(a; b) 2M2 j there exist n > 0 and e0; . . . ; en 2 M such that

a = e0; b = en; and for all i < n; ei+1 is the unique e for

which (ei; e) 2 Rg

Transitive Closure Logic FO(TC) and Deterministic Transitive Closure Logic FO(DTC)

are obtained by closing FO under the transitive closure and the deterministic transitive

closure of de�nable relations, respectively.

For a vocabulary � the class of formulas of FO(TC)[� ], which is the set of FO(TC) formulas

of vocabulary � , is given by the following calculus.

� An atomic �rst-order formula over � is a formula.

� If ' ,  are formulas, then :' , ' _  , 9x' are formulas.

� If ' is a formula, then [TC�x;�y']�s�t is a formula.

(where the variables in �x�y are pairwise distinct and where the tuples �x; �y; �s and �t

are all of the same length.)
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For FO(DTC) we replace the last rule by

� If ' is a formula, then [DTC�x;�y']�s�t is a formula.

(where the variables in �x�y are pairwise distinct and where the tuples �x; �y; �s and �t

are all of the same length.)

We de�ne

free([TC�x;�y']�s�t) := free(�s) [ free(�t) [ (free(')nf�x; �yg)

and similarly for FO(DTC).

The semantics is de�ned inductively with respect to the calculus above, the meanings

of [TC�x;�y']�s�t and [DTC�x;�y']�s�t being as follows.

A j= [TC�x;�y'(�x; �y)]�s�t i� (�s; �t) 2 TC(f(�a;�b) j A j= '(�a;�b)g)

A j= [DTC�x;�y'(�x; �y)]�s�t i� (�s; �t) 2 DTC(f(�a;�b) j A j= '(�a;�b)g)

Example 2.2.3 (a) A graph is connected if it is a model of

8x8y(:x = y ! [TCx;yExy]xy)

(b) For � = f<; S;min;maxg the sentence

:[DTCx;y9z(Sxz ^ Szy)]min max

of FO(DTC) together with the ordering axioms axiomatizes the class of orderings

of even cardinality. On the contrary, the evenness property is not de�nable in �rst-

order logic, as we will show in the next chapter (see Example 3.3.5). 2

To compare the expressive power of logics we introduce the following relations.

De�nition 2.2.4 Let L1 and L2 be logics.

(a) L1 � L2 (L1 is at most as expressive as L2) if for every � and every sentense

' 2 L1[� ] there is a sentense  2 L2[� ] such that Mod(') = Mod( ).

(b) L1 � L2 (L1 and L2 have the same expressive power) if L1 � L2 and L2 � L1.

(c) L1 < L2 if L1 � L2 and not L2 � L1. 2

Clearly, FO < SO where FO and SO stand for �rst-order logic and second-order logic,

respectively.

Proposition 2.2.5 (a) FO(IFP) � FO(PFP)

(b) FO(DTC) � FO(TC)

(c) FO(TC) � FO(IFP)

Proof. Note that

(a) j=�n [IFP�x;X']�t$ [PFP�x;X(X�x _ ')]�t

(b) j=�n [DTC�x;�y'(�x; �y)]�s�t$ [TC�x;�y('(�x; �y) ^ 8�z('(�x; �z)! �z = �y))]�s�t

(c) j=�n [TC�x;�y'(�x; �y)]�s�t$ [IFP�x�y;X('(�x; �y) _ 9�v(X �x�v ^ '(�v; �y)))]�s�t 2
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2.3 Descriptive Complexity Theory

Descriptive complexity theory analyzes the complexity of all queries de�nable in a given

logic, the central question being the following: Given a complexity class C, is there a logic

L such that the queries de�nable in L are precisely the queries in C? In this section, we

briey glance over the descriptive characterizations of complexity classes using �xed-point

logics just introduced in the preceding section.

First, we should recall basic de�nitions and results from computation theory, to �x

our computation model for structures as inputs, and to introduce the corresponding com-

plexity class.

In the following, we �x a �nite alphabet �. A Turing machine M is a �nite device

that performs operations on a tape which is bounded to the left and unbounded to the

right and divided into cells . The machine operates stepwise, each step leading from one

situation to a new one. In any situation every cell of the tape either contains a single

symbol from � or is blank. In the latter case we say that it contains the symbol \blank".

There is one exception: the leftmost or \virtual" cell always contains an endmark, the

\virtual" letter � (which is not in �). M has a reading/writing head which, in any

situation, scans a single cell of the tape and, in any step of a computation, erases or

replaces the scanned symbol by another one and moves one cell to the left or to the right

or remains at its place.

In every situation, M is in one of the states of a �nite set State(M), the set of states

of M . State(M) contains a special state s0, the initial state, and special states s+, the

accepting state, and s�, the rejecting state. We assume that s0, s+, and s� are pairwise

distinct. The action or behaviour of M in a situation depends on the current state of M

and on the symbol currently being scanned by the head. It is given by Instr(M), the set

of instructions of M . Each instruction has the form

sa! s0bh (2:1)

where

{ s; s0 2 State(M); s 6= s+; s 6= s�

{ a; b 2 � [ f�; blankg and (a = � i� b = �)

{ h 2 f�1; 0; 1g; and if a = � then h 6= �1

The instruction (2.1) means: If you are in state s and your head scans a cell with symbol

a, replace a by b, move your head one cell to the left (h = �1), or to the right (h = 1),

or don't move (h = 0); �nally, change to state s0.

A machine M is \deterministic", if for all s 2 State(M) and a 2 � [ f�; blankg there

is at most one instruction of the form (2.1) in Instr(M).

As usual, �� denotes the set of words over � and �+ the set of nonempty words over

�. Let u 2 ��, u = a1 . . . ar with ai 2 �. M is started with u if M begins a computation

in state s0 in the situation.
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The computation proceeds stepwise, each step corresponding to the execution of one

instruction of M . The machine stops when it is in a state s scanning a symbol a 2

� [ f�; blankg such that there is no instruction of the form (2.1) in Instr(M). If s = s+
we speak of an accepting run, if s = s� of a rejecting run. M accepts u if there is at least

one accepting run ofM started with u, andM rejects u if all runs are �nite and rejecting.

Subsets of �+ are called languages . A language L � �+ is accepted by M if for all

u 2 �+,

M accepts u i� u 2 L

L is decided by M if, in addition

M rejects u i� u =2 L

Clearly, if M decides L then M accepts L. L is said to be decidable if it is decided by

some deterministic Turing machine, and acceptable or enumerable if it is accepted by some

nondeterministic Turing machine.

For a function f : N ! N we say that M is f time-bounded , if for all u 2 �+

accepted by M there is an accepting run of M started with u which has length at most

f(juj) (juj denotes the length of the word u). AndM is f space-bounded, if for all u 2 �+

accepted by M there is an accepting run which uses at most f(juj) cells before stopping.

N [x] denotes the set of polynomials with coe�cients from N . A language L � �+ is

in PTIME (\polynomial time") or in PSPACE (\polynomial space"), if it is accepted

by a deterministic machine that is p time-bounded or p space-bounded, respectively, for

some polynomial p 2 N [x]. The classes NPTIME (\nondeterministic polynomial time")

and NPSPACE (\nondeterministic polynomial space") are de�ned similarly, now allowing

nondeterministic machines.

Immediately from the de�nitions one gets

PTIME � NPTIME and PTIME � PSPACE � NPSPACE

and one can show that

NPTIME � PSPACE and PSPACE = NPSPACE

Hence,

PTIME � NPTIME � PSPACE (= NPSPACE)

We have adopted the Turing machine model which belongs to the most popular one

in theoretical computer science. Our choice is motivated by the fact that Turing ma-

chine computations allow for simple descriptions and for natural de�nitions of complexity

classes. However, as Turing machines deal only with strings, any data must be coded by

strings. Hence, when we regard �nite structures as inputs to machines, we require that

structures are ordered so as to make it easy to represent them by sequence of strings.

Recall the de�nition:

De�nition 2.3.1 Let f<g � �0 � f<;S;min;maxg and �0 � � . A � -structure A is

ordered if the reduct Aj�0 is an ordering.
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Suppose � = �0[�1, say �1 = fR1; . . . ; Rk; c1; . . . ; clg, and let A be an ordered � -structure.

We say that a Turing machineM is started with A, if the input tapes contain the informa-

tion on A. The informations of A must include its size kAk, relations RA
i for Ri 2 �1, and

constants cAi for ci 2 �1. Of course, there is no canonical way of representing structures by

strings. Still, one can agree that any way of representation will do as long as it is a \nat-

ural" way, for it makes no di�erence within the complexity classes under consideration.

We will not mention a speci�c method of representation here. For details, see [5].

Let K be a class of ordered � -structures. M accepts K if M accepts exactly those

ordered � -structures that lie in K. For classes of structures the de�nitions of PTIME

(\polynomial time"), NPTIME (\nondeterministic polynomial time"), PSPACE (\poly-

nomial space") are introduced in the obvious way. For example,

{ K is in PTIME i� there is a deterministic machine M and a polynomial p 2 N [x]

such that M accepts K and M is p time-bounded.

And we de�ne

{ K is in NLOGSPACE, \nondeterministic logarithmic space" (LOGSPACE, \deter-

ministic logarithm space") i� there is a (deterministic) machine M and d � 1 such

that M accepts K and is d � log space-bounded (log n stands for the least natural

number � log2 n).

Now we are in a position to look over the main results obtained so far in the �eld.

The following theorem provides the bridge between logic and complexity theory

Theorem 2.3.2 Let K be a class of ordered � -structures.

K 2 LOGSPACE i� K is axiomatizable in FO(DTC)

K 2 NLOGSPACE i� K is axiomatizable in FO(TC)

K 2 PTIME i� K is axiomatizable in FO(IFP)

K 2 NPTIME i� K is axiomatizable in �1
1

K 2 PSPACE i� K is axiomatizable in FO(PFP)

(�1
1 denotes the fragment of second-order logic consisting of the sentences of the form

9X1 � � � 9Xn , where  is �rst-order) 2

These characterizations of complexity classes are due to Immerman [13] (LOGSPACE,

NLOGSPACE), Immerman [12] and Vardi [16] (PTIME), Fagin [7] (NPTIME), Abiteboul

and Vianu [1] (PSPACE). Theorem 2.3.2 allows us to convert problems, methods, and

results in complexity theory into logic and vice versa. We give some examples.

The following consequences are immediate from Theorem 2.3.2.

Corollary 2.3.3 (a) PTIME = PSPACE

i� FO(IFP) � FO(PFP) on ordered structures

(b) PTIME = NPTIME

i� FO(IFP) � �1
1 on ordered structures 2
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Moreover,

Corollary 2.3.4 The following are equivalent:

(i) PTIME = NPTIME

(ii) FO(IFP) � SO on ordered structures

Proof. If (ii) holds then �1
1 � FO(IFP) on ordered structures, thus NPTIME � PTIME.

Conversely, if NPTIME = PTIME then, on ordered structures, �1
1 � FO(IFP). As �1

1 is

closed under existential quanti�cations and FO(IFP) under negations and disjunctions,

an easy induction yields SO � FO(IFP): For a logic L we write ' e2 L to express that '

is equivalent to an L-sentence. Assume ' 2 SO, ' = : and suppose  e2 FO(IFP), then

we have : e2 FO(IFP). In the cases ' =  _� and ' = 9x we argue similarly. Suppose

' = 9X and  e2 FO(IFP). By the assumption FO(IFP) � �1
1, we have  e2 �1

1 and

hence 9X e2 �1
1 � FO(IFP). 2

Whereas the preceding corollaries contain the translation of problems from complexity

theory to logics we now turn to the translation of a result . In complexity theory one shows

LOGSPACE � NLOGSPACE � PTIME � NPTIME � PSPACE

and

LOGSPACE 6= PSPACE

Hence, by Theorem 2.3.2,

Corollary 2.3.5 On ordered structures,

(a) FO(DTC) � FO(TC) � FO(IFP) � �1
1 � FO(PFP)

(b) FO(DTC) =� FO(PFP) 2

Note that most of the �-relations in (a) are immediate from the Proposition 2.2.5.
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Chapter 3

Ehrenfeucht-Fra��ss�e Game

The Ehrenfeucht-Fra��ss�e method is one of the few tools of model theory that survive

when we restrict our attention to �nite structures. In this chapter we present the method

in its gametheoretic and its algebraic form due to Ehrenfeucht and Fra��ss�e, respectively.

Although we describe the method in a context of �nite model theory, one will easily

veri�es that the method also applies to the case when we take in�nite structures into

consideration.

We �x a vocabulary � through this chapter, so that we will not refer to the vocabulary

unless stated otherwise.

The style of the descriptions in this chapter is due to [5].

3.1 Elementary Classes

In this section we observe some easy remarks concerning the expressive power of �rst-order

logic in the �nite.

Proposition 3.1.1 Every �nite structure can be characterized in �rst-order logic up to

isomorphism, that is, for every �nite structure A there is a sentence 'A of �rst-order logic

such that for all B we have

B j= 'A i� A �= B

Proof . Suppose A = fa1; . . . ; ang. Set �a = a1; . . . ; an. Let

�n := f j  has the form Rx1 . . .xk; x = y; or c = x

and variables among v1; . . . ; vng

and

'A := 9v1 . . .9vn(
^
f j  2 �n; A j=  [�a]g ^^

f: j  2 �n; A j= : [�a]g ^

8vn+1(vn+1 = v1 _ . . . _ vn+1 = vn))

2
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Corollary 3.1.2 Let K be a class of �nite structures. Then there is a set � of �rst-order

sentences such that

K = Mod(�)

that is, K is the class of �nite models of �.

Proof . Let K be a class of �nite structures. For each n, there are only �nite number

of pairwise nonisomorphic structures of cardinality n. Let fA1; . . . ;Akg be a maximal

subset K of pairwise nonisomorphic structures of cardinality n. Set

 n := ('=n ! ('A1
_ . . . _ 'AK ))

Then K = Mod(f n j n � 1g). 2

In the following, we want to know whether a class K of �nite structures is axiomatiz-

able by a single �rst-order sentence, that is, whether K is elementary in the sense of the

following de�nition.

De�nition 3.1.3 Let K be a class of �nite structures. K is called axiomatizable in

�rst-order logic or elementary , if there is a sentence ' of �rst-order logic such that K =

Mod('). 2

For structures A and B and m 2 N we write A �m B and say that A and B are

m-equivalent, if A and B satisfy the same �rst-order sentences of quanti�er rank � m,

that is, for any sentence ' of quanti�er rank � m

A j= ' i� B j= '

The following theorem contains a necessary condition for a class K to be elementary.

Proposition 3.1.4 Let K be a class of �nite structures. Suppose that for every m there

are �nite structures A and B such that

A 2 K;B =2 K; and A �m B

Then K is not axiomatizable in �rst-order logic.

Proof. Let ' be any �rst-order sentence. Set m := qr('). By our assumption there are

A and B such that A 2 K, B =2 K, and A �m B; hence, K 6=Mod('). 2

3.2 Ehrenfeucht's Theorem

In this section we present a gametheoretic characterization of the relation �m. Along

with Proposition 3.1.4, it can be used for checking up the axiomatizability of a class of

structures in �rst-order logic.

The notion of partial isomorphism plays a central role in this characterization.
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De�nition 3.2.1 Assume A and B are structures. Let p be a map with do(p) � A and

rg(p) � B, where do(p) and rg(p) denote the domain and the range of p, respectively.

Then p is said to be a partial isomorphism from A to B if

{ p is injective

{ for every c 2 � : cA 2 do(p) and p(cA) = cB

{ for every n-ary R 2 � and all a1; . . . ; an 2 do(p),

RAa1 . . . an i� RBp(a1) . . . p(an)

We write Part(A,B) for the set of partial isomorphisms from A to B. 2

In the following we identify a map p with its graph f(a; p(a)) j a 2 do(p)g. Then p � q

means that q is an extension of p.

Remark 3.2.2 (a) The empty map, p = ;, is a partial isomorphism from A to B just

in case the vocabulary contains no constants.

(b) If p 6= ; is a map with do(p) � A and rg(p) � B, then p is a partial isomorphism

from A to B i� do(p) contains cA for all constants c 2 � and p : do(p)A �= rg(p)B

(where do(p)A and rg(p)B denote the substructures of A and B with universes do(p)

and rg(p), respectively).

(c) For �a = a1 . . . an 2 A and �b = b1 . . . bn 2 B the following statements are equivalent:

(i) The clauses

p(ai) = bi for i = 1; . . . ; s

and

p(cA) = cB for c in �

�x a map, which is a partial isomorphism from A to B (henceforth denoted by

�a 7! �b, a notation that suppresses the constants).

(ii) For all quanti�erfree '(v1; . . . ; vs): A j= '[�a] i� B j= '[�b].

(iii) For all atomic '(v1; . . . ; vs): A j= '[�a] i� B j= '[�b].

Proof. Clearly, (ii) implies (iii), and (ii) follows from (iii), since every quanti�erfree formula

is a boolean combination of atomic formulas: in fact, we can prove it by induction on the

length of '. If ' is atomic, then the conclusion is immediate. If ' := : , then

A j= '[�a] i� A j= : [�a]

i� B j= : [�b] (ind.hyp.)

i� B j= '[�b]
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If ' :=  _ � then

A j= '[�a] i� A j= ( _ �)[�a]

i� A j=  [�a] or A j= �[�a]

i� B j=  [�b] or B j= �[�b] (ind.hyp.)

i� B j= ( _ �)[�b]

i� B j= '[�b]

Next, we show the equivalence of (i) and (iii). Note that for an arbitrary structure D and
�d in D,

di = dj i� D j= (vi = vj)[ �d]

cD = dj i� D j= (c = vj)[ �d]

RDcDdidj i� D j= Rcvivj [ �d] (c; R 2 �; R ternary)

Using equivalences above, it is easy to prove that (i) implies (iii); for ' := Rcvivj,

A j= '[�a] i� A j= Rcvivj [�a]

i� RAcAaiaj

i� RBcBbibj (by (i))

i� B j= Rcvivj[�b]

i� B j= '[�b]

(iii) ) (i) : It su�ces to show that the conditions in 3.2.1 are satis�ed. Let ' be vi = vj,

then

ai = aj i� A j= (vi = vj)[�a]

i� B j= (vi = vj)[�b] (by (iii))

i� bi = bj

Such equivalences imply that p is a map and injective. It is easy to show that the third

condition in 3.2.1 is also satis�ed; for example, ternary R 2 � and cA; ai; aj 2 do(p),

RAcAaiaj i� A j= Rcvivj[�a]

i� B j= Rcvivj[�b] (by (iii))

i� RBcBbibj

2

De�nition 3.2.3 Let A and B be structures, �a 2 As, �b 2 Bs, and m 2 N . The Ehren-

feucht game Gm(A; �a;B;�b) is played by two players called the spoiler and the duplicator .

. Each player has to make m moves in the course of a play.
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{ In his i-th move, the spoiler �rst selects a structure, A or B, and an element

in this structure.

{ If the spoiler chooses ei in A then the duplicator must choose an element fi in

B. If the spoiler chooses fi in B then the duplicator must choose an element

ei in A.

. At the end, elements e1; . . . ; em in A and f1; . . . ; fm in B have been chosen.

{ The duplicator wins if �a�e 7! �b �f is a partial isomorphism from A to B (in case

m = 0 we just require that �a 7! �b is a partial isomorphism).

{ Otherwise, the spoiler wins.

. We say that a player, the spoiler or the duplicator, has a winning strategy in

Gm(A; �a;B;�b), or shortly that he wins Gm(A; �a;B;�b), if it is possible for him to

win whatever choices are made by the other player. 2

If s = 0 (hence �a and �b are empty), the game is denoted by Gm(A;B).

Lemma 3.2.4 (a) If A �= B then the duplicator wins Gm(A;B).

(b) If the duplicator wins Gm+1(A;B) and kAk � m then A �= B.

(c) If the duplicator has a winning strategy in Gm(A;B) and in Gm(B; C), then the

duplicator wins Gm(A; C).

Proof. (a) Suppose � : A �= B. A winning strategy for the duplicator consists in the

following way; if the spoiler chooses a 2 A then the duplicator chooses �(a), and if the

spoiler chooses b 2 B then the duplicator answers with ��1(b).

(b) Suppose that the duplicator has a winning strategy in Gm+1(A;B), and assume

that A = fa1; . . . ; amg. Let us consider a play in which the spoiler, in his �rst m moves,

chooses a1; . . . ; am, and let b1; . . . ; bm be the responses of the duplicator according to his

winning strategy. Then p : �a 7! �b is a partial isomorphism from A to B with do(p) = A.

Thus, it su�ces to prove that p is surjective. Otherwise, we have rg(p) 6= B. Then the

spoiler, in the last move of the play, chooses some element b 2 Bnrg(p). As there is no

answer for the duplicator leading to win, we get a contradiction.

(c) Assume that � and � are winning strategy for the duplicator in the games

Gm(A;B) and Gm(B; C), respectively. In order to win the game Gm(A; C), the duplicator

does the following. Suppose that the spoiler starts by choosing an element a 2 A. To

this move, the duplicator applies �, as though it were a �rst move in the game Gm(A;B).

The answer b produced by � is given as an input to � as though it were a �rst move

in Gm(B; C). Finally, the answer c given by � is returned by the duplicator as his real

answer in the game Gm(A; C). A similar procedure is carried out when the spoiler chooses

an element in C. Eventually, the relations built by � and � must be partial isomorphisms

from A to B, and from B to C, respectively. Therefore, their composition will be a partial

isomorphism as well. 2
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The following lemma collects some facts about the Ehrenfeucht game. Their proofs

are immediate from the de�nition.

Lemma 3.2.5 Let A and B be structures, �a 2 As, �b 2 Bs, and m 2 N .

(a) The duplicator wins G0(A; �a;B;�b) i� �a 7! �b is a partial isomorphism.

(b) For m > 0, the duplicator wins Gm(A; �a;B;�b) i� (for all a 2 A there is b 2 B such

that the duplicator wins Gm�1(A; �aa;B;�bb), and for all b 2 B there is a 2 A such

that the duplicator wins Gm�1(A; �aa;B;�bb)).

(c) If the duplicator wins Gm(A; �a;B;�b) and if m0 < m, then the duplicator wins

Gm0(A; �a;B;�b). 2

LetA be given. For �a = a1 . . . an 2 A andm � 0 we introduce a formula 'ma (v1; . . . ; vs)

that describes the gametheoretic properties of �a in any game Gm(A; �a; . . .).

De�nition 3.2.6 Let �v be v1; . . . ; vs.

'0
a(�v) :=

^
f'(�v) j ' atomic or negated atomic, A j= '[�a]g

and for m > 0,

'ma (�v) :=
^
a2A

9vs+1'
m�1
aa (�v; vs+1) ^ 8vs+1

_
a2A

'm�1aa (�v; vs+1)

2

'ma is called the m-isomorphism type of �a in A. If the structure A is not clear from the

context, we use the notation 'mA;a for 'ma . We also allow s = 0, the case of the empty

sequence ; of elements in A, and write 'mA for the sentence 'mA;;.

Actually, the conjunctions and disjunctions in the above de�nition are �nite, as we

see in the following lemma.

Lemma 3.2.7 For s;m � 0, the set f'mA;a j A a structure and �a 2 Asg is �nite.

Proof. The proof is by induction on m. Since we have assumed that a vocabulary contains

only �nite symbols, f'(�v) j ' atomic or negated atomicg is �nite. For m > 0, assume

that f'm�1A;aa j A a structure and �aa 2 As+1g is �nite. As the number of their combinations

is �nite, the set of formulas f'mA;ag, a member of which is composed by the formulas '
m�1
A;aa,

is �nite. 2

Lemma 3.2.8 (a) qr('ma ) = m

(b) A j= 'ma [�a]

(c) For any B and �b in B,

B j= '0a[
�b] i� �a 7! �b 2 Part(A;B)
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Proof. (a) trivial.

(b) The proof is by induction on m. For m = 0, the conclusion is immediate from

the de�nition. For m > 0, suppose that for all a 2 A, A j= 'm�1�aa [�aa]. Then for all

a 2 A, we have A j= 9vs+1'
m�1
�aa (�v; vs+1)[�a]. Hence, we proved the �rst half A j=V

a2A 9vs+1'
m�1
�aa (�v; vs+1)[�a]. For the latter, we get from the induction hypothesis that,

for all a0 2 A, A j=
W
a2A '

m�1
�aa (�v; vs+1)[�aa

0]. That is, A j= 8vs+1
W
a2A '

m�1
�aa (�v; vs+1)[�a].

(c) By 3.2.2(c), it su�ces to show that, for any B and �b in B,

B j= '0a[
�b] i� (for all atomic '(v1; . . . ; vs) : A j= '[�a], B j= '[�b])

If the condition on the right side holds, then we get from the de�nition that '0a = '0
b
.

Since B j= '0
b
[�b], we have B j= '0a[

�b]. Now suppose that B j= '0
a[
�b]. Assume  is atomic.

If A j=  [�a], then  is a member of the conjunction in '0a. So the assumption B j= '0a[
�b]

yields B j=  [�b]. If A j= : [�a], then B j= : [�b] follows in a similar way. 2

Theorem 3.2.9 (Ehrenfeucht's Theorem) [6] Given A and B, �a 2 As and �b 2 Bs,

and m � 0, the following are equivalent:

(i) The duplicator wins Gm(A; �a;B;�b)

(ii) B j= 'ma [
�b]

(iii) �a and �b satisfy the same formulas of quanti�er rank � m, that is, if '(x1; . . . ; xs) is

of quanti�er rank � m, then

A j= '[�a] i� B j= '[�b] (3:1)

Proof. (iii) implies (ii) since qr('ma ) = m and A j= 'ma [�a]. We prove the equivalence of (i)

and (ii) by induction on m. For m = 0

the duplicator wins G0(A; �a;B;�b) i� �a 7! �b 2 Part(A;B) (by 3:2:5(a))

i� B j= '0a[
�b] (by 3:2:8(c))

For m > 0,

the duplicator wins Gm(A; �a;B;�b)

i� for all a 2 A there is b 2 B such that the duplicator wins

Gm�1(A; �aa;B;�bb); and for all b 2 B there is a 2 A such that

the duplicator wins Gm�1(A; �aa;B;�bb) (by 3:2:5(b))

i� for all a 2 A there is b 2 B with B j= 'm�1aa [�bb]; and

for all b 2 B there is a 2 A with B j= 'm�1aa [�bb] (ind. hyp.)

i� B j=
V
a2A9vs+1'

m�1
aa (�v; vs+1) ^ 8vs+1

W
a2A'

m�1
aa (�v; vs+1)[�b]

i� B j= 'ma [
�b]
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(i) ) (iii) : The proof proceeds by induction on m. For m = 0

the duplicator wins G0(A; �a;B;�b)

i� �a 7! �b 2 Part(A;B) (by 3:2:5(a))

i� for all quanti�er free '(v1; . . . ; vs) : A j= '[�a] , B j= '[�b] (by 3:2:2(c))

For m > 0, assume that the duplicator wins Gm(A; �a;B;�b). Suppose that '(�x) =

9y (�x; y) and qr(') � m. Assume, for instance, A j= '[�a]. Then there is a 2 A

such that A j=  [�a; a]. As the duplicator wins Gm(A; �a;B;�b), there is b 2 B such that the

duplicator wins Gm�1(A; �aa;B;�bb). Since qr( ) � m� 1, the induction hypothesis yields

B j=  [�b; b], hence B j= '[�b]. The opposite direction can be shown similarly. Clearly, the

set of formulas '(x1; . . . ; xs) satisfying (3.1) is closed under : and _. 2

Corollary 3.2.10 For structures A, B and m � 0 the following are equivalent:

(i) The duplicator wins Gm(A;B)

(ii) B j= 'mA

(iii) A �m B 2

The corollary together with the following result contain the desired characterization

of classes axiomatizable in �rst-order logic.

Proposition 3.2.11 For a class K of �nite structures the following are equivalent:

(i) K is not axiomatizable in �rst-order logic.

(ii) For each m there are �nite structures A and B such that

A 2 K; B =2 K and A �m B

Proof. (ii) ) (i) was proven in 3.1.4. For the converse, suppose that (ii) does not hold,

that is, for some m and all �nite A and B,

A 2 K and A �m B imply B 2 K

Then K = Mod(
W
f'mA j A 2 Kg), and thus K is axiomatizable. 2

3.3 Fra��ss�e's Theorem

To apply Ehrenfeucht's characterization to concrete examples, it is more convenient to

use an algebraic version due to Fra��ss�e.

Given structures A, B and m � 0, let Wm(A;B) :=

f�a 7! �b j s � 0; �a 2 As;�b 2 Bs; the duplicator wins Gm(A; �a;B;�b)g

be the set of winning positions for the duplicator. The sequence of the Wm(A;B) has the

back and forth properties as introduced in the following de�nition.
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De�nition 3.3.1 Structures A and B are said to be m-isomorphic, written A �=m B, if

there is a sequence (Ij)j�m with the following properties:

(a) Every Ij is a nonempty set of partial isomorphisms from A to B.

(b) (Forth property) For every j < m, p 2 Ij+1, and a 2 A, there is q 2 Ij such that

q � p and a 2 do(q).

(c) (Back property) For every j < m, p 2 Ij+1, and b 2 B, there is q 2 Ij such that

q � p and b 2 rg(q).

If (Ij)j�m has the properties (a), (b) and (c), we write (Ij)j�m : A �=m B and say that A

and B are m-isomorphic via (Ij)j�m. 2

Using the results of the proceeding section we obtain:

Theorem 3.3.2 For structures A and B, �a 2 As, �b 2 Bs, and m � 0, the following are

equivalent:

(i) The duplicator wins Gm(A; �a;B;�b).

(ii) �a 7! �b 2 Wm(A;B) and (Wj(A;B))j�m : A �=m B.

(iii) There is (Ij)j�m with �a 7! �b 2 Im such that (Ij)j�m : A �=m B.

(iv) B j= 'ma [
�b].

(v) �a satis�es in A the same formulas of quanti�er rank � m as �b in B.

Proof. By 3.2.5, (i) implies (ii), and obviously, (ii) implies (iii). Therefore it su�ces to

show the implication (iii) ) (i), for the remaining equivalences are clear from 3.2.9. For

(iii) ) (i) suppose that (Ij)j�m : A �=m B and �a 7! �b 2 Im. We describe a winning

strategy in Gm(A; �a;B;�b) for the duplicator: let pi�1 2 Im�i+1, hence pi�1 : �ae1 . . . ei�1 7!
�bf1 . . . fi�1, and if the spoiler's choice is ei 2 A (or fi 2 B), then in the i-th move

the duplicator chooses the element fi (or ei, respectively) such that pi � pi�1 and pi :

�ae1 . . . ei 7! �bf1 . . . fi; it is always possible for him to choose such an element because of

the back and forth properties of (Ij)j�m. Looking at i := m we see that the duplicator

wins. 2

For s = 0 the preceding theorem yields the following extension of 3.2.10.

Corollary 3.3.3 For structures A, B and m � 0, the following are equivalent:

(i) The duplicator wins Gm(A;B).

(ii) (Wj(A;B))j�m : A �=m B.

(iii) A �=m B.

(iv) B j= 'mA .
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(v) A �m B. 2

The equivalence of (iii) and (v) is known as Fra��ss�e's Theorem ([8]). The proof of the

preceding theorem shows that Ehrenfeucht's Theorem and Fra��ss�e's Theorem are di�erent

formulations of the same fact. Therefore one often calls it the Ehrenfeucht-Fra��ss�e game

or the Ehrenfeucht-Fra��ss�e method .

Example 3.3.4 Let � be the empty vocabulary and A and B be � -structures (nonempty

sets). Suppose kAk � m and kBk � m. Then A �=m B. In fact, (Ij)j�m : A �=m B with

Ij := fp 2 Part(A;B) j kdo(p)k � m� jg.

As a consequence, the class EVEN(�) of �nite � -structures of even cardinality is not

axiomatizable in �rst-order logic. In fact, for each m � 0, let Am be a structure of

cardinality m. Then, Am 2 EVEN(� ) i� Am+1 =2 EVEN(�), but Am
�=m Am+1. Now

apply 3.2.11.

We can show that EVEN(�) is not axiomatizable also for an arbitrary � . Now we

construct a structure A in which, for all relation symbol R 2 � , the relation RA is

empty, and all the constants are �xed to an element in A. Considering only such kind of

structures, it is veri�ed similarly that for kAk � m and kBk � m, then A �=m B. 2

Example 3.3.5 Let � = f<;min;maxg be the vocabulary for �nite orderings andm � 1.

Suppose that A and B are �nite orderings, kAk > 2m and kBk > 2m. Then A �=m B, as

we show in the following. Hence, the class of �nite orderings of even cardinality is not

axiomatizable in �rst-order logic.

Proof. Given any ordering C, we de�ne its distance function d by

d(a; a0) := kfb 2 C j (a < b � a0) or (a0 < b � a)gk

And for j � 0, we introduce the \truncated" j-distance function dj on C � C by

dj(a; a
0) :=

(
d(a; a0) if d(a; a0) < 2j

1 otherwise

Now, suppose that A and B are �nite orderings with kAk; kBk > 2m. For j � m set

Ij := fp 2 Part(A;B) j dj(a; a
0) = dj(p(a); p(a

0)) for a; a0 2 do(p)g

Then (Ij)j�m : A �=m B: By assumption on the cardinalities of A and B we have

f(minA;minB); (maxA;maxB)g 2 Ij for every j � m. To give a proof of the forth property

of (Ij)j�m (the back property can be proven analogously), suppose j < m, p 2 Ij+1, and

a 2 A. We distinguish two cases, depending on whether or not the following condition

there is an a0 2 do(p) such that d(a; a0) < 2j (3:2)

is satis�ed. If (3.2) holds then there is exactly one b 2 B for which p [ f(a; b)g is a

partial isomorphism preserving dj-distances. Now assume that (3.2) does not hold and

let do(p) = fa1; . . . ; arg with minA = a1 < . . . < ar = maxA. We restrict ourselves to

the case ai < a < ai+1 for some i. Then, dj(ai; a) = 1 and dj(a; ai+1) = 1; hence,

dj+1(ai; ai+1) = 1 and therefore, dj+1(p(ai); p(ai+1)) = 1. Thus there is b such that

p(ai) < b < p(ai+1) with dj(p(ai); b) = 1 and dj(b; p(ai+1)) = 1. One veri�es that

q := p [ f(a; b)g is a partial isomorphism in Ij. 2
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3.4 Hanf's Theorem

We assume that all vocabularies in this section are relational. For nonempty subset M of

a structure A, M denotes the substructure of A with universe M .

Given a structure A, we de�ne the binary relation EA on A by

EA := f(a; b) j a 6= b; and there are R in � and �c 2 A such that RA�c

where a and b are components of the tuple �cg

The G(A) := (A;EA) is called the graph of A. Obviously, if A itself is a graph then

G(A) := A. For a in A and r 2 N , S(r; a) (or SA(r; a)) denotes the r-sphere of a,

S(r; a) := fb 2 A j d(a; b) � rg

S(r; a) (or SA(r; a)) stands for the substructure of A with universe S(r; a). Note that for

b; c 2 S(r; a) we have d(b; c) � 2r. For �a = a1 . . . as we set S(r; �a) := S(r; a1)[. . .[S(r; as).

We de�ne the r-sphere type of a point a in A to be the isomorphism type of (S(r; a); a),

that is, points a inA and b in B have the same r-sphere type i� (SA(r; a); a) �= (SB(r; b); b).

Theorem 3.4.1 (Hanf's Theorem) [10] Let A and B be structures and let m 2 N .

Suppose that for some e 2 N , every 3m-sphere in A and B contains less than e elements,

and that for each n � 3m and n-sphere type �, (i) or (ii) holds

(i) A and B have the same number of elements of n-sphere type �.

(ii) both A and B have more than m � e elements of n-sphere type �.

Then A �m B.

Proof. We show that (Ij)j�m : A �=m B, where Ij is the set

f�a 7! �b 2 Part(A;B) j (S(3j; �a); �a) �= (S(3j ;�b);�b) and length(�a) � m� jg;

and for length(�a) = 0, we set (S(3j ; �a); �a) = ; and agree that ; �= ;. First, we have

; 7! ; 2 Im. Concerning the back and forth properties it is enough, by symmetry, to

prove the forth property. Thus suppose that 0 � j < m, a 2 A and �a 7! �b 2 Ij+1, say,

� : (S(3j+1; �a); �a) �= (S(3j+1;�b);�b) (3:3)

Case 1 : a 2 S(2 � 3j ; �a)

Then S(3j ; �aa) � S(3j+1; �a). Setting b := �(a), we have � : (S(3j; �aa); �aa) �= (S(3j ;�bb);�bb),

hence �aa 7! �bb 2 Ij .

Case 2 : a =2 S(2 � 3j ; �a) (and hence, S(3j; a) \ S(3j ; �a) = ;)

Let � be the 3j-sphere type of a. By 3.3, S(2 � 3j; �a) and S(2 � 3j ;�b) contain the same

number of 3j-sphere type � which, in our assumption on the cardinality of spheres, is �

length(�a) � e � m � e. Therefore, there must be an element b =2 S(2 � 3j;�b) with 3j-sphere

30



type �. Choose �0 : (S(3j ; a); a) �= (S(3j; b); b). Then the corresponding restriction of

� [ �0 is an isomorphism of (S(3j; �aa); �aa) onto (S(3j;�bb);�bb). 2

We give an application of the theorem. Note that a graph G is connected if G is a

model of the following second-order sentence:

8P ((9xPx ^ 8x8y((Px ^ Exy)! Py))! 8zPz)

We are going to show that the class of connected graphs is not axiomatizable by a M�1
1-

sentence, that is, by a second-order sentence of the form 9P1 . . .9Pr , where P1; . . . ; Pr
are unary and  is �rst-order.

Let Dl = (Dl; El) be a digraph consisting of a cycle of length l + 1, that is,

Dl := f0; . . . ; lg; El := f(i; i+ 1) j i < lg [ f(l; 0)g

Lemma 3.4.2 Suppose � = fE;P1; . . . ; Prg where P1; . . . ; Pr are unary, and let m � 0.

Then there is an l0 2 N such that for any l � l0 and any � -structure of the form

(Dl; P1; . . . ; Pr) there are a; b 2 Dl with disjoint and isomorphic 3m-spheres.

Proof. For the structures under consideration any 3m-sphere contains exactly 2 � 3m + 1

elements (note that P1; . . . ; Pr are unary and therefore do not inuence the distances

induced by the digraphs). Let i be the number of possible isomorphism types of 3m-

spheres. Set l0 = (i+1)(2 � 3m+1). Then in a structure of cardinality � l0 there must be

two points with disjoint 3m-spheres of the same isomorphism type. 2

Lemma 3.4.3 Suppose (Dl; P1; . . . ; Pr) is a � -structure (� is as in the preceding lemma)

containing elements a and b with disjoint and isomorphic 3m-spheres. a� and b� denote

the elements of Dl with Ela
�a and Elb

�b, respectively. Let (Dl; E
0
l ; P1; . . . ; Pr) be the

structure obtained by splitting the cycle (Dl; P1; . . . ; Pr) into two cycles by removing the

edges (a�; a); (b�; b) and adding edges (b�; a); (a�; b) instead, that is,

E 0
l := (El n f(a

�; a); (b�; b)g) [ f(b�; a); (a�; b)g

Then (Dl; P1; . . . ; Pr) �=m (Dl; E
0
l; P1; . . . ; Pr).

Proof. Immediate by Hanf's Theorem, since for each n � 3m, both structures have the

same number of n-spheres of any given isomorphism type. 2

Since a partial isomorphism between digraphs is a partial isomorphism between the

associated graphs, we get the following lemma from the two preceding lemmas:

Lemma 3.4.4 For � = fE;P1; . . . ; Prg and m � 0, choose l0 according to 3.4.2. Let

l � l0 and (Gl; P1; . . . ; Pr) be a � -structure, where Gl is the graph G(Dl), that is, a cycle of

length l+1. Let G 0l be the graph G((Dl; E
0
l)), where (Dl; E

0
l) is de�ned as in the preceding

lemma. Then

(Gl; P1; . . . ; Pr) �m (G 0l ; P1; . . . ; Pr)
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2

We are now in a position to show:

Proposition 3.4.5 The class of �nite and connected graphs cannot be axiomatized by

a formula of the form

9P1 . . .9Pr (3:4)

where P1; . . . ; Pr are unary relation symbols and  is a �rst-order sentence over the vo-

cabulary fE;P1; . . . ; Prg.

Proof. Suppose that for the sentence (3.4) and any �nite graph G, we have:

G is connected i� for some P1; . . . ; Pr � G : (G; P1; . . . ; Pr) j=  

For m := qr( ) choose l0 as in 3.4.2. Since Gl0 is connected, there are P1; . . . ; Pr such

that (Gl0; P1; . . . ; Pr) j=  . Then, (G 0l0 ; P1; . . . ; Pr) j=  by 3.4.4, but G 0l0 is not connected,

a contradiction. 2

On the other side we have

Proposition 3.4.6 The class of �nite and connected graphs can be axiomatized by a

formula of the form 9R , where R is binary and  is a �rst-order sentence over the

vocabulary fE;Rg.

Proof. Let  be a sentence expressing that R is an irreexible and transitive relation with

a minimal element, and that Exy holds for any immediate R-successor y of x; that is,  

is the conjunction of

8x:Rxx ^ 8x8y8z((Rxy ^Ryz)! Rxz)

9x8y(x = y _ Rxy)

8x8y((Rxy ^ 8z:(Rxz ^Rzy))! Exy)

Let G be a graph. First, suppose G is a model of 9R , say (G; RG) j=  , then for any

element of G there is a path connecting it with the minimal element; for any a in G,

we can show e � a where e is the minimal element of RG. Assume e =� a, that is,

there is not a path from e to a, then we have :Eea. According to the third condition

above, a is not an immediate R-successor of e, therefore, there is an element a1 with

Rea1 and Ra1a. By our assumption e =� a, either e =� a1 or a1 =� a holds. Suppose

a1 =� a, then we have again that there is an element a2 with Ra1a2 and Ra2a, by a similar

argument above. Applying the argument above repeatedly, we get an sequence a1; a2; . . .

of elements between e and a. This contradicts the fact that G has only �nite number

of elements. Hence, G is connected. Conversely, suppose G is connected. Choose an

arbitrary a 2 G. For n 2 N set Ln := fb j d(a; b) = ng and take R as the transitive

closure of f(b; c) j EGbc and for some n, b 2 Ln and c 2 Ln+1g. 2
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Chapter 4

More on Games

In the preceding chapter we presented the Ehrenfeucht's gametheoretic method, which

provides a simple characterization of classes axiomatizable in �rst-order logic. Now we

investigate some generalizations of the method for languages other than �rst-order, mainly

for second-order logic. First we restrict ourselves to the monadic second-order logic, that

is, second-order logic in which only unary relation variables are allowed, and then try to

remove the restriction of arity. These extensions are presented in parallel with the case

of �rst-order logic.

4.1 Game for Monadic Second-Order Logic

For structures A and B and m 2 N we write A �MSO
m B if A and B satisfy the same

monadic second-order sentences of quanti�er rank � m (the quanti�er rank is the maxi-

mum number of nested �rst-order and second-order quanti�ers).

As in �rst-order logic, �MSO
m can be characterized by an Ehrenfeucht-Fra��ss�e game,

MSO-Gm(A;B), as shown below.

De�nition 4.1.1 Let A and B be structures, �a 2 Ar, �b 2 Br, P (= P1 . . .Ps) a sequence

of subsets of A, Q(= Q1 . . .Qs) a sequence of subsets of B, and m 2 N . The MSO-

Ehrenfeucht game MSO-Gm((A; P ); �a; (B; Q);�b) is played by the spoiler and the duplicator

as follows.

. Each player has to make m moves in the course of a play.

{ In his i-th move, the spoiler �rst decide whether to make a point move or set

move.

� The point moves are the same as the moves in the �rst-order case.

� In a set move the spoiler chooses a subset P 0 � A or Q0 � B, and then

the duplicator responds by a subset Q0 � B or P 0 � A, respectively.

. At the end, elements e1; . . . ; ek and subsets P 0
1; . . . ; P

0
l in A, and the corresponding

elements f1; . . . ; fk and subsets Q0
1; . . . ; Q

0
l in B (with m = k + l) are chosen.
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{ The duplicator wins if �a�e 7! �b �f 2 Part((A; P ; P 0
1; . . . ; P

0
l ); (B; Q;Q

0
1; . . . ; Q

0
l)).

{ Otherwise, the spoiler wins. 2

Our goal is to show the following.

Theorem 4.1.2 A �MSO
m B i� the duplicator wins MSO-Gm(A;B).

In order to prove it, we need some variants of the consequences acquired in the case of

�rst-order.

The proof of the following lemma is straightforward.

Lemma 4.1.3 Let A and B be structures, �a 2 Ar, �b 2 Br, P (= P1 . . .Ps) a sequence of

subsets of A, Q(= Q1 . . .Qs) a sequence of subsets of B, and m 2 N .

(a) The duplicator wins MSO-G0((A; P ); �a; (B; Q);�b) i� �a 7! �b 2 Part((A; P ); (B; Q)).

(b) For m > 0, the duplicator wins MSO-Gm((A; P ); �a; (B; Q);�b) i�

for all a 2 A there is b 2 B such that the duplicator wins

MSO-Gm�1((A; P ); �aa; (B; Q);�bb),

and for all b 2 B there is a 2 A such that the duplicator wins

MSO-Gm�1((A; P ); �aa; (B; Q);�bb),

and for all P � A there is Q � B such that the duplicator wins

MSO-Gm�1((A; PP ); �a; (B; QQ);�b),

and for all Q � B there is P � A such that the duplicator wins

MSO-Gm�1((A; PP ); �a; (B; QQ);�b).

2

We de�ne the formulas  j
a;P

similar to the j-isomorphism type 'ja (cf. 3.2.6), but now

taking into account also the second-order set quanti�ers.

De�nition 4.1.4

 0
a;P

:=^
f'(v1; . . . ; vr; V1; . . . ; Vs) j ' atomic or negated atomic, A j= '[�a;P ]g

 
j+1

a;P
:=^

a2A

9vr+1 
j

aa;P
^ 8vr+1

_
a2A

 
j

aa;P
^
^
P�A

9Vs+1 
j

a;PP
^ 8Vs+1

_
P�A

 
j

a;PP

2

The following lemma is proven similarly to the case of j-isomorphism types 'jA;a (cf.

3.2.7), therefore the conjunctions and the disjunctions in the de�nition above are �nite.

Lemma 4.1.5 For r; s;m � 0, the set f 
j

A;a;P
j A a structure, �a 2 Ar and P (= P1 . . .Ps)

a sequence of subsets of Ag is �nite. 2
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Lemma 4.1.6 (a) qr( m
a;P

) = m

(b) A j=  m
a;P

[�a; P ]

(c) For any B, �b in B and Q subsets of B,

B j=  0
a;P

[�b; Q] i� �a 7! �b 2 Part((A; P ); (B; Q))

Proof. (a) trivial.

(b) The fact that A satis�es the �rst half of the formula  m
a;P

[�a; P ] can be proven by

the same way as 'ma [�a] (cf. 3.2.8(b)). Therefore it su�ces to show the latter half by

induction on m, again in a similar way. For m = 0, the conclusion is immediate from

the de�nition. For m > 0, by the induction hypothesis we assume that for all P � A,

A j=  m�1
�a;PP

[�a; PP ]. Then for all P � A, we have A j= 9Vs+1 
m�1

�a;PP
[�a; P ]. Hence, we

get A j=
V
P�A 9Vs+1 

m�1

�a;PP
[�a; P ], and we have from the induction hypothesis that, for all

P 0 � A, A j=
W
P�A  

m�1

�a;PP
[�a; PP 0], that is, A j= 8Vs+1

W
P�A  

m�1

�a;PP
[�a; P ].

(c) By 3.2.8(c), it su�ces to show that, for any B, �b in B and Q subsets of B,

B j=  0
a;P

[�b; Q] i� (B; Q) j= '0
(A;P );a

[�b]

This is clear from the de�nition, for  0
a;P

is equivalent to '0
(A;P );a

if the variables V

occurring in  0
a;P

are interpreted as Q. 2

Now the following theorem, an analogy to Ehrenfeucht's theorem, can be obtained.

Theorem 4.1.7 Given A and B, �a 2 Ar, �b 2 Br, P (= P1 . . .Ps) a sequence of subsets of

A, Q(= Q1 . . .Qs) a sequence of subsets of B, and m � 0, the following are equivalent:

(i) The duplicator wins MSO-Gm((A; P ); �a; (B; Q);�b)

(ii) B j=  m
a;P

[�b;Q]

(iii) �a, P satis�es the same formulas of MSO of quanti�er rank � m in A as �b, Q in B,

that is, if '(v1; . . . ; vr; V1; . . . ; Vs) is of quanti�er rank � m, then

A j= '[�a; P ] i� B j= '[�b; Q] (4:1)

Proof. The proof is completely parallel to that of 3.2.9. (iii) implies (ii) since qr( m
a;P

) = m

and A j=  m
a;P

[�a; P ]. We prove the equivalence of (i) and (ii) by induction onm. Form = 0

the duplicator wins MSO-G0((A; P ); �a; (B; Q);�b)

i� �a 7! �b 2 Part((A; P ); (B; Q)) (by 4:1:3(a))

i� B j=  0
a;P

[�b; Q] (by 4:1:6(c))
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For m > 0,

the duplicator wins MSO-Gm((A; P ); �a; (B; Q);�b)

i� for all a 2 A there is b 2 B such that the duplicator wins

MSO-Gm�1((A; P ); �aa; (B; Q);�bb); for all b 2 B there is a 2 A such that

the duplicator wins MSO-Gm�1((A; P ); �aa; (B; Q);�bb); for all P � A there is

Q � B such that the duplicator wins MSO-Gm�1((A; PP ); �a; (B; QQ);�b);

and for all Q � B there is P � A such that the duplicator wins

MSO-Gm�1((A; PP ); �a; (B; QQ);�b) (by 4:1:3(b))

i� for all a 2 A there is b 2 B with B j=  m�1
aa;P

[�bb;Q];

for all b 2 B there is a 2 A with B j=  m�1
aa;P

[�bb;Q];

for all P � A there is Q � B with B j=  m�1
a;PP

[�b;QQ]; and

for all Q � B there is P � A with B j=  m�1
a;PP

[�b;QQ] (ind. hyp.)

i� B j=
V
a2A9vr+1 

m�1

aa;P
^ 8vr+1

W
a2A 

m�1

aa;P
^
V
P�A9Vs+1 

m�1

a;PP
^ 8Vs+1

W
P�A 

m�1

a;PP
[�b; Q]

i� B j=  m
a;P

[�b; Q]

(i) ) (iii) : The proof proceeds by induction on m. For m = 0

the duplicator wins MSO-G0((A; P ); �a; (B; Q);�b)

i� �a 7! �b 2 Part((A; P ); (B; Q)) (by 4:1:3(a))

i� for all quanti�er free '(�v) : (A; P ) j= '[�a] , (B; Q) j= '[�b] (by 3:2:2(c))

i� for all quanti�er free '(�v; V ) : A j= '[�a;P ] , B j= '[�b; Q]

For m > 0, assume that the duplicator wins MSO-Gm((A; P ); �a; (B; P );�b). The case

'(�v; V ) = 9x (�v; x; V ) where qr(') � m was handled in the corresponding proof in

3.2.9. Suppose '(�v; V ) = 9X (�v; V ;X) and qr(') � m. Assume, for instance, A j=

'[�a; P ]. Then there is P � A such that A j=  [�a;PP ]. As the duplicator wins

MSO-Gm((A; P ); �a; (B; Q);�b), there is Q � B such that the duplicator wins MSO-Gm�1

((A; PP ); �a; (B; QQ);�b). Since qr( ) � m � 1, the induction hypothesis yields B j=

 [�b; QQ], hence B j= '[�b;Q]. The opposite direction can be shown similarly. Clearly, the

set of formulas '(�v; V ) satisfying (4.1) is closed under : and _. 2

Corollary 4.1.8 For structures A, B and m � 0 the following are equivalent:

(i) The duplicator wins MSO-Gm(A;B)

(ii) B j=  mA

(iii) A �MSO
m B 2

This corollary and the following proposition provide a method of examining the ax-

iomatizability in monadic second-order logic.
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Proposition 4.1.9 For a class K of �nite structures the following are equivalent:

(i) K is not axiomatizable in monadic second-order logic.

(ii) For each m there are �nite structures A and B such that

A 2 K; B =2 K and A �MSO
m B

Proof. (ii) ) (i) Let ' be any monadic second-order sentence. Set m := qr('). By

our assumption there are A and B such that A 2 K, B =2 K, and A �MSO
m B; hence,

K 6=Mod('). For the converse, suppose that (ii) does not hold, that is, for some m and

all �nite A and B,

A 2 K and A �MSO
m B imply B 2 K

Then K = Mod(
W
f mA j A 2 Kg), and thusK is axiomatizable. Note that the disjunction

above is �nite according to 4.1.5. 2

Thus, a class K of �nite structures is not axiomatizable in monadic second-order logic

i� the duplicator has a winning strategy for the following game.

1. The spoiler selects a number m 2 N .

2. The duplicator selects a member A 2 K.

3. The duplicator selects a member B =2 K.

4. The spoiler and the duplicator play MSO-Gm(A;B).

The Ehrenfeucht's method generalized for monadic second-order logic we mentioned

above is known already (see [5][14]), but its applications are hardly found among litera-

tures. Now we give a new application of this method.

Theorem 4.1.10 Let � be an arbitrary vocabulary. Then the class EVEN(�) of � -

structures of even cardinality is not axiomatizable in monadic second-order logic.

Theorem 4.1.10 strengthens the result of Example 3.3.4 which was proved in [5]. We

need to state some remarks before the proof of Theorem 4.1.10. Let � be a vocabulary in

which all relation symbols are unary, and let A be � -structure. For each pair of elements

a; b 2 A, we write a � b if for all unary relation symbol P 2 � , Pa i� Pb. Clearly � is an

equivalence relation, and elements in a common equivalence class have the same r-sphere

type for any r 2 N (cf. section 3.4, note that all Pi are unary and therefore the r-sphere

of a contains only one element a itself). Hence we call r-sphere types simply types.

The following remark is a variant of Hanf's Theorem 3.4.1.

Remark 4.1.11 Let � be a vocabulary in which all relation symbols are unary, and let

A and B be � -structures and m 2 N . Suppose that � contains constants c1; . . . ; cr, and

for each ci,

cAi and cBi have the same type, (4:2)

and suppose for each type �, the following (i) or (ii) holds
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(i) The equivalence classes of type � in A and B have the same number of elements.

(ii) The equivalence classes of type � in A and B have at least m+ r elements.

Then A �m B.

Proof. We show that (Ij)j�m : A �=m B, where Ij is the set

f�a 7! �b 2 Part(A;B) j length(�a) � m� jg;

First, we have ; 7! ; 2 Im. Concerning the back and forth properties, it is enough, by

symmetry, to prove the forth property. Thus suppose that 0 � j < m, �a 7! �b 2 Ij+1 and

a 2 A. It su�ces to consider the case that a is not a member of �a. Suppose a has a type

�, then there must be an element b 2 B with type � by our assumption on the cardinality

of equivalence classes. Hence, �aa 7! �bb 2 Ij. 2

Proof of 4.1.10. First, suppose � has no relation symbols, and contains constants c1; . . . ; cr.

Let A and B be � -structures and let m 2 N . Suppose that

kAk � (2m+ r) � 2m and kBk = kAk + 1 (4:3)

Then A �MSO
m B holds, since the duplicator is able to construct a winning strategy in

MSO-Gm(A;B) as shown in the following. First, we change the game MSO-Gm(A;B)

a little bit to a new game in which the spoiler and the duplicator are allowed to make

2m moves, which consist exactly of m moves of point moves and m moves of set moves.

Therefore it is easily veri�ed that, if the duplicator construct a winning strategy in this

new game of 2m moves, then the �rst m moves of the strategy forms a winning strategy

in MSO-Gm(A;B).

In the new game, suppose the spoiler selects set moves in all the �rst half m moves. Then

we show that the duplicator can make such responses as the conditions (4.2) and (i) or

(ii) in 4.1.11 holds. More precisely, in his i-th move (1 � i � m) the duplicator can

make responses in such a way that for each type � (caused by set moves) except a certain

type �, the equivalence classes of type � in (A; P1; . . . ; Pi) and (B; Q1; . . . ; Qi) have the

same number of elements, and the number of elements of the type � in (B; Q1; . . . ; Qi) is

one larger than that of the corresponding type in (A; P1; . . . ; Pi) and both have at least

m � 2m�i elements. This is proven by induction on i:

(In the �rst move) Assume that the spoiler selects A and chooses a subset P1 � A.

Then the duplicator checks which set P1 or P1(= AnP1) is smaller (e.g. P1), and then he

chooses a subset Q1 � B which preserves the number of elements of the smaller side (e.g.

Q1 = P1), taking care of the condition (4.2). Clearly, the larger sides (e.g. P1 and Q1)

have elements � m � 2m�1, and the size of Q1 is one larger than that of P1. If the sizes of

P1 and P1 are the same then either will do.

In case the spoiler selects B, then the duplicator behaves similarly. Only when the sizes

of Q1 and Q1 are the same the duplicator has to choose a subset P1 � A which preserves

the size of the larger side. Hence this time the smaller sides have a di�erent number of
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elements. In this case the number of elements in B must be even, that is, kBk � m�2m+2,

therefore the sizes of the smaller sides � m � 2m�1.

(In the i-th move) Assume that the spoiler selects A and chooses a subset Pi � A. His

choice Pi divides each equivalence class of type � (caused by i� 1 moves) in two parts, Pi
part and Pi part. Therefore the duplicator needs to pay attention only to the equivalence

classes of type � of di�erent size in (A; P1; . . . ; Pi�1) and (B; Q1; . . . ; Qi�1). For, if the

sizes of the equivalence classes of type � are the same, then the duplicator is enough to

divide the class of � in (B; Q1; . . . ; Qi�1) as the spoiler divides in (A; P1; . . . ; Pi�1). And

the argument of the �rst move also applies to the case when the duplicator divides the

class of type �, where he have to preserve the size of the smaller part. In case the spoiler

selects B, the duplicator behave in a similar way above.

When theirmmoves of set moves complete, (A; P1; . . . ; Pm) �m (B; Q1; . . . ; Qm) holds,

since the conditions in 4.1.11 are all satis�ed. Therefore the duplicator wins the latter

half m moves of point moves.

In case the spoiler selects a point move in his i-th move (i < m) before he completes

all m moves of set moves, the duplicator responds by a point of the same type, indeed

he can choose such an element because (A; P1; . . . ; Pi�1) �m (B; Q1; . . . ; Qi�1) according

to 4.1.11. And after the point moves the duplicator consider the points picked up in the

point moves as new constants. Hence at most m+ r constants may appear in this game,

like the case the spoiler selects m moves of point moves in the �rst m moves. The winning

strategy for the duplicator described above is also true in this case since the numbers of

elements contained in A and B are large enough by the condition (4.3).

Lastly we have to consider the case that � has relation symbols. In this case, it is

enough to choose structures A and B satisfying (4.3), where all relations are interpreted

as empty relations. Then, A 2 EVEN(� ) i� B =2 EVEN(�), and A �MSO
m B. Thus, the

class EVEN(�) is not axiomatizable in monadic second-order logic. 2

The theorem we stated above leads us to a question: what kind of a set of natural

numbers is axiomatizable in monadic second-order logic? The following theorem is an

answer to this question.

Let I be a set of natural numbers. We say I(�) of � -structures of cardinality in I is

de�nable in L, if there is a sentence ' of L such that Mod(') is just the class of � -

structures of cardinality in I.

Theorem 4.1.12 Let � be an arbitrary vocabulary. Then the class I(�) is de�nable in

monadic second-order logic i� I is either �nite or co-�nite. (A set I � N is co-�nite if

N � I is �nite.)

Proof. For every natural number n 2 N , it is possible to write down a (�rst-order) formula

'=n expressing that its model has exactly n elements (cf. section 1.2). It follows that a

�nite set I � N can be de�ned by the disjunction
W
n2I '=n; its complement N � I is

de�ned by the negation of this formula. For the converse, it su�ces to show that if both I

and N � I are in�nite, then I is not de�nable in monadic second-order logic. This can be

shown by applying the proof of the case EVEN in 4.1.10: this time it is enough to choose
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structures A 2 I(�) and B =2 I(�) such that the condition (4.3) holds. Actually we can

choose such structures since both I and N � I contain in�nitary many numbers. 2

The statement of the preceding theorems depend essentially on the restriction on the

relation variables to be unary. In fact, for any � the class EVEN(�) is axiomatizable in

second-order logic with a single binary relation variable X as follows,

9X(8xXxx ^ 8x8y(Xxy ! Xyx) ^ 8x8y8z((Xxy ^Xyz)! Xxz)

^8x9=1y(Xxy ^ y 6= x))

(\there is a binary relation which is an equivalence relation having

only equivalence classes with exactly two elements")

4.2 Game for Existential Second-Order Logic

In the preceding section we introduced the generalized version of Ehrenfeucht's method

for monadic second-order logic, which characterized the monadic second-order axiomati-

zability in terms of the game that allows set moves corresponding to set quanti�ers. Now

it is easily veri�ed that the restriction on the arity of relation variables is not essential, by

introducing a new game that allows k-ary moves corresponding to k-ary relation variables.

We state this observation precisely in the following.

We introduce the fragment k-SO of second-order logic as k-ary second-order logic in

which relation variables are allowed only if their arities � k. For structures A, B and

m 2 N we write A �k-SO
m B if A and B satisfy the same k-ary second-order sentences of

quanti�er rank � m (the quanti�er rank is the maximum number of nested �rst-order

and second-order quanti�ers). We can show in general that �k-SO
m is characterized by the

game k-SO-Gm(A;B). The rules are the same as in the monadic second-order game, but

now in every move the spoiler can decide whether to make a point move or a l-ary move

for l � k. The point moves are the same as the moves in the �rst-order case. In a l-ary

move the spoiler chooses a l-ary relation P l � Al or Ql � Bl, and then the duplicator

responds by a l-ary relation Ql � Bl or P l � Al, respectively. After m moves, elements

a1; . . . ; ar and relations P l
1; . . . ; P

l
sl
in A for l � k, and corresponding elements b1; . . . ; br

and relations Ql
1; . . . ; Q

l
sl
in B for l � k (with m = r + s1 + � � � + sk) have been chosen.

The duplicator wins if �a 7! �b 2 Part((A; P 1; . . . ; P k); (B; Q1; . . . ; Qk)).

Theorem 4.2.1 A �k-SO
m B i� the duplicator wins k-SO-Gm(A;B). 2

In order to prove the theorem, we again introduce the corresponding isomorphism types

similar to  j
a;P

. For �a(= a1 . . . ar) in A and P l(= P l
1 . . .P

l
sl
) a sequence of l-ary relations

on Al, the formulas �
j

a;P 1;...;Pk
are de�ned as;

�0
a;P 1;...;P k

:=^
f'(�v; V 1; . . . ; V k) j ' atomic or negated atomic, A j= '[�a;P 1; . . . ; P k]g
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�
j+1

a;P 1;...;P k
:=

^
a2A

9vr+1�
j

aa;P 1;...;Pk
^ 8vr+1

_
a2A

�
j

aa;P 1;...;Pk

^
^
P�A

9Vs1+1�
j

a;P 1P;...;Pk
^ 8Vs1+1

_
P�A

�j
a;P 1P;...;Pk

^ � � �
...

^
^

Pk�Ak

9Vsk+1�
j

a;P 1;...;P kPk
^ 8Vsk+1

_
P k�Ak

�
j

a;P 1;...;PkPk

Then we can show the equivalence of

(i) The duplicator wins k-SO-Gm((A; P 1; . . . ; P k); �a; (B; Q1; . . . ; Qk);�b)

(ii) B j= �m
a;P 1;...;Pk

[�b; Q1; . . . ; Qk]

(iii) �a, P 1; . . . ; P k satis�es in A the same formulas of k-SO of quanti�er rank � m as �b,

Q1; . . . ; Qk in B, that is, if '(�v; V 1; . . . ; V k) is of quanti�er rank � m, then

A j= '[�a;P 1; . . . ; P k] i� B j= '[�b; Q1; . . . ; Qk]

We will not give a full detail of the proof, for it can be proven completely parallel to

that of monadic second-order logic. Consequently, we get a way of checking up the

axiomatizability in second-order logic:

Theorem 4.2.2 A class K of �nite structures is not axiomatizable in second-order logic

i� the duplicator has a winning strategy for the following game.

1. The spoiler selects k 2 N .

2. The spoiler selects m 2 N .

3. The duplicator selects A 2 K.

4. The duplicator selects B =2 K.

5. The spoiler and the duplicator play k-SO-Gm(A;B). 2

The game described above gives us a hint on �nding a gametheoretic characterization

of a fragment �1
1 of second-order logic, by modifying the second-order game slightly. In

the following we discuss a game for �1
1, a modi�cation of the game above:

1. The spoiler selects k 2 N .

2. The spoiler selects m 2 N .

3. The duplicator selects A0 2 K.

4. The duplicator selects B0 =2 K.
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5. The spoiler sets a k-ary relation P0 on A0.

6. The duplicator sets a k-ary relation Q0 on B0.

7. The spoiler and the duplicator play Gm((A0; P0); (B0; Q0)).

Then we are able to get the following result, an analogue of 4.2.2.

Theorem 4.2.3 A classK of �nite structures is not axiomatizable in �1
1 i� the duplicator

has a winning strategy for the �1
1 game.

We postpone the proof of this theorem until the following result is shown.

Theorem 4.2.4 For every �1
1 sentence 9X1 . . .9Xn' where ' is �rst-order, there is an

equivalent �1
1 sentence 9X in which only a single relation variable X occurs.

Proof. By induction on n. In case n = 1, the conclusion is immediate. For a sentence �

of the form 9X1 . . .9Xn+1' where ' is �rst-order, � is equivalent to a sentence 9X9Y  

by the induction hypothesis. We can assume that X and Y have the same arity without

a loss of generality. In fact, if the arity m of X is less than n of Y , then 9X9Y  (X) is

rewritten by:

9Z9Y (8x1 . . .8xn(Zx1 . . .xn ! x1 = x2 ^ . . . ^ x1 = xn�m+1) ^  (Z �t1 )):

Here, the arity of Z is n and  (Z �t1 ) is obtained from  (X) by replacing subformulas

Xt1 . . . tm by Zt1 . . . t1t1t2 . . . tm. Now, 9X9Y  (X;Y ) with n-ary relation variables X

and Y is rewritten by:

9R9x9y(x 6= y ^8x1 . . .8xn8z(R(x1; . . . ; xn; z)! (z = x_ z = y))^ (R x;R y)) (4:4)

the arity of R is n+1, and  (R x;R y) is obtained from  (X;Y ) by replacing subformulas

X�t and Y �s by R�tx and R�sy, respectively. Yet, the formulas above are equivalent only on

structures with at least two elements. So, structures of cardinality 1 must be taken into

consideration separately. Thus the formula must be rewritten as follows,

9R((9x8y(x = y))! ( (T; T ) _  (T; F ) _  (F; T ) _  (F; F ))

^:(9x8y(x = y))!  0)

where  0 consists of the �rst-order part of (4.4). 2

Proof of 4.2.3. If K is axiomatizable in �1
1, then, by the preceding result 4.2.4, it is

axiomatizable by a sentence 9X (X) where  is �rst-order. Therefore the spoiler has a

winning strategy in the new �1
1 game as follows: 1. he choose a number k as the arity

of X. 2. he choose a number m as the quanti�er rank of  . 5. he selects such a k-ary

relation P0 on A0 as A0 j=  [P0] is satis�ed (note that A0 j= 9X ). On the other hand,

the duplicator has to choose B0 such that B0 =j= 9X , and hence for any relation Q0 over

B0, B0 =j=  [Q0]. Therefore, whatever choices are made by the duplicator, (A0; P0) j=  
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but (B0; Q0) =j=  . This implies (A0; P0) =�m (B0; Q0), and hence the spoiler wins the game

Gm((A0; P0); (B0; Q0) (cf. 3.2.10). Conversely, suppose the spoiler has a winning strategy

in the new �1
1 game. Then it is enough to show that K is axiomatizable in �1

1. First, let

us make the meaning of \the duplicator has a winning strategy" exact: For all k 2 N , for

all n 2 N , there is A0 and B0 such that for all k-ary relation P0 over A0, there is a k-ary

relation Q0 over B0 such that

A0 2 K;B0 =2 K and (A0; P0) �m (B0; Q0):

Hence its negation \the spoiler has a winning strategy" is described precisely as follows:

For some k and n, for all B0

\there is a A0 such that for all P0 there is a Q0

such that A0 2 K and (A0; P0) �m (B0; Q0) " implies B0 2 K (4.5)

Thus,

K = Mod(
_
A2K

^
P�Ak

9Pf'm(A;P ) j A 2 K;P � Akg) (4:6)

For suppose A 2 K, then for all P � Ak, A j= 9P'm(A;P ), hence A satis�es the sentence on

the right side of (4.6). For the converse, suppose B satis�es the sentence on the right side of

(4.6). Then for some A 2 K, for all P � Ak there is a Q � Bk such that (B; Q) j= 'm(A;P ),

that is, (A; P ) �m (B; Q) (cf. 3.2.10). According to (4.5), this implies B 2 K. Note

that the number of formulas 'm(A;P ) is �nite (cf. 3.2.7), hence the conjunctions and the

disjunction in (4.6) is �nite. After the formula is changed into prenex normal form, we

get a �1
1 sentence. 2

Next, we consider another game, a modi�ed �1
1 game, which looks easier for the

duplicator to win. The rules of the modi�ed game are obtained from the rules of the �1
1

game by reversing the order of two of the moves:

1. The spoiler selects k 2 N .

2. The spoiler selects m 2 N .

3. The duplicator selects A0 2 K.

4. The spoiler sets a k-ary relation P0 on A0.

5. The duplicator selects B0 =2 K.

6. The duplicator sets a k-ary relation Q0 on B0.

7. The spoiler and the duplicator play Gm((A0; P0); (B0; Q0)).

Thus, in the modi�ed game, the spoiler must commit himself to setting a k-ary relation

on A0 before knowing what B0 is. In spite of the fact that it seems to be harder for the

spoiler to win the modi�ed �1
1 game than the �1

1 game, we have the following analogue

of 4.2.3.
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Theorem 4.2.5 A classK of �nite structures is not axiomatizable in �1
1 i� the duplicator

has a winning strategy for the modi�ed �1
1 game.

Proof. For showing the implication from right to left, the �rst half of the proof of 4.2.3

applies to this case. Therefore it su�ces to show the converse. This time the meaning of

\spoiler has a winning strategy" is: for some k and for some n, for all A0 there is a k-ary

relation PA0
over A0 such that for all B0,

\there is a k-ary relation Q0 over B0 such that

A0 2 K and (A0; PA0
) �m (B0; Q0) " implies B0 2 K (4.7)

Therefore, K is axiomatizable by a �1
1 sentence 9P

W
f'm(A;PA) j A 2 Kg; suppose A 2 K,

then clearly A j= 9P'm(A;PA), hence A satis�es the sentence above. For the converse,

suppose B satis�es the sentence. Then for some A 2 K, there is a Q � Bk such that

(B; Q) j= 'm(A;PA), that is, (A; PA) �m (B; Q). According to (4.7), this implies B 2 K. 2

4.3 Concluding Remarks

In this chapter we presented the gametheoretic characterizations concerned with second-

order de�nability, such as monadic second-order logic, general second-order logic, and

existential second-order logic.

In the �rst section we introduced the game of monadic second-order logic, and we gave

an application that the class of �nite structures of even cardinality is not expressible in

monadic second-order logic, showing that the duplicator has a winning strategy in the

corresponding monadic second-order game.

Further, we showed that I(� ) of � -structures of cardinality in a set I of natural numbers

is de�nable in monadic second-order logic if and only if I is either �nite or co-�nite. This

result gives rise to a question: what kind of a set of natural numbers I is de�nable in

binary second-order logic or binary �1
1? As shown in the end of the section, the set

EVEN of even natural numbers is de�nable in �1
1 with a single binary relation variable.

And in the same way, one can show that the set of multiples of any given number is

also de�nable in �1
1 with a single binary relation variable. Well then, what about the set

PRIME of prime numbers? In other words, which of the two players, the spoiler and the

duplicator, has a winning strategy in the corresponding game? Here the game is obtained

from the �1
1 game (introduced in the second section) setting the arity k = 2 and the class

K = PRIME(�).

In case we set the arity k = 1 (i.e. monadic) in the game above, then the duplicator

has a winning strategy in the game by the result mentioned above, for PRIME is neither

�nite nor co-�nite. Still, in view of descriptive complexity theory (cf. section 2.3), PRIME

is de�nable in �1
1 by a sentence of the form 9X' where ' is �rst-order and X is of arity

seven (X symbolizes the computation of Turing machine that accepts prime numbers).

Therefore the spoiler has a winning strategy in the corresponding game with arity k = 7.

However, we don't know which of the two wins the game with arity between one and

seven. This is a problem with challenge.
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In the second section we extended the game of monadic second-order logic to the

game applicable to general second-order logic. And the rest of the section was devoted to

describe the game of the fragment �1
1 of second-order logic in its two formulations.

The reason why we were particularly concerned with the expressibility in �1
1 comes

from the fact that, in view of descriptive complexity theory, the expressibility in �1
1 is

the same as the computability in NPTIME. Therefore the characterization of �1
1 may

contribute to solve the problems concerned with NPTIME in complexity theory. For

example, the question as to whether �1
1 = �1

1 is equivalent to the famous problem of

whether NPTIME = co-NPTIME. In other words, we have NPTIME 6= co-NPTIME if

we �nd a class of �nite structures which is in �1
1 and not in �1

1. Although this is an open

problem, Proposition 3.4.5 shows that monadic �1
1 is di�erent from monadic �1

1, in fact,

the class of connected graphs is not monadic �1
1 although it is monadic �1

1.

In this way, the author has tried, in vain, to �nd out a good mathematical property

that is not expressible in �1
1, in other words, a property for which the duplicator is able

to construct his winning strategy in the corresponding �1
1 game. The di�culty is that the

spoiler is allowed to set an arbitrary k-ary relation on a structure. Therefore if the spoiler

chooses a random k-ary relation (even restricted to binary), it seems to be impossible for

the duplicator to �nd out a correct response to it. To overcome the problem, we need to

simplify the �1
1 game by putting restrictions on the spoiler's choice of a k-ary relation,

such as the arity, the �gure of a relation, and so on. This problem is left as a future work.
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