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Chapter 1

Introduction

Many reasonings which appear in daily thought are often in
uenced by situations, states,

the passage of time and so on. The introduction of modal logics to take the situations,

states and the passage of time into consideration is very useful. K which is the smallest

normal modal logic, KT and S4 which characterize temporal logic , S5 which charac-

terizes epistemic logic and so on are well-known monomodal logics . The various logical

properties of them have been found out already. There are many syntactical results on

them. Many monomodal logics have been investigated well since the early time of 20th

century. On the other hand, in many multimodal logics with several modalities, how-

ever, even the most elementary questions concerning completeness, decidability and so

on haven't been unsolved. From the point of view of application of modal logics, modal

logics with one modality are sometimes not su�cient, and hence introduction of several

modalities will be necessary in many situations. For example, epistemic logics with no-

tion of tense will be able to express knowledge in the past and the future. Epistemic

logics and temporal logics themselves can be also regarded as a kind of bimodal logics.

Moreover, we assume in general that modalities in temporal logics have certain relations

among them. On the other hand, for independently axiomatizable modal logics, the

notion of the fusion of them were �rstly introduced by S. Thomason 1980. Recently,

independently axiomatizable bimodal logics as special bimodal logics are investigated

semantically by M. Kracht and F. Wolter [3].

This paper presents a study of bimodal logics, that is, modal logics with two modali-

ties, and will discuss these by both syntactic and semantical method. The cut-elimination

properties of the fusions will be discussed in the syntactical studies. In the semantical

approaches, dependently axiomatizable bimodal logics will be mainly discussed. We will

consider the fusion of well-known logics ( K, KT, S4 and S5 ) and see several logical
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properties like Kripke completeness, �nite model property and so on for bimodal logics.

In Chapter 2, several basic monomodal logics and their sequent systems are introduced

in the preliminaries, and several notations and de�nitions which will be used in later

section are given. In Chapter 3, we will describe some sequent systems corresponding to

fusions and derive cut-elimination properties, subformula properties and so on of them.

The cut-elimination theorem for some systems, �rst, will be proved in usual way [4]. On

the other hand, some systems for fusions are shown not to enjoy cut-elimination prop-

erty. For systems which lack cut-elimination property, however, we will show that the

systems have subformula property, by extending Takano's method [11] for S5�. Then as

a corollary, the decidability for the systems will be derived in the same way as that by

Gentzen [4]. The last topic in Chapter 3 is the Craig's interpolation theorem for these

systems. To prove the theorem, we will use Maehara's method [13]. The method works

well even for the systems lacking cut-elimination property, since they have the subfor-

mula property. As contrasted with the independently axiomatizable bimodal logics, for

instance, a bimodal logic with the axiom 2p � p is a dependently axiomatizable bi-

modal logic. For the dependently axiomatizable bimodal logics, however, it is di�cult for

us to �nd out the systems with cut-elimination property. Next we will study semantics

for bimodal logics. As Kripke completeness and �nite model property of fusions have

been extensively studied by M. Kracht and F. Wolter [3], here we will study these prop-

erties for dependently axiomatizable bimodal logics. It is quite hard to develop a general

semantical study of dependently axiomatizable bimodal logics at this moment. So, as

a steppingstone to future study of this topics, we will restrict ourselves to the study of

Kripke completeness and the �nite model property of bimodal logics which are obtained

from a fusion of two monomodal logics by adding an axiom of the form �p � �p, where

� and � are sequences of two box operators.
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Chapter 2

Preliminaries

In this chapter, several notations and de�nitions for some monomodal logics are given.

The language L2 of propositional monomodal logic consists of

� propositional variables: p, q, r, � � �

� logical symbols: ^, _, �, :, 2.

Formulas, denoted by A, B, C, � � �, are constructed in the usual way from propositional

variables and logical symbols. In particular, 2A is a formula when A is a formula.

We may append indexes to propositional variables and formulas. Greek capital letters

�; �; �; �, � and � denote sequences of formulas. 2� denotes 2A1;2A2; � � � ;2An,

when � is A1; A2; � � � ; An.

De�nition 2.1 (modal logic) A set L of formulas in L2 is a modal logic, if the fol-

lowing conditions are satis�ed:

� all tautologies belong to L,

� if A;A � B 2 L, then B 2 L,

� if A 2 L, then 2A 2 L,

� if A 2 L, then any substitution instance of A belongs to L.

Let L be a modal logic ( of L2 ), and Q be a set of formulas ( of L2 ).Then the least

modal logic containing the set L [ Q is denoted by L
L
Q. K denotes the least modal

logic containing the axiom 2(p � q) � (2p � 2q). Any modal logic with the axiom

2(p � q) � (2p � 2q) is called a normal modal logic. The following modal logics are

well-known :

KT = K
L
f2p � pg

K4 = K
L
f2p � 22pg

S4 = K
L
f2p � p;2p � 22pg
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S5 = K
L
f2p � p;:2:p � 2:2:pg

We will discuss the combinations of these basic monomodal logics as fusions.

2.1 Sequent calculus LK

As a formalization for modal logics, we will adopt sequent calculus. It based on the

system LK introduced by G.Gentzen. Any expression of the form � ! � is called

a sequent. Here, � and � are called the antecedent and the succedent of the sequent,

respectively.

An inference is expressed by the form

S1
S

or
S2 S3

S
;

where S1, S2, S3 and S are sequents. S1, S2 and S3 are called the upper sequents and

S is called the lower sequent of the inference. In particular, S2 ( S3 ) is called the left

(right) upper sequent of the inference.

The sequent system LK for the classical logic has the following initial sequents and

inferences.

� Initial sequents:

the sequents of the form A! A,

� Structural rules:

( weakening rule )

�! �
A;�! �

(w !) �! �
�! �; A

(! w)

( contraction rule )

A;A;�! �

A;�! �
(c!)

�! �; A;A

�! �; A
(! c)

( exchange rule )

�; A;B;�! �

�; B;A;�! �
(e!)

�! �; A;B;�

�! �; B;A;�
(! e)

( cut rule )

�! �; A A;�! �

�;�! �;�
(cut)
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� Logical rules:

A;�! �

A ^ B;�! �
(^ !)

B;�! �

A ^B;�! �
(^ !)

�! �; A �! �; B

�! �; A ^ B
(! ^)

A;�! � B;�! �

A _ B;�! �
(_ !)

�! �; A

�! �; A _ B
(! _)

�! �; B

�! �; A _B
(! _)

�! �; A B;�! �

A � B;�;�! �;�
(�!)

A;�! �; B

�! �; A � B
(!�)

�! �; A

:A;�! �
(: !)

A;�! �

�! �;:A
(! :) :

Weakening, contraction and exchange rules are called weak inferences; w:i: for short.

The formula A in cut rule is called the cut formula of the cut. In the logical rules, A^B,

A _ B, A � B and :A which appear in the lower sequent are called principal formulas

of the rules.

De�nition 2.2 (proof and end-sequent) Proof and the end-sequent are de�ned in-

ductively as follows:

� Initial sequent is proof, and end-sequent of the proof is itself.

� Let P1 and P2 be proofs with the end-sequents S1 and S2, respectively. If

S1
S

or
S1 S2

S

is one of the inferences in LK, then

P1
S

or
P1 P2

S

is proof, and the end-sequent is S.

De�nition 2.3 (thread) A sequence of sequents in a proof is called a thread of the

proof if the following conditions are satis�ed:

� the sequence begins with an initial sequent and ends with the end-sequent,

� every sequent in the sequence except the last is an upper sequent of an inference,

and is followed immediately by the lower sequent of this inference.
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These notions and examples of the proofs are referred in [4], [13].

2.2 Mix rule

As an instrument to eliminate cut rules, we introduce the mix rule:

�! � �! �
�;�A ! �A;�

(A) ;

where A 2 � \ �, and �A and �A denote the sequences obtained from � and � by

deleting all occurrences of the formula A in them, respectively. The formula A in the

above rule is called the mix formula of this mix . By means of mix, cut can be represented

as follows:

�! � �! �
�;�A ! �A;�

(A)

�;�! �;�
(w:i:) :

To the contrary, by means of cut, mix can be represented as follows:

�! �

�! �A; A
(w:i:) �! �

A;�A ! �
(w:i:)

�;�A ! �A;�
(cut) :

In this sense, the mix rule and the cut rule are equivalent. So cut- elimination theorem

can be proved by mix-elimination. The outline of the proof of mix-elimination is as

follows:

1) concentrate to one of the uppermost mixes,

2) eliminate the mix by double induction on the degree and the rank which refer to

the following de�nitions.

De�nition 2.4 (degree) The degree of a formula A, denoted by deg(A), is the number

of logical symbols which occur in A.

De�nition 2.5 (rank) Let P be a proof which contains a mix rule only as the last

inference. The left(right) rank of P, denoted by �l(�r), is the max number of consecutive

sequents which contain mix formula in the succedent(antecedent), counting upward from

the left(right) upper sequent of the mix. Then � = �l+�r is the rank of P. ( Since �l � 1

and �r � 1, � � 2. )

The cut-elimination theorem of LK is proved in detail by [4], [13].
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2.3 Monomodal systems

In this section, we will describe the system K�, KT�, S4� and S5�. First, K� is obtained

from the system LK by adding the following inference rule:

�! A
2�! 2A

(2) :

We can obtain various modal systems from LK by adding some inference rules. KT� is

the system obtained from LK by adding the following inference rules:

A;�! �

2A;�! �
(2!) �! A

2�! 2A
(! 2) :

It is easy to see that, for any formula C, C is in KT if and only if ! C is provable in

KT�. In this sense, KT and KT� are equivalent. S4� is the system obtained from LK

by adding the following inference rules:

A;�! �

2A;�! �
(2!) 2�! A

2�! 2A
(! 2) :

Also, S4 and S4� are shown to be equivalent. S5� is the system obtained from LK by

adding the following inference rule:

A;�! �

2A;�! �
(2!)

2�! 2�; A

2�! 2�;2A
(! 2) :

S5 and S5� are equivalent. See e.g. [8] [9], for the details. It is known that K�,

KT� and S4� enjoy cut- elimination property, but S5� lacks it. The cut-elimination

theorem of the system S4� are shown by M. Ohnishi and K. Matsumoto [6]. The cut-

free systems for S5 are given by G. E. Mints [5], M. Sato [10] and so on, but they are

complicated. So, the decidability and Craig's interpolation theorem of K�, KT� and S4�

are obtained from cut-elimination property by using the standard method. As for S5�,

the subformula property has been shown by Takano [11]. Hence, the decidability and

Craig's interpolation theorem follows from this.
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Chapter 3

Syntactic results on bimodal logics

M. Kracht and F. Wolter developed a semantical study of fusions of independently ax-

iomatizable modal logics [3]. In this chapter, we will introduce sequent systems of fusions

of some basic monomodal logics and study logical properties like the decidability and

Craig's interpolation theorem by using these systems. To show them, we �rst discuss

cut-elimination property and subformula property for these systems. Since it is shown

that the system for S5� lacks cut-elimination property, any system of fusions, one of

whose component is S5�, lack cut-elimination property. We will show, however, that

Takano's method works well also for these systems, and hence we can get subformula

property of them [11] [12].

3.1 Bimodal logics

The language L2 of propositional bimodal logic has

� propositional variables: p, q, r, � � �

� logical symbols: ^, _, �, :, 2, .

Formulas, denoted by A, B, C, � � �, are constructed in the usual way from propositional

variables and logical symbols. In particular, both 2A and A are formulas when A is a

formula. We may append indexes to the propositional variables and the formulas. Greek

capital letter �, �, �, �, �, � and � denote sequences of formulas. 2� and � denote

2A1, 2A2, � � �, 2An and A1, A2, � � �, An respectively, when � is A1, A2, � � �, An. We

may also append indexes to the Greek letters. Sub(A) denote the set of all subformulas

of a formula A. A bimodal logic L of L2 is de�ned by adding the following condition to

the de�nition of monomodal logic L:

� if A 2 L, then A 2 L.
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De�nition 3.1 (fusion) Let M and N be monomodal logics in L2 and L , respec-

tively.The fusion of M and N, denoted by M
N
N, is the least bimodal logic in L2

containing both M and N.

When we want to specify the modality in a logic M, we will attach the modality to

M. For instance, M2 denotes a modal logic in L2.

For M�;N�
2 fK�;KT�;S4�;S5�g, we will introduce sequent systems of the form

M�
N
N�. The systems M�

N
N� is obtained from M� and N�, simply by combining

their inferences. Of course, it is necessary to distinguish one modality from another. For

example, S4�
N
S5� is de�ned as follows. Let and 2 be the modalities for S4� and

S5�, respectively. The system S4�
N
S5� is obtained from LK by adding the following

inference rules:

A;�! �

A;�! �
( !) �! A

�! A
(! )

A;�! �

2A;�! �
(2!)

2�! 2�; A

2�! 2�;2A
(! 2) :

It is easy to see the following.

Lemma 3.2 For any formula C, ! C is provable in M�
N
N� if and only if C is in

M
N
N.

Without any di�culty, we can show the following.

Theorem 3.3 (cut-elimination theorem) 　
Let M�;N�

2 fK�;KT�;S4�g. Then every proof in M�
N
N� can be transformed, with-

out changing the end-sequent, into cut-free one.

Proof. We �rst replaced all cuts by mixes, and can show this theorem by double

induction on the degree and the rank as usual.

Corollary 3.4 (subformula property) 　
Let M�;N�

2 fK�;KT�;S4�g. Then all formulas which construct cut-free proof in

M�
N
N� consist of the subformulas of formulas which occur in the lowest sequent.

Proof. For any inferences rule I except cut rule, the upper sequents of I consist of

the subformulas of formulas in the lower sequent of I.
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3.2 S5� lacks cut-elimination property

Next we will discuss the cut-elimination property of sequent systems for fusions, at least,

one of whose component is S5�. We �rst note that S5� lacks the cut-elimination property,

while each of K�, KT� and S4� has it.

Lemma 3.5 S5� lacks cut-elimination property.

Proof. This example was noticed �rst by M. Ohnishi and K. Matsumoto [7]. The

sequent p ! 2:2:p is provable in S5�. In fact, the following proof is a proof of

p! 2:2:p in S5�:

2:p! 2:p

　! :2:p;2:p

　! 2:2:p;2:p

p! p

:p; p!　
2:p; p!　

　 p! 2:2:p　
(cut)

Next, we will show that p ! 2:2:p is not provable in S5�. Suppose otherwise. Then

it is easy to see that the lowest inference of the proof must be either weakening rule or

contraction rule.

Case 1: The lowest inference is weakening rule.

In this case, the upper sequent of the inference rule is p! or! 2:2:p. But clearly

both sequents are not provable in S5�.

Case 2: The lowest inference is contraction rule.

In this case, the upper sequent of the inference rule is p; p ! 2:2:p or p !

2:2:p;2:2:p. The inference rule which infer one of these sequents is weakening

rule or contraction rule. If the inference rule is weakening rule, any upper sequent of

the inference is a sequent which is former one or not provable in S5�. If the infer-

ence rule is contraction rule, an upper sequent of the inference is p; p; p ! 2:2:p;

p; p ! 2:2:p;2:2:p or p ! 2:2:p;2:2:p;2:2:p. Further, the inference rule

which one of these sequents is also weakening rule or contraction rule. If the inference

rule is weakening rule, the upper sequent of the inference is the sequent which is previous

one or not provable in S5�. So, only possible sequents in the proof are sequents of the

form p; � � � ; p! 2:2:p; � � � ;2:2:p. Thus, we can never get an initial sequent.
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3.3 Subformula property by Takano's method

We have seen that S5� lacks cut-elimination property. On the other hand, Takano showed

the following.

Theorem 3.6 Every proof in S5� can be transformed, without changing the end-sequent,

into the proof which has subformula property.

For example, all formulas which are occurred in the above proof of p! 2:2:p are

actually in Sub(2:2:q). Since S5� lacks cut-elimination property, any of K�
N
S5�,

KT�NS5�, S4�
N
S5� and S5�

N
S5� lacks it. We will show the subformula property

for fusions by extending Takano's method for S5� into that for fusions. This section

presents syntactical approach for the systems corresponding to fusions. In this section,

we will show that the cuts in proof can be restrict the cuts with subformula property by

extending Takano's method for S5� into that for the systems corresponding to fusion (

Theorem 3.9 and Corollary 3.20 ).

De�nition 3.7 (acceptable cut) A cut

�! �; A A;�! �

�;�! �;�

is acceptable, if the cut formula forms the subformula of a formula which occurs in the

lower sequent of the cut, namely A 2 Sub(�;�;�;�). The cut which is not acceptable

is called an unacceptable cut.

De�nition 3.8 (suitable proof) A proof is suitable, if every cut applied in it is ac-

ceptable.

Theorem 3.9 Every proof in K�
N
S5�, KT�NS5�, S4�

N
S5� or S5�

N
S5� can be

transformed, without changing the end-sequent, into suitable one.

The system in which every proof can be transformed, without changing the end-

sequent, into suitable one has subformula property, since in the inference rules which

construct suitable proofs, the upper sequents of the inferences consist of the subformulas

of formulas in lower sequents. Importance of this result will be shown in later section.

We will concentrate mainly on S4�
N
S5� in the following, as other cases can be treated

similarly.
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De�nition 3.10 (A-suitable proof) For any formula A, a proof is A-suitable, if every

cut applied in it is acceptable or has a subformula of A as its cut formula.

De�nition 3.11 (partition of sequence) A pair h�1; �2i of sequences is a partition

of sequence �, if �1 \�2 = � and �1 [�2 = �.

Lemma 3.12 Suppose � � Sub(�;�; A). If �;�1 ! �2;� has an A-suitable proof in

S4�
N
S5� for every partition h�1; �2i of �, then so does �! �.

Proof. We prove this by induction on the length of �.

(i) If � is the empty, h; i is the partition of �. So claim holds.

(ii) If � denotes (�0; B), then �0 � � � Sub(�;�). Let h�;�i be any partition of �0.

Then h�;�; Bi and h�; B; �i are partitions of �. So �;�! �; B;� and �;�; B ! �;�

have A-suitable proofs. Hence A-suitable proof of �;� ! �;� can be obtained from

these sequents by means of a cut and weak inferences, since B 2 � � Sub(�;�; A).

Therefore, �! � has an A-suitable proof by induction hypothesis.

De�nition 3.13 (regular) A proof is regular, if for any cut in the proof the cut formula

doesn't occur in the lower sequent of the cut.

If the lower sequent of a cut rule contains the cut formula, it is obtainable from one

of the upper sequents by means of weak inferences. So any proof can be transformed

into regular one. Note that 2 under the discussion is the modality of S5�.

Lemma 3.14 Let P be a regular, suitable proof of �! �. Suppose 2A 62 Sub(�;�2A).

Then 2A doesn't occur in the antecedent of any sequent of P.

Proof. We prove this by induction on the number of sequents. Now assume that 2A

occurs in the antecedent of a sequent.

Case 1: If �! � is the initial sequent, �! � is 2A! 2A. Then 2A 2 Sub(�). It

is contradictory to 2A 62 Sub(�;�2A).

Case 2: 2A occur in the antecedents of the upper sequents of structural rules except

cut rule ( weakening rule, contraction rule and exchange rule ) and logical rules. In these

cases, clearly 2A occur in the antecedents of the lower sequents of the rules.

Case 3: 2A occurs in at least one of the antecedents of the upper sequents of cut

rule.
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3.1. If 2A is not the cut formula, then clearly 2A occurs in the antecedent of the

lower sequent.

3.2. If 2A is the cut formula, then 2A is the proper subformula of a formula which

occurs in the antecedent of the lower sequent since P is regular and suitable.

Hence, if 2A occurs in the antecedent of a sequent in P, then there exists a formula

B in � such that 2A is the proper subformula of B. So 2A 2 Sub(B) � Sub(�). It is

however contradictory to 2A 62 Sub(�;�2A).

De�nition 3.15 (family) The family of 2A in a suitable proof is the sequence of all

formulas except 2A which occur in the lower sequents of (! 2) in the proof with the

principal formula 2A.

Since the lower sequents of (! 2) consist of 2-formulas, the family of 2A in a

suitable proof of �! � consists of 2-formulas in Sub(�;�) except 2A.

De�nition 3.16 (covered) Let h2�1;2�2i be a partition of the family of 2A in a

suitable proof. An application (! 2)

2�! 2�; B

2�! 2�;2B
(! 2)

in the proof is covered by h�1; �2;Ai, if � � �1, �A � �2 and B = A.

Lemma 3.17 Let P be a regular, suitable proof of � ! �, and h2�1;2�2i a partition

of the family of 2A in P. Suppose 2A 62 Sub(�;�2A).

1) If �! � is a sequent in P such that no application of (! 2) which is applied above

� ! � is covered by h�1; �2;Ai, then �;2�1 ! 2�2;�2A has an A-suitable proof in

S4 �NS52
�.

2) Either 2�1 ! 2�2; A or �;2�1 ! 2�2;�2A has an A-suitable proof in S4 �NS52
�.

Proof. 1) We prove this by induction on the number of sequents which are above

�! �.X and X# denote the sequents �! � and �;2�1 ! 2�2;�2A respectively. If

X is the lower sequent of weak inferences, (^ !), (! ^), (_ !), (! _), (�!), (!�),

(: !) or (! :), the conclusion follows from the induction hypothesis immediately. So

we will mention the other cases.

Case 1: X is the initial sequent B ! B. Since B 6= 2A by Lemma 3.14, X# (i.e.

B;2�1 ! 2�2; B) has a suitable proof.

13



Case 2: X is the lower sequent of an acceptable cut

�1 ! �1; B B;�2 ! �2

�1;�2 ! �1;�2

(acceptable cut) ;

where B 2 Sub(�1;�2;�1;�2). By the induction hypothesis, �1;2�1 ! 2�2;�12A; B

and B;�2;2�1 ! 2�2;�22A have A-suitable proofs.

If B 2 Sub(2A) ( i.e. B 2 Sub(A) [ f2Ag ), then B 2 Sub(A) since B 6= 2A by

Lemma 3.14. In this case,

�1;2�1 ! 2�2;�12A; B B;�2;2�1 ! 2�2;�22A

�1;�2;2�1;2�1 ! 2�2;2�2;�12A;�22A

(cut)

�1;�2;2�1 ! 2�2;�12A;�22A

(weak inferences) � � � � (＊)

is an A-suitable proof.

If B 62 Sub(2A), then B 2 Sub(�1;�2;�12A;�22A).So (＊) is a suitable proof.

Case 3: X is the lower sequent of an

2�! 2�; B

2�! 2�;2B
(! 2) :

If B = A, then X# is 2�;2�1 ! 2�2;2(�A). By the assumption this inference

is not covered by h�1; �2;Ai. So either � \ �2 6= � or �A \ �1 6= �.In both cases, a

suitable proof of X# can be obtained by means of weakening rules.

If B 6= A, then X# is 2�;2�1 ! 2�2;2(�A);2B . By induction hypothesis,

2�;2�1 ! 2�2;2(�A); B has an A-suitable proof, and in the case of B = 2A, it has

an A-suitable proof by means of weakening rule. Hence X# has an A-suitable proof.

Case 4: X is the lower sequent of an

�! B
�! B

(! ) :

Since B is -formula, then B2A is B. So X# is �;2�1 ! 2�2; B. Hence an

A-suitable proof of X# can be obtained by means of weak inferences.

2) Case 1 : Some application of (! 2) is covered by h�1; �2;Ai. Take one of the

uppermost such application

2�! 2�; A

2�! 2�;2A
(! 2) ;
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where � � �1 and �A � �2. By applying 1) to the upper sequent of this inference, we

can obtain 2�;2�1 ! 2�2;2(�A); A. So 2�1 ! 2�2; A has an A-suitable proof.

Case 2 : Otherwise. By applying 1) to the end-sequent, we can obtain an A-suitable

proof of �;2�1 ! 2�2;�2A.

Corollary 3.18 If � ! � has a suitable proof in S4 �NS52
�, then � ! �2A; A has

an A-suitable one.

Proof. Let P be a regular, suitable proof of �! �.

(i) If 2A 2 Sub(�;�2A), �! �2A; A has the suitable proof :

�! �
A! A
2A! A

�! �2A; A
(acceptable cut) :

(ii) 2A 62 Sub(�;�2A). Let � be the family of 2A in P, and h2�1;2�2i any partition

of �. Then either 2�1 ! 2�2; A or �;2�1 ! 2�2;�2A has an A-suitable proof by

Lemma 3.17 , and so too has �;2�1 ! 2�2;�2A; A by means of weak inferences. Thus

�! �2A; A has an A-suitable one by Lemma 3.12.

Proof of Theorem 3.9 for S4 �NS52
�. We �rst replaced all unacceptable cuts by

mixes, and show it by double induction on the degree and the rank that any proof with a

mix for its lowest inference and not containing any other mix can be transformed into a

suitable one without changing the end-sequent. By eliminating one of uppermost such a

mixes in turn, all mixes can be eliminated. In particular we will mention the cases which

the upper sequents of the mixes are the lower sequents of (2 !); (! 2); ( !); (! )

and (acceptable cut), since the other cases can be proved in usual way by the induction

hypothesis immediately.

Case 1 : � = 2.

1.1. The left and right upper sequents of the mix are the lower sequents of (! 2)

and (2!) respectively. Then the proof runs as follows :

2�! 2�; A

2�! 2�;2A
(! 2)

A;�! �

2A;�! �
(2!)

2�;�! 2�;�
(2A) ;

where 2A is the mix formula and 2A 62 2� [�. We transform it into the proof :
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2�! 2�; A A;�! �

2�! 2�;�
(A) :

The degree of A is smaller than that of 2A. Hence we can eliminate the mix by the

hypothesis of induction on the degree.

1.2. The left and right upper sequents of the mix are the lower sequents of (! )

and ( !) respectively. Then the proof runs as follows :

�! A
�! A

(! )
A;�! �

A;�! �
( !)

�! �
( A) ;

where A is the mix formula and A 62 �. We transform it into the proof :

�! A A;�! �

�;�! �
(A) :

The degree of A is smaller than that of A. Hence we can eliminate the mix by the

hypothesis of induction on the degree.

Case 2 : �＞ 2.

Subcase 2.1: �r = 1. In this case �l＞ 1 since �＞ 2 and �r = 1.

2.1.1. The right upper sequent of the mix is the lower sequent of (2 !). Then the

proof runs as follows :

�! �

A;�! �

2A;�! �
(2!)

�;�! �2A;�
(2A) ;

where 2A is the mix formula, 2A 2 � and 2A 62 �. Since �! �2A; A has an A-suitable

proof by Corollary 3.18, we can construct the proof :

�! �2A; A A;�! �

�;�A ! (�2A)A;�
(A)

�;�! �2A;�
(w:i:) :

Even if mixes appear in a proof of � ! �2A; A, all the mix formulas are subformulas

of A. Since the degree of A is smaller than that of 2A, the mixes can be eliminated by

the hypothesis of induction on the degree. In the similar way, the mix which is lowest

16



inference can be also eliminated by the hypothesis of induction on the degree. Hence a

suitable proof can be obtained without exchanging the end-sequent.

2.1.2. The left and right upper sequents of the mix are the lower sequents of (2 !)

and ( !) respectively. Then the proof runs as follows :

A;�! �

2A;�! �
(2!)

B;�! �

B;�! �
( !)

2A;�;�! � B ;�
( B) ;

where B is the mix formula, B 2 � and B 62 �. We transform it into the proof :

A;�! �

B;�! �

B;�! �
( !)

A;�;�! � B;�
( B)

2A;�;�! � B;�
(2!) :

The left rank of this proof is smaller than that of the former one. Hence we can eliminate

the mix by the hypothesis of induction on the rank.

2.1.3. The left and right upper sequents of the mix are the lower sequents of ( !)

and (! ) respectively. Then the proof runs as follows :

A;�! �

A;�! �
( !)

B;�! �

B;�! �
( !)

A;�;�! � B;�
( B) ;

where B is the mix formula, B 2 � and B 62 �. We transform it into the proof :

A;�! �

B;�! �

B;�! �
( !)

A;�;�! � B ;�
( B)

A;�;�! � B ;�
( !) :

The left rank of this proof is smaller than that of the former one. Hence we can eliminate

the mix by the hypothesis of induction on the rank.

Subcase 2.2: �r＞ 1.

2.2.1. The both upper sequents of the mix are the lower sequents of (! 2). Then

the proof runs as follows :

2�! 2�

2�! 2�; B

2�! 2�;2B
(! 2)

2�;2(�A)! 2(�A);2�;2B
(2A) ;
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where 2A is the mix formula and 2A 2 2� \2�. We transform it into the proof :

2�! 2� 2�! 2�; B

2�;2(�A)! 2(�A);2�; B
(2A)

2�;2(�A)! 2(�A);2�;2B
(! 2) :

The right rank of this proof is smaller than that of the former one. Hence we can

eliminate the mix by the hypothesis of induction on the rank.

2.2.2. The left and right upper sequents of the mix are the lower sequents of (2 !)

and (! 2) respectively. Then the proof runs as follows :

A;�! �

2A;�! �
(2!)

2�! 2�; B

2�! 2�;2B
(! 2)

2A;�;2(�C)! �2C ;2�;2B
(2C) ;

where 2C is the mix formula and 2C 2 � \ 2�. We transform it into the proof :

A;�! �

2�! 2�; B

2�! 2�;2B
(! 2)

A;�;2(�C)! �2C ;2�;2B
(2C)

2A;�;2(�C)! �2C ;2�;2B
(2!) :

The left rank of this proof is smaller than that of the former one. Hence we can eliminate

the mix by the hypothesis of induction on the rank.

2.2.3. The left and right upper sequents of the mix are the lower sequents of ( !)

and (! 2) respectively. Then the proof runs as follows :

A;�! �

A;�! �
( !)

2�! 2�; B

2�! 2�;2B
(! 2)

A;�;2(�C)! �2C ;2�;2B
(2C) ;

where 2C is the mix formula and 2C 2 � \ 2�. We transform it into the proof :

A;�! �

2�! 2�; B

2�! 2�;2B
(! 2)

A;�;2(�C)! �2C ;2�;2B
(2C)

A;�;2(�C)! �2C ;2�;2B
( !) :

The left rank of this proof is smaller than that of former one. Hence we can eliminate

the mix by the hypothesis of induction on the rank.

2.2.4. The left and right upper sequents of the mix are the lower sequents of (2 !)

and (! ) respectively.
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A;�! �

2A;�! �
(2!) �! B

�! B
(! )

2A;�; (�C)! � C ; B
( C) ;

where C is the mix formula and C 2 � \2�. We transform it into the proof :

A;�! �
�! B
�! B

(! )

A;�; (�C)! � C ; B
( C)

2A;�; (�C)! � C ; B
(2!) :

The left rank of this proof is smaller than that of the former one. Hence we can eliminate

the mix by the hypothesis of induction on the rank.

2.2.5. The left and right upper sequents of the mix are the lower sequents of ( !)

and (! ) respectively. Then the proof runs as follows :

A;�! �

A;�! �
( !) �! B

�! B
(! )

A;�; (�C)! � C ; B
( C) ;

where C is the mix formula and C 2 � \2�. We transform it into the proof :

A;�! �
�! B
�! B

(! )

A;�; (�C)! � C ; B
( C)

A;�; (�C)! � C ; B
( !) :

The left rank of this proof is smaller than that of the former one. Hence we can eliminate

the mix by the hypothesis of induction on the rank.

Case 3 : If the right upper sequent of the mix is the lower sequent of acceptable cut in

particular, then the proof runs as follows :

�! �

�! �; B B;�! �

�;�! �;�
(acceptable cut)

�;�A;�A ! �A;�;�
(A) ;

where A is the mix formula and A 2 (�;�) \ �. Since B is the cut formula of the

acceptable cut, B 2 Sub(�;�;�;�). Suppose A 2 � but A 62 �, since other cases are

shown likewise.

3.1. If B 2 Sub(A) n fAg, we transform the given proof into the proof :
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�! �; B

�! � B;�! �

�; B;�A ! �A;�
(A)

�;�A;�A ! �;�A;�
(B) ;

Hence we can eliminate the upper mix by the hypothesis of induction on the rank and

the lower mix by the hypothesis of induction on the degree since deg(B)＜ deg(A).

3.2. If B � A, we transform the given proof into the proof :

�! � B;�! �

�;�A ! �A;�
(A)

�;�A;�A ! �A;�;�
(w:i:) :

Hence we can eliminate the mix by the hypothesis of induction on the rank.

3.3. If B 62 Sub(A), we transform the given proof into the proof :

�! �; B

�! � B;�! �

�; B;�A ! �A;�
(A)

�;�A;�A ! �;�A;�
(acceptable cut) ;

where B 2 Sub(�A;�A;�;�). Hence we can eliminate the mix by the hypothesis

of induction on the rank, and the lowest inference is an acceptable cut since B 2

Sub(�A;�A;�;�).

Corollary 3.18 must be modi�ed as follows:

Corollary 3.19 If � ! � has an suitable proof in S5�
N
S5�, then � ! �2A; A and

�! � A; A respectively have A-suitable proofs in S5�
N
S5�.

Proof of Theorem 3.9 for S5�
N
S5�. We �rst replaced all unacceptable cut by

mixes, and show the theorem for S5�
N
S5� by double induction on the degree and rank

that any proof with a mix for its lowermost inference and not containing any other mix

can be transformed into a suitable one with the same end-sequent. By eliminating one

of uppermost such a mixes in turn, all mixes can be eliminated. We will particularly

mention only crucial cases.

Case 1: The right upper sequent of the mix is the lower sequent of (! 2). Then the

proof runs as follows:

�! �

A;�! �

2A;�! �
(2!)

�;�! �2A;�
(2A) ;
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where 2A is the mix formula, 2A 2 � and 2A 62 �. Since �! �2A; A has an A-suitable

proof by Corollary 3.19, we can construct the proof:

�! �2A; A A;�! �

�;�A ! (�2A)A;�
(A)

�;�! �2A;�
(w:i:) :

Even if mixes appear in a proof of � ! �2A; A, all the mix formulas are subformulas

of A. Since the degree of A is smaller than that of 2A, the mixes can be eliminated by

the hypothesis of induction on the degree. In the similar way, the mix which is lowest

inference can be also eliminated by the hypothesis of induction on the degree. Hence a

suitable proof can be obtained without changing the end-sequent.

Case 2: The right upper sequent of the mix is the lower sequent of ( !). Then the

proof runs as follows:

�! �

A;�! �

A;�! �
( !)

�;�! � A;�
( !) ;

where A is the mix formula, A 2 � and A 62 �. Since �! � A; A has an A-suitable

proof by Corollary 3.19, we can construct the proof:

�! � A; A A;�! �

�;�A ! (� A)A;�
(A)

�;�! � A;�
(w:i:) :

Even if mixes appear in a proof of � ! � A; A, all the mix formulas are subformulas

of A. Since the degree of A is smaller than that of A, the mixes can be eliminated by

the hypothesis of induction on the degree. In the similar way, the mix which is lowest

inference can be also eliminated by the hypothesis of induction on the degree. Hence a

suitable proof can be obtained without changing the end-sequent.

As for K�
N
S5� and KT�NS5�, subformula property can be seen in a similar way

to S4�
N
S5�. Thus, we have the following.

Corollary 3.20 (subformula property) 　
Then all formulas which construct suitable proof in K�

N
S5�, KT�NS5�, S4�

N
S5�

or S5�
N
S5� consist of the subformulas of formulas which occur in the lowest sequent.
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Proof. In all inferences except cut rule, the upper sequents of the inferences consist

of the subformulas of formulas in the lower sequents.In the acceptable cut rule, of course,

the upper sequents of the inferences consist of the subformulas of formulas in the lower

sequent.

3.4 Decidability

As an application of subformula property which was seen in the previous section, we will

see the decidability for the systems corresponding to fusions. A concrete �nite procedure

which decides to be provable or not for any formula in a system is called a decision

procedure. If there exists a decision procedure, the system is side to be decidable.

De�nition 3.21 (reduced) A sequent � ! � is reduced, if each formula occurs at

most three times in both � and �.

Lemma 3.22 Let � ! � be arbitrary sequent. Then there exists a suitable S4�
N
S5�

proof of �0 ! �0 which consists solely of reduced sequents such that �0 ! �0 is provable

in S4�
N
S5� if and only if �! � is provable in S4�

N
S5�.

Proof. Suppose � ! � is not reduced. Then a reduced sequent �0 ! �0 can be

obtained from � ! � by means of contraction and exchange rules. Conversely, � ! �

can be obtained from �0 ! �0 by means of weakening and exchange rules. So, for any

sequent � ! �, there exists a reduced sequent �0 ! �0 such that �0 ! �0 is provable

in S4�
N
S5� if and only if � ! � is provable in S4�

N
S5�. Then we can obtained a

suitable proof of reduced sequent �0 ! �0 by Theorem 3.9.

The sequences �, �, � and � of formulas in the structural and logical rules of

S4�
N
S5�, respectively, are not able to contain two or more same formulas by deleting the

overlapping formulas. Then by means of weak inferences and by deleting the nonessential

sequents, we can obtain the suitable proof of �0 ! �0 which consists solely of reduced

sequents.

Theorem 3.23 S4�
N
S5� is decidable.

Proof. We will show this theorem by giving a decision procedure. Suppose that any

sequent �! � is given. By Lemma 3.22 it is provable in S4�
N
S5� if and only if there

exists a reduced sequent �0 ! �0 obtained from �! � which is provable in S4�
N
S5�.

Let G be the set of all the reduced sequents which consist of all formulas in Sub(�0;�0).

Since the set Sub(�0;�0) is �nite, the set G is �nite. Now we de�ne Gn as follows:
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� G0 is the set of all the initial sequents in G,

� Gi+1 is the union of Gi and the set of all the sequents in G n Gi which can be lower

sequents when upper sequents are in Gi.

Then there exists j such that Gj+1 = Gj since the set G is �nite. If the sequent �0 ! �0

is in Gj , then �0 ! �0 is provable in S4�
N
S5�, viz. � ! � is provable in S4�

N
S5� .

Otherwise, �! � is not provable in S4�
N
S5�.

Similarly, we can show the following.

Theorem 3.24 For any M�;N�
2 fK�;KT�;S4�;S5�g, M

N
N is decidable.

3.5 Craig's interpolation theorem

In this section, Craig's interpolation theorem for various fusions is shown syntactically

by using Maehara's method. Since, for any M�;N�
2 fK�;KT�;S4�g, M�

N
N� has

cut-elimination property by Theorem 3.3, Craig's interpolation theorem for M�
N
N�

can be shown by using the usual way. Also, even when at least one of M� and N� is

S5�, we can use Maehara,s method and get Craig's interpolation theorem for M�
N
N�.

In the following, we will given a detailed proof of it for S4�
N
S5�.

For technical reasons, we introduce the constant symbol >, and admit ! > as an

initial sequent.

De�nition 3.25 (partition of sequence) 　
hf�1; �1g; f�2; �2gi is a partition of sequent � ! �, if �1 \ �2 = �, �1 [ �2 = �,

�1 [�2 = � and �1 [�2 = �.

The set of all propositional variables which occur in A and constant symbol is denoted

by V (A).

Lemma 3.26 Suppose that a sequent �! � is provable in S4 �NS52
�, and also that

hf�1; �1g; f�2; �2gi is an arbitrary partition of �! �. Then there exists a formula C,

called an interpolant, such that

1) �1 ! �1; C and C;�2 ! �2 are both provable in S4 �NS52
�,

2) V (C) � V (�1 [�1) \ V (�2 [�2).

Proof. This lemma is proved by induction on the length a suitable proof of � ! �.

We will give a proof only the cases where �! � is initial sequent or the lower sequent

of one of (2!), (! 2), ( !), (! ) and (acceptable cut).
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Case 1. The sequent �! � has the formD ! D. There are four cases hfD;Dg; f; gi,

hf; g; fD;Dgi, hfD; g; f;Dgi and hf;Dg; fD; gi as the partitions. Then :>, >, D and

:D are serves as the interpolants, respectively.

Case 2. The last inference is

A;�! �

2A;�! �
(2!) :

2.1. The partition is hf2A;�1; �1g; f�2; �2gi. By applying the induction hypothesis

to the proof of the upper sequent, there exists an interpolant C such that A;�1 ! �1; C

and C;�2 ! �2 are both provable in S4 �NS52
�. Then we can obtain following two

proofs:

...
A;�1 ! �1; C

2A;�1 ! �1; C

...
C;�2 ! �2

:

Hence C serves as an interpolant of the present partition.

2.2. The partition is hf�1; �1g; f2A;�2; �2gi. By applying the induction hypothesis

to the proof of the upper sequent, there exists an interpolant C such that �1 ! �1; C

and C;A;�2 ! �2 are both provable in S4
�NS52

�. Then we can obtain following two

proofs:

...
�1 ! �1; C

...
C;A;�2 ! �2

C;2A;�2 ! �2

:

Hence C serves as an interpolant of the present partition.

Case 3. The last inference is

2�! 2�; A

2�! 2�;2A
(! 2) :

3.1. The partition is hf2�1;2�1;2Ag; f2�2;2�2gi. By applying the induction

hypothesis to the proof of the upper sequent, there exists an interpolant C such that

2�1 ! 2�1; A; C and C;2�2 ! 2�2 are both provable in S4 �NS52
�. Then we can

obtain following two proofs:
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...
2�1 ! 2�1; A; C

:C;2�1 ! 2�1; A

2:C;2�1 ! 2�1; A

2:C;2�1 ! 2�1;2A

2�1 ! 2�1;2A;:2:C

...
C;2�2 ! 2�2

2�2 ! 2�2;:C

2�2 ! 2�2;2:C

:2:C;2�2 ! 2�2

:

Hence :2:C serves as an interpolant of the present partition.

3.2. The partition is hf2�1;2�1g; f2�2;2�2;2Agi. By applying the induction

hypothesis to the proof of the upper sequent, there exists an interpolant C such that

2�1 ! 2�1; C and C;2�2 ! 2�2;2A are both provable in S4 �NS52
�. Then we

can obtain following two proofs:

...
2�1 ! 2�1; C

2�1 ! 2�1;2C

...
C;2�2 ! 2�2; A

2C;2�2 ! 2�2; A

2C;2�2 ! 2�2;2A
:

Hence 2C serves as an interpolant of the present partition.

Case 4. The last inference is

A;�! �

A;�! �
( !) :

4.1. The partition is hf A;�1; �1g; f�2; �2gi. By applying the induction hypothesis

to the proof of the upper sequent, there exists an interpolant C such that A;�1 ! �1; C

and C;�2 ! �2 are both provable in S4 �NS52
�. Then we can obtain following two

proofs:

...
A;�1 ! �1; C

A;�1 ! �1; C

...
C;�2 ! �2

:

Hence C serves as an interpolant of the present partition.

4.2. The partition is hf�1; �1g; f A;�2; �2gi. By applying the induction hypothesis

to the proof of the upper sequent, there exists an interpolant C such that �1 ! �1; C

and C;A;�2 ! �2 are both provable in S4
�NS52

�. Then we can obtain following two

proofs:
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...
�1 ! �1; C

...
C;A;�2 ! �2

C; A;�2 ! �2

:

Hence C serves as an interpolant of the present partition.

Case 5. The last inference is

�! A
�! A

(! ) :

5.1. The partition is hf �1; Ag; f �2; gi. By applying the induction hypothesis to

the proof of the upper sequent, there exists an interpolant C such that �1 ! A;C and

C; �2 ! are both provable in S4 �NS52
�. Then we can obtain following two proofs:

...
�1 ! A;C

:C; �1 ! A

:C; �1 ! A

:C; �1 ! A

�1 ! A;: :C

...
C; �2 !

�2 ! :C

�2 ! :C

: :C; �2 !
:

Hence : :C serves as an interpolant of the present partition.

5.2. The partition is hf �1; g; f �2;Agi. By applying the induction hypothesis to

the proof of the upper sequent, there exists an interpolant C such that �1 ! C and

C; �2 ! A are both provable in S4 �NS52
�. Then we can obtain following two proofs:

...
�1 ! C

�1 ! C

...
C; �2 ! A

C; �2 ! A

C; �2 ! A
:

Hence C serves as an interpolant of the present partition.

Case 6. The last inference is

�! �; A A;�! �

�;�! �;�
(acceptable cut) ;

where A 2 Sub(�;�;�;�). Then the partition is hf�1;�1; �1;�1g; f�2;�2; �2;�2gi.

This is only the case which never happens when the cut-elimination theorem holds.
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6.1. If A 2 Sub(�1;�1;�1;�1), by applying the induction hypothesis to the proof

of the upper sequent, there exist interpolants C1 and C2 such that �1 ! �1; A; C1;

C1;�2 ! �2; A;�1 ! �1; C2 and C2;�2 ! �2 are all provable in S4 �NS52
�. Then

we can obtain following two proofs:

...
�1 ! �1; A; C1

...
A;�1 ! �1; C2

�1;�1 ! �1;�1; C1; C2

�1;�1 ! �1;�1; C1 _ C2; C1 _ C2

�1;�1 ! �1;�1; C1 _ C2

...
C1;�2 ! �2

C1;�2;�2 ! �2;�2

...
C2;�2 ! �2

C2;�2;�2 ! �2;�2

C1 _ C2;�2;�2 ! �2;�2

:

Hence C1 _ C2 serves as interpolants of the present partition.

6.2. If A 2 Sub(�2;�2;�2;�2), by applying the induction hypothesis to the proof of

the upper sequent, there exist interpolants C1 and C2 such that �1 ! �1; C1; C1;�2 !

�2; A; �1 ! �1; C2 and C2; A;�2 ! �2 are all provable in S4 �NS52
�. Then we can

obtain following two proofs:

...
�1 ! �1; C1

�1;�1 ! �1;�1; C1

...
�1 ! �1; C2

�1;�1 ! �1;�1; C2

�1;�1 ! �1;�1; C1 ^ C2

...
C1;�2 ! �2; A

...
C2; A;�2 ! �2

C1;�2; C2;�2 ! �2;�2

C1 ^ C2;�2; C1 ^ C2;�2 ! �2;�2

C1 ^ C2;�2;�2 ! �2;�2

:

Hence C1 ^ C2 serves as interpolants of the present partition.

Theorem 3.27 (Craig's interpolation theorem) 　
If A � B is provable in S4�

N
S5�, then there exists a formula C such that

1) A � C and C � B are both provable in S4�
N
S5�,

2) V (C) � V (A) \ V (B).

Proof. Assume that A � B is provable in S4�
N
S5�. Clearly, the sequent A! B is

provable in it. Then by Lemma 3.26, taking A as �1 and B as �2, there exists a formula

C satisfying 1) and 2) of Theorem 3.27.

Similarly, we can show the following.

Theorem 3.28 Let M�;2 fK�;KT�;S5�g. If A � B is provable in M�
N
S5�, then

there exists a formula C such that

1) A � C and C � B are both provable in M�
N
S5�,

2) V (C) � V (A) \ V (B).
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3.6 Remarks

As for fusions, M. Kracht and F. Wolter [3] proved the followings semantically:

� both M and N are decidable ) M
N
N is decidable,

� both M and N hold the Craig's interpolation theorem ) M
N
N holds it.

In this chapter, we obtained the syntactical results for these property. For anyM�;N�
2

fK�;KT�;S4�;S5�g, we could see that M�
N
N� has subformula property either by

deriving the cut-elimination property or by showing that every proof can be transformed

into suitable one with same end-sequent. In either case, important logical properties like

the decidability and the Craig's interpolation theorem can be derived.

As for dependently axiomatizable bimodal logics, however, it is di�cult to �nd se-

quent systems in which the cut-elimination property holds. Therefore, it would be neces-

sary to develop semantical methods for them. Some attempts to this direction are made

in the next section.
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Chapter 4

Kripke type semantics

There are several semantical researches on fusion of independently axiomatizable bimodal

logics by M. Kracht and F. Wolter [3] and so on, and some syntactical approaches have

been seen in previous section. In this chapter, we will examine several dependently

axiomatizable bimodal logics, using semantical method. Using Kripke type semantics,

logical properties like the completeness and the �nite model property for these logics will

be discussed. Though our study in the present chapter remains still an initial stage, the

attempt made here will contribute to future extensive, semantical study in future.

4.1 Kripke frames and models

First we will extend Kripke type semantics to bimodal logics.

De�nition 4.1 (Kripke frame) 　
Let M be a nonempty set, and R2 and R be binary relations on M ; viz. R2 � M �M

and R � M �M . Then a frame is a triple (M;R2; R ), where M is called the set of

possible worlds, and both R2 and R are called accessibility relations.

De�nition 4.2 (Kripke model) 　
Let F = (M;R2; R ) be a frame, and V be a mapping such that V (p) � M for each

propositional variable p. Then a Kripke model is a pair (F ; V ), i.e. (M;R2; R ; V ),

where V is called a valuation on F . For a given Kripke model (M;R2; R ; V ), a binary

relation j= between a 2 M and formulas is de�ned inductively on the length of formulas

as follows:

� a j= p() a 2 V (p)
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� a j= A ^B () a j= A and a j= B

� a j= A _B () a j= A or a j= B

� a j= A � B () a j= A implies a j= B

� a j= :A() not a j= A

� a j= 2A() for any b 2 M , aR2b implies b j= A

� a j= A() for any b 2 M , aR b implies b j= A.

The relation j= is de�ned by the valuation V uniquely. So j= and (M;R2; R ; j=) is

also called a valuation, and a Kripke model, respectively, when no confusions will occur.

A formula A is true in model M = (M;R2; R ; j=), denoted by M j= A, if a j= A for

any a 2 M . A formula A is valid in frame F = (M;R2; R ), denoted by F j= A, if

M j= A for any model M = (M;R2; R ; j=).

In the following, we will consider particular interdependences between2 and , which

can be expressed by a formula of the form �1 � � ��mp � �1 � � ��np, where �i; �j 2 f2; g.

An example is 2p � p, which can be interpreted in epistemic logic as“ H knows

everything what H2 knows ”when 2p ( p) is interpreted as“ H2 (H ) knows p”.

Lemma 4.3 Let �i; �j 2 f2; g. Suppose m;n � 1. For any frame F = (M;R2; R ),

F j= �1 � � ��mA � �1 � � ��nA ()

(��) 8ck (0 � k � n� 1) (ckR�k+1ck+1 ) 9dl (0 � l � m� 1) dlR�l+1dl+1),

where c0 = d0 = a and cn = dm = b.

Proof. [(] Let (M;R2; R ; j=) be a model, and a be in M .

a 6j= �1�2 � � ��n�1�nA

) 9e1(aR�1e1 and e1 6j= �2 � � ��nA)
...

) 9e1 � � � 9en�1(aR�1e1; � � � ; en�2R�n�1en�1 and en�1 6j= �nA)

) 9e1 � � � 9en�19en(aR�1e1; � � � ; en�2R�n�1en�1; en�1R�nen and en 6j= A)

) 9d1 � � � 9dm�19dm(aR�1d1; � � � ; dm�2R�m�1
dm�1; dm�1R�mdm and dm 6j= A) (en = dm)

) 9d1 � � � 9dm�1(aR�1d1; � � � ; dm�2R�m�1
dm�1 and dm�1 6j= �mA)

...

) 9d1(aR�1d1 and d1 6j= �2 � � ��mA)

) a 6j= �1�2 � � ��m�1�mA

[)] Suppose ckR�k+1ck+1 for any ck+1 (0 � k � n� 1), where c0 = a and cn = b. Let

(M;R2; R ; j=) be a model in which
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x j= p, 9dl (0 � l � m� 1); dlR�l+1dl+1

where d0 = a and dm = x. Then a j= �1 � � ��mp, and so a j= �1 � � ��np by the assumption.

Since, for any ck (0 � k � n � 1), ckR�k+1ck+1 and a j= �1 � � ��np, cn j= p (i:e: b j= p).

Hence 9dl(0 � l � m� 1); dlR�l+1dl+1 where d0 = a and dm = b.

The condition in Lemma 4.3 corresponding to the schema �1 � � ��mA � �1 � � � �nA is

displayed by the following Figure 4.1.
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Figure 4.1:

4.2 Completeness

We will see Kripke completeness for the bimodal logics with the axiom �1 � � ��mp �

�1 � � ��np where �i; �j 2 f2; g by using the canonical models.

In the following, � denotes the set of all formulas of bimodal logics.

De�nition 4.4 ( L-consistent set ) For a bimodal logic L, a set U 2 � is L- consis-

tent if :(B0 ^ B1 ^ � � � ^ Bn�1) 62 L for any B0; � � � ; Bn�1 2 U .

De�nition 4.5 ( L-maximal set ) For a bimodal logic L, a set U 2 � is L- maximal

is the following conditions are satis�ed:

� U is L-consistent,

� for any A 2 �, either A 2 U or :A 2 U .

Lemma 4.6 Let L be a normal logic.

(1) (A0 ^ � � � ^ An�1) � A 2 L

) (2A0 ^ � � � ^2An�1) � 2A 2 L and ( A0 ^ � � � ^ An�1) � A 2 L.

(2) � (2A0 _ � � � _ 2An�1) � 2(A0 _ � � � _ An�1) 2 L,

� ( A0 _ � � � _ An�1) � (A0 _ � � � _ An�1) 2 L.
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Proof. (1) By induction on n. We �rst prove the case n = 0. Suppose A0 � A 2 L,

and then 2(A0 � A) 2 L. Since L is normal, 2A0 � 2A 2 L. If (A0^� � �^Ak) � A 2 L,

then (A0^� � �^Ak�1) � (Ak � A) 2 L. By induction hypothesis, (2A0^� � �^2Ak�1) �

2(Ak � A) 2 L. Since L is normal, (2A0 ^ � � � ^ 2Ak�1) � (2Ak � 2A) 2 L. Hence

(2A0 ^ � � � ^ 2Ak) � 2A 2 L. As for , we can see in the similar way to 2.

(2) By induction on n. The case n = 0 is clearly. Suppose the case n = k � 1,

and then (2A0 _ � � � _ 2Ak�1) � 2(A0 _ � � � _ Ak�1) 2 L. (2A0 _ � � � _ 2Ak�1) �

2(A0_� � �_Ak�1_Ak) 2 L since (A0_� � �_Ak�1) � (A0_� � �_Ak�1_Ak) 2 L. Further,

Ak � (A0 _ � � � _ Ak�1 _ Ak) 2 L, and so 2Ak � 2(A0 _ � � � _ Ak�1 _ Ak) 2 L. Thus

(2A0 _ � � � _2Ak�1 _2Ak) � 2(A0 _ � � � _Ak�1 _Ak) 2 L. As for , we can see in the

similar way to 2.

The following lemma is essential in proving the completeness.

Lemma 4.7 ( Lindenbaum's lemma ) 　
Every L-consistent set of formulas is contained in a L-maximal set.

Proof. Let A0; � � � ; Ai; � � � be an enumeration of the set �, and U be any L-consistent

set. Now de�ne 
 as follows:


0 = U


n+1 =

8<
:


n [ fAng; if 
n [ fAng is L-consistent;


n [ f:Ang; otherwise:


 =
S
n�0 
n.

By using induction, we will show that 
n is L -consistent for any n. Clearly, 
0 is L-

consistent. Next assume that 
n is L-consistent. If 
n[fAng is L-consistent, then 
n+1

is L-consistent by the de�nition of 
n. Now consider the case that 
n [ fAng is not L-

consistent, i.e. there exist B1; � � � ; Bk 2 
n such that :(B1^� � �^Bk^An) 2 L. Suppose

moreover that 
n+1 (= 
n[f:Ang) is not L-consistent. Then there exist C1; � � � ; Cl 2 
n

such that :(C1 ^ � � � ^Cl ^ (:An)) 2 L. Hence C1 ^ � � � ^Cl � :(B1 ^ � � � ^Bk) 2 L, i.e.

:(C1 ^ � � � ^Cl ^B1 ^ � � � ^Bk) 2 L. But this contradicts the L-consistency of 
n. Next,

we will show that 
 is L-consistent. Suppose otherwise. Then, :(D1 ^ � � � ^Ds) 2 L for

some D1; � � � ; Ds 2 
. Since 
 =
S
n
n, Di 2 
n for each i. Let N be the maximum

number in fn1; � � � ; nsg. Then, Di 2 
N for all i. This means that 
N is inconsistent.

But this is a contradiction.

It remains to show that either A 2 
 or :A 2 
 for each A 2 �. Suppose A 2 
 and

:A 2 
 for some formula A. Since :(A ^ :A) 2 L, this contradicts the L-consistency

of 
. So exactly one of A and :A must be in 
 for any A 2 �.
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Hence 
 is a L-maximal set containing U .

Now we consider the method of canonical models.

De�nition 4.8 ( canonical model ) The canonical model (ML; RL
2
; RL; j=L) of a nor-

mal modal logic L is de�ned as follows:

� ML = fU � �jU isL-maximalg,

� U1R
L
2
U2 () fA 2 �j2A 2 U1g � U2,

� U1R
LU2 () fA 2 �j A 2 U1g � U2,

� U j=L p() p 2 U .

The canonical frame for L is FL = (ML; RL
2
; RL).

Lemma 4.9 Let L be a normal logic. Then, for any L-maximal set, U , the following

holds.

(1) L � U .

(2) A ^B 2 U () A 2 U and B 2 U .

(3) A _B 2 U () A 2 U or B 2 U .

(4) A � B 2 U () A 2 U implies B 2 U .

(5) :A 2 U () not A 2 U .

(6) 2A 2 U () for any U 0
2 ML, URL

2
U 0 implies A 2 U 0.

(7) A 2 U () for any U 0
2 ML, URLU 0 implies A 2 U 0.

Proof. (1) Take any A 2 L, and then :(:)A 2 L. Thus :A 2 U contradicts the

L-consistency of U . Hence A 2 U .

(2) [) ] Suppose thet A^B 2 U and moreover that A 62 U or B 62 U . Then :A 2 U

or :B 2 U . Since

:(A ^ B ^ (:A)) 2 L and :(A ^ B ^ (:B)) 2 L;

we have a contradiction in the either case.

[ ( ] Suppose that A;B 2 U and moreover that A ^ B 62 U . Then :(A ^ B) 2 U .

Since

:(:(A ^ B) ^A ^ B) 2 L;

we have a contradiction.
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(3) [ ) ] Suppose that A _ B 2 U and moreover that A 62 U and B 62 U . Then

:A 2 U and :B 2 U . Since

:((A _ B) ^ (:A) ^ (:B)) 2 L;

we have a contradiction.

[ ( ] Suppose that A 2 U or B 2 U , and moreover that A _ B 62 U . Then

:(A _ B) 2 U . Since

:(:(A _ B) ^A) 2 L and :(:(A _ B) ^ B) 2 L;

we have a conradiction in either case.

(4) [ ) ] Suppose that A � B 2 U and moreover that A 2 U and B 62 U . Then

:B 2 U . Since

:((A � B) ^ A ^ (:B)) 2 L;

we have a contradiction.

[ ( ] Suppose that :A 2 U or B 2 U , and moreover that A � B 62 U . Then

:(A � B) 2 U . Since

:(:(A � B) ^ (:A)) 2 L and :(:(A � B) ^ B) 2 L;

we have a contradiction in either case.

(5) It is clear by the de�nition of L-maximal.

(6) [ ) ] If 2A 2 U and URL
2
U 0, then A 2 U 0 by the de�nition of RL

2
.

[( ] Suppose 2A 62 U . We will show that fB 2 �j2B 2 Ug[ f:Ag is L-consistent.

Suppose otherwise. Then

:(B1 ^ � � � ^Bk ^ :A) 2 L; i:e:(B1 ^ � � � ^ Bk) � A 2 L

for some B1; � � � ; Bk such that 2Bi 2 U for each i � k. By Lemma 4.6,

(2B1 ^ � � � ^ 2Bk) � 2A 2 L:

Since 2Bi 2 U for each i, 2A 2 U . But this is a contradiction. Hence fB 2 �j2B 2

Ug [ f:Ag is L-consistent. Then, by Lemma 4.7 there exists U 0
2 ML such that

fB 2 �j2B 2 Ug [ f:Ag � U 0. Clearly URL
2
U 0 and A 62 U .

(7) This can be seen in the similar way to (6).
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Lemma 4.10 For any A 2 � and any U 2ML, U j=L A i� A 2 U .

Proof. We will prove this inductively by using Lemma 4.9 (2), (3), (4), (5), (6), (7)

and the de�nition of j=L.

To show that a logic L with the axiom �1 � � ��mp � �1 � � ��np is complete with respect

to some class of frames de�ned by certain conditions, we need to show the following.

Lemma 4.11 Let �î; �ĵ 2 f2; g. Suppose m;n � 1. If a normal logic L contains

�1 � � ��mp � �1 � � ��np, then 8U
k̂
2 ML (0 � k̂ � n) (U

k̂
RL

k̂+1
U
k̂+1

) 9V
l̂
2 ML

(0 � l̂ � m) V
l̂
RL

l̂+1
V
l̂+1

), where U0 = V0 and Un = Vm.

Proof. Suppose that U0 (= V0) and Un (= Vm) are given. Let

Wh = fAj�hA 2 Vh�1g [ f:�h+1 � � ��mBjB 62 Vmg:

By induction on h (1 � h � m), we will show that Wh is L-consistent. Then there exists

the L-maximal Vh containing Wh by Lemma 4.7.

Step 1: If h = 1,

W1 = fAj�1A 2 V0g [ f:�2 � � ��mBjB 62 Vmg:

Suppose that W1 is not L-consistent. Then

:(A1 ^ � � � ^ Ak ^ :�2 � � ��mB1 ^ � � � ^ :�2 � � ��mBl) 2 L; i:e:

(A1 ^ � � � ^Ak) � (�2 � � ��mB1 _ � � � _ �2 � � ��mBl) 2 L

for some k; l � 0, where �1Ai 2 V0 for each i and Bi0 62 Vn for each i0. Let B =

(B1 _ � � � _ Bl). Then since

(�2 � � ��mB1 _ � � � _ �2 � � ��mBl) � �2 � � ��mB 2 L

by Lemma 4.6 (2), it follows that

(A1 ^ � � � ^ Ak) � �2 � � ��nB 2 L:

Hence, by Lemma 4.6 (1),

(�1A1 ^ � � � ^ �1Ak) � �1�2 � � ��mB 2 L:
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Since �1Ai 2 V0 for each i, �1�2 � � ��mB 2 L: As �1 � � ��mB � �1 � � ��nB 2 L by hy-

pothesis, �1 � � ��nB 2 V0 (= U0). Hence B 2 Un (= Vm), since U0R
L
�1
U1; � � � ; Un�1R

L
�n
Un

hold. But this contradicts Bi0 62 Vm for all i0.

Step 2: Assume that Wj = fAj�jA 2 Vj�1g [ f:�j+1 � � ��mBjB 62 Vmg is L- consis-

tent. Then there exists a L-maximal Vj containing Wj, which satis�es that

�j+1 � � ��mB 2 Vj implies B 2 Vm:

Now suppose that Wj+1 = fAj�j+1A 2 Vjg [ f:�j+2 � � ��mBjB 62 Vmg is not L-

consistent. Then

:(A1 ^ � � � ^ Ak ^ :�j+2 � � ��mB1 ^ � � � ^ :�j+2 � � ��mBl) 2 L;

for some k; l � 0 where �j+1Ai 2 Vj for each i and Bi0 62 Vm for each i0. Let B =

(B1 _ � � � _ Bl). Then since

(�j+2 � � ��mB1 _ � � � _ �j+2 � � ��mBl) � �j+2 � � ��mB 2 L

by Lemma 4.6 (2), it follows that

(A1 ^ � � � ^Ak) � �j+1 � � ��mB 2 L;

and so, by Lemma 4.6 (1),

(�j+1A1 ^ � � � ^ �j+1Ak) � �j+1�j+2 � � ��mB 2 L:

Since �j+1Ai 2 Vj for each i, �j+1�j+2 � � ��mB 2 Vj: By hypothesis, B 2 Vm. Hence

B~i 2 Vm for some ~i. But this contradicts Bi0 62 Vm for all i0. Thus Wj+1 is L-consistent.

Theorem 4.12 (Kripke completeness) 　
Let L = M

N
N
L
f�pi � �ip j i 2 Ig for M;N 2 fK;KT;K4;S4;S5g, where both

�i and �i are sequences of 2 and . Then for any A 2 �, A 2 L i� F j= A for any

F = (M;R2; R ) in the class of frames in which R2 and R correspond to L.

Proof. We will mention the case ~L = S42
N
S5

L
f�ip � �ip j i 2 Ig, where both �i

and �i are sequences of 2 and . The other cases can be seen in the same way.

[ ) ] If R2 is re
exive and transitive, R is equivalence relation and R2 and R

satisfy (��) in Lemma 4.3, then it is clear that A 2 ~L implies F j= A.
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[( ] If A is valid in all frames in whichR2 is re
exive and transitive, R is equivalence

relation and R2 and R satisfy (��) in Lemma 4.3, then F
~L
j= A. Now suppose A 62 ~L,

and then f:Ag is ~L-consistent. By Lemma 4.7, there exists a ~L-maximal U such that

:A 2 U (i.e. A 62 U). So U 6j=
~L A by Lemma 4.10, but this contradicts F

~L
j= A. Hence

A 2 ~L.

This theorem can be extended in the following way. Recall that a modal logic L is

canonical if FL
j= L. Monomodal logicsK, KT, K4, S4 and S5 are canonical. Similarly

to Theorem 4.12, we can prove the following.

Theorem 4.13 ( Kripke completeness ) If both M and N are canonical monomodal

logic, then M
N
N
L
f�ip � �ip j i 2 Ig, where both �i and �i are sequences of 2 and

is Kripke complete.

After we proved this theorem, we found a stronger result in [3], which says that

formulas of the form �ip � �ip in our theorem can be replaced by Sahlqvist formulas.

4.3 Finite model property

In the canonical model (ML; RL
2
; RL; j=L) for a logic L, ML can not be restricted to a

�nite set. But it would be quite useful if we could get a �nite model in which a given

unprovable formula is false. A logic L has the �nite model property if the following

condition is satis�ed:

if A 62 L; then there is a �nite L-model M such that M 6j= A:

In this section, the �nite model property of several dependently axiomatizable bimodal

logics are shown. These results may give us a hint of general results on the �nite model

property.

Suppose we have a model (M;R2; R ; j=), and 	(A) is �nite set which contains

Sub(A). Now we introduce the �ltration method. By means of the �ltrations, we will

show �nite model property of some bimodal logics. We de�ne a binary relation � on M

as follows:

a � b() for any C 2 	(A), a j= C i� b j= C:

Clearly � is equivalence relation. Let [a] denote the equivalence class of a, i.e. [a] =

fx 2 M ja � xg: Let � 2 f2; g. Then a binary relation S on M= � is �ltration if the

following conditions are satis�ed:
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� aR�b =) [a]S�[b],

� [a]S�[b] =) for any �B 2 	(A), a j= �B implies b j= B.

In this section, we will prove the �nite model property by means of the following three

kinds of �ltrations.

� Coarsest �ltration:

[a]S�[b] () for any �B 2 	(A); a j= �B implies b j= B:

� Finest �ltration:

[a]S�[b]() there exist a0; b0 such that a � a0; b � b0 and a0R�b
0:

� Filtration for S5:

[a]S�[b] () for any �B 2 	(A); a j= �B implies b j= �B:

Theorem 4.14 Let M;N 2 fK;KT;K4;S4g. Then M
N
N
L
f2p � pg has the

�nite model property.

Here, we will give a detail proof of the �nite model property of S4
N
S4
L
f2p � pg.

Other cases can be treated similarly. Let L1 = S4
N
S4
L
f2p � pg. We note that L1

is complete in any frame (M;R2; R ) where both R2 and R are re
exive and transitive

and R � R2. Suppose A 62 L1. Then by the completeness theorem ( Theorem 4.12 ),

there exists a L1-model (M;R2; R ; j=) such that for some a0 2 M , a0 6j= A. Now we

de�ne 	(A) as follows:

	1 = Sub(A);

	2 = f Bj2B 2 Sub(A)g;

	3 = f 2Bj2B 2 Sub(A)g;

	4 = f 2Bj2B 2 Sub(A)g;

	5 = f22Bj2B 2 Sub(A)g;

	6 = f Bj B 2 Sub(A)g;

	7 = f Bj2B 2 Sub(A)g;

	(A) =
7[
i=1

	i:
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It is easily seen that 	(A) is �nite.

[a]S2[b]() for any 2B 2 	(A), a j= 2B implies b j= B,

[a]S [b]() for any B 2 	(A), a j= B implies b j= B,

[a] j=� p() a j= p.

Further, consider the following models:

(M= �; S2; S ; j=�):

If the number of formulas in 	(A) is m, then the number of elements of M= � is at most

2m. So M= � is a �nite set.

Lemma 4.15 　
　 (1) For any a; b 2M , aR2b implies [a]S2[b].

(2) For any a; b 2M , aR b implies [a]S [b].

(3) For any a 2M , [a]S2[a]

(4) For any a; b; c 2M , [a]S2[b] and [b]S2[c] implies [a]S2[c].

(5) For any a 2M , [a]S [a]

(6) For any a; b; c 2M , [a]S [b] and [b]S [c] implies [a]S [c].

(7) For any a; b 2M , [a]S [b] implies [a]S2[b].

Proof. First, we note that both R2 and R are re
exive and transitive.

(1) Suppose aR2b. Then it is clear that for any 2B 2 	(A) if a j= 2B then b j= B.

(2) Similarly to (1).

(3) Since the relation R2 is re
exive, a j= 2B implies a j= B.

(4) Suppose that a j= 2B for any 2B 2 	(A) and that [a]S2[b] and [b]S [c].

(i) The case of 2B 2 	1. If a j= 2B, then a j= 22B since R2 is transitive, and thus

b j= 2B by 22B 2 	5 and [a]S2[b]. Hence c j= B by 2B 2 	1 and [b]S2[c].

(ii) The case of 2B 2 	5. Then the 2B is the form 22B 0. If a j= 22B0, then

b j= 2B0 since 22B0
2 	5 and [a]S2[b], and therefore b j= 22B 0 since R2 is transitive.

Hence c j= 2B0 by 22B0
2 	5 and [b]S2[c].

(5) Similarly to (3).

(6) Suppose that a j= B for any B 2 	(A) and that [a]S [b] and [b]S [c].

(i) Similarly to (4) (i).

(ii) The case of B 2 	2. In this case, B 2 	7 since 2B is in 	1. If a j= B,

then a j= B since R is transitive, and so b j= B by B 2 	7 and [a]S [b]. Hence

c j= B by B 2 	2 and [b]S [c].
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(iii) The case of B 2 	3. In this case, B is the form 2B0, and 2B0
2 	4

and since 2B0 is in 	1. If a j= 2B0, then a j= 2B 0 since R is transitive, and so

b j= 2B0 by 2B0
2 	4 and [a]S [b]. Hence c j= 2B0 by 2B 0

2 	3 and [b]S [c].

(iv) The case of B 2 	4. Then B is the form 2B0. If a j= 2B0, then

b j= 2B0 since 2B 0
2 	4 and [a]S [b]. So b j= 2B 0 since R is transitive. Hence

c j= 2B 0 by 2B0
2 	4 and [b]S [c].

(v) The case of B 2 	6. Then B is the form B0. If a j= B0, then b j= B0

by B0
2 	6 and [a]S [b]. Hence b j= B0 since R is transitive. Hence c j= B0 by

B0
2 	6 and [b]S [c].

(vi) The case of B 2 	7. Then B is the form B. If a j= B0, then b j= B0

by B 2 	7 and [a]S [b]. Hence b j= B0 since R is transitive. Hence c j= B0 by

B0
2 	7 and [b]S [c].

(7) Suppose [a]S [b] and a j= 2B for any 2B 2 	(A).

(i) The case of 2B 2 	1. In this case, B 2 	2. If a j= 2B, then a j= B since

R � R2. Hence b j= B by B 2 	2 and [a]S [b].

(ii) The case of 2B 2 	5. Then 2B is the form 22B0, and 2B 0
2 	1 since 2B

0 is

in 	1. If a j= 22B0, then a j= 2B 0 since R � R2. Hence b j= 2B0 by 2B 0
2 	3

and [a]S [b].

We can see that the model (M= �; S2; S ; j=�) is L1-model by Lemma 4.15 (3), (4),

(5), (6) and (7). Now, the �nite model property of S4
N
S4
L
f2p � pg is derived by

combining the following lemma.

Lemma 4.16 If B 2 	(A), then for any a 2 M , a j= B () [a] j=� B:

Proof. We will prove this by induction on the formation of B.

� The case where B is a propositional variables is given by the de�nition of j=�.

� The case where B is of the form C ^D, C _D or C � D is straightforward.

� The case where B = 2C. [ ) ] Suppose that a j= 2C. If [a]S2[b] then b j= C since

2C 2 	(A). By the induction hypothesis b j=� C. Hence [a] j=�
2C.

[ ( ] Suppose [a] j=�
2C. If aR2b then [a]S2[b] by Lemma 4.15 (1). Since [a]S2[b]

and [a] j=�
2C, and so [b] j=� C. By induction hypothesis b j= C. Thus a j= 2C.

The case where B = C can be shown in the similar way. This time we use

Lemma 4.15 (2).
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We can proved the other cases in the similar way. Let M;M0
2 fK;KTg and

N;N0
2 fK4;S4g, and then the �nite model properties of M

N
M0
L
f2p � pg,

M2

N
N
L
f2p � pg, N2

N
M

L
f2p � pg, and N

N
N0
L
f2p � pg can be

proved by taking 	1 [	2, 	1 [	2 [	6 [	7, 	1 [	2 [	3 [	5 and
S
7

i=1	i as 	(A),

respectively. Next we will discuss logics with S5 as one of the fusions.

Theorem 4.17 Let M 2 fK;KT;K4;S4g. Then M2

N
S5

L
f2p � pg has the

�nite model property.

Here, the �nite model property of S42
N
S5

L
f2p � pg will be mainly discussed.

Let L2 = S42
N
S5

L
f2p � pg. Suppose A 62 L2. Then by the completeness

theorem ( Theorem 4.12 ), there exists a model (M;R2; R ; j=) such that for some

a0 2M , a0 6j= A. Now we de�ne 	(A) as follows:

	1 = Sub(A);

	2 = f Bj2B 2 Sub(A)g;

	3 = f 2Bj2B 2 Sub(A)g;

	4 = f22Bj2B 2 Sub(A)g;

	(A) =
4[
i=1

	i:

It is easily seen that 	(A) is �nite.

[a]S2[b]() for any 2B 2 	(A), a j= 2B implies b j= B,

[a]S [b]() for any B 2 	(A), a j= B i� b j= B,

[a] j=� p() a j= p.

Further, consider the following models:

(M= �; S2; S ; j=�).

If the number of formulas in 	(A) is m, then the number of elements of M= � is at most

2m. So M= � is a �nite set.

Lemma 4.18 　
　 (1) For any a; b 2M , aR2b implies [a]S2[b].

(2) For any a; b 2M , aR b implies [a]S [b].

(3) For any a 2M , [a]S2[a]

(4) For any a; b; c 2M , [a]S2[b] and [b]S2[c] implies [a]S2[c].
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(5) For any a 2M , [a]S [a]

(6) For any a; b; c 2M , [a]S [b] and [a]S [c] implies [b]S [c].

(7) For any a; b 2M , [a]S [b] implies [a]S2[b].

Proof. (1), (2), (3), (4) and (5) can be proved in the similar way to Lemma 4.15 (1),

(2), (3), (4) and (5). Then we will show the others.

(6) It is clear that S is transitive and symmetric. Then suppose [a]S [b] and [a]S [c],

for any a; b 2 M . Since S is symmetric, [b]S [a] and [a]S [c], and so [b]S [c] by the

transitivity for S .

(7) Suppose [a]S [b] and a j= 2B for 2B 2 	(A).

(i) The case of 2B 2 	1. In this case, B 2 	2. Then a j= B since R � R2. So

b j= B by B 2 	2 and [a]S [b]. Since R is re
exive, b j= B.

(ii) The case of 2B 2 	3. In this case, 2B is the form 22B0, and 2B 0
2 	4 since

2B0 is in 	1. Then a j= 2B0 since R � R2. So b j= 2B0 by 2B0
2 	4 and

[a]S [b]. Since R is re
exive, b j= 2B0.

In either case, we have shown that b j= B. Thus [a]S2[b].

For the bimodal logic discussed above, we can also show that Lemma 4.16 holds by

Lemma 4.18 (1)(2).

We can proved the other cases in the similar way. The �nite model property of

K2

N
S5

L
f2p � pg and KT2

N
S5

L
f2p � pg can be shown by taking 	1 [	2

as 	(A), and that ofK42
N
S5

L
f2p � pg can be proved by taking 	1[	2[	3[	4

as 	(A). But we don't know at this moment whether S52
N
N has the �nite model

property, for N 2 fK;KT;K4;S4;S5g.

In the similar way, it is proved that some other logics have �nite model property.

Theorem 4.19 The following logics enjoy �nite model property.

M
N
N
L
f2p � 2pg; where M;N 2 fK;KT;K4;S4g,

M2

N
N
L
f2p � 2 pg; where M 2 fK;KTg and N 2 fK4;S4g,

S42
N
S4

L
f2p � 2 pg;

S42
N
KT

L
f2p � 2 pg;

M
N
N
L
f2p � pg; where M;N 2 fK;KT;K4;S4g,

M
N
N
L
f2p � 2 2pg; where M;N 2 fK;KT;S4g.

Proof. We can prove in the similar way to Theorem 4.14.
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Theorem 4.20 　
Let M;N 2 fK;KTg. Then M

N
N
L
f�1 � � ��mp � �pg, where �i; � 2 f2; g, enjoy

the �nite model property.

Here, the �nite model property of K
N
K
L
f�1 � � ��mp � �pg will be mainly dis-

cussed. The other cases can be proved in the same way. Let L3 = K
N
K
L
f�1 � � ��mp �

�pg. Suppose A 62 L3. Then by the completeness theorem ( Theorem 4.12 ), there exists

a model (M;R2; R ; j=) such that for some a0 2M , a0 62 A.

[a]S2[b]() there exist a0; b0 such that a � a0, b � b0 and a0R2b
0

[a]S [b]() there exist a0; b0 such that a � a0, b � b0 and a0R b0

[a] j=� p() a j= p

Then, consider the following model:

(M= �; S2; S ; j=�).

Lemma 4.21 For any a; b 2M , if [a]S�[b] then there exist ci (0 � i � m� 1) such that

[ci]S�i[ci+1], where c0 = a and cm = b.

Proof. Suppose [a]S�[b]. Then there exist a0; b0 such that a � a0, b � b0 and a0R�b
0.

Since R� � R�1 � � � � � R�m , there exist ci (0 � i � m � 1) such that ciR�ici+1, where

c0 = a and cm = b. Hence [ci]S�i[ci+1].

We can also show that Lemma 4.16 for the above logic holds.

It is hard to develop a general semantical study of dependently axiomatizable bimodal

logics at this moment. The �nite model property of general bimodal logics have been

left unanswered as future work.

4.4 decidability

As an application of �nite model property which was seen in the previous section, we will

see the decidability for several bimodal logics. A bimodal logic L is �nitely axiomatizable,

if the logic L is obtained from the fusion of K2 and K by adding �nite axioms. In

general, the following is known.

Theorem 4.22 If �nitely axiomatizable modal logic L has the �nite model property, then

L is decidable.

The proof of the above can be referred in detail by [7] [2]. Then by Theorem 4.22,

we can show the following.
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Theorem 4.23 The following bimodal logics are decidable.

M
N
N
L
f2p � pg; where M;N 2 fK;KT;K4;S4g,

M2

N
S5

L
f2p � pg; where M 2 fK;KT;K4;S4g,

M
N
N
L
f2p � 2pg; where M;N 2 fK;KT;K4;S4g,

M2

N
N
L
f2p � 2 pg; where M 2 fK;KTg and N 2 fK4;S4g,

S42
N
S4

L
f2p � 2 pg;

S42
N
KT

L
f2p � 2 pg;

M
N
N
L
f2p � pg; where M;N 2 fK;KT;K4;S4g,

M
N
N
L
f2p � 2 2pg; where M;N 2 fK;KT;S4g,

M
N
N
L
f�1 � � ��mp � �pg, where �i; � 2 f2; g and M;N 2 fK;KTg.

Proof. Since these logics �nitely axiomatizable and enjoy the �nite model property,

they are decidable by Theorem 4.22.

Since the �nite model property of general bimodal logics have been left unanswered,

and so the decidability of them have been also left unanswered as future work.
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Conclusions and Remarks

In the syntactic study, we could derive the cut-elimination property of M�
N
N� for

any M�;N�
2 fK�;KT�;S4�g. Further, by extending Takano's method for S5�, we

proved that every proof in M0�
N
S5� can be transformed into suitable one with same

end-sequent for M0�
2 fK�;KT�;S4�;S5�g. So these bimodal logics have subformula

property. For these logics, as results, several logical properties like the decidability and

the Craig's interpolation theorem have been shown. As for dependently axiomatizable

bimodal logics, however, it is di�cult to �nd sequent systems in which the cut-elimination

property holds. Therefore, it would be necessary to develop semantical method for them.

In the semantical approach, we could prove the Kripke completeness of bimodal logics

which are obtained from fusions of basic monomodal logics by adding axioms of the form

�1 � � ��mp � �1 � � ��np, where �i; �j 2 f2; g, by constructing the canonical model. But

the �nite model property of the logics hasn't been unsolved in general for its di�culty

of the study of the dependently axiomatizable bimodal logics. So as a steppingstone to

future work of the logics, the �nite model property of some bimodal logics with special

interdependent axioms could be obtained. As an application, the decidability of the

bimodal logics which enjoy the �nite model property could be proved.

As the future work, some logical properties of more general dependently axiomatizable

bimodal logics are expected. Further, general study of multimodal logics with more

modalities is interesting one.
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