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Chapter 1

Introduction

Many reasonings which appear in daily thought are often influenced by situations, states,
the passage of time and so on. The introduction of modal logics to take the situations,
states and the passage of time into consideration is very useful. K which is the smallest
normal modal logic, KT and S4 which characterize temporal logic , S5 which charac-
terizes epistemic logic and so on are well-known monomodal logics . The various logical
properties of them have been found out already. There are many syntactical results on
them. Many monomodal logics have been investigated well since the early time of 20th
century. On the other hand, in many multimodal logics with several modalities, how-
ever, even the most elementary questions concerning completeness, decidability and so
on haven’t been unsolved. From the point of view of application of modal logics, modal
logics with one modality are sometimes not sufficient, and hence introduction of several
modalities will be necessary in many situations. For example, epistemic logics with no-
tion of tense will be able to express knowledge in the past and the future. Epistemic
logics and temporal logics themselves can be also regarded as a kind of bimodal logics.
Moreover, we assume in general that modalities in temporal logics have certain relations
among them. On the other hand, for independently axiomatizable modal logics, the
notion of the fusion of them were firstly introduced by S. Thomason 1980. Recently,
independently axiomatizable bimodal logics as special bimodal logics are investigated
semantically by M. Kracht and F. Wolter [3].

This paper presents a study of bimodal logics, that is, modal logics with two modali-
ties, and will discuss these by both syntactic and semantical method. The cut-elimination
properties of the fusions will be discussed in the syntactical studies. In the semantical
approaches, dependently axiomatizable bimodal logics will be mainly discussed. We will

consider the fusion of well-known logics ( K, KT, S4 and S5 ) and see several logical



properties like Kripke completeness, finite model property and so on for bimodal logics.
In Chapter 2, several basic monomodal logics and their sequent systems are introduced
in the preliminaries, and several notations and definitions which will be used in later
section are given. In Chapter 3, we will describe some sequent systems corresponding to
fusions and derive cut-elimination properties, subformula properties and so on of them.
The cut-elimination theorem for some systems, first, will be proved in usual way [4]. On
the other hand, some systems for fusions are shown not to enjoy cut-elimination prop-
erty. For systems which lack cut-elimination property, however, we will show that the
systems have subformula property, by extending Takano’s method [11] for S5*. Then as
a corollary, the decidability for the systems will be derived in the same way as that by
Gentzen [4]. The last topic in Chapter 3 is the Craig’s interpolation theorem for these
systems. To prove the theorem, we will use Maehara’s method [13]. The method works
well even for the systems lacking cut-elimination property, since they have the subfor-
mula property. As contrasted with the independently axiomatizable bimodal logics, for
instance, a bimodal logic with the axiom Op D Mp is a dependently axiomatizable bi-
modal logic. For the dependently axiomatizable bimodal logics, however, it is difficult for
us to find out the systems with cut-elimination property. Next we will study semantics
for bimodal logics. As Kripke completeness and finite model property of fusions have
been extensively studied by M. Kracht and F. Wolter [3], here we will study these prop-
erties for dependently axiomatizable bimodal logics. It is quite hard to develop a general
semantical study of dependently axiomatizable bimodal logics at this moment. So, as
a steppingstone to future study of this topics, we will restrict ourselves to the study of
Kripke completeness and the finite model property of bimodal logics which are obtained
from a fusion of two monomodal logics by adding an axiom of the form op D 7p, where

o and 7 are sequences of two box operators.



Chapter 2
Preliminaries

In this chapter, several notations and definitions for some monomodal logics are given.
The language L4 of propositional monomodal logic consists of

e propositional variables: p, ¢, 7, - - -

e logical symbols: A, V, D, =, O.
Formulas, denoted by A, B, C, -- -, are constructed in the usual way from propositional
variables and logical symbols. In particular, OA is a formula when A is a formula.
We may append indexes to propositional variables and formulas. Greek capital letters
I, A, II, ¥, © and = denote sequences of formulas. OI' denotes OA;,0A,,---,0A,,
when I'is Ay, A, - -+, A,,.

Definition 2.1 (modal logic) A set L of formulas in L is a modal logic, if the fol-

lowing conditions are satisfied:

all tautologies belong to L,

if AJAD B €L, then B €L,

if Ae L, then OA € L,

o if A € L, then any substitution instance of A belongs to L.

Let L be a modal logic ( of Lo ), and @ be a set of formulas ( of L5 ). Then the least
modal logic containing the set L U () is denoted by L@ ). K denotes the least modal
logic containing the axiom O(p D ¢) D (Op D Og). Any modal logic with the axiom
O(p D ¢) D (Op D Ogq) is called a normal modal logic. The following modal logics are
well-known :

KT = K®{0Op D p}

K4 = K®{0p > BOp}

S4 =K &{0p D p,0p D OOp}



S5 = K@{Dp op, —||:|—|p D) |:|—||:|—|p}

We will discuss the combinations of these basic monomodal logics as fusions.

2.1 Sequent calculus LK

As a formalization for modal logics, we will adopt sequent calculus. It based on the
system LK introduced by G.Gentzen. Any expression of the form I' — A is called
a sequent. Here, I' and A are called the antecedent and the succedent of the sequent,
respectively.

An wnference is expressed by the form

S S, S
s S

b

where 57, S5, S3 and S are sequents. S, Sy and S5 are called the upper sequents and
S is called the lower sequent of the inference. In particular, Sy ( S3 ) is called the left
(right) upper sequent of the inference.

The sequent system LK for the classical logic has the following initial sequents and
inferences.

¢ Initial sequents:
the sequents of the form A — A,

e Structural rules:

( weakening rule )

ATl — A - AA
( contraction rule )
AAT = A D= AAA
AT — A (=) FéAA(ﬁd
( exchange rule )
LABI-A 0 ToAABY
— —
T,B, AT — A \° I > ABAYS €
( cut rule )
- AA All—- X
(cut)

[ I—A,Y

4



e Logical rules:

AT — A A B, I'— A A
A/\B,F—>A( ) A/\B,F—>A( )
r—AA T—AB, AT —A BT—A
I A, AAB (=A) AVB,T — A (v =)
- AA Ly I' - A B Y
r—Aavg ™V r=AAvE (VY
r—AA B,HHE( ) Al —- A B ( )
ASBTLI=AyY 27 T—AADB '~

r—-AA AT —= A
ﬂA,FHA(ﬁ*) FHA,ﬂA(Hﬁ)'

Weakening, contraction and exchange rules are called weak inferences; w.i. for short.
The formula A in cut rule is called the cut formula of the cut. In the logical rules, AA B,
AV B, A D B and = A which appear in the lower sequent are called principal formulas

of the rules.

Definition 2.2 (proof and end-sequent) Proof and the end-sequent are defined in-
ductively as follows:
o Initial sequent is proof, and end-sequent of the proof is itself.

o Let P and P, be proofs with the end-sequents S1 and Sy, respectively. If

S1 S1 Sy
s "7 g

15 one of the inferences in LK, then

1$ proof, and the end-sequent is S.

Definition 2.3 (thread) A sequence of sequents in a proof is called a thread of the
proof if the following conditions are satisfied:

o the sequence begins with an initial sequent and ends with the end-sequent,

o cvery sequent in the sequence except the last is an upper sequent of an inference,

and is followed immediately by the lower sequent of this inference.

5



These notions and examples of the proofs are referred in [4], [13].

2.2 Mix rule

As an instrument to eliminate cut rules, we introduce the mix rule:

r—-A II—-%
F,HAHAA,E <A) ’

where A € IIN A, and II, and A, denote the sequences obtained from Il and A by
deleting all occurrences of the formula A in them, respectively. The formula A in the
above rule is called the miz formula of this mix . By means of mix, cut can be represented

as follows:

I'—=A II—X
LI — A,y A

T I—A,Y

To the contrary, by means of cut, mix can be represented as follows:
Lo (i) =2 ()

———— (W.17. —
T — Ay A Adly — %
F,HAHAA,E

(cut) .

In this sense, the mix rule and the cut rule are equivalent. So cut- elimination theorem
can be proved by mix-elimination. The outline of the proof of mix-elimination is as
follows:

1) concentrate to one of the uppermost mixes,

2) eliminate the mix by double induction on the degree and the rank which refer to

the following definitions.

Definition 2.4 (degree) The degree of a formula A, denoted by deg(A), is the number

of logical symbols which occur in A.

Definition 2.5 (rank) Let P be a proof which contains a miz rule only as the last
inference. The left (right ) rank of P, denoted by pi(p,), is the max number of consecutive
sequents which contain miz formula in the succedent(antecedent), counting upward from
the left(right) upper sequent of the miz. Then p = p;+ p, is the rank of P. ( Since p; > 1
and p, > 1, p>2. )

The cut-elimination theorem of LK is proved in detail by [4], [13].

6



2.3 Monomodal systems

In this section, we will describe the system K*, KT*, S4* and S5*. First, K* is obtained
from the system LK by adding the following inference rule:
r— A
aor — 0A (D) '

We can obtain various modal systems from LK by adding some inference rules. KT™ is

the system obtained from LK by adding the following inference rules:

AT = A

r— A
DA,F—>A<D_>) = (—»I:l)

aor' — OA
It is easy to see that, for any formula C', C' is in KT if and only if — C' is provable in
KT*. In this sense, KT and KT* are equivalent. S4" is the system obtained from LK

by adding the following inference rules:

AT — A

or — A
DA,F%A(DH) ~o4 (09

aor — OA

Also, S4 and S4" are shown to be equivalent. S5 is the system obtained from LK by

adding the following inference rule:

AT — A O or — OA A
IZIA,F—>A( —) O — OA, OA

(~ D) .

S5 and S5 are equivalent. See e.g. [8] [9], for the details. It is known that K*,
KT* and S4* enjoy cut- elimination property, but S5* lacks it. The cut-elimination
theorem of the system S4* are shown by M. Ohnishi and K. Matsumoto [6]. The cut-
free systems for S5 are given by G. E. Mints [5], M. Sato [10] and so on, but they are
complicated. So, the decidability and Craig’s interpolation theorem of K*, KT* and S4*
are obtained from cut-elimination property by using the standard method. As for S5*,
the subformula property has been shown by Takano [11]. Hence, the decidability and

Craig’s interpolation theorem follows from this.



Chapter 3
Syntactic results on bimodal logics

M. Kracht and F. Wolter developed a semantical study of fusions of independently ax-
iomatizable modal logics [3]. In this chapter, we will introduce sequent systems of fusions
of some basic monomodal logics and study logical properties like the decidability and
Craig’s interpolation theorem by using these systems. To show them, we first discuss
cut-elimination property and subformula property for these systems. Since it is shown
that the system for S5 lacks cut-elimination property, any system of fusions, one of
whose component is S5, lack cut-elimination property. We will show, however, that
Takano’s method works well also for these systems, and hence we can get subformula
property of them [11] [12].

3.1 Bimodal logics

The language Lo of propositional bimodal logic has

e propositional variables: p, g, r, - - -

e logical symbols: A, vV, D, -, O, B,
Formulas, denoted by A, B, C, ---, are constructed in the usual way from propositional
variables and logical symbols. In particular, both OA and B A are formulas when A is a
formula. We may append indexes to the propositional variables and the formulas. Greek
capital letter ') A, II, ¥, ©, = and T denote sequences of formulas. OI" and BI" denote
OA,, OA,, ---,0A, and WA, WA, ... WA, respectively, when I'is Ay, As, ---, A,,. We
may also append indexes to the Greek letters. Sub(A) denote the set of all subformulas
of a formula A. A bimodal logic L of La 1s defined by adding the following condition to
the definition of monomodal logic L:

o if Ac L, then MA € L.



Definition 3.1 (fusion) Let M and N be monomodal logics in Lo and Lu, respec-
tively. The fusion of M and N, denoted by M Q N, s the least bimodal logic in Lom
containing both M and N.

When we want to specify the modality in a logic M, we will attach the modality to
M. For instance, M denotes a modal logic in L.

For M*,N* € {K*, KT"* S4* S5%}, we will introduce sequent systems of the form
M* @ N*. The systems M* @ N* is obtained from M* and N*, simply by combining
their inferences. Of course, it is necessary to distinguish one modality from another. For
example, S4* @ S5* is defined as follows. Let ® and O be the modalities for S4* and
S5*, respectively. The system S4* ® S5 is obtained from LK by adding the following

inference rules:

A7F_>A .FHA
IA,I‘eA(._)) ar—ma "W
AT — A or — OA A

OAT — A (B -) O — OA, OA

It is easy to see the following.

Lemma 3.2 For any formula C, — C is provable in M* Q N* if and only if C' is in
M®N.

Without any difficulty, we can show the following.

Theorem 3.3 (cut-elimination theorem) [
Let M* N* € {K*, KT* ,S4"}. Then every proof in M* @ N* can be transformed, with-

out changing the end-sequent, into cut-free one.

Proof. We first replaced all cuts by mixes, and can show this theorem by double

induction on the degree and the rank as usual. 1

Corollary 3.4 (subformula property) O
Let M*,N* € {K*, KT* S4*}. Then all formulas which construct cut-free proof in

M* Q@ N* consist of the subformulas of formulas which occur in the lowest sequent.

Proof. For any inferences rule I except cut rule, the upper sequents of I consist of

the subformulas of formulas in the lower sequent of I. 1



3.2 S5" lacks cut-elimination property

Next we will discuss the cut-elimination property of sequent systems for fusions, at least,
one of whose component is S5%. We first note that S5* lacks the cut-elimination property,

while each of K*, KT* and S4* has it.
Lemma 3.5 S5 lacks cut-elimination property.

Proof. This example was noticed first by M. Ohnishi and K. Matsumoto [7]. The
sequent p — O-=0O-p is provable in S5%. In fact, the following proof is a proof of
p — O=0O-p in S5™:

O-p — O-p p—p

0 — —=0-p,0-p -p,p — O

|:| — D—||:|—|p’ |:|—|p Dﬁp’p — D
|:| p — |:|—||:|—|p |:|

(cut)

Next, we will show that p — O-0-p is not provable in S5*. Suppose otherwise. Then
it is easy to see that the lowest inference of the proof must be either weakening rule or

contraction rule.

Case 1: The lowest inference is weakening rule.
In this case, the upper sequent of the inference rule is p — or — O-0-p. But clearly

both sequents are not provable in S5*.

Case 2: The lowest inference is contraction rule.

In this case, the upper sequent of the inference rule is p,p — O-0O-p or p —
O-0-p,0-0-p. The inference rule which infer one of these sequents is weakening
rule or contraction rule. If the inference rule is weakening rule, any upper sequent of
the inference is a sequent which is former one or not provable in S5*. If the infer-
ence rule is contraction rule, an upper sequent of the inference is p,p,p — O=0O-p;
p,p — O=0O=p, O=0O=p or p — O=0O-p, O=O-p, O-O-p. Further, the inference rule
which one of these sequents is also weakening rule or contraction rule. If the inference
rule is weakening rule, the upper sequent of the inference is the sequent which is previous
one or not provable in S5*. So, only possible sequents in the proof are sequents of the

form p,---,p — O=0-p,-- -, O-0O-p. Thus, we can never get an initial sequent. 1

10



3.3 Subformula property by Takano’s method

We have seen that S5* lacks cut-elimination property. On the other hand, Takano showed
the following.

Theorem 3.6 Every proof in S5* can be transformed, without changing the end-sequent,

wnto the proof which has subformula property.

For example, all formulas which are occurred in the above proof of p — O-=0O-p are
actually in Sub(0d-0-q). Since S5* lacks cut-elimination property, any of K*® S5*,
KT*®S5%, S4*® S5* and S5* ® S5 lacks it. We will show the subformula property
for fusions by extending Takano’s method for S5* into that for fusions. This section
presents syntactical approach for the systems corresponding to fusions. In this section,
we will show that the cuts in proof can be restrict the cuts with subformula property by
extending Takano’s method for S5* into that for the systems corresponding to fusion (

Theorem 3.9 and Corollary 3.20 ).
Definition 3.7 (acceptable cut) A cut

r—-AA All—- X%
[LII—AY

1s acceptable, if the cut formula forms the subformula of a formula which occurs in the
lower sequent of the cut, namely A € Sub(T', A, 11, X). The cut which is not acceptable

1$ called an unacceptable cut.

Definition 3.8 (suitable proof) A proof is suitable, if every cut applied in it is ac-
ceptable.

Theorem 3.9 Every proof in K*® S5*, KT* ® S5, S4*® S5* or S5*® S5* can be

transformed, without changing the end-sequent, into suitable one.

The system in which every proof can be transformed, without changing the end-
sequent, into suitable one has subformula property, since in the inference rules which
construct suitable proofs, the upper sequents of the inferences consist of the subformulas
of formulas in lower sequents. Importance of this result will be shown in later section.
We will concentrate mainly on S4* @ S5* in the following, as other cases can be treated

similarly.

11



Definition 3.10 (A-suitable proof) For any formula A, a proof is A-suitable, if every

cut applied in it 1s acceptable or has a subformula of A as its cut formula.

Definition 3.11 (partition of sequence) A pair (Y1;Y3) of sequences is a partition
of sequence 2, if T1N Ty =¢ and T U Ty =E.

Lemma 3.12 Suppose E C Sub(l',©,A). IfT',T; — YT3,0 has an A-suitable proof in
S4* ® S5* for every partition (Y1;3) of E, then so doesT' — O.

Proof. We prove this by induction on the length of =.
(1) If £ is the empty, (;) is the partition of Z. So claim holds.
(ii) If Z denotes (Z', B), then = C = C Sub(I',0). Let (II; X) be any partition of Z'.
Then (II; X, B) and (II, B; &) are partitions of . So I', Il — X, B,0 and I',II, B — X, 0
have A-suitable proofs. Hence A-suitable proof of I',II — X,® can be obtained from
these sequents by means of a cut and weak inferences, since B € = C Sub(T, 0, A).

Therefore, I' — © has an A-suitable proof by induction hypothesis. 1

Definition 3.13 (regular) A proof is regular, if for any cut in the proof the cut formula

doesn’t occur in the lower sequent of the cut.

If the lower sequent of a cut rule contains the cut formula, it is obtainable from one
of the upper sequents by means of weak inferences. So any proof can be transformed

into regular one. Note that O under the discussion is the modality of S5*.

Lemma 3.14 Let P be a regular, suitable proof of ' — ©. Suppose OA & Sub(T', Op4).

Then OA doesn’t occur in the antecedent of any sequent of P.

Proof. We prove this by induction on the number of sequents. Now assume that OA

occurs in the antecedent of a sequent.

Case 1: If I' — © is the initial sequent, I' — © is A — OA. Then OA € Sub(T"). It
is contradictory to OA & Sub(T',On,).

Case 2: OA occur in the antecedents of the upper sequents of structural rules except
cut rule ( weakening rule, contraction rule and exchange rule ) and logical rules. In these

cases, clearly OA occur in the antecedents of the lower sequents of the rules.

Case 3: OA occurs in at least one of the antecedents of the upper sequents of cut

rule.

12



3.1. If OA is not the cut formula, then clearly OA occurs in the antecedent of the
lower sequent.
3.2. If OA is the cut formula, then OA is the proper subformula of a formula which

occurs in the antecedent of the lower sequent since P is regular and suitable.

Hence, if OA occurs in the antecedent of a sequent in P, then there exists a formula
B in T such that OA is the proper subformula of B. So OA € Sub(B) C Sub(T). It is
however contradictory to OA ¢ Sub(T', ©qa). I

Definition 3.15 (family) The family of OA in a suitable proof is the sequence of all
formulas except OA which occur in the lower sequents of (— 0O) in the proof with the

principal formula OA.

Since the lower sequents of (— O) consist of O-formulas, the family of OA in a

suitable proof of I' — © consists of O-formulas in Sub(T', ©) except OA.

Definition 3.16 (covered) Let (OY;0Y5) be a partition of the family of DA in a
suitable proof. An application (— O)

ol — 0¥, B
oIl — 0,08

(—0)
in the proof is covered by (T1; To; A), if I C Ty, ¥4 C T2 and B = A.

Lemma 3.17 Let P be a regular, suitable proof of T' — O, and (OY1;0Y5) a partition
of the family of OA in P. Suppose OA & Sub(T', Ony).

1) If A — A is a sequent in P such that no application of (— O) which is applied above
A — A is covered by (Y1;To; A), then A, 0T — OYo, Apa has an A-suitable proof in
S4a™ ® S5,

2) Either OY; — OY5, A or ', 0T — OY5, Ona has an A-suitable proof in S4a™ ® S55*.

Proof. 1) We prove this by induction on the number of sequents which are above
A — A.X and X7 denote the sequents A — A and A,0Y; — Oy, Aqy respectively. If
X is the lower sequent of weak inferences, (A =), (— A), (V =), (= V), (D—), (—=D),
(= —) or (— ), the conclusion follows from the induction hypothesis immediately. So

we will mention the other cases.

Case 1: X is the initial sequent B — B. Since B # OA by Lemma 3.14, X* (i.e.
B,07; — OY5, B) has a suitable proof.

13



Case 2: X is the lower sequent of an acceptable cut

H1—>21,B B,H2—>E2
Hl, H2 — 21722

(acceptable cut) ,

where B € Sub(Il;, I, X1, ¥5). By the induction hypothesis, IT;,07; — OY5, %104, B
and B,II,, 07 — O7,, ¥504 have A-suitable proofs.
If B € Sub(OA) (i.e. B € Sub(A)U{0OA} ), then B € Sub(A) since B # OA by

Lemma 3.14. In this case,

H17 I:rrl - I:|’r2721 DAvB B7H27 I:rrl - DT2722E‘A ( t)
H17H27DT17DT1 - DT27DT2721DA722DA CQ,L
0,10, 07, — 0Ty, 5,04, Syroa (weak inferences) ----(0O)

is an A-suitable proof.
If B ¢ Sub(0dA), then B € Sub(Il;, 15, X104, X204).S0 (O ) is a suitable proof.

Case 3: X is the lower sequent of an

O — OY, B
Ol — Oy, 08

(%D),

If B = A, then X# is OII,0Y7; — OT5,0(X4). By the assumption this inference
is not covered by (Y1; To; A). So either TN Ty # ¢ or ¥4 N Ty # ¢.In both cases, a
suitable proof of X# can be obtained by means of weakening rules.

If B # A, then X7 is OII,07T; — OY,,0(X,4),0B . By induction hypothesis,
OI,0Y7; — OY,,0(X4), B has an A-suitable proof, and in the case of B = OA, it has

an A-suitable proof by means of weakening rule. Hence X# has an A-suitable proof.

Case 4: X is the lower sequent of an

B[l — B

an_mg W

Since M B is M-formula, then MBy, is WB. So X7 is MII,0Y; — OY,, WB. Hence an

A-suitable proof of X# can be obtained by means of weak inferences.

2) Case 1 : Some application of (— O) is covered by (Y;T5; A). Take one of the

uppermost such application

ol —ox, A
oIl — 0%, 04

(—>D)7

14



where IT C Ty and ¥4 C T5. By applying 1) to the upper sequent of this inference, we
can obtain OII,0Y; — OY,,0(X,4), A. So OY; — OY,, A has an A-suitable proof.

Case 2 : Otherwise. By applying 1) to the end-sequent, we can obtain an A-suitable
proof of I', OY; — OT5, Opy. 1

Corollary 3.18 IfI' — © has a suitable proof in S4a™ @ S55%, then I' — ©Ona, A has

an A-suitable one.

Proof. Let P be a regular, suitable proof of I' — ©.
(i) f OA € Sub(I',©g4), I' — Oga, A has the suitable proof :

A— A
I'—-0 04— A
F—>@DA,A

(acceptable cut) .

(i) OA & Sub(I',Op4). Let Z be the family of OA in P, and (OY;; 075) any partition
of Z. Then either OY; — OY5, A or I',07T; — OY,, ®n4 has an A-suitable proof by
Lemma 3.17 , and so too has I',0T; — OY5, Og4, A by means of weak inferences. Thus

I' - ©py4, A has an A-suitable one by Lemma 3.12. 1

Proof of Theorem 3.9 for S4a™ @ S55*. We first replaced all unacceptable cuts by
mixes, and show it by double induction on the degree and the rank that any proof with a
mix for its lowest inference and not containing any other mix can be transformed into a
suitable one without changing the end-sequent. By eliminating one of uppermost such a
mixes in turn, all mixes can be eliminated. In particular we will mention the cases which
the upper sequents of the mixes are the lower sequents of (0 —),(— O), (W —),(— W)
and (acceptable cut), since the other cases can be proved in usual way by the induction

hypothesis immediately.

Casel: p=2.

1.1. The left and right upper sequents of the mix are the lower sequents of (— O)

and (O —) respectively. Then the proof runs as follows :

or — 0e, A - AA—= Y O
ar-o604 ”9 GAasy (D;)
Or. A — 00,5 (B4)

where OA is the mix formula and OA ¢ OO0 U A. We transform it into the proof :
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or - o0e,A AA—X
ar — 00, %

(4) .

The degree of A is smaller than that of OA. Hence we can eliminate the mix by the

hypothesis of induction on the degree.

1.2. The left and right upper sequents of the mix are the lower sequents of (— M)

and (B —) respectively. Then the proof runs as follows :

m - A (_).) A,AHE
B[ - mA BAA—-Y
[ Ny

where M A is the mix formula and BA ¢ A. We transform it into the proof :

B —- A AA-Y
EA - X

(4) .

The degree of A is smaller than that of @A, Hence we can eliminate the mix by the

hypothesis of induction on the degree.
Case 2: pO 2.

Subcase 2.1: p, = 1. In this case p;lJ 1 since pJ 2 and p, = 1.

2.1.1. The right upper sequent of the mix is the lower sequent of (O —). Then the

proof runs as follows :

AA =X -
FH@DAAHEEI)
F,AHGDA,Z ( ) ’

where OA is the mix formula, OA € © and OA ¢ A. Since I' — Ogy4, A has an A-suitable
proof by Corollary 3.18, we can construct the proof :

' = Opq, A AJA— XY
F;AA—> (@DA)A,E
F,A - @DA,E

(4)

w.i.) .

Even if mixes appear in a proof of I' — ©pgy4, A, all the mix formulas are subformulas
of A. Since the degree of A is smaller than that of OA, the mixes can be eliminated by

the hypothesis of induction on the degree. In the similar way, the mix which is lowest
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inference can be also eliminated by the hypothesis of induction on the degree. Hence a

suitable proof can be obtained without exchanging the end-sequent.

2.1.2. The left and right upper sequents of the mix are the lower sequents of (O —)

and (M —) respectively. Then the proof runs as follows :

AT—© B,A— %
DAFH@(H).RAﬂzag)
OA,T,A — Ougp, % (WB)

where BB is the mix formula, BB € © and BB ¢ A. We transform it into the proof :

B,A— X =
Aré@-aAﬁzﬁg)
ALAH@wj(uﬂ.

OA,T,A — Oug, %

The left rank of this proof is smaller than that of the former one. Hence we can eliminate

the mix by the hypothesis of induction on the rank.

2.1.3. The left and right upper sequents of the mix are the lower sequents of (B —)

and (— W) respectively. Then the proof runs as follows :

Al —- 06 . B,A—}%
-Are@(‘ﬂ I&AHE&B
WA, A — Oug, % (B)

where BB is the mix formula, B € © and BB ¢ A. We transform it into the proof :

B,A— X
APH®-&AH2&5)
ARAH@wj(.H%

BAT,A— Oup,X
The left rank of this proof is smaller than that of the former one. Hence we can eliminate
the mix by the hypothesis of induction on the rank.
Subcase 2.2: p, 0 1.

2.2.1. The both upper sequents of the mix are the lower sequents of (— O). Then

the proof runs as follows :

OA — OA,B
Or — 06 OA — OA,OB
DF’D(AA) — D(@A)7DA7DB

(—0)
(04)
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where OA is the mix formula and OA € 060 N OA. We transform it into the proof :

or - 0e 0A — 0OAB
O, 0(A4) — 0(04),0A, B
(% I:l) .
DF) D(AA) — D(®A)7 DA, DB

(OA)

The right rank of this proof is smaller than that of the former one. Hence we can

eliminate the mix by the hypothesis of induction on the rank.

2.2.2. The left and right upper sequents of the mix are the lower sequents of (O —)

and (— O) respectively. Then the proof runs as follows :

AT — 0 . OA — OA,B O
OAT — © B—=) a5 OA, OB E;C))
DA, F, D(Ac) — @D(j, DA, OB ’

where OC' is the mix formula and OC' € © N OA. We transform it into the proof :

OA — OA,B
AT —© OA — OA,0B
A, F, D(Ac) - ®DC; DA, aB
(I:l —>) .
DA, F, D(Ac) — (“)gc, DA, oB

(— )
(oC)

The left rank of this proof is smaller than that of the former one. Hence we can eliminate

the mix by the hypothesis of induction on the rank.

2.2.3. The left and right upper sequents of the mix are the lower sequents of (B —)

and (— O) respectively. Then the proof runs as follows :

AT—0 OA — OA, B -
mAT — 0O (" =) Fa- OA, OB E;C))
.A7F7D(AC) - ®D07DA7 DB ’

where OC' is the mix formula and OC' € © N OA. We transform it into the proof :

OA — OA, B
AT - @O OA - OA, 0B
A7 Fa D(AC) - ®DC, DA, OB
(l —>) .

WA T, 0(A¢) — O, 0OA, OB

(—0)
(OC)

The left rank of this proof is smaller than that of former one. Hence we can eliminate

the mix by the hypothesis of induction on the rank.

2.2.4. The left and right upper sequents of the mix are the lower sequents of (O —)
and (— M) respectively.
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A7F_>® EA - B
DAF%@m%)IAﬁIBig)
DA7F7.(AC)_>®IC"7.B ( ) ’

where B(' is the mix formula and BC € © N OA. We transform it into the proof :

'A;B(_) m)
Al'—-060 EBA - HEPB (mC)
A,F, .(Ac) — @.C, .B
—) .

DA,F, .(Ac) — @.C, .B

The left rank of this proof is smaller than that of the former one. Hence we can eliminate

the mix by the hypothesis of induction on the rank.

2.2.5. The left and right upper sequents of the mix are the lower sequents of (B —)

and (— W) respectively. Then the proof runs as follows :

AT -0 EA - B
mAT — 0 (" =) @A _mp (:C')
.A7F7.(AC’) _>®le.B ( ) ’

where B(' is the mix formula and BC' € ©® N OA. We transform it into the proof :

BA - B (_>
Al -0 ®BA - EB

)
|
A,F,.(Ac) — ®IC; mB ( .C)
mAT,8(A¢) — Ouc, BB -) -

The left rank of this proof is smaller than that of the former one. Hence we can eliminate

the mix by the hypothesis of induction on the rank.

Case 3 : If the right upper sequent of the mix is the lower sequent of acceptable cut in

particular, then the proof runs as follows :

I' 50,B B,A— A
Inm—- I‘,A%@,A(A)
H,FA,AA—> EA,G,A ’

(acceptable cut)

where A is the mix formula and A € (I';A) N X. Since B is the cut formula of the
acceptable cut, B € Sub(T', A,©,A). Suppose A € A but A ¢ T, since other cases are

shown likewise.

3.1. If B € Sub(A) \ {A}, we transform the given proof into the proof :
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II—-% B,A—A
F—>®,B H,B,AA%ZA,A B
ILT4, Ay — ©,54,A (B)

Hence we can eliminate the upper mix by the hypothesis of induction on the rank and

the lower mix by the hypothesis of induction on the degree since deg(B) O deg(A).

3.2. If B = A, we transform the given proof into the proof :
nm—% B,A—=A (4)

H,AA%EA,A (wz)

1_[7FA7AAH ZAa®7A S

Hence we can eliminate the mix by the hypothesis of induction on the rank.
3.3. If B & Sub(A), we transform the given proof into the proof :
II—-% B,A—A

F—>(“),B H,B,AA—>EA,A
T4, Ay — ©,%4,A

(4)

(acceptable cut)

where B € Sub(T'4,A4,0,A). Hence we can eliminate the mix by the hypothesis
of induction on the rank, and the lowest inference is an acceptable cut since B €

Sub(T' 4, As, ©,A). 1
Corollary 3.18 must be modified as follows:

Corollary 3.19 IfT' — © has an suitable proof in S5* @ S5%, then I' — Op4, A and
' — Oua, A respectively have A-suitable proofs in S5* Q S5*.

Proof of Theorem 3.9 for S5 ® S5*. We first replaced all unacceptable cut by
mixes, and show the theorem for S5* @ S5* by double induction on the degree and rank
that any proof with a mix for its lowermost inference and not containing any other mix
can be transformed into a suitable one with the same end-sequent. By eliminating one
of uppermost such a mixes in turn, all mixes can be eliminated. We will particularly

mention only crucial cases.

Case 1: The right upper sequent of the mix is the lower sequent of (— O). Then the

proof runs as follows:

AAN— Y (0 )
I -0 DA,A%E(DA)
F,A%GDA,E

Y
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where OA is the mix formula, OA € © and OA € A. Since I' — ©gy4, A has an A-suitable
proof by Corollary 3.19, we can construct the proof:

I' 5 Opgy, A AJA - X
F7AA - (®E|A)A:E
F,A — @DA,E

(4)

w.i.) .

Even if mixes appear in a proof of I' — ©gyu, A, all the mix formulas are subformulas
of A. Since the degree of A is smaller than that of OA, the mixes can be eliminated by
the hypothesis of induction on the degree. In the similar way, the mix which is lowest
inference can be also eliminated by the hypothesis of induction on the degree. Hence a

suitable proof can be obtained without changing the end-sequent.

Case 2: The right upper sequent of the mix is the lower sequent of (B —). Then the

proof runs as follows:

AN — X =
r— o .A,AHE(.—})
[,A — Ouy, % (=),

where B A is the mix formula, @A € © and WA ¢ A. Since ' — Ou4, A has an A-suitable
proof by Corollary 3.19, we can construct the proof:

I — Oua, A AA—Y

')Ay — (Ouna)a, X ( )
T A OuyY w.i.) .

Even if mixes appear in a proof of I' — ©Ouy, A, all the mix formulas are subformulas
of A. Since the degree of A is smaller than that of M A, the mixes can be eliminated by
the hypothesis of induction on the degree. In the similar way, the mix which is lowest
inference can be also eliminated by the hypothesis of induction on the degree. Hence a

suitable proof can be obtained without changing the end-sequent. 1

As for K*@ S5" and KT* @ S5*, subformula property can be seen in a similar way
to S4* ® S5*. Thus, we have the following.

Corollary 3.20 (subformula property) 0
Then all formulas which construct suitable proof in K*® S5%, KT* ® S5%, S4* ® S5*

or S5 @ S5* consist of the subformulas of formulas which occur in the lowest sequent.
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Proof. In all inferences except cut rule, the upper sequents of the inferences consist
of the subformulas of formulas in the lower sequents.In the acceptable cut rule, of course,
the upper sequents of the inferences consist of the subformulas of formulas in the lower

sequent. 1

3.4 Decidability

As an application of subformula property which was seen in the previous section, we will
see the decidability for the systems corresponding to fusions. A concrete finite procedure
which decides to be provable or not for any formula in a system is called a decision

procedure. 1f there exists a decision procedure, the system is side to be decidable.

Definition 3.21 (reduced) A sequent T' — A is reduced, if each formula occurs at

most three times in both T' and A.

Lemma 3.22 Let I' — A be arbitrary sequent. Then there exists a suitable S4* @ S5*
proof of I'' — A" which consists solely of reduced sequents such that I' — A’ is provable
in S4* ® S5* if and only if I' — A is provable in S4* @ S5*.

Proof. Suppose I' — A is not reduced. Then a reduced sequent I' — A’ can be
obtained from I' — A by means of contraction and exchange rules. Conversely, I' — A
can be obtained from I — A’ by means of weakening and exchange rules. So, for any
sequent I' — A, there exists a reduced sequent IV — A’ such that I — A’ is provable
in S4*® S5* if and only if ' — A is provable in S4* @ S5*. Then we can obtained a
suitable proof of reduced sequent I'' — A’ by Theorem 3.9.

The sequences I'y A, II and ¥ of formulas in the structural and logical rules of
S4* @ S5*, respectively, are not able to contain two or more same formulas by deleting the
overlapping formulas. Then by means of weak inferences and by deleting the nonessential
sequents, we can obtain the suitable proof of [ — A’ which consists solely of reduced

sequents. I
Theorem 3.23 S4* ® S5* is decidable.

Proof. We will show this theorem by giving a decision procedure. Suppose that any
sequent I' — A is given. By Lemma 3.22 it is provable in S4* @ S5* if and only if there
exists a reduced sequent I' — A’ obtained from I' — A which is provable in S4* ®Q S5*.
Let G be the set of all the reduced sequents which consist of all formulas in Sub(I", A").
Since the set Sub(I", A’) is finite, the set G is finite. Now we define G, as follows:
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e (, is the set of all the initial sequents in G,

® G,.1 is the union of G; and the set of all the sequents in G \ G; which can be lower
sequents when upper sequents are in §;.
Then there exists j such that G, = G; since the set G is finite. If the sequent IV — A/
is in G;, then IV — A’ is provable in S4* ® S5*, viz. ' — A is provable in S4* Q@ S5* .
Otherwise, I' — A is not provable in S4* ® S5*. 1

Similarly, we can show the following.

Theorem 3.24 For any M*,N* € {K*, KT*,S4* S5"}, MQN s decidable.

3.5 Craig’s interpolation theorem

In this section, Craig’s interpolation theorem for various fusions is shown syntactically
by using Maehara’s method. Since, for any M* N* € {K*, KT* S4*}, M* @ N* has
cut-elimination property by Theorem 3.3, Craig’s interpolation theorem for M* @ N*
can be shown by using the usual way. Also, even when at least one of M* and N* is
S5 we can use Maehara,s method and get Craig’s interpolation theorem for M* @ IN*.
In the following, we will given a detailed proof of it for S4* ® S5*.

For technical reasons, we introduce the constant symbol T, and admit — T as an

initial sequent.

Definition 3.25 (partition of sequence) O
({T'1; A1}, {T2; Ao}) ds a partition of sequent I' — A, if 1Ny = ¢, Ty UTy =T,
A1UA2:¢ G,deAlLJAQ:A.

The set of all propositional variables which occur in A and constant symbol is denoted

by V(A).

Lemma 3.26 Suppose that a sequent I' — A is provable in S4a™ @ S50, and also that
({T1; A1}, {T'2; As}) is an arbitrary partition of I' — A. Then there exists a formula C,
called an interpolant, such that

1) Ty — Ay, C and C,Ty — Ay are both provable in S4a™ ® S5,

2)V(C) CV(I'HUA)NV(T2UA,).

Proof. This lemma is proved by induction on the length a suitable proof of I' — A.
We will give a proof only the cases where I' — A is initial sequent or the lower sequent
of one of (0 —), (— O), (M —), (— W) and (acceptable cut).
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Case 1. The sequent I' — A has the form D — D. There are four cases ({D; D}, {; }),
{; 1,{D; D}), {D;},{; D}) and ({; D},{D;}) as the partitions. Then =T, T, D and

—D are serves as the interpolants, respectively.

Case 2. The last inference is

AT — A
DA,FHA(

—) .

2.1. The partition is ({0A,T'1; A;}, {T'2; Az }). By applying the induction hypothesis
to the proof of the upper sequent, there exists an interpolant C' such that A,I'y — A;,C
and C,T'y; — A, are both provable in S4a™ ® S55%. Then we can obtain following two

proofs:

AT, — A, C :
DA,Fl — Al, C C, FQ - AQ

Hence C serves as an interpolant of the present partition.

2.2. The partition is ({I'1; A;}, {OA, T'y; Ao }). By applying the induction hypothesis
to the proof of the upper sequent, there exists an interpolant C' such that I'y — Ay, C
and C, A,T'y — A, are both provable in S4a* @ S55*. Then we can obtain following two

proofs:

: C,A,F‘Q — Ay
F1—>A1,C C, DA,F2—>A2

Hence C serves as an interpolant of the present partition.

Case 3. The last inference is

or — OA A
OF — OA, 04

(~ D) .

3.1. The partition is ({OI'y; 0A;,0A},{0y; 0A,}). By applying the induction
hypothesis to the proof of the upper sequent, there exists an interpolant ' such that
Oy — 0A, A, C and C,0I'y — OA, are both provable in S4a™ @ S55*. Then we can

obtain following two proofs:
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Or, — 04, 4,C s
_|C, Drl — DAl,A C, DF2 — DAQ

|:|—|CY7 DFI — DA]_,A DFQ — DAQ,ﬁC
O-C,0r; — OA,, OA O, — OA,, O-C
DFI — DAI) DA7 _||:|_|O _||:|_|C\’7 DF2 — DAQ

Hence —=0O-C serves as an interpolant of the present partition.

3.2. The partition is ({OI'y; 0A;}, {0O@'y; 0A,,0A}). By applying the induction
hypothesis to the proof of the upper sequent, there exists an interpolant C' such that
Oy — 0A4,C and C,0I', — OA,,0OA are both provable in S4a* ® S55*. Then we

can obtain following two proofs:

ar, — 0A4,C 0c,0r'y, — 0A,, A
DF]_ — DA:[’ DC DC’ DFQ — DAQ, DA

Hence OC serves as an interpolant of the present partition.

Case 4. The last inference is

AT — A
IA,FHA(

)

4.1. The partition is ({WA,T';; A;}, {T'5; As}). By applying the induction hypothesis
to the proof of the upper sequent, there exists an interpolant C' such that A,I'y — Ay, C
and C,T'y; — A, are both provable in S4a™ ® S55%. Then we can obtain following two

proofs:

AT, — A, C :
.A,Fl — Al,C C, F2 - AQ

Hence C serves as an interpolant of the present partition.

4.2. The partition is ({I'1; A}, {WA, T5; Ay}). By applying the induction hypothesis
to the proof of the upper sequent, there exists an interpolant C' such that I'y — Ay, C
and C, A,I'y — A, are both provable in S4g™ @ S55*. Then we can obtain following two

proofs:
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5 C AT, — A,
1_‘1 HAhC C,IA,FQHAQ

Hence C serves as an interpolant of the present partition.

Case 5. The last inference is

m — A

B —HA (_).) '

5.1. The partition is ({MT';; WA} {ET5; }). By applying the induction hypothesis to
the proof of the upper sequent, there exists an interpolant C' such that I’y — A, C' and
C,HmT'y — are both provable in S4a* @ S55*. Then we can obtain following two proofs:

B, — A.C

_'C:.FIHA C,.FQH

m-C,m[; — A ur, — —-C
._|C, .F]_ — .A .F2 — .—|O
.F1HIA7—|.—|C _|._|C7.F2ﬁ

Hence —M—=(' serves as an interpolant of the present partition.

5.2. The partition is ({MT'y; }, {MT5; A}). By applying the induction hypothesis to
the proof of the upper sequent, there exists an interpolant C' such that BI'; — (' and
C,mI'y — A are both provable in S4g™ @ S55". Then we can obtain following two proofs:

C’,IF.Z — A

.F]_‘HC .C,.F2—>A
.F1—>.C .C,.F2—>.A

Hence BM( serves as an interpolant of the present partition.

Case 6. The last inference is

- AA AIll—X
OLIT— A%

(acceptable cut)

where A € Sub(I',1I,A,¥). Then the partition is ({I'1,II1; A, 31}, {To, Ila; Ag, Bo}).

This is only the case which never happens when the cut-elimination theorem holds.
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6.1. If A € Sub(T'y, Iy, Ay, ¥4), by applying the induction hypothesis to the proof
of the upper sequent, there exist interpolants C; and C5 such that I'y — Ay, A, Cy;
C,Ty — Ay A 1T, — ¥4,C5 and Cy, 11, — X, are all provable in S4a™ @ S55*. Then

we can obtain following two proofs:

Iy — AlaAa ¢y AlL = Y1, : :
[y, 00— A, Y, 0L, O C, Ty — Ay Co, Iy — Yo

Fl, H1 — Al, 21, Cl vV 02, Cl vV 02 Cl,FQ,Hg — AQ, 22 CQ,FQ,HQ — AQ, 22
[y, I — Ay, 2,0V G C1V Cg, T, Tl — Ap, ¥y

Hence C; V (5 serves as interpolants of the present partition.

6.2. If A € Sub(T', I, Ay, o), by applying the induction hypothesis to the proof of
the upper sequent, there exist interpolants C; and C5 such that I'y — A, Cy; €1,y —
Aq, A; 111 — ¥4, Cs and Cy, A, IIs — Y5 are all provable in S4a™ ® S55*. Then we can

obtain following two proofs:

Cl,FQ % AQ,A CQ,A, ﬁ2 — 22
' — A, Cy I, — 34,05 C1, Ty, Co, Il — Ay, X

Fl,Hl — Al,Zl,C'l Fl,Hl — Al,Zl,Cz Cl/\027F2701/\02)H2 - AZ)EZ
[y, — Ay, 5, G A Cy C1 A Co, gy Iy — A, 3y
Hence C'; A Cy serves as interpolants of the present partition. 1

Theorem 3.27 (Craig’s interpolation theorem) 0

If A D B is provable in S4* @ S5*, then there exists a formula C such that
1) AD C and C D B are both provable in S4™ ® S5*,
2)V(C)CV(A)NV(B).

Proof. Assume that A D B is provable in S4* @ S5*. Clearly, the sequent A — B is
provable in it. Then by Lemma 3.26, taking A as I';y and B as A, there exists a formula
C satisfying 1) and 2) of Theorem 3.27. I

Similarly, we can show the following.

Theorem 3.28 Let M*, € {K*, KT*,S5"}. If A D B is provable in M* ® S5%, then
there exists a formula C' such that

1) AD C and C D B are both provable in M* & S5*,

2)V(C) CV(A)NV(B).
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3.6 Remarks

As for fusions, M. Kracht and F. Wolter [3] proved the followings semantically:

¢ both M and N are decidable == M @ N is decidable,

¢ both M and N hold the Craig’s interpolation theorem = M @ N holds it.
In this chapter, we obtained the syntactical results for these property. For any M*, N* €
{K*,KT*,S4*,S5"}, we could see that M* ® N* has subformula property either by
deriving the cut-elimination property or by showing that every proof can be transformed
into suitable one with same end-sequent. In either case, important logical properties like
the decidability and the Craig’s interpolation theorem can be derived.

As for dependently axiomatizable bimodal logics, however, it is difficult to find se-
quent systems in which the cut-elimination property holds. Therefore, it would be neces-
sary to develop semantical methods for them. Some attempts to this direction are made

in the next section.
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Chapter 4
Kripke type semantics

There are several semantical researches on fusion of independently axiomatizable bimodal
logics by M. Kracht and F. Wolter [3] and so on, and some syntactical approaches have
been seen in previous section. In this chapter, we will examine several dependently
axiomatizable bimodal logics, using semantical method. Using Kripke type semantics,
logical properties like the completeness and the finite model property for these logics will
be discussed. Though our study in the present chapter remains still an initial stage, the

attempt made here will contribute to future extensive, semantical study in future.

4.1 Kripke frames and models
First we will extend Kripke type semantics to bimodal logics.

Definition 4.1 (Kripke frame) 0
Let M be a nonempty set, and Rn and Ra be binary relations on M ; viz. Rn C M x M
and Ra C M x M. Then a frame is a triple (M, Ro, Ru), where M is called the set of

possible worlds, and both R and Ra are called accessibility relations.

Definition 4.2 (Kripke model) 0

Let F = (M, R, Ru) be a frame, and V' be a mapping such that V(p) C M for each
propositional variable p. Then o Kripke model is a pair (F,V), i.e. (M, Rp, Ra,V),
where V' is called a valuation on F. For a given Kripke model (M, Ra, Rw, V'), a binary
relation |= between a € M and formulas is defined inductively on the length of formulas
as follows:

o alEp<=acV(p
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e aFAANB<=alEAandal=B

¢ aoFAVB<=alEAoralEB

o a=FADB<=al=A impliesa|=B

o af"A<=notal=A

e al=0A < for anybe M, aRnb implies b |= A
¢ a=WA < foranybe M, aRab implies b |= A.

The relation |= is defined by the valuation V' uniquely. So |= and (M, Rp, Ra, |=) is
also called a valuation, and a Kripke model, respectively, when no confusions will occur.
A formula A is true in model M = (M, Rn, Ru, |=), denoted by M |= A, if a |= A for
any a € M. A formula A is valid in frame F = (M, Rp, Ra), denoted by F |= A, if
M |= A for any model M = (M, Rq, Ra, |=).

In the following, we will consider particular interdependences between O and M, which
can be expressed by a formula of the form oy - - - a,yp D By - - - Bup, Where oy, 5; € {0, B}
An example is Op D Mp, which can be interpreted in epistemic logic as“ Ha knows

everything what Hp knows " when Op (Mp) is interpreted as“ Hp (Hum) knows p” .

Lemma 4.3 Let «;,3; € {O,W}. Suppose m,n > 1. For any frame F = (M, Ro, Ru),
FlEar - anADpf A =
(**) \V/Ck (0 S k S n — 1) (CkRﬁk+1ck+1 = Hdl (0 S [ S m — 1) leal+1dl+1);

where ¢cg = dy = a and ¢, = d,, = b.

Proof. [«<]| Let (M, R, Ra, =) be a model, and a be in M.

a I# ﬁlﬂQ T /Bn—lﬁnA
= Jdej(aRgp, €1 and ey [E By -+ 5, A)

= Jdey---Je,_1(aRger, -, en2Rp, ,€n1 and e, 1 = B,A)

= Jdey .- Je,_13en(aRper, e 2R, € 1,64 1Rs, €, and €, = A)

= 3dy -+ - Adm_13dm(aRa,dr, - -y dm—2Ra,,_ dm-1,dm_1Ra,, dm and dn, = A) (e, = dm)
= 3dy---Adpm 1(aRa,dy, -+, dm 2Ra,,_ dm 1 and dp 1 £ @A)

= Jdi(aR,,dy and dy [£E o anA)

= aEoag Qoo A

[=] Suppose cxRg,,, crt1 for any cpq (0 <k <n—1), where ¢y = a and ¢, = b. Let
(M, R, Ra, |=) be a model in which
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X |:p & dd; (0 <Il<m-— 1)7leoq+1dl+1

where dy = aand d,,, = z. Thena |= a; - - ayp, and soa |= F - - - B,p by the assumption.
Since, for any ¢ (0 < k <n —1), cxRg,,,ckt1 and a = By Bup, co = p (6. b = p).
Hence 3d;(0 <1 <m —1),d;R

arp1dig1 Where do = a and d,, = b. |

The condition in Lemma 4.3 corresponding to the schema oy --- A D B1--- B, A is

displayed by the following Figure 4.1.

C1 i" Cy --------- Cp—9 Rﬁn—l Co 1
‘ b
R, 7
1 d14>d2 ------- dm—24> dm—l "
(6%) Q1
Figure 4.1:

4.2 Completeness

We will see Kripke completeness for the bimodal logics with the axiom oy ---a,p D
B1--- Pnp where oy, 5, € {0, B} by using the canonical models.

In the following, ® denotes the set of all formulas of bimodal logics.

Definition 4.4 ( L-consistent set ) For a bimodal logic L, a set U € ® is L- consis-
tent if 7(Bo A By A+ AByu_1) €L for any By, -+ ,B,_1 € U.

Definition 4.5 ( L-maximal set ) For a bimodal logic L, a set U € ® is Li- maximal
18 the following conditions are satisfied:

o U is L-consistent,

o forany A € ®, either Ac U or ~AcU.

Lemma 4.6 Let L be a normal logic.
(1) (AgAN---NA,1) DAEL

= (OAgA---ANOA, ;) DOA€L and (WA A---ANBA, ;) DBACL.
(2) 8 (OAgV---VOA, ;) DO(AyV---VA,4) €L,

o (WA, V.---VEA,_)DE(AV---VA, ) €L
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Proof. (1) By induction on n. We first prove the case n = 0. Suppose Ag D A € L,
and then O(Ag D A) € L. Since Lisnormal, 04y D OA € L. If (AgA---AAx) D A€EL,
then (AgA---AAg_1) D (Ar D A) € L. By induction hypothesis, (OAgA---AOA; 1) D
O(Ar D A) € L. Since L is normal, (OAg A --- AOA,_1) D (OA; D OA) € L. Hence
(OAg A ---AOA,) D OA € L. As for B, we can see in the similar way to O.

(2) By induction on n. The case n = 0 is clearly. Suppose the case n = k — 1,
and then (OAg V ---VOAg 4) D O(A V-V A1) € L. (OA V---VOA 1) D
O(AgV:---VA, 1VAg) € Lsince (AgV---V Ak 1) D (AgV--- VA, 1V Ag) € L. Further,
A, D (AgV -V A, 1 VAL €L, and so DA, D O(AgV -V A 1V Ag) € L. Thus
(OAgV .- VOAR_ 1 VOAL) DO(Ag V-V Ap_1 V Ag) € L. As for B we can see in the

similar way to O. 1

The following lemma is essential in proving the completeness.

Lemma 4.7 ( Lindenbaum’s lemma ) [

FEvery L-consistent set of formulas is contained in a Li-maximal set.

Proof. Let Aq,---, A;, - be an enumeration of the set ®, and U be any L-consistent
set. Now define 2 as follows:
Qo=U
Q, U{A,}, if Q, U{A,} is L-consistent;
Q, U{-A,}, otherwise.
Q =Up>o -

By using induction, we will show that €2, is L -consistent for any n. Clearly, €1y is L-

Qn+l -

consistent. Next assume that Q, is L-consistent. If Q, U{A,} is L-consistent, then Q,,
is L-consistent by the definition of €2,,. Now consider the case that Q, U {A,} is not L-
consistent, i.e. there exist By,---, By € Q, such that =(B;A---ABpAA,) € L. Suppose
moreover that Q,,1 (= Q2,U{—-A4,}) is not L-consistent. Then there exist Cy,---,C; € Q,
such that =(Cy A--- ACy A (—A,)) € L. Hence Cy A---ANC;p D —(ByA---AByg) €L ie.
=(CyA---ANCyAByA--+ A By) € L. But this contradicts the L-consistency of ,. Next,
we will show that Q is L-consistent. Suppose otherwise. Then, =(D; A--- A Dy) € L for
some Dy,---, D, € Q. Since Q = U, Q2,, D; € Q, for each ¢. Let N be the maximum
number in {ny,---,ns}. Then, D; € Qy for all . This means that Qy is inconsistent.
But this is a contradiction.

It remains to show that either A € Q2 or = A € 2 for each A € ®. Suppose A € 2 and
- A € Q for some formula A. Since =(A A =A) € L, this contradicts the L-consistency
of 2. So exactly one of A and - A must be in Q2 for any A € .
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Hence 2 is a L-maximal set containing U. 1

Now we consider the method of canonical models.

Definition 4.8 ( canonical model ) The canonical model (M%, RE, RL EL) of a nor-
mal modal logic L is defined as follows:

e ML ={U C ®|UisL-mazimal},

o U REU, < {A € ®|0A € U} C Us,

e U1RLU, <= {A c d/mA € U;} C Us,

e UKElp—=rpel.

The canonical frame for L is FX = (M*, R%, RL).

Lemma 4.9 Let L be a normal logic. Then, for any L-maximal set, U, the following
holds.

(1) LCU.

(2) ANBeU <= AeU and BeU.

(3) AVBeU << AcUorBeU.

(4) ADBeU <= AecU implies BeU.

(5) " AeU <= not AcU.

(6) A € U < for any U' € ML, UREU’ implies A € U'.

(7)A€ U < for any U' € MY, URLU’ implies A € U'.

Proof. (1) Take any A € L, and then =(=)A € L. Thus =A € U contradicts the
L-consistency of U. Hence A € U.

(2) [ = ] Suppose thet AAB € U and moreover that A ¢ U or B ¢ U. Then ~A € U
or =B € U. Since

“(AANBA(-A)) € Land -(AANBA(-B)) €L,

we have a contradiction in the either case.
[ < | Suppose that A, B € U and moreover that AA B ¢ U. Then -(AA B) € U.

Since

~(~(AAB)AAAB) €L,

we have a contradiction.
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(3) [ = ] Suppose that AV B € U and moreover that A ¢ U and B ¢ U. Then
—A €U and =B € U. Since

~((AVB) A (=A)A(-B)) € L,

we have a contradiction.
[ < ] Suppose that A € U or B € U, and moreover that AV B ¢ U. Then
-(AV B) € U. Since

~(-(AV B)AA) € L and ~(~(AV B)A B) € L,

we have a conradiction in either case.

(4) [ = ] Suppose that A D B € U and moreover that A € U and B ¢ U. Then
—B € U. Since
-(ADB)ANANA(—B)) €L,

we have a contradiction.
[ <= | Suppose that =A € U or B € U, and moreover that A D B ¢ U. Then
-(A D B) € U. Since

—|(—|(A D B) A (—|A)) € L and —|(—|(A D B) A B) eL,

we have a contradiction in either case.
(5) It is clear by the definition of L-maximal.

(6) [= ] If OA € U and URLU’, then A € U’ by the definition of RE.
[ < | Suppose OA ¢ U. We will show that {B € ®|0B € U} U{-A} is L-consistent.

Suppose otherwise. Then
(B A+ ABpyAN=A)eL,ie(BiA---ABy) DAeL
for some By, ---, By such that OB, € U for each ¢ < k. By Lemma 4.6,
(OB; A---AOB,) DOA€L.

Since OB; € U for each i, OA € U. But this is a contradiction. Hence {B € ®|0B €
U} U {—A} is L-consistent. Then, by Lemma 4.7 there exists U’ € MY such that
{Be®OBecU}U{~A} CU'" Clearly UREU' and A ¢ U.

(7) This can be seen in the similar way to (6). I
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Lemma 4.10 For any A€ ® and anyU € M*, U =" A iff Ae U.

Proof. We will prove this inductively by using Lemma 4.9 (2), (3), (4), (5), (6), (7)

and the definition of |=%. I

To show that a logic L with the axiom a4 - - - a,,p D B1 - - - Bup is complete with respect

to some class of frames defined by certain conditions, we need to show the following.

Lemma 4.11 Let o;,5; € {O,m}. Suppose m,n > 1. If a normal logic L contains
1 Qmp D LrecPup, then VU, € M* (0 > k> n) (UyR: Uy, = 3V; € M*

R k1
(0>1>m) ViRE Vi,,), where Uy = Vo and U, = V.

+1

Proof. Suppose that Uy (= Vp) and U,, (= V,,) are given. Let
Wy, = {A|OéhA € Vh—l} U {“Oéh_H s OémB|B € Vm}

By induction on h (1 < h < m), we will show that W), is L-consistent. Then there exists
the L-maximal V} containing W} by Lemma 4.7.

Step 1: If h =1,
Wy ={Ala;A e VoYU {—az - anB|B & V,}.
Suppose that Wj is not L-consistent. Then
(A A NALA-ag--amBi A~ A —ag - an,By) € Ljie.

(Al/\/\Ak)D(OigOémBl\/\/OéQOémBl)EL

for some k,I > 0, where a;A; € Vj for each 7 and By ¢ V, for each i'. Let B =
(B1V---V By). Then since

(g amB1V---Vag--anB)Day -a,B €L
by Lemma 4.6 (2), it follows that
(ALA---ANAp) Dag--a,B €L
Hence, by Lemma 4.6 (1),

(OzlAl AN /\OélA]c) D) 051062"'OémB € L.
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Since a1 A; € Vg for each 2, aqas-- o, B € L. Asay---0,, B D (1---3,B € L by hy-
pothesis, B1 -+ B, B € Vy (= Up). Hence B € U, (=V,,), since UORé’lUl, N Un,lenUn
hold. But this contradicts By &€ V,, for all 7'

Step 2: Assume that W, = {A|o,;A € V;_1} U{- 41 anB|B ¢ V,,,} is L- consis-

tent. Then there exists a L-maximal V; containing W}, which satisfies that
Qi1 B € V; implies B € V,.

Now suppose that W;;1 = {A|aj;14 € V;} U {-0j2---anB|B ¢ Vy,} is not L-

consistent. Then
—u(Al/\---/\Ak/\—|ozj+2---oszl/\-~-/\—|ozj+2---oszl) e L,

for some k,I > 0 where a; 1A, € V; for each ¢ and By ¢ V,, for each ¢/. Let B =
(B1V---V By). Then since

(ajpo-amB1 V-V amB) D ajie--a,BEL
by Lemma 4.6 (2), it follows that
(AL A~ ANAg) Dayyr--amB €L,
and so, by Lemma 4.6 (1),
(o1 A1 A= ANy Ag) D ajiajhe - o B € L

Since a;1A; € V; for each ¢, o 110542,y B € V;. By hypothesis, B € V,,. Hence
B: € V,, for some i. But this contradicts B; ¢ Vi, for all ¢'. Thus W, is L-consistent.

Theorem 4.12 (Kripke completeness) 0

LetL = MQN®{rp; D oip | i € I} for M,N € {K,KT,K4,S4,S5}, where both
7, and o; are sequences of O and M. Then for any A € ®, A € L iff F |= A for any
F = (M, Rn, Ru) in the class of frames in which Rn and Ra correspond to L.

Proof. We will mention the case L = S45 ® S5a @{np D o;p | i € I}, where both 7,
and o; are sequences of 0 and M. The other cases can be seen in the same way.
[ = ] If Rg is reflexive and transitive, Ra is equivalence relation and Rg and Ra

satisfy (x*) in Lemma 4.3, then it is clear that A € L implies F |= A.
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[ < ] If Ais valid in all frames in which Rg is reflexive and transitive, Ra is equivalence
relation and Rn and Ra satisfy (%) in Lemma 4.3, then Fl = A. Now suppose A ¢ L,
and then {—A} is L-consistent. By Lemma 4.7, there exists a L-maximal U such that
~A €U (ie. A¢U). SoU L A by Lemma 4.10, but this contradicts F~ |= A. Hence
AelL. .

This theorem can be extended in the following way. Recall that a modal logic L is
canonical if ' |= L. Monomodal logics K, KT, K4, S4 and S5 are canonical. Similarly

to Theorem 4.12, we can prove the following.

Theorem 4.13 ( Kripke completeness ) If both M and N are canonical monomodal
logic, then M@QN @{r;p D o;p | i € I}, where both 7; and o; are sequences of O and W
15 Kripke complete.

After we proved this theorem, we found a stronger result in [3], which says that

formulas of the form 7;p D o;p in our theorem can be replaced by Sahlqvist formulas.

4.3 Finite model property

In the canonical model (M*, RE, RL, =F) for a logic L, M can not be restricted to a
finite set. But it would be quite useful if we could get a finite model in which a given
unprovable formula is false. A logic L has the finite model property if the following

condition is satisfied:

if A ¢ L, then there is a finite L-model M such that M [~ A.

In this section, the finite model property of several dependently axiomatizable bimodal
logics are shown. These results may give us a hint of general results on the finite model
property.

Suppose we have a model (M, R, Ru, =), and ¥(A) is finite set which contains
Sub(A). Now we introduce the filtration method. By means of the filtrations, we will
show finite model property of some bimodal logics. We define a binary relation ~ on M
as follows:

a~b<= forany C € ¥(A), a|=Ciff b= C.

Clearly ~ is equivalence relation. Let [a] denote the equivalence class of a, i.e. [a] =
{z € M|a ~ z}. Let a« € {O0,®}. Then a binary relation S on M/ ~ is filtration if the

following conditions are satisfied:
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o aR,b = [a]S.[b],

o [a]S,[b] = for any aB € ¥(A), a |= aB implies b = B.
In this section, we will prove the finite model property by means of the following three
kinds of filtrations.

e Coarsest filtration:
[a] Sa[b] <= for any aB € ¥(A), a |= aB implies b |= B.
e Finest filtration:
[a]S4[b] <= there exist a,b' such that a ~ a', b ~ b and 'R,V
e Filtration for S5:

[a]Sa[b] <= for any aB € ¥(A), a |= aB implies b |= aB.

Theorem 4.14 Let M|N € {K,KT,K4,S4}. Then MQN@{Op DO Mp} has the
finite model property.

Here, we will give a detail proof of the finite model property of S4 ® S4 H{0p O Mp}.
Other cases can be treated similarly. Let L1 = S4®Q S4@{0p D Mp}. We note that L,
is complete in any frame (M, Rn, Ra) where both Ry and Ra are reflexive and transitive
and Re C Rp. Suppose A ¢ Ly. Then by the completeness theorem ( Theorem 4.12 ),
there exists a Lqi-model (M, R, Ra, |=) such that for some ag € M, ao = A. Now we
define U(A) as follows:

U, = Sub(A),

U, = {mB|OB € Sub(A)},
U; = {mOB|OB € Sub(A)},
U, = {mEOB|OB € Sub(A)},
Vs = {00OB|OB € Sub(A)},
Vs = {MEB|AB c Sub(A)},
U, = {MEB|OB € Sub(A)},



It is easily seen that W(A) is finite.
[a] So[b] <= for any OB € ¥U(A), a = OB implies b |= B,
[a] Su[b] <= for any BB € ¥(A), a |= BB implies b |= B,
[ =" p=alp
Further, consider the following models:
(M/ ~, 5o, Su, =%).
If the number of formulas in U(A) is m, then the number of elements of M/ ~ is at most

2™. So M/ ~ is a finite set.

Lemma 4.15 [

O (1) For any a,b € M, aRnb implies [a]Sn[b).
(2) For any a,b € M, aRab implies [a]Su[b].
(3) For any a € M, [a]Sn[d]
(4) For any a,b,c € M, [a]Sg[b] and [b]Sg[c] implies [a]Salc].
(5) For any a € M, [a]Suala]
(6) For any a,b,c € M, [a]Sa[b] and [b]Sa[c] implies [a]Sa[c].
(7) For any a,b € M, [a]Su[b] implies [a]Sa[b].

Proof. First, we note that both Rn and Ra are reflexive and transitive.
1) Suppose aRgb. Then it is clear that for any OB € VU(A) if a |= OB then b |= B.

2) Similarly to (1).

(

(2)

(3) Since the relation Rg is reflexive, a |= OB implies a |= B.

(4) Suppose that a |= OB for any OB € ¥(A) and that [a]S5[b] and [b]Sa[c].
(

i) The case of OB € ¥;. If o |= OB, then a |= OOB since Ry is transitive, and thus
b= 0B by OOB € W5 and [a]Sa[b]. Hence ¢ |= B by OB € ¥, and [b]Sc[c].

(ii) The case of OB € W5. Then the OB is the form OOB'. If ¢ |= OOB’, then
b |= OB’ since OOB' € ¥y and [a]Sa[b], and therefore b |= OOB’ since Ry is transitive.
Hence ¢ |= OB’ by OOB’ € ¥5 and [b]Sa[c].

(5) Similarly to (3).

(6) Suppose that a |= BB for any BB € VU(A) and that [a]Sa[b] and [b]Su]c].

(i) Similarly to (4) (i).

(ii) The case of @B € WU,. In this case, MM B € ¥, since OB is in ¥;. If a |= BB,
then a |= WM B since Ra is transitive, and so b |= BB by BB B € U; and [a]S«[b]. Hence
¢|=B by BB € ¥, and [b]Sa[c].
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(iii) The case of @B € W3, In this case, BB is the form MOB’, and WEOB’ € ¥,
and since OB’ is in ¥;. If a |= MOB’, then a |= WEOB’ since Ra is transitive, and so
b|=mOB by mBMOB’' € ¥, and [a|Su[b]. Hence ¢ |= OB’ by BOB' € U3 and [b]Su|c].

(iv) The case of @B € ¥,. Then MB is the form WEOB'. If ¢ = WEOB’, then
b= mOB' since WMOB’ € U, and [a]Sa[b]. So b |= MBOB' since Ra is transitive. Hence
cl=mwOB' by mmOB’ € ¥, and [b]Sa[c].

(v) The case of BB € Wg. Then BB is the form WMB’. If o |= BB B’ then b = BB’
by MBB’ € g and [a]Sa[b]. Hence b |= MM B’ since Ra is transitive. Hence ¢ |= BB’ by
BB B ¢ Ug and [b]Sa[c].

(vi) The case of BB € U;. Then MB is the form WEMB. If ¢ |= WEB’ then b |= BB’
by MEB € U; and [a|Su[b]. Hence b |= MEMB’ since Ra is transitive. Hence ¢ |= BB’ by
BB € U; and [b]Sa[c].

(7) Suppose [a|Su[b] and a = OB for any OB € U(A).

(i) The case of OB € ¥;. In this case, BB € VU,. If a |= OB, then a |= BB since
Ra C Rp. Hence b|= B by BB € U, and [a]Sa[b].

(ii) The case of OB € W5, Then OB is the form OOB’, and BOB' € ¥, since OB’ is
in ¥;. If a = OOB’, then a |= MOB’ since Ra C Rn. Hence b |= OB’ by mOB' € ¥,
and [a]Su[b]. I

We can see that the model (M/ ~, Sq, Su, [E*) is Li-model by Lemma 4.15 (3), (4),
(5), (6) and (7). Now, the finite model property of S4 ® S4 H{0p D Mp} is derived by

combining the following lemma.
Lemma 4.16 If B € ¥(A), then for anya € M, a |= B <= [a] [=* B.

Proof. We will prove this by induction on the formation of B.
e The case where B is a propositional variables is given by the definition of |=*.
e The case where B is of the form C A D, CV D or C D D is straightforward.
e The case where B = OC. [ = | Suppose that a |= OC. If [a]|Sa[b] then b |= C since
OC € WU(A). By the induction hypothesis b |=* C'. Hence [a] =* OC.

[ <= | Suppose [a] |=* OC. If aRpb then [a]Sg[b] by Lemma 4.15 (1). Since [a]Sg[b]
and [a] =* OC, and so [b] |=* C. By induction hypothesis b |= C. Thus a = OC.

The case where B = B(C' can be shown in the similar way. This time we use
Lemma 4.15 (2). I
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We can proved the other cases in the similar way. Let MM’ € {K,KT} and
N,N" € {K4,S4}, and then the finite model properties of M@ M' @{0Cp O Wp},
My @ Na @{Op D Hp}, No @ Ma @{0p D Hp}, and NQN'D{Tp O Mp} can be
proved by taking ¥y U Uy, ¥ U Wy U g U Uy, Wy U W, U3 U, and UL, ¥; as ¥(A),

respectively. Next we will discuss logics with S5 as one of the fusions.

Theorem 4.17 Let M € {K,KT,K4,S4}. Then Mp® S5a @{0p D Mp} has the
finite model property.

Here, the finite model property of S4n ® S5a G{0p D Mp} will be mainly discussed.
Let Ly = S45®@ S5 @{0p D Mp}. Suppose A ¢ La. Then by the completeness
theorem ( Theorem 4.12 ), there exists a model (M, R, Ru, =) such that for some
ag € M, ag = A. Now we define ¥(A) as follows:

Uy = Sub(A),

U, = {BMB|OB € Sub(A)},
V; = {BMOB|OB € Sub(A)},
v, = {00B|OB € Sub(A)},

It is easily seen that W(A) is finite.

[a]Salb] <= for any OB € V(A), a |= OB implies b |= B,
[a] Su[b] <= for any WB € ¥(A), a |=MBiff b |- mB,
[ =" p == ap.

Further, consider the following models:

(M/ ~,Sa, Su, =*).
If the number of formulas in W(A) is m, then the number of elements of M/ ~ is at most
2™. So M/ ~ is a finite set.

Lemma 4.18 [
O (1) For any a,b € M, aRnb implies [a]Sa[b).
(2) For any a,b € M, aRab implies [a]Su[b].
(3) For any a € M, [a|Sn[d]
(4) For any a,b,c € M, [a]So[b] and [b]St[c] implies [a]Sac].
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(5) For any a € M, [a]Su[a]
(6) For any a,b,c € M, [a]Su[b] and [a]Sa[c| implies [b]Su]c].
(7) For any a,b € M, [a]Su[b] implies [a]St[b].

Proof. (1), (2), (3), (4) and (5) can be proved in the similar way to Lemma 4.15 (1),
(2), (3), (4) and (5). Then we will show the others.

(6) It is clear that Sw is transitive and symmetric. Then suppose [a]Su[b] and [a]Su|c],
for any a,b € M. Since Sa is symmetric, [0]Sa[a] and [a]Sa[c], and so [b]Sa[c] by the

transitivity for Sa.
(7) Suppose [a]Su[b] and a = OB for OB € ¥(A).

(i) The case of OB € ;. In this case, BB € ¥,. Then a = BB since Ra C Rn. So
bl=mB by BB € ¥ and [a]Su[b]. Since Ra is reflexive, b = B.

(ii) The case of OB € W3. In this case, OB is the form OOB’, and MOB’ € ¥, since
OB is in ¥;. Then a |= MOB' since Ra € Rp. So b |= mMOB' by OB’ € ¥, and
[a] Sw[b]. Since Ra is reflexive, b |= OB'.

In either case, we have shown that b |= B. Thus [a]Salb]. I

For the bimodal logic discussed above, we can also show that Lemma 4.16 holds by
Lemma 4.18 (1)(2).

We can proved the other cases in the similar way. The finite model property of
Ko ® S5a @{0p D Wp} and KT, Q S5a @{0p O Mp} can be shown by taking ¥; U ¥,
as U(A), and that of K41 @ S5a @{0p D Mp} can be proved by taking ¥, UV, U¥;U T,
as W(A). But we don’t know at this moment whether S55 ® Na has the finite model
property, for N € {K,KT,K4,S4,S5}.

In the similar way, it is proved that some other logics have finite model property.

Theorem 4.19 The following logics enjoy finite model property.
M® N @{Op > mOp}, where M, N € {K,KT,K4,S4},
My @ Na @{0p D Olp}, where M € {K, KT} and N € {K4,S4},
S45 ® S4a @{0p D Omp},
S45 @ KTa §{0p D OMp},
MQ@N@{Cp > mmp} where M,N € {K,KT,K4,S4},
MQ@N @{0Op DO OmOp}, where M, N € {K,KT,S4}.

Proof. We can prove in the similar way to Theorem 4.14. 1
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Theorem 4.20 [
Let M,N € {K,KT}. Then MQN @{a; - anp D Op}, where a;, § € {0, B}, enjoy
the finite model property.

Here, the finite model property of KQ K P{ay - a,p O Fp} will be mainly dis-
cussed. The other cases can be proved in the same way. Let Ls = KQ K @{a; - - anp D
Bp}. Suppose A ¢ Lg. Then by the completeness theorem ( Theorem 4.12 ), there exists
a model (M, Rn, Ru, |=) such that for some aqg € M, ag € A.

[a] Sa[b] <= there exist a’, b such that a ~ a/, b ~ V' and o' Rgl/

[a] Sw[b] <= there exist a’,0’ such that a ~ a', b ~ V' and o’ Rab’

A= p=al=p
Then, consider the following model:

(M/ N, SD, S., |:*)

Lemma 4.21 For any a,b € M, if [a]Ss[b] then there exist ¢; (0 < ¢ < m — 1) such that

[¢i]Sa;[Civ1], where ¢y = a and ¢, = b.

Proof. Suppose [a]Sg[b]. Then there exist o', b’ such that a ~ @, b ~ V' and a'Rgl'.
Since Rg C Ry, 0+ 0 R, , there exist ¢; (0 < ¢ < m — 1) such that ¢;R,,c;+1, where

co = a and ¢,, = b. Hence [¢;]S,,[ciy1]- 1
We can also show that Lemma 4.16 for the above logic holds.
It is hard to develop a general semantical study of dependently axiomatizable bimodal

logics at this moment. The finite model property of general bimodal logics have been

left unanswered as future work.

4.4 decidability

As an application of finite model property which was seen in the previous section, we will
see the decidability for several bimodal logics. A bimodal logic L is finitely axiomatizable,
if the logic L is obtained from the fusion of Kg and Ka by adding finite axioms. In

general, the following is known.

Theorem 4.22 If finitely axiomatizable modal logic L has the finite model property, then
L is decidable.

The proof of the above can be referred in detail by [7] [2]. Then by Theorem 4.22,

we can show the following.
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Theorem 4.23 The following bimodal logics are decidable.
MQ@QN@{Cp D mp}, where M,N € {K, KT, K4,S4},
Mp ® S5« @{0p D Mp}, where M € {K, KT, K4,S4},
MQ@N @{Cp D mOp}, where M,N € {K, KT, K4,S4},
My @ Na @{0p D Omp}, where M € {K, KT} and N € {K4,S4},
S4p ® S4a G{0p D OMp},
S4p @ KTa @{0p D Omp},
M® N @{Cp > mup}, where M,N € {K,KT,K4,S4},
M® N @{0p > OmOp}, where M,N € {K, KT, S4},
MQN@®{a; - anp D Bp}, where a;, 5 € {O0,8} and M,N € {K,KT}.

Proof. Since these logics finitely axiomatizable and enjoy the finite model property,
they are decidable by Theorem 4.22. 1

Since the finite model property of general bimodal logics have been left unanswered,

and so the decidability of them have been also left unanswered as future work.
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Conclusions and Remarks

In the syntactic study, we could derive the cut-elimination property of M* @ N* for
any M* N* € {K*, KT* S4*}. Further, by extending Takano’s method for S5%, we
proved that every proof in M'* ® S5* can be transformed into suitable one with same
end-sequent for M'* € {K*, KT"* S4",S5%}. So these bimodal logics have subformula
property. For these logics, as results, several logical properties like the decidability and
the Craig’s interpolation theorem have been shown. As for dependently axiomatizable
bimodal logics, however, it is difficult to find sequent systems in which the cut-elimination
property holds. Therefore, it would be necessary to develop semantical method for them.

In the semantical approach, we could prove the Kripke completeness of bimodal logics
which are obtained from fusions of basic monomodal logics by adding axioms of the form
ap - omp D fr-- - Pup, where o, 3; € {0, B} by constructing the canonical model. But
the finite model property of the logics hasn’t been unsolved in general for its difficulty
of the study of the dependently axiomatizable bimodal logics. So as a steppingstone to
future work of the logics, the finite model property of some bimodal logics with special
interdependent axioms could be obtained. As an application, the decidability of the
bimodal logics which enjoy the finite model property could be proved.

As the future work, some logical properties of more general dependently axiomatizable
bimodal logics are expected. Further, general study of multimodal logics with more

modalities is interesting one.
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