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Generic Proof Scores
for Generate & Check Method in CafeOBJ ⋆

Kokichi Futatsugi

Japan Advanced Institute of Science and Technology (JAIST)
1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan

Abstract. Generic proof scores for the generate & check method in
CafeOBJ are described. The generic proof scores codify the generate &
check method as parameterized modules in the CafeOBJ language inde-
pendently of specific systems to which the method applies. Proof scores
for a specific system can be obtained by substituting the parameter mod-
ules of the parameterized modules with the specification modules of the
specific system.

The effectiveness of the generic proof scores is demonstrated by apply-
ing them to a simple but non-trivial example.

1 Introduction

Constructing specifications and verifying them in the upstream of system devel-
opment are still one of the most important challenges in system development
and engineering. It is because many critical defects are caused at the phases of
domains, requirements, and designs specifications. Proof scores are intended to
meet this challenge [8, 9].

A system and the system’s properties are specified in an executable algebraic
specification language (CafeOBJ [3] in our case). Proof scores are described also
in the same specification language for checking whether the system specifications
imply the property specifications. Specifications and proof scores are expressed
in equations, and the checks are done only by reduction with the equations. The
logical soundness of the checks is guaranteed by the fact that the reduction are
consistent with the equational reasoning with the equations in the specification
[11].

The concept of proof supported by proof scores is similar to that of LP [14].
Proof scripts written in tactic languages provided by theorem provers such as
Coq [6] and Isabelle/HOL [19] have similar nature as proof scores. However, proof
scores are written uniformly with specifications in an executable algebraic spec-
ification language and can enjoy a transparent, simple, executable and efficient
logical foundation based on the equational and rewriting logics [11, 17].

The generate & check method is a theorem proving method for transition
systems based on (1) generation of finite state patters that cover all possible
⋆ A shortened version of this paper is submitted to Logic, Rewriting, and Concurrency
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infinite states, and (2) checking the validities of verification conditions for each
of the finite state patterns[10]. The state space of a transition system is defined as
a quotient set (i.e. a set of equivalence classes) of terms of a topmost sort State,
and the transitions are defined with conditional rewrite rules over the quotient
set. A property to be verified is either (1) an invariant (i.e. a state predicate that
is valid for all reachable states) or (2) a (p leads-to q) property for two state
predicates p and q, where (p leads-to q) means that from any reachable state s
with (p(s) = true) the system will get to a state t with (q(t) = true) no matter
what transition sequence is taken.

Modularization via parameterization of proof scores is crucial because (a) it
helps to identify reusable proof scores, (b) it helps to give good structures to
proof scores, and (c) (a)&(b) make proof scores easy to understand and flexible
enough for transparent interactive deduction via rewriting and modifications (i.e.
interactive verification).

The rest of the paper is organized as follows. Section 2 includes preliminary
materials. Section 3 presents the system specifications of QLOCK (a mutual
exclusion protocol). Section 4 presents the generic proof scores for the generate &
check method. Section 5 presents the property specifications of QLOCK. Section
6 describes the development of the QLOCK proof scores using the generic proof
scores presented in Section 4. Section 7 presents related works and future issues.

2 Preliminaries

Section 2.1 to Section 2.10 give a digest of the paper [10] that is necessary for
the following sections.

2.1 Equational Specifications and Quotient Term Algebras

Let Σ = (S,≤, F ) be a regular order-sorted signature [12], where S is a set of
sorts, ≤ is a partial order on S, and F

def= {Fs1···sms}s1···sms∈S+ is S+-sorted set
of function symbols. Let X = {Xs}s∈S be an S-sorted set of variables, then the
S-sorted set of Σ(X)-term is defined inductively as follows.

– each constant f ∈ Fs is a Σ(X)-term of sort s,
– each variable x ∈ Xs is a Σ(X)-term of sort s,
– t is a Σ(X)-term of sort s′ if t is a Σ(X)-term of sort s and s < s′, and
– f(t1, . . . , tn) is a Σ(X)-term of sort s for each operator f ∈ Fs1...sns and

Σ(X)-terms ti of sort si for i ∈ {1, . . . , n}.

Let TΣ(X)s denote a set of Σ(X)-terms of sort s, and let TΣ(X) def=
{TΣ(X)s}s∈S , and let TΣ

def= TΣ({}). TΣ(X) is called an S-sorted set of Σ(X)-
terms, and TΣ is called an S-sorted set of Σ-terms. A Σ-term is also called a
ground term or a term without variables. TΣ(X) can be organized as (Σ ∪ X)-
algebras in the obvious way by using the above inductive definition of Σ(X)-
terms, where Σ∪X is a signature obtained by interpreting X as an order-sorted
set of fresh constants. Similarly, TΣ can be organized as Σ-algebras.
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Let l, r ∈ TΣ(X)s for some s ∈ S and c ∈ TΣ(X)Bool for a special sort Bool

with the two constructors true and false, a Σ-equation is defined as a sentence
of the form (∀X)(l= r if c). If the condition c is the constant predicate true, the
equation is called unconditional and written as (∀X)(l = r). An equation that
is not unconditional is called conditional. Throughout this paper an equation
may be conditional, and the theory and the method presented are valid even if
considering conditional equations.

For a finite set of equations E = {e1, · · · , en}, (Σ,E) represents an equational
specification. (Σ,E) defines an order-sorted quotient term algebra TΣ/=E

def=
{(TΣ)s/(=E)s}s∈S , where E defines an order-sorted congruence relation =E

def=
{(=E)s}s∈S on TΣ = {TΣs}s∈S . Note that if ei = (∀X)(li = ri if ci) for i ∈
{1, · · · , n} and Y is disjoint from X, then TΣ(Y )/=E can be defined similarly by
interpreting TΣ(Y ) as TΣ∪Y , where Σ∪Y is a signature obtained by interpreting
Y as an order-sorted set of fresh constants.

Proof scores in CafeOBJ are mainly developed for an equational specification
(Σ,E) (i.e. for TΣ/=E) [11].

2.2 Rewrite Rules and Reductions

If each variable in r or c is a variable in l (i.e. (∀Y )(l ∈ TΣ(Y ) implies r, c ∈
TΣ(Y )) ) and l is not a variable, an equation (∀X)(l = r ifc) can be interpreted
as a rewrite rule (∀X)(l → r if c). Given a set of Σ-equations E that can be
interpreted as a set of rewrite rules, the equational specification (Σ,E) defines
the one step rewrite relation →E on TΣ . Note that the definition of →E is not
trivial because some rule in E may have a condition (see Section 2.2 of [18] or
[25] for details).

The reduction (or rewriting) defined by (Σ,E) is the transitive and reflective
closure →∗

E of →E . In CafeOBJ each equation is interpreted as a rewrite rule,
and the reduction is used to check validity of predicates. The following is a
fundamental lemma about =E and →∗

E .

Lemma 1 (Reduction Lemma) (∀t, t′ ∈ TΣ)((t →∗
E t′) implies (t =E t′)) ¤

Note that the Reduction Lemma holds even if the rewriting relation defined
by a specification (Σ,E) is not “terminating”, “confluent”, and “sufficiently com-
plete”. These properties of the rewriting relation are desirable but not necessary
for the theory and the method presented in this paper.

Let θ ∈ TΣ(Y )X be a substitution (i.e. a map) from X to TΣ(Y ) for disjoint
X and Y then θ extends to a morphism from TΣ(X) to TΣ(Y ), and t θ is the
term obtained by substituting x ∈ X in t with x θ.

The following lemma about the reduction plays an important role in the
generate & check method.

Lemma 2 (Substitution Lemma)

(∀p ∈ TΣ(X)Bool)((p →∗
E true) implies (∀θ ∈ TΣ(Y )X)(p θ →∗

E true))
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and

(∀p ∈ TΣ(X)Bool)((p →∗
E false) implies (∀θ ∈ TΣ(Y )X)(p θ →∗

E false))

where each x ∈ X in p and each y ∈ Y in p θ are treated as fresh constants in
the reductions (p →∗

E true), (p →∗
E false) and (p θ →∗

E true), (p θ →∗
E false)

respectively. ¤

Lemma 1 and lemma 2 with Y = {} imply the following lemma, where
(∀X)(p =E true) def= (∀θ ∈ TΣ

X)(p θ =E true).

Lemma 3 (Lemma of Constants)

(∀p ∈ TΣ(X)Bool)((p →∗
E true) implies (∀X)(p =E true))

where each x ∈ X in p is treated as a fresh constant in the reduction (p →∗
E

true). ¤

2.3 Transition Systems

It is widely recognized that the majority of systems/problems in many fields can
be modeled as transition systems and their invariants.

A transition system is defined as a three tuple (St ,Tr , In). St is a set of
states, Tr ⊆ St × St is a set of transitions on the states, and In ⊆ St is a set of
initial states. (s, s′) ∈ Tr denotes a transition from the state s to the state s′.
A sequence of states s1s2 · · · sn with (si, si+1) ∈ Tr for each i ∈ {1, · · · , n − 1}
is defined to be a transition sequence. Note that any s ∈ St is defined to be
a transition sequence of length 11. A state sr ∈ St is defined to be reachable if
there exists a transition sequence s1s2 · · · sn with sn = sr for n ∈ {1, 2, · · · } such
that s1 ∈ In. A state predicate p (i.e. a function from St to Bool) is defined to
be an invariant (or an invariant property) if (p(sr) = true) for any reachable
state sr.

Let (Σ,E) be an equational specification with a unique topmost sort (i.e. a
sort without subsorts) State, and let tr = (∀X)(l → r if c) be a rewrite rule
with l, r ∈ TΣ(X)State and c ∈ TΣ(X)Bool, then tr is called a transition rule
and defines the one step transition relation →tr∈ TΣ(Y )State × TΣ(Y )State for
Y being disjoint from X as follows.

(s →tr s′) def= (∃θ ∈ TΣ(Y )X)((s =E l θ) and (s′ =E r θ) and (c θ =E true))

Note that =E is understood to be defined with ((Σ ∪ Y ), E) by considering
y ∈ Y as a fresh constant if Y is not empty.

Let TR = {tr1, · · · , trm} be a set of transition rules, let →TR
def=

⋃m
i=1→tri ,

and let In ⊆ (TΣ)State/(=E)State. In is assumed to be defined via a state pred-
icate init that is defined with E, i.e. (s ∈ In) iff (init(s) =E true). Then
1 For the case in which n = 1, s1s2 · · · sn is s1 and {1, · · · , 0} is the empty set, and

((si, si+1) ∈ Tr for each i ∈ {1, · · · , 0}) could be interpreted valid.
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(Σ,E,TR) defines a transition system ((TΣ)State/(=E)State,→TR, In).2 A spec-
ification (Σ,E,TR) is called a transition specification.

2.4 Verification of Invariant Properties

Given a transition system TS = (St ,Tr , In), let init be a state predicate that
specifies the initial states (i.e. (∀s ∈ St) (init(s) iff (s ∈ In))), and let p1, p2,

· · · , pn (n ∈ {1, 2, · · · }) be state predicates of TS , and inv(s) def= (p1(s) and
p2(s) and · · · and pn(s)) for s ∈ St .

Lemma 4 (Invariant Lemma) The following three conditions are sufficient for
a state predicate pt to be an invariant.

(1) (∀s ∈ St)(inv(s) implies pt(s))
(2) (∀s ∈ St)(init(s) implies inv(s))
(3) (∀(s, s′) ∈ Tr)(inv(s) implies inv(s′)) ¤

A predicate that satisfies the conditions (2) and (3) like inv is called an
inductive invariant. If pt itself is an inductive invariant then taking p1 = pt

and n = 1 is enough. However, p1, p2, · · · , pn (n > 1) are almost always needed
to be found for getting an inductive invariant, and to find them is a most difficult
part of the invariant verification.

2.5 Generate & Check Method

The idea underlies the generate & check method is simple and general. Let Srt
be a sort and p be a predicate on Srt , then by Lemma 2 (Substitution Lemma)

(p(X :Srt) →∗
E true) implies (∀t ∈ (TΣ)Srt)(p(t) =E true)

holds, and (p(X :Srt) →∗
E true) is a sufficient condition to prove (∀t)p(t). How-

ever, usually p is not simple enough to obtain (p(X :Srt) →∗
E true) directly, and

we need to analyze the structure of terms in (TΣ)Srt and E for (1) generating
a set of terms {t1, · · · , tm} ⊆ TΣ(Y )Srt that covers all possible cases of (TΣ)Srt ,
and (2) checking (p(ti) →∗

E true) for each i ∈ {1, · · · , m}.
Note that the generate & check method is general enough for applying not

only to the sort State but also to any sort Srt. As a matter of fact, it can be
applied in quite a few occasions in which the necessary cases to be analyzed can
be covered by a finite set of term patterns of sort Srt. This paper only describes
a special but most important application to the sort State.

Note also that induction is an already established technique for proving
(p(X : Srt) →∗

E true) for a constrained sort Srt with proof scores [11], and
the generate & check method is another independent technique for coping with
sometimes a large number of cases.
2 (TΣ)State/(=E)State is better to be understood as TΣ/=E , for usually the sort State

can only be understood together with other related sorts like Bool, Nat, Queue, etc.
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2.6 Generate & Check for ∀st ∈ St

A term t′ ∈ TΣ(Y ) is defined to be an instance of a term t ∈ TΣ(X) iff there
exits a substitution θ ∈ TΣ(Y )X such that t′ = t θ.

A finite set of terms C ⊆ TΣ(X) is defined to subsume a (may be infinite)
set of ground terms G ⊆ TΣ iff for any t′ ∈ G there exits t ∈ C such that t′ is
an instance of t.

Lemma 5 (Subsume Lemma)
Let a finite set of state terms C ⊆ TΣ(X)State subsume the set of all ground

state terms (TΣ)State, and let p be a state predicate, then the following holds.

((∀s ∈ C)(p(s) →∗
E true)) implies ((∀t ∈ (TΣ)State)(p(t) →∗

E true)) ¤

Lemma 5 and Lemma 1 imply the validity of following Generate&Check-
S. Note that (t1 ³∗

E t2) means that the term t1 is reduced to the term t2 by
the CafeOBJ ’s reduction engine, and (t1 ³∗

E t2) implies (t1 →∗
E t2) but not

necessary (t1 →∗
E t2) implies (t1 ³∗

E t2).

[Generate&Check-S] Let ((TΣ)State/(=E)State,→TR, In) be a transition sys-
tem defined by a transition specification (Σ,E,TR) (see Section 2.3). Then, for
a state predicate pst, doing the following Generate and Check are sufficient
for verifying (∀t ∈ (TΣ)State)(pst(t) =E true).

Generate a finite set of state terms C ⊆ TΣ(X)State that subsumes (TΣ)State.
Check (pst(s) ³∗

E true) for each s ∈ C. ¤

2.7 Built-in Search Predicate and Generate & Check for ∀tr ∈ Tr

The verification condition (3) for invariant verification in Lemma 4 contains a
universal quantification over the set of transitions Tr . CafeOBJ’s built-in search
predicate makes it possible to translate a universal quantification over Tr into a
universal quantification over St .

The built-in search predicate is declared as follows.
pred _=(*,1)=>+_if_suchThat_{_} : State State Bool Bool Info .

Let q be a predicate “pred q : State State” for stating some relation of the
current state and the next state, like (inv(s) implies inv(s′)) in the condition (3).
Let the predicates _then_ and valid-q be defined as follows in CafeOBJ using the
built-in search predicate. Note that _then_ is different from _implies_ because
(B:Bool implies true = true) for _implies_ but only (true then true = true)
for _then_.

-- information constructor

[Infom] op (ifm _ _ _ _) : State State Bool Bool -> Infom {constr}

-- for checking conditions of ctrans rules

pred _then _ : Bool Bool .

eq (true then B:Bool) = B . eq (false then B:Bool) = true .

-- predicate to be checked for a State

pred valid-q : State State Bool .
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eq valid-q(S:State,SS:State,CC:Bool) =

not(S =(*,1)=>+ SS if CC suchThat

not((CC then q(S, SS)) == true) {(ifm S SS CC q(S,SS))}) .

For a state term s ∈ TΣ(Y )State, the reduction of the Boolean term:
valid-q(s,SS:State,CC:Bool)

with ³∗
E ∪→TR behaves as follows based on the definition of the behavior of

the built-in search predicate (see Section 4.2 of [10] ). Note that the →TR part
is only effective for the built-in search predicate.

1. Search for evey pair (trj , θ) of a transition rule trj = (∀X)(lj → rj if cj) in
Tr and a substitution θ ∈ TΣ(Y )X such that s = lj θ.

2. For each found (trj , θ), let (SS = rj θ) and (CC = cj θ) and print out (ifm s

SS CC q(s,SS)) and trj if (not((CC then q(s,SS)) == true) ³∗
E true).

3. Returns false if any print out exits, and returns true otherwise.

The following definition and lemma are needed for “Generate & Check for
∀tr ∈ Tr”.

Definition 6 (Cover) Let C ⊆ TΣ(Y ) and C ′ ⊆ TΣ(X) be finite sets. C is
defined to cover C ′ iff for any ground instance t′g ∈ TΣ of any t′ ∈ C ′, there
exits t ∈ C such that t′g is an instance of t and t is an instance of t′. ¤

Lemma 7 (Cover Lemma 1) Let C ′ ⊆ TΣ(X)State be the set of all the left-
hand sides of the transition rules in TR, and let C ⊆ TΣ(Y ) cover C ′, then the
following holds.

(∀t ∈ C)(valid-q(t,SS:State,CC:Bool) ³∗
E ∪→TR true)

implies
(∀(s, s′) ∈ ((TΣ × TΣ)∩ →TR))(q(s, s′) →∗

E true)) ¤

Lemma 7 and Lemma 1 imply the validity of following Generate&Check-
T1.

[Generate&Check-T1] Let ((TΣ)State/(=E)State,→TR, In) be a transition
system defined by a transition specification (Σ,E,TR) (see Section 2.3), and
let C ′ ⊆ TΣ(X) be the set of all the left-hand sides of the transition rules in TR.
Then doing the following Generate and Check are sufficient for verifying

(∀(s, s′) ∈ ((TΣ × TΣ)∩ →TR))(qtr(s, s
′) =E true)

for a predicate “pred qtr : State State”.

Generate a finite set of state terms C ⊆ TΣ(Y )State that covers C ′.
Check (valid-qtr(t,SS:State,CC:Bool) ³∗

E ∪ →TR true) for each t ∈ C. ¤

The following lemma also holds for the cover sets.
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Lemma 8 (Cover Lemma 2) Let TR = {tr1, · · · , trm} be a set of transition
rules. For i ∈ {1, · · · , m}, let tri = (∀X)(li → ri if ci) and let Ci ⊆ TΣ(Y ) cover
{li}. Then the following holds.

(∀i ∈ {1, · · · ,m})(∀t ∈ Ci)(valid-q(t,SS:State,CC:Bool) ³∗
E ∪ →tri true)

implies
(∀(s, s′) ∈ ((TΣ × TΣ)∩ →TR))(q(s, s′) →∗

E true) ¤

Lemma 8 and Lemma 1 imply the validity of following Generate&Check-
T2.

[Generate&Check-T2] Let TR = {tr1, · · · , trm} be a set of transition rules,
and let tri = (∀X)(li → ri if ci) for i ∈ {1, · · · ,m}. Then doing the following
Generate and Check for all of i ∈ {1, · · · , m} is sufficient for verifying

(∀(s, s′) ∈ ((TΣ × TΣ)∩ →TR))(qtr(s, s
′) =E true)

for a predicate “pred qtr : State State”.

Generate a finite set of state terms Ci ⊆ TΣ(Y )State that covers {li}.
Check (valid-qtr(t,SS:State,CC:Bool) ³∗

E ∪ →tri true) for each t ∈ C. ¤

2.8 Generate&Check for Verification of Invariant Properties

The conditions (1) and (2) of Lemma 4 can be verified by using Generate&Check-
S with pst-1(s) and pst-2(s) defined as follows respectively.

(1) pst-1(s) = (inv(s) implies pt(s))
(2) pst-2(s) = (init(s) implies inv(s))

Note that, if inv
def= (p1 and · · · and pn), usually pt = (pi1 and · · · and pim) for

{i1, · · · , im} ⊆ {1, · · · , n}, and condition (1) is directly obtained and no need to
use Generate&Check-S.

The condition (3) of Lemma 4 can be verified by using Generate&Check-T1
or T2 with qtr-3(s, s

′) defined as follows.

(3) qtr-3(s, s
′) = (inv(s) implies inv(s′))

2.9 Verification of (p leads-to q) Properties

Invariants are fundamentally important properties of transition systems. They
are asserting that something bad will not happen (i.e. safety property). However,
it is sometimes also important to assert that something good will surely happen
(i.e. liveness property). A (p leads-to q) property is a liveness property defined
as follows.

Definition 9 (p leads-to q) Let TS = (St ,Tr , In) be a transition system, let Rst
be the set of reachable states of TS , let Tseq be the set of transition sequences
of TS , and let p, q be predicates with arity (St ,Data) of TS , where Data is a
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data sort needed to specify p, q3. Then (p leads-to q) is defined to be valid for
TS iff the following holds, where St+ denotes the set of state sequences with
length more than zero, and s ∈ α means that s is an element in α for α ∈ St+.

(∀sα ∈ Tseq)(∀d ∈ Data)
(((s ∈ Rst) and p(s, d) and (∀s′ ∈ sα)(not q(s′, d)))
implies

(∃βt ∈ St+)(q(t, d) and sαβt ∈ Tseq))

It means that the system will get into a state t with q(t, d) from a state s with
p(s, d) no matter what transition sequence is taken. ¤

The (p leads-to q) property is adopted from the UNITY logic [4], the above
definition is, however, not the same as the original one. In the UNITY logic, the
basic model is the parallel program with parallel assignments, and (p leads-to
q) is defined through applications of inference rules.

It is worthwhile to note that (s ∈ Rst) is assumed in the premiss of the
definition of (p leads-to q) properties.

Lemma 10 (p leads-to q) Based on the original transition system TS = (St ,Tr ,

In), let Ŝt def= St × Data, let (((s, d), (s′, d)) ∈ T̂r) def= ((s, s′) ∈ Tr), let În def=
In × Data, and let T̂S def= (Ŝt , T̂r , În). Let inv be an invariant of T̂S and let m

be a function from Ŝt to Nat (the set of natural numbers), then the following 4
conditions are sufficient for the property (p leads-to q) to be valid for T̂S . Here
ŝ

def= (s, d) for any d ∈ Data, p(ŝ) def= p(s, d) and q(ŝ) def= q(s, d).

(1) (∀(ŝ, ŝ′) ∈ T̂r)
((inv(ŝ) and p(ŝ) and (not q(ŝ))) implies (p(ŝ′) or q(ŝ′)))

(2) (∀(ŝ, s′) ∈ T̂r)
((inv(ŝ) and p(ŝ) and (not q(ŝ))) implies (m(ŝ) > m(ŝ′)))

(3) (∀ŝ ∈ Ŝt)
((inv(ŝ) and p(ŝ) and (not q(ŝ))) implies (∃ŝ′ ∈ Ŝt)((ŝ, ŝ′) ∈ T̂r))

(4) (∀ŝ ∈ Ŝt)
((inv(ŝ) and (p(ŝ) or q(ŝ)) and (m(ŝ) = 0)) implies q(ŝ)) ¤

2.10 Generat&Check for Verification of (p leads-to q) Properties

The conditions (1) and (2) of Lemma 10 can be verified by using Generate
&Check-T1 or T2 in Section 2.7 with qtr-1(ŝ, ŝ′) and qtr-2(ŝ, ŝ′) defined as
follows respectively.

(1) qtr-1(ŝ, ŝ′) = ((inv(ŝ) and p(ŝ) and (not q(ŝ))) implies (p(ŝ′) or q(ŝ′)))
(2) qtr-2(ŝ, ŝ′) = ((inv(ŝ) and p(ŝ) and (not q(ŝ))) implies (m(ŝ) > m(ŝ′)))

3 We may need some Data for specifying a predicate on a transition system like “the
agent with the name N is working” where N is Data.
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The conditions (3) and (4) of Lemma 10 can be verified by using Generate
&Check-S in Section 2.6 with pst-3(ŝ) and pst-4(ŝ) defined as follows respec-
tively.

(3) pst-3(ŝ) = ((inv(ŝ) and p(ŝ) and (not q(ŝ))) implies (ŝ =(*,1)=+ SS:State))
(4) pst-4(ŝ) = ((inv(ŝ) and (p(ŝ) or q(ŝ)) and (m(ŝ) = 0)) implies q(ŝ))

Note that (s =(*,1)=+ SS:State) is a simplified built-in search predicate that
returns true if there exits s′ ∈ St such that (s, s′) ∈ Tr .

2.11 QLOCK: a Mutual Exclusion Protocol

A simple but non-trivial example is used throughout this paper. The example
used is a mutual exclusion protocol QLOCK. A mutual exclusion protocol can
be described as follows:

Assume that many agents (or processes) are competing for a common
equipment (e.g. a printer or a file system), but at any moment of time
only one agent can use the equipment. That is, the agents are mutually
excluded in using the equipment. A protocol (concurrent mechanism or
algorithm) which can achieve the mutual exclusion is called “mutual
exclusion protocol”.

QLOCK is realized by using a unique global queue (first in first out storage)
of agent names (or identifiers) as follows.

– Each of unbounded number of agents who participates in the protocol be-
haves as follows:
• If an agent wants to use the common equipment and its name is not in

the queue yet, put its name at the bottom of the queue.
• If an agent wants to use the common equipment and its name is already

in the queue, check if its name is on the top of the queue. If its name is
on the top of the queue, start to use the common equipment. If its name
is not on the top of the queue, wait until its name is on the top of the
queue.

• If the agent finishes to use the common equipment, remove its name from
the top of the queue.

– The protocol starts from the state with the empty queue.

2.12 System Specifications, Property Specifications, and Proof
Scores

For verifying a system, a model of the system should be formalized and described
as system specifications that are formal specifications of the behavior of the
system. Based on the system specifications, the system’s supposed properties are
formalized and described as property specifications. Note that the properties we
are considering are either (1) invariant properties or (2) (p leads-to q) properties.
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Proof scores are developed to verify that the system’s supposed properties are
deduced from the system specifications.

Section 4 gives the generic proof scores for the generate & check method.
Section 3 and Section 5 give the system and property specifications of QLOCK
respectively. Section 6 gives proof scores for invariant properties and a (p leads-
to q) property of QLOCK by making use of the generic proof scores and the
system and property specifications.

The generic proof scores, the QLOCK specifications, and the QLOCK proof
scores are organized as a set of files in the CafeOBJ language system and posted
at the following web page.

http://www.jaist.ac.jp/~kokichi/misc/1502gpsgcmco/

Interested readers are encouraged to look into the files on the web page, for the
files contain quite a few comments including the comments on the CafeOBJ lan-
guage that are not included in this paper.

3 System Specifications of QLOCK4

This section gives the system specifications of QLOCK with explanations on the
basics of the CafeOBJ language. It is also intended to be preparations for the
main section (Section 4) of this paper where the generate & check method is
codified in CafeOBJ language.

3.1 OTS , LABEL, AID

A system specification of QLOCK is constructed with the OTS modeling scheme.
In OTS (Observational Transition System) a state is formalized as a collection
of typed observed values given by observers (or observation operations), and a
state transition is formalized as an action that defines changes of the observed
values between the current state and the next state.

For the generate & check method, generations of finite state patterns (i.e.
state terms composed of constructors and variables) that subsume all the possible
infinite states is a key procedure, and states are assumed to be represented
with an appropriate data structure (or configuration). This is different from the
original OTS scheme where there is no assumption on the structure of a state
[20, 21].

For defining a configuration of the QLOCK state, the following modules LABEL
and AID are necessary.

-- three labels for indicating status of each agent

mod! LABEL {

-- label literals and labels

[LabelLt < Label]

-- declaration of constructor constants (operators without arguments)

4 The specifications explained in this section is in the file qlock-sys.cafe on the web
page.
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ops rs ws cs : -> LabelLt {constr}

** rs: remainder section, ws: waiting section, cs: critical section

-- an equation to declare that the elements of LabelLt are literals

eq (L1:LabelLt = L2:LabelLt) = (L1 == L2) .

}

-- agent identifiers

mod* AID {[Aid]}

** Aid is declared to be any set of agent identifiers

A comment stats with --Ã or **Ã and ends at the end of line. As a com-
menting convention --Ã is used for commenting on the following CafeOBJ text
and **Ã is used for the preceding text.

The key word mod indicates a module declaration with a module name fol-
lowed by a module body. A module body starts with { and ends with }.

The character [ starts a declaration of sorts, i.e. a sequence of sort names,
and the character ] ends the declaration. The character < in the sequence of sort
names indicates that any sort on the left is included in (i.e. subsort of) any sort
on the right.

ops starts a declaration of operator names with the same rank (a pair of
arity and co-arity), and rs, ws, cs are declared to be constants (i.e. operators
without arguments) of sort LabelLt. constr is an operator attribute and indicates
rs, ws, cs are constructors.

If names satisfy the condition that different names denote different objects,
they are called “literals”. eq starts a declaration of an unconditional equation
and should end with “Ã.”. The equation in the module LABEL specify that the
elements of sort LabelLt are literals. = in the left-hand side of the equation
and == in the right-hand side are the built-in equality predicates declared for
each sort. == returns false if the left and the right are different terms after the
reduction, but = does not.

The last character ! of mod! for the LABLE module indicates that this module
denotes the standard model (the initial model), and the module LABEL denotes
the three points set {rs, ws, cs} of the label literals (i.e. LabelLt).

The last character * of mod* for the AID module indicates that this module
denotes any model that satisfy AID, and the module AID denotes any set of agent
identifiers.

3.2 QUEUE5, AID-QUEUE

The following AID-QUEUE module defines the global queue of agent identifiers.

-- mod* TRIV {[Elt]} is a bulit-in module

-- generic (or parameterized) queue (first in first out storage)

mod! QUEUE (X :: TRIV) {

** (X :: TRIV) declares the parameter module X should be an instance

** of the module TRIV

5 The module QUEUE is in the file natQuSet.cafe on the web page.
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-- elements and their queues, Elt comes from (X :: TRIV)

[Elt.X < Qu]

** an element in Elt is an element in Qu

-- declaration of a constructor constant

op empQ : -> Qu {constr} ** empty queue

-- assoicative queue constructors with id: empQ

op _&_ : Qu Qu -> Qu {constr assoc id: empQ}

-- equality _=_ over the sort Qu

-- _=_ is defined for each sort in the built-in module EQL

-- and EQL is imported to each module automatically

eq (empQ = (E:Elt & Q:Qu)) = false .

ceq ((E1:Elt & Q1:Qu) = (E2:Elt & Q2:Qu)) = ((E1 = E2) and (Q1 = Q2))

if not((Q1 = empQ) and (Q2 = empQ)) .

}

** parameterized module QUEUE just defines generic sequences

-- Queues of Aid (agent identifiers)

mod! AID-QUEUE {pr(QUEUE(AID{sort Elt -> Aid}))}

** AID-QUEUE is defined by instantiating formal parameter X of QUEUE

** with AID by viewing sort Elt as sort Aid

pr( ) indicates a protecting importation, and declares to import a module
without changing its models.

QUEUE(AID{sort Elt -> Aid}) defines the module obtained by instantiating
the formal parameter X of QUEUE by AID with the interpretation of Elt as Aid.

3.3 AOB, SET6, STATE

A QLOCK state is defined as a pair of a queue of agent identifiers and a set of
agent observers by the following module STATE

-- agent observer

mod! AOB {pr(LABEL + AID)

** pr(LABEL + AID) is same as ’pr(LABEL) pr(AID)’

-- agent observer (Aob) and its constructor

[Aob] op (lb[_]:_) : Aid Label -> Aob {constr}

** (lb[A:Aid]: L:Label) is a term of the sort Aob

** that indicates an agent A is with a label L

}

-- generic sets

mod! SET(X :: TRIV) { [Elt.X < Set]

-- empty set

op empty : -> Set {constr}

-- assicative and commutative set constructor with identity

op _ _ : Set Set -> Set {constr assoc comm id: empty}

-- ’_ _’ is idempotent with respect to the sort Elt

eq E:Elt E S:Set = E S .

}

6 The module SET is in the file natQuSet.cafe on the web page.
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-- a state is defined as a pair of a queue of Aid and a set of Aob

mod! STATE{pr(AID-QUEUE) pr(SET(AOB{sort Elt -> Aob})*{sort Set -> Aobs})

-- a state is a pair of Qu and Aobs

[State] op _$_ : Qu Aobs -> State {constr}

** the sort State has no subsort

}

SET(AOB{sort Elt -> Aob}) defines sets of agent observers (i.e. Aob s). *{sort
Set -> State} defines the renaming of Set to State. A state (i.e. an element of the
sort State) is presented as a pair of a Q:Qu and a set of the terms of the pattern
(lb[A:Aid]: L:Label), where the term (lb[A:Aid]: L:Label) denotes that an
agent A is in the status L.

Let STATEn denote STATE with n agent identifiers (i.e. Aid = {a1, · · · , an}),
and let ΣSTATEn be the signature of STATEn , then State = TΣSTATEn

(see Section
2.1).

3.4 WT, TY, EXc, QLOCKsys1

The QLOCK protocol is defined by the following three modules WT, TY, EXc. The
transition rule of the module TY indicates that if the top element of the queue is
A:Aid (i.e. Qu is (A:Aid & Q:Qu)) and the agent A is at ws (i.e. (lb[A:Aid]: ws))
then A gets into cs (i.e. (lb[A]: cs)) without changing contents of the queue
(i.e. Qu is (A & Q)). The other two transition rules can be read similarly. Note
that the module WT, TY, EXc formulate the three actions explained in Section 2.11
precisely and succinctly. QLOCKsys1 is just combining the three modules.

-- wt: want transition

mod! WT {pr(STATE)

trans[wt]: (Q:Qu $ ((lb[A:Aid]: rs) AS:Aobs))

=> ((Q & A) $ ((lb[A ]: ws) AS)) . }

-- ty: try transition

mod! TY {pr(STATE)

trans[ty]: ((A:Aid & Q:Qu) $ ((lb[A]: ws) AS:Aobs))

=> ((A & Q) $ ((lb[A]: cs) AS)) . }

-- exc: exit transition with a condition

mod! EXc {pr(STATE)

ctrans[exc]: ((A1:Aid & Q:Qu) $ ((lb[A2:Aid]: cs) AS:Aobs))

=> ( Q $ ((lb[A2 ]: rs) AS)) if (A1 = A2) . }

-- system specification of QLOCK

mod! QLOCKsys1{pr(WT + TY + EXc)}

An unconditional transition rule starts with trans, contains the rule’s name
[ ]:, a current state term, =>, a next state term, and should end with “Ã.”.
A conditional transition rule starts with ctrans, contains same components as
trans, and if followed by a condition (a predicate) before “Ã.”.

Note that the term Q:Qu matches any term of the sort Qu and the term
(lb[A:Aid]: rs) matchs any term (lb[aid]: rs) with aid of the sort Aid. Note
also that the second component of a state configuration is a set (i.e. a term
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composed of associative, commutative, and idempotent binary constructors “
”). These imply that the left-hand side of the the transition rule wt matches to
a state multiple ways depending on how many agents with rs are in the state,
and unbounded number of transitions may be defined by the rule wt. The rules
ty and exc have a similar nature.

For STATEn with Aid = {a1, · · · , an}, the transition rules wt,ty,exc define the
one step transition relations →wt,→ty,→exc respectively on the state space State

= TΣSTATEn . QLOCKsys1n with STATEn defines a set of transitions TrQLOCKsys1n
def=

(→wt ∪ →ty ∪ →exc) ⊆ (TΣSTATEn× TΣSTATEn) (see Section 2.2).
It is easily seen that the rule ty can be translated to a conditional rule, and

the rule exc can be translated to an unconditional rule.7

4 Generic Proof Scores for Generate & Check Method

This section presents the seven parameterized CafeOBJ modules that codify the
seven sufficient verification conditions of the generate & check method.8 The
seven verification conditions are the three conditions of Section 2.8 for invariant
properties and the four conditions of Section 2.10 for (p leads-to q) properties.

The seven parameterized modules specifies the seven sufficient conditions in
an executable way, and only by substituting the formal parameters of the param-
eterized modules with the specification modules of a specific system, the proof
scores are completed. That is, the verifications can be done only by executing
(i.e. by doing deduction via rewriting) the proof scores.

4.1 GENcases: Generating Patterns and Checking on Them

The module GENcases9 specifies the pattern generation and the validity checking
of predicates on the generated patterns.

[ check , SqSqTr ] : The function check is specified as follows and performs
the validity checks on the patterns defined by SST. If all the validity checks are
successful, mmi(SST) disappears and check(SST) returns ($):Ind.

op check_ : SqSqTr -> IndTr . eq check(SST:SqSqTr) = ($ | mmi(SST)) .

The sorts SqSqTr is specified as follows, and an SqSqTr (i.e. an element of the
sort SqSqTr) is (1) an SqSqEn or (2) a tree (or a sequence) of SqSqEns (i.e. elements
of the sort SqSqEn) composed of the associative binary operator _||_. An SqSqEn

is an SqSq enclosed with [ and ].
7 The file qlock-sys-ex.cafe on the web page contains the translated tyc and ex

rules.
8 The file genCheck.cafe on the web page contains the seven parameterized mod-

ules. The files genCases.cafe, exState.cafe, and predCj.cafe are used in
genCheck.cafe. Note that each file without suffix “qlock-” in its name is not depend
on the QLOCK problem and generic for the generate & check method.

9 The module GENcases is in the file genCases.cafe on the web page page.
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[SqSqEn < SqSqTr]

op [_] : SqSq -> SqSqEn . op _||_ : SqSqTr SqSqTr -> SqSqTr {assoc}

The sort SqSq is specified as follows, and an SqSq is (1) a ValSq, (2) a VlSq, or
(3) a sequence of ValSqs or VlSqs composed of the associative binary operator
_,_that has empSS as an identity (id:). A ValSq is (1) a Val or (2) a sequence of
Vals composed of the associative binary operator _,_. A VlSq is (1) a Val or (2)
a sequence of VlSqs composed of the associative binary operator _;_. Note that
the operator _,_ is overloaded (i.e. denotes two different operations), and a term
composed of an associative binary operator inductively is called a sequence for
SqSq, ValSq, VlSq while a SqSqTr is called a tree.

[Val < ValSq] op _,_ : ValSq ValSq -> ValSq {assoc}

[Val < VlSq] op _;_ : VlSq VlSq -> VlSq {assoc}

[ValSq VlSq < SqSq]

op empSS : -> SqSq . op _,_ : SqSq SqSq -> SqSq {assoc id: empSS}

[ Alternative Expansion with ; ] : The operator _;_ specifies possible alter-
natives and the following equation expands alternatives ; into a term composed
of the operator || .

eq [(SS1:SqSq,(V:Val;VS:VlSq),SS2:SqSq)]

= [(SS1,V,SS2)] || [(SS1,VS,SS2)] .

The equation applies recursively and any subterm with alternatives ; is ex-
panded into a term with || . It implies that for any term sqSq of the sort SqSq

the term [sqSq] is reduced to the term composed by applying the operator ||

to terms of the form [valSqi] (i = 1,2,· · · ) for valSqi of the sort ValSq. For
example, if terms v1, v2, v3 are of the sort Val, the following reduction hap-
pens. Note that, because empSS is declared to be an identity for the operator
“_,_ : SqSq SqSq -> SqSq”, the equation covers the cases in which SS1 and/or
SS2 in the left-hand side of the equation are/is empSS.

[(v1;v2;v3),(v1;v2)]

=red=>

[ (v1 , v1) ] || [ (v2 , v1) ] || [ (v3 , v1) ] ||

[ (v1 , v2) ] || [ (v2 , v2) ] || [ (v3 , v2) ]

To make the alternative expansion with ; more versatile, the functions t

and g are introduced as follows. String is a sort from the CafeOBJ built-in
module STRING and denotes the set of character strings like "abc", "v1", " % ".
By using t , a user is supposed to specify term constructors with appropriate
identifiers in the first argument, and accompanying g can be used to specify
the alternative expansion with ; and the constructors. The two equations for
g make the expansion of a nested expression with [ ]s and ; s possible, and
reduce “g st sqSqTr” to “t st sqSqTr” if sqSqTr” is of the sort ValSq.

op t__ : String ValSq -> Val .

op g__ : String SqSqTr -> VlSq .

eq g(S:String)(SST1:SqSqTr || SST2:SqSqTr) = (g(S) SST1);(g(S) SST2) .

eq g(S:String)[VSQ:ValSq] = t(S)(VSQ) .
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For an example, let the following equations for t be given.10

[Qu Aid Label Aobs State < Val]

eq t("lb[_]:__")(A:Aid,L:Label,AS:Aobs) = ((lb[A]: L) AS) .

eq t("_$_")(Q:Qu,AS:Aobs) = (Q $ AS) .

Then the following expansion by reduction of alternatives is possible for QLOCK
state terms if we assume q is of the sort Qu, a1 and a2 are of the sort Aid, and
as is of the sort Abos.
[(g("_$_")[(empQ;(a1 & q)),(g("lb[_]:__")[a2,(rs;ws;cs),as])])]

=red=>

[(empQ $ ((lb[a2]: rs) as))] || [((a1 & q) $ ((lb[a2]: rs) as))] ||

[(empQ $ ((lb[a2]: ws) as))] || [((a1 & q) $ ((lb[a2]: ws) as))] ||

[(empQ $ ((lb[a2]: cs) as))] || [((a1 & q) $ ((lb[a2]: cs) as))]

The specifications of alternative expansions with ; , [ ], g are called alterna-
tive scripts or alternative expansion scripts. Alternative scripts are simple
but powerful enough to specify a fairly large number of necessary patterns. Note
that an alternative script is a term of the sort SqSqTr.

[ IndTr, mmi , mi , v ] : The sort IndTr and the function mmi are specified
as follows, and mmi translates a SqSqTr to a IndTr and mmi[sqSq] reduces to
mi(sqSq) if sqSq is of the sort ValSq.
-- indicator and indicator tree

[Ind < IndTr]

op $ : -> Ind .

op _|_ : IndTr IndTr -> IndTr {assoc}

-- make make indicator

op mmi_ : SqSqTr -> IndTr .

eq mmi(SST1:SqSqTr || SST2:SqSqTr) = (mmi SST1) | (mmi SST2) .

eq mmi[VSQ:ValSq] = mi(VSQ) .

The indicator i and the making indicator function mi are specified as
follows. The functions ii (information indicator) and the predicate v to be
checked on ValSq are supposed to be defined by a user. mi(valSq) reduces to “(i
v(valSq) ii(valSq))”, and disappears if the first argument v(valSq) reduces to
true. This implies that the predicate v is valid for all the ValSqs specified by
SST if check(SST) returns ($):Ind.
-- indicator

[Info] op i__ : Bool Info -> Ind .

-- making any indicator with ’true’ disappear

eq (i true II:Info) | IT:IndTr = IT .

eq IT:IndTr | (i true II:Info) = IT .

-- information constructor

op ii_ : ValSq -> Info .

-- the predicate to be checked

pred v_ : ValSq .

-- make indicator for v_

op mi_ : ValSq -> Ind .

eq mi(VSQ:ValSq) = (i v(VSQ) ii(VSQ)) .

10 These equations are in the file qlock-genStTerm.cafe on the web page page.
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4.2 Three Parameterized Modules for Invariant Properties

[ PREDcj ] : For defining conjunctions of predicates flexibly, the following param-
eterized module PREDcj11 is prepared.

-- defining the conjunction of predicates

-- via the sequence of the names of the predicates

mod! PREDcj (X :: TRIV) {

-- names of predicates on Elt.X and the sequences of the names

[Pname < PnameSeq]

-- associative binary operator for constructing non nil sequences

op _ _ : PnameSeq PnameSeq -> PnameSeq {constr assoc}

-- cj(pns,e) defines the conjunction of predicates

-- whose names constitute the sequence pns

op cj : PnameSeq Elt -> Bool .

eq cj((PN:Pname PNS:PnameSeq),E:Elt) = cj(PN,E) and cj(PNS,E) . }

By using the cj (conjunction) operator of PREDcj, a conjunction of predi-
cates can be expressed just as a sequence of the names of the predicates. This
helps prompt modifications of component predicates of inv in the checks of the
conditions (1),(2),(3) of Section 2.8 and the conditions (1),(2),(3),(4) of Section
2.10.

[ INV-1v, INV-2v12 ] : The following two parameterized modules INV-1v and
INV-2v codify the verification conditions (1) and (2) of Section 2.8 directory.
The theory module STEpcj specifies the modules with sorts corresponding to
Ste, Pname, PnameSeq and a function corresponding to cj that make a predicate
be presented as cj(pNameSeq,ste).

By defining the predicate v of the module GENcases as the predicate pst-1
of the condition (1) or the predicate pst-2 of the condition (2), necessary checks
are done on all state patterns. The PnameSeqs p-iinv (two), p^t, and p-init are
supposed to be reified after the parameter modules are substituted with actual
specification modules (i.e. after the instantiation of parameter modules).

mod* STEpcj {[Ste] [Pname < PnameSeq] pred cj : PnameSeq Ste .}

mod! INV-1v (ST :: STEpcj) {ex(GENcases)

-- possible inductive invariant and target predicate

ops p-iinv p^t : -> PnmSeq .

[Ste < Val] eq v(S:Ste) = cj(p-iinv,S:Ste) implies cj(p^t,S) . }

mod! INV-2v (ST :: STEpcj) {ex(GENcases)

ops p-init p-iinv : -> PnmSeq .

[Ste < Val] eq v(S:Ste) = cj(p-init,S) implies cj(p-iinv,S) . }

[ VALIDq, G&C-Tv, INV-3q13 ] : The following parameterized module VALIDq di-
rectly specifies valid-q of Section 2.7. inc(RWL) declares the importation of the
built-in module RWL that is necessary for using the built-in search predicate.
11 The the module PREDcj is in the file predCj.cafe on the web page.
12 The modules INV-1v, INV-2v are in the file genCheck.cafe on the web page.
13 The modules VALIDq, G&C-Tv, INV-3q are in the file genCheck.cafe on the web page.
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mod* STE {[Ste]}

mod! VALIDq (X :: STE) {inc(RWL)

-- predicate to be checked for all the transitions

pred q : Ste Ste .

-- information constructor

[Infom] op (ifm _ _ _ _) : Ste Ste Bool Bool -> Infom {constr}

pred _then _ : Bool Bool .

eq (true then B:Bool) = B . eq (false then B:Bool) = true .

pred valid-q : Ste Ste Bool .

eq valid-q(S:Ste,SS:Ste,CC:Bool) =

not(S =(*,1)=>+ SS if CC suchThat

not((CC then q(S, SS)) == true) {(ifm S SS CC q(S,SS))}) . }

The following module G&C-Tv defines v(S:Ste,SS:Ste,CC:Bool) as valid-q(S,

SS,CC). Note that S:Ste,SS:Ste,CC:Bool in the left-hand side is of the sort ValSq

but S,SS,CC in the right-hand side is of the sort Ste,Ste,Bool that is the sort
list (or arity) of the standard form (i.e. without ) operator valid-q. In the
module INV-3q, by defining q of the module VALIDq as qtr-3 of the condition
(3) of Section 2.8, necessary checks are done on all state patterns. The PnameSeq

p-iinv is supposed to be reified after the instantiation of the parameter module
“ST :: STEpcj”.

mod! G&C-Tv (S :: STE) {ex(VALIDq(S) + GENcases)

[Ste Bool < Val] eq v(S:Ste,SS:Ste,CC:Bool) = valid-q(S,SS,CC) . }

mod! INV-3q (ST :: STEpcj) {ex(G&C-Tv(ST))

op p-iinv : -> PnmSeq .

eq q(S:Ste,SS:Ste) = (cj(p-iinv,S) implies cj(p-iinv,SS)) . }

Note that the three parameterized modules INV-1v, INV-2v, INV-3q have the
same parameter declaration “(ST :: STEpcj)”. It indicates that the modules ob-
tained by applying the parameterized module PREDcj to appropriate modules can
be substituted for the parameter modules of these three parameterized modules.

4.3 Four Parameterized Modules for (p leads-to q) Properties

[ EX-STATE, PCJ-EX-STATE14 ] : For specifying the four verification conditions
for (p leads-to q) properties, the states are needed to extend with data. The
following parameterized module EX-STATE specifies the state extension follow-
ing Lemma 10 directly. The theory module ST-DT requires functions p, q, m for
(p leads-to q) properties, and cj for defining predicates via their names. The
functions p, q, m on ExState are specified based on the functions p, q, m on
State and Data. The transitions over ExState are specified based on the transi-
tions over State by declaring two equations with the built-in search predicates
_=(*,1)=>+_if_suchThat_{_} and _=(*,1)=>+_. The equation for t__ is for com-
posing a term of the sort ExState with the constructor _%_ in the alternative
expansion script.
14 The modules EX-STATE, PCJ-EX-STATE are in the file exState.cafe on the web page.
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-- theory module with state and data

mod* ST-DT {ex(PNAT)

[Ste Data] ops p q : Ste Data -> Bool . op m : Ste Data -> Nat.PNAT .

[Pnm < PnmSeq] op cj : PnmSeq Ste -> Bool . }

mod! EX-STATE (SD :: ST-DT) {inc(RWL) ex(GENcases)

[ExState Infom]

-- state constructor for extended states

op _%_ : Ste Data -> ExState {constr}

-- the transitions on ExState is the same as the transitons on Ste

eq ((S:Ste % D:Data) =(*,1)=>+ (SS:Ste % D)

if CC:Bool suchThat B:Bool {I:Infom})

= (S =(*,1)=>+ SS if CC suchThat B {I}) .

eq ((S:Ste % D:Data) =(*,1)=>+ (SS:Ste % D)) = (S =(*,1)=>+ SS) .

-- predicates p and q on ExState

ops p q : ExState -> Bool .

eq p(S:Ste % D:Data) = p(S,D) . eq q(S:Ste % D:Data) = q(S,D) .

-- measure function on ExState

op m : ExState -> Nat.PNAT . eq m(S:Ste % D:Data) = m(S,D) .

-- t__ is introduced in the module GENcases

[Ste Data ExState < Val] eq t("_%_")(S:Ste,D:Data) = (S % D) . }

The following parameterized module PCJ-EX-STATE makes the cj available on
ExState and relate that to the cj on Ste.

mod! PCJ-EX-STATE (SD :: ST-DT) {

ex((PREDcj((EX-STATE(SD)){sort Elt -> ExState}))

*{sort Pname -> ExPname, sort PnameSeq -> ExPnameSeq})

[Pnm < ExPname] [PnmSeq < ExPnameSeq]

eq cj(PN:Pnm,(S:Ste % D:Data)) = cj(PN,S) . }

[ PQ-1q, PQ-2q, PQ-3v, PQ-4v15 ] : The four parameterized modules for the four
verification conditions for (p leads-to q) properties are specified as follows. These
are direct translation from the four conditions of Section 2.10. The parameterized
modules PQ-1q and PQ-2q are using Generate&Check-T1 or Generate&Check-T2,
and the parameterized module G&C-Tv is necessary for reifying the predicate q.
The parameterized modules PQ-3v, PQ-4v are using Generate&Check-S, and only
the module GENcases is necessary for reifying the predicate v .

-- theory module with p,q,m,cj on states

mod* STPQpcj {ex(PNAT)

[Ste] ops p q : Ste -> Bool . op m : Ste -> Nat.PNAT .

[Pnm < PnmSeq] op cj : PnmSeq Ste -> Bool . }

mod! PQ-1q (SQ :: STPQpcj) {ex(G&C-Tv(SQ))

op pq-1-inv : -> PnmSeq .

eq q(S:Ste,SS:Ste) =

(cj(pq-1-inv,S) and p(S) and not(q(S))) implies (p(SS) or q(SS)) . }

mod! PQ-2q (SQ :: STPQpcj) {ex(G&C-Tv(SQ))

op pq-2-inv : -> PnmSeq .

15 The modules PQ-1q, PQ-2q, PQ-3v, PQ-4v are in the file genCheck.cafe on the web
page.



Generic Proof Scores for Generate & Check Method in CafeOBJ ⋆⋆ 21

eq q(S:Ste,SS:Ste) =

(cj(pq-2-inv,S) and p(S) and not(q(S))) implies (m(S) > m(SS)) . }

mod! PQ-3v (SQ :: STPQpcj) {inc(RWL) ex(GENcases)

op pq-3-inv : -> PnmSeq . [Ste < Val]

eq v(S:Ste,SS:Ste) =

(cj(pq-3-inv,S) and p(S) and not(q(S))) implies (S =(*,1)=>+ SS) . }

mod! PQ-4v (SQ :: STPQpcj) {pr(GENcases)

op pq-4-inv : -> PnmSeq . [Ste < Val]

eq v(S:Ste) =

(cj(pq-4-inv,S) and (p(S) or q(S)) and (m(S) = 0)) implies q(S) . }

Note that the four parameterized modules PQ-1q, PQ-2q, PQ-3v, PQ-4v have
the same parameter declaration “(SQ :: STPQpcj)”. It indicates that the mod-
ules obtained by applying the parameterized module PCJ-EX-STATE to appropriate
modules can be substituted for the parameter modules of these four parameter-
ized modules.

5 Property Specifications of QLOCK16

The property specifications for the generate & check method are supposed to
specify the following predicates.

1. The possible inductive invariant predicate inv, the target state predicate pt,
and the initial state predicate init for verifying invariant properties (Section
2.8).

2. The invariant predicate inv, the predicates p, q and the measure function m
for verifying (p leads-to q) properties (Section 2.10). There are four verifica-
tion conditions for each (p leads-to q) property, and the invariant predicate
inv may be different depending on the conditions.

Usually, the predicates are specified as conjunctions of elemental predicates.
For QLOCK, we adopt a strategy of formalizing necessary functions and

elemental predicates based on the Peano style natural numbers. The strategy
works well especially for specifying the measure function m for a (p leads-to q)
property as demonstrated in Section ??.

5.1 Basic Functions on State

The module PNAT17 defines Peano style unary natural numbers Nat with the two
constructors “op 0 : -> Nat {constr}”, “op s_ : Nat -> Nat {constr}”, and two
functions _+_ (addition), _>_ (greater than).

Based on PNAT, the module STATEfuns defines fundamental functions on states
which are necessary to specify necessary elemental predicates. The functions are
to get “the queue in a state” (qu), “the agent observations in a state” (aos),
16 The file qlock-prop.cafe on the web page contains the property specifications of

QLOCK.
17 The module PNAT is in the file natQuSet.cafe on the web page.
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“length of an Aobs” (#laos), “the number of a label in an Aobs” (#lss), “the
number of a label in a state” (#ls), “the number of an aid in an Aobs” (#ass),
“the number of an aid in a state” (#as), “the number of an aid in a state” (#as),
“the number of an aid in a queue” (#aq), “label of an agent in an Aobs” (laga),
“label of an agent in a State” (lags). Note that an expression like “an Aobs”
means “an element of the sort Aobs”, e.g. “a state” is same as “a State”. All
of these functions are easily defined with recursive equations. For example #lss

and laga are specified as follows.

op #lss : Aobs Label -> Nat .

eq #lss(empty,L:Label) = 0 .

eq #lss(((lb[A:Aid]: L1:Label) AS:Aobs),L2:Label) =

if (L1 = L2) then (s 0) + #lss((AS),L2) else #lss((AS),L2) fi .

op laga : Aobs Aid -> Label .

eq laga(((lb[A1:Aid]: L:Label) AS:Aobs),A2:Aid) =

if (A1 = A2) then L else laga((AS),A2) fi .

5.2 Initial State Predicate

Based on STATEfuns, the elemental predicates on State for defining initial states
are specified in the module STATEpred-init. An initial state predicate (i.e. a
predicate to characterize the initial states) is specified in the module INIT as the
conjunction of the elemental predicates.

By applying the parameterized module PREDcj to the module STATE, the mod-
ule STATEpcj is obtained. Then STATEpcj is used in the module STATEpred-init

for defining the following predicate via their names. “at least one agent in a
state” (aoa), “no duplication of an Aid in a Aobs” (1as), “no duplication of an
Aid in a state” (1a), “the queue is empty” (qe), “any Aid is in rs status” (allRs).
The predicates specified with aoa and 1a are structural requirements for a state
to be well formed, and the conjunction of aoa and 1a is named wfs (well formed
state). The following shows STATEpcj and STATEpred-init (aoa, 1as, 1a, qe are
omitted).

-- PREDcj with STATE for ’X :: TRIVE’ by viewing Elt as State

mod! STATEpcj {pr(PREDcj(STATE{sort Elt -> State}))}

mod! STATEpred-init {ex(STATEfuns + STATEpcj)

...

op wfs : -> Pname . eq[wfs]: wfs = aoa 1a .

...

op allRs : -> Pname .

eq[allRs]: cj(allRs,S:State) = (#ls(S,ws)= 0) and (#ls(S,cs)= 0) . }

By using predicate names specified in STATEpred-init, the initial state pred-
icate init is specified with the predicate name sequence init in the following
module INIT.

mod! INIT {ex(STATEpred-init)

op init : -> PnameSeq . eq init = wfs qe allRs . }
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5.3 Elemental Invariant Predicates and Target Predicate

The elemental invariant predicates are supposed to be elements for composing
inductive invariant predicates as conjunctions. The target predicate pt is usually
chosen as one of the elemental predicates, and the first condition of the invariant
verification (Section 2.8) is trivial.

The module AID-QUEUE-a defines queues with head (hd) and tail (tl) operators
and used by the module STATEpred-inv that defines the elemental predicates
necessary for defining inductive invariants. STATEpred-inv defines the predicates
for “mutual exclusion property” (mx), and for the situations “if queue is empty”
(qep), “if agent is in rs” (rs), “if agent is in ws” (ws), “if agent is in cs” (cs).

The property mx means that at most one agent is with cs at any time, and
it is the target property pt to be verified.

mx, qep, and rs are specified as follows.
op mx : -> Pname .

eq[mx]: cj(mx,S:State) = (#ls(S,cs) = 0) or (#ls(S,cs) = (s 0)) .

ops qep rs : -> Pname .

eq[qep]: cj(qep,(Q:Qu $ ((lb[A:Aid]: L:Label) AS:Aobs)))

= ((Q = empQ) implies (#lss(((lb[A]: L) AS),cs) = 0)) .

eq[:m-and rs]: cj(rs,(Q:Qu $ ((lb[A:Aid]: L:Label) AS:Aobs)))

= ((L = rs) implies (#aq(Q,A) = 0)) .

An equation with the :m-and (matching and) attribute like “eq[:m-and id]: l
= r .” indicates that (1) left-hand side l and right-hand side r of the equation are
of the sort Bool, and (2) if there are multiple matches m1, · · · ,mk(k = 2, 3, · · · )
(match mi is a map from variables to terms and is extended to a map from
terms to terms) such that mi(l) = t for a Boolean term t, the equation “l = r” is
defined to be instantiated to the equation “t = m1(r) and-also m2(r) and-also

· · · and-also mk(r)” (_and-also_ is a variant of the built-in operator _and_ on
Bool).

Hence, by matching the left-hand side of the equation rs (i.e. “eq[:m-and rs]:

...”) with a Boolean term “cj(rs, (q $ ((lb[a1]: l1) (lb[a2]: l2) as)))”,
we get the following instantiated equation. Note that “((l1 = rs) implies (#aq

(q,a1) = 0))” is gotten with the match {Q→q, A→a1, L→l1, AS→((lb[a2]: l2)

as)} and “((l2 = rs) implies (#aq(q, a2) = 0))” is gotten with the match
{Q→q, A→a2, L→l2, AS→((lb[a1]: l1) as)}.

cj(rs,(q $ ((lb[a1]: l1) (lb[a2]: l2) as)))

= ((l1 = rs) implies (#aq(q,a1) = 0)) and-also

((l2 = rs) implies (#aq(q,a2) = 0)) .

The above equation is the correct interpretation of the equation rs because an
Aobs is a set of elements of the sort Aob and the pattern (lb[A:Aid]: L:Label) of
the sort Aob in the left-hand side of the equation rs should match each element
of an Aobs conjunctively. The :m-and attribute of the CafeOBJ language realizes
this correct interpretation.

5.4 Predicates and Measure Function for (p leads-to q) property

The following module PQMonState specifies the p and q predicates and a measure
function m for defining a (p leads-to q) property of QLOCK. The function lags
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denotes the label of an agent in a state (see the module STATEfuns). The function
#dms is specified in the following module STATEfuns-pq and intended to denote
the properly decreasing natural numbers according to the state transitions of
QLOCK. PNAT*18 is PNAT with the * (times) operation.

mod! STATEfuns-pq {ex(STATEfuns + PNAT*)

-- the depth of the first appearence of an aid in a queue

op #daq : Qu Aid -> Nat .

eq #daq(A1:Aid & Q:Qu,A2:Aid)

= if (A1 = A2) then 0 else s(#daq(Q,A2)) fi .

-- counter count of cs

op #ccs : State -> Nat .

eq #ccs(S:State) = if (#ls(S,cs) > 0) then 0 else (s 0) fi .

-- decreasing Nat measure for the (p leads-to q) property

op #dms : State Aid -> Nat .

eq #dms(S:State,A:Aid)

= ((s s s 0) * #daq(qu(S),A)) + #ls(S,rs) + #ccs(S) . }

mod! PQMonState {ex(STATEpcj + STATEfuns-pq)

ops p q : State Aid -> Bool . eq p(S:State,A:Aid) = (lags(S,A) = ws) .

eq q(S:State,A:Aid) = (lags(S,A) = cs) .

op m : State Aid -> Nat.PNAT . eq m(S:State,A:Aid) = #dms(S,A) . }

The (q leads-to q) property of QLOCK is verified in Section ?? .

5.5 Extended State (State % Aid) and Inductive Invariants

For using Generate&Check-S or Generate&Check-T1/T2 with p(S:State,A:Aid),
q(S:State,A:Aid), and m(S:State,A:Aid) of the module PQMonState, State needs
to be extended with Aid. The following module EX-PQMonST extends State of
PQMonState with Aid for constructing ExState (= (State % Aid)) by applying the
parameterized module PCJ-EX-STATE to the module PQMonState.

-- ExState with PQMonST/State and Aid/Date

-- and a new invariant qas on ExState = (State % Date)

mod! EX-PQMonST {

pr((PCJ-EX-STATE(

PQMonST{sort Ste -> State, sort Data -> Aid,

sort Pnm -> Pname, sort PnmSeq -> PnameSeq})))

-- if an agent is in the Qu then the agent is in Aobs

op qas : -> ExPname .

eq cj(qas,((Q:Qu $ AS:Aobs) % A:Aid))

= ((#aq(Q, A) = s 0) implies not(#ass(AS, A) = 0)) . }

A new elemental predicate is defined with the name qas of the sort ExPname

in EX-PQMonST. By using the predicate names defined in STATEpred-inv and qas,
possible inductive invariants are specified in the following module INV.

-- possible inductive invariant predicates

mod! INV {ex(EX-PQMonST + STATEpred-inv)

ops inv1 inv2 : -> PnameSeq . ops inv3 : -> ExPnameSeq .

eq inv1 = wfs . eq inv2 = mx qep rs ws cs . eq inv3 = qas . }

18 The module PNAT* is in the file natQuSet.cafe on the web page.



Generic Proof Scores for Generate & Check Method in CafeOBJ ⋆⋆ 25

In Section ??, the conjunction “inv1 inv2 inv3” is proved to be an inductive
invariant. As a matter of fact, any of inv1, inv2, or inv3 can be proved to be an
inductive invariant.

6 Proof Scores for QLOCK

Proof scores for QLOCK can be obtained by substituting the parameter modules
of the seven parameterized modules in Section 4.2 and 4.3 with appropriate
QLOCK specification modules.

The three modules Q-INV-1v, Q-INV-2v, Q-INV-3q for the three invariant verifi-
cation conditions and the four modules Q-PQ-1q, Q-PQ-2q, Q-PQ-3v, Q-PQ-4v19 for
the four (p leads-to q) property verification conditions of QLOCK are obtained
by substituting the parameter modules of the parameterized modules INV-1v,
INV-2v, INV-3q, and PQ-1q, PQ-2q, PQ-3v, PQ-4v with the module EX-PQMonST.

6.1 Proof Scores for invariant properties

The following proof scores prove the three verification conditions for invariant
properties under the condition in which each predicate inv, pt, or init is defined
with the predicate name sequence “inv1 inv2 inv3”, mx, or init respectively.

[ Q-INV-1-genCheck20 ] : The reduction “red ck .” in the following proof score
proves the first verification condition “(cj(inv1 inv2 inv3,S) implies cj(mx,

S)) for any state S of the sort ExState” if it returns ($):Ind.

mod! Q-INV-1-genCheck {ex(Q-INV-1)

op ck : -> IndTr . eq ck = check([‘s:ExState]) . }

open Q-INV-1-genCheck . pr(INV)

eq p-iinv = inv1 inv2 inv3 . eq p^t = mx . red ck . close

open opens the module Q-INV-1-genCheck; pr(INV) imports a necessary module
INV; two equations reify predicate names p-iinv and p^t as “inv1 inv2 inv3”
and mx respectively; “red ck .” reduces check([‘s:ExState]) and returns the
result, and close closes the opened tentative module.

cj(inv1 inv2 inv3,S) trivially implies cj(mx,S) for any S because inv2 in-
cludes mx, hence the most general trivial state pattern ‘s:ExState is enough.

[ Q-INV-2-genCheck21 ] : The reduction “red ck .” in the following proof score
proves the second verification condition “(cj(init,S) implies cj(inv1 inv2 inv3,

S)) for any state S of the sort ExState” if it returns ($):Ind.

mod! Q-INV-2-genCheck {ex(Q-INV-2 + GENstTerm + CONSTandLITL)

op ck : -> IndTr .

eq ck = check( [(g("_%_")[(g("_$_")[q,empty]),a1])] ||

19 The modules Q-INV-1v, Q-INV-2v, Q-INV-3q, and Q-PQ-1q, Q-PQ-2q,
Q-PQ-3v, Q-PQ-4v are in the file qlock-genCheck.cafe on the web page.

20 The module Q-INV-1-genCheck is in the file qlock-inv-1-ps.cafe on the web.
21 The module Q-INV-2-genCheck is in the file qlock-inv-2-ps.cafe on the web page.
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[(g("_%_")[(g("_$_")[empQ,(g("lb[_]:__")[a1,(rs;ws;cs),as])]),a2])] ||

[(g("_%_")[(g("_$_")[(a1 & q),(g("lb[_]:__")[a2,(rs;ws;cs),as])]),a3])]

) . }

open Q-INV-2-genCheck . pr(INIT + INV)

eq p-init = init . eq p-iinv = inv1 inv2 inv3 . red ck . close

The module GENstTerm is necessary to use g__ in the alternative script (the
argument of check_). The module CONSTandLITL22 includes fresh constant decla-
rations “op q : -> Qu . op as : -> Aobs . ops a1 a2 a3 : -> Aid .” that are
used in the alternative script. The two equations reify the predicate names p-init
and p-iinv as init and “inv1 inv2 inv3” respectively.

The alternative script expands to the term of the sort SqSqTr that includes
the state patterns that subsume all the ground state terms of the sort ExState.23

Hence, by Generate&Check-S in Section 2.6, if “red ck .” returns ($):Ind then
(cj(init,S) implies cj(inv1 inv2 inv3,S)) for any state S of the sort ExState

(i.e. any ground term of the sort ExState).

[ Q-INV-3-genCheck24 ] : The reduction “red ck .” in the following proof score
proves the third verification condition “(cj(inv1 inv2 inv3,S) implies cj(inv1

inv2 inv3,SS)) for any transitions (S,SS) of QLOCK with ExState (i.e. S and
SS are of the sort ExState)” if it returns ($):Ind.

mod! Q-INV-3-genCheck {ex(Q-INV-3 + GENstTerm + CONSTandLITL)

ops sst1 sst2 sst3 : -> SqSqTr .

eq sst1 = [(g("_%_")[(g("_$_")[empQ,(g("lb[_]:__")[b1,rs,as])]),

(b1;b2)]),SS:ExState,CC:Bool] ||

[(g("_%_")[(g("_$_")[(b1 & q),(g("lb[_]:__")[(b1;b2),rs,as])]),

(b1;b2;b3)]),SS,CC] .

eq sst2 = [(g("_%_")[(g("_$_")[(b1 & q),(g("lb[_]:__")[b1,ws,as])]),

(b1;b2)]),SS:ExState,CC:Bool] .

eq sst3 = [(g("_%_")[(g("_$_")[(b1 & q),(g("lb[_]:__")[(b1;b2),cs,as])]),

(b1;b2;b3)]),SS:ExState,CC:Bool] .

op ck : -> IndTr . eq ck = check(sst1 || sst2 || sst3) . }

-- Generate&Check-T1

open Q-INV-3-genCheck . pr(QLOCKsys1 + INV + FACTtbu)

eq p-iinv = inv1 inv2 inv3 . red ck . close

The alternative script sst1 specifies three state patterns that cover the left-
hand side (Q:Qu $ ((lb[A:Aid]: rs) as:Aobs)) of the transition rule wt. b1,
b2, b3 are fresh constant literals declared in the module CONSTandLITL. Note
that all possibilities of tree occurrences of Aid are covered by (...[(...[(b1

...),(...[(b1;b2)...])]),(b1;b2;b3)]). Note also that SS:State,CC:Bool in sst1

are necessary for using the built-in search predicate “ =(*,1)=>+ if suchThat { }”.
The script sst2 specifies the state pattern ((b1 & q) $ ((lb[b1]: ws) as)) that
directly cover the left-hand side ((A:Aid & Q:Qu) $ ((lb[A]: ws) AS:Aobs)) of
22 The module CONSTandLITL is in the file qlock-constAndLitl.cafe on the web.
23 You can see the expanded term in the comment part after the eof in the file

qlock-inv-2-ps.cafe on the web.
24 The module Q-INV-3-genCheck is in the file qlock-inv-3-ps.cafe on the web.
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the transition rule ty. The alternative script sst3 specifies state patterns that
cover the left-hand side ((A1:Aid & Q:Qu) $ ((lb[A2:Aid]: cs) as:Aobs)) of the
transition rule exc. Hence, by Generate&Check-T1 in Section 2.7, the correctness
of the above proof score is implied.

Note that the module FACTtbu25 that declare the fundamental facts like “eq
[NatGt1]: ((N:Nat.PNAT = 0) and (N > 0)) = false .” is necessary here. Facts
declared in FACTtbu can be proved with another proof scores usually by using
induction on term structures.

By using Generate&Check-T2 instead of Generate&Check-T1, checking the
transition rules one by one is possible. For doing that, instead of importing
QLOCKsys and reducing “check(sst1 || sst2 || sst3)”, importing the modules
WT, TY, EXc and reducing check(sst1), check(sst2), check(sst3) one by one is
enough as follows.

-- Generate&Check-T2

open Q-INV-3-genCheck . pr(WT + INV + FACTtbu)

eq p-iinv = inv1 inv2 inv3 . red check(sst1) . close

open Q-INV-3-genCheck . pr(TY + INV + FACTtbu)

eq p-iinv = inv1 inv2 inv3 . red check(sst2) . close

open Q-INV-3-genCheck . pr(EXc + INV + FACTtbu)

eq p-iinv = inv1 inv2 inv3 . red check(sst3) . close

Using Generate&Check-T2 is an effective way for detecting errors in specifi-
cations and for finding necessary lemmas during proof score developments.

6.2 Proof Scores for a (p leads-to q) Property

Let the predicates p and q be defined as in the module PQMonState, then QLOCK
enjoys the (p( ,A:Aid) leads-to q( ,A:Aid)) (i.e. ((lags( ,A) = ws) leads-to
(lags( ,A) = cs))) property for any agent A. That is, if an agent gets the ws

label then it will surely get the cs label.
This section presents proof scores for the four verification conditions of the

(p( ,A:Aid) leads-to q( ,A:Aid)) property.

[ Q-PQ-1-genCheck26 ] : The reduction “red ck .” in the following proof score
proves the first verification condition “(cj(pq-1-inv,S) and p(S) and not(q(S)))

implies (p(SS) or q(SS)) for any transition (S,SS) of QLOCK with ExState” if
it returns ($):Ind.

mod! Q-PQ-1-genCheck {ex(Q-PQ-1 + GENstTerm + CONSTandLITL)

op ck : -> IndTr .

eq ck = check(

[(g("_%_")[(g("_$_")[empQ,(g("lb[_]:__")[b1,rs,as])]),

(b1;b2)]),SS:ExState,CC:Bool] ||

[(g("_%_")[(g("_$_")[(b1 & q),(g("lb[_]:__")[(b1;b2),rs,as])]),

(b1;b2;b3)]),SS,CC] ||

25 The module FACTtbu is in the file qlock-factTbu.cafe on the web page.
26 The module Q-PQ-1-genCheck is in the file qlock-pq-1-ps.cafe on the web page.



28 Kokichi Futatsugi

[(g("_%_")[(g("_$_")[(b1 & q),(g("lb[_]:__")[b1,ws,as])]),

(b1;b2)]),SS,CC] ||

[(g("_%_")[(g("_$_")[(b1 & q),(g("lb[_]:__")[(b1;b2),cs,as])]),

(b1;b2;b3)]),SS,CC] ) . }

open Q-PQ-1-genCheck . pr(QLOCKsys1) red ck . close

pq-1-inv is not reified in the open...close clause, and it means (cj(pq-1-inv,S)
in the premiss of the first verification condition is not necessary.

The alternative script at the argument position of check specifies state pat-
terns of the sort ExState. The same discussion about the module Q-INV-3-genCheck
can apply and the alternative script of module Q-PQ-1-genCheck covers the left-
hand sides of the three transition rules on ExState. Note that the three transition
rules on ExState is not defined directly, but induced from the three transition
rules on State with the following two equations defined in the module EX-STATE.

eq ((S:State % D:Data) =(*,1)=>+ (SS:State % D)

if CC:Bool suchThat B:Bool {I:Infom})

= (S =(*,1)=>+ SS if CC suchThat B {I}) .

eq ((S:State % D:Data) =(*,1)=>+ (SS:State % D)) = (S =(*,1)=>+ SS) .

Hence, by Generate&Check-T1 in Section 2.7, the correctness of the above proof
score is implied.

[ Q-PQ-2-genCheck27 ] : The two reductions “red ck .” in the following proof
score prove the second verification condition “(cj(pq-2-inv,S) and p(S) and not

(q(S))) implies (m(S) > m(SS)) for any transition (S,SS) of QLOCK with ExState”
if each of them returns ($):Ind.

mod! Q-PQ-2-genCheck {ex(Q-PQ-2 + GENstTerm + CONSTandLITL)

op ck : -> IndTr .

eq ck = check(

[(g("_%_")[(g("_$_")[empQ,(g("lb[_]:__")[b1,rs,as])]),

(b1;b2)]),SS:ExState,CC:Bool] ||

[(g("_%_")[(g("_$_")[(b1 & q),(g("lb[_]:__")[(b1;b2),rs,as])]),

(b1;b2;b3)]),SS,CC] ||

[(g("_%_")[(g("_$_")[(b1 & q),(g("lb[_]:__")[b1,ws,as])]),

(b1;b2)]),SS,CC] ||

[(g("_%_")[(g("_$_")[(b1 & q),(g("lb[_]:__")[(b1;b2),cs,as])]),

(b1;b2;b3)]),SS,CC] ) . }

-- case: eq #lss((as),cs) = 0 .

open Q-PQ-2-genCheck . pr(QLOCKsys1 + INV + FACTtbu)

eq #lss((as),cs) = 0 . red ck . close

-- case: eq (#lss((as),cs) = 0) = false .

open Q-PQ-2-genCheck . pr(QLOCKsys1 + INV + FACTtbu)

eq pq-2-inv = inv2 . eq (#lss((as),cs) = 0) = false . red ck . close

The correctness of the above proof score is implied by the same discussion
as the one about the module Q-PQ-1-genCheck except that two reductions are
necessary that cover all the possible two cases in which “#lss((as),cs) = 0” or
”(#lss((as),cs) = 0) = false” holds. Note that the facts declared in the module
27 The module Q-PQ-2-genCheck is in the file qlock-pq-2-ps.cafe on the web page.



Generic Proof Scores for Generate & Check Method in CafeOBJ ⋆⋆ 29

FACTtbu is necessary for the both cases. Note also that reifying pq-2-inv as inv2

is necessary for the second case but not for the first case, i.e. cj(inv2,S:ExState)
is not necessary for the first case.

[ Q-PQ-3-genCheck28 ] : The reduction “red ck .” in the following proof score
proves the third verification condition “((cj(pq-3-inv,S) and p(S) and not(q

(S))) implies (S =(*,1)=>+ SS)) for any state S of QLOCK with ExState” if it
returns ($):Ind. Note that the verification condition is on the states S and not
on the transitions (S,SS); SS is appears as the second argument of the built-in
search predicate =(*,1)=> and be bound by the CafeOBJ system for checking
the existence.

mod! Q-PQ-3-genCheck {

ex(Q-PQ-3 + CONSTandLITL + GENstTerm)

op ck : -> IndTr .

eq ck = check (

[(g("_%_")[(g("_$_")[q,empty]),b1]),SS:ExState] ||

[(g("_%_")[(g("_$_")[empQ,(g("lb[_]:__")[b1,(rs;ws;cs),as])]),

(b1;b2)]),SS] ||

[(g("_%_")[(g("_$_")[(b1 & q),(g("lb[_]:__")[b1,(rs;ws;cs),as])]),

(b1;b2)]),SS] ) . }

open Q-PQ-3-genCheck . pr(QLOCKsys1 + INV)

eq pq-3-inv = inv1 inv2 . red ck . close

Because the predicate defined via “inv3 = qas” is proved to be an invari-
ant by the proof score including the module Q-INV-3-genCheck, any Aid in the
queue is in Aobs for any reachable state. Therefor, any reachable state is an in-
stance of the state pattern (((A1:Aid & Q:Qu) $ ((lb[A1]: L:Label) AS:Aobs))

% A2:Aid) of the sort ExState. This fact implies that the alternative script at the
argument position of check expanse to the term of the sort SqSqTr that includes
the state patterns subsuming all the reachable states.29 This, in turn, implies
the correctness of the above proof score.

[ Q-PQ-4-genCheck30 ] : The two reductions “red ck .” in the following proof
score prove the fourth verification condition “((cj(pq-4-inv,S) and (p(S) or

q(S)) and (m(S) = 0)) implies q(S)) for any state S of QLOCK with ExState”
if each of them returns ($):Ind.

mod! Q-PQ-4-genCheck {ex(Q-PQ-4 + CONSTandLITL + GENstTerm)

op ck : -> IndTr .

eq ck = check(

[(g("_%_")[(g("_$_")[q,empty]),b1])] ||

[(g("_%_")[(g("_$_")[empQ,(g("lb[_]:__")[b1,(rs;ws;cs),as])]),

(b1;b2)])] ||

[(g("_%_")[(g("_$_")[(b1 & q),(g("lb[_]:__")[b1,(rs;ws;cs),as])]),

(b1;b2)])] ) . }

--> case: eq #lss((as),cs) = 0 .

28 The module Q-PQ-3-genCheck is in the file qlock-pq-3-ps.cafe on the web page.
29 You can see the expanded term after the eof in the file qlocik-pq-3-ps.cafe.
30 The module Q-PQ-4-genCheck is in the file qlock-pq-4-ps.cafe on the web page.
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open Q-PQ-4-genCheck . pr(INV)

eq pq-4-inv = inv2 . eq #lss((as),cs) = 0 . red ck . close

--> case: eq (#lss((as),cs) = 0) = false .

open Q-PQ-4-genCheck . pr(INV)

eq pq-4-inv = inv2 . eq (#lss((as),cs) = 0) = false . red ck . close

The correctness of the above proof score is implied by the same discussion
as the one about the module Q-PQ-3-genCheck except that two reductions are
necessary that cover all the possible two cases in which “#lss((as),cs) = 0”
or “(#lss((as),cs) = 0) = false” holds. Note that reifying pq-4-inv as inv2 is
necessary, but no need to use the facts in the module FACTtbu.

7 Related Works and Future Issues

7.1 Related works

There are many researches on verifications of transition systems, and we only
give a brief general view and point out most related works based on Maude [16].

Verification methods for transition systems are largely classified into deduc-
tive and algorithmic ones. Majority of the deductive methods are applications
of theorem proving methods/systems [6, 15, 19, 22] to verifications of concurrent
systems or distributed protocols with infinite states. Most dominant algorithmic
methods are based on model checking methods/systems [2, 5] and are target-
ing to automatic verifications of temporal properties of finite state transition
systems. The generate & check method a deductive method with algorithmic
combinatorial generations of cover sets. Moreover reduction with equations is
only one deductive mechanism.

Maude [16] is a sister language of CafeOBJ and both languages share many
important features. The idea underlies the transition specification (Σ,E,TR)
and the transition system ((TΣ)State/(=E)State,→TR, In) in Section 2.3 is same
as the one for the topmost rewrite theory [23, 24, 17]. Maude’s basic logic is
rewriting logic [17] and verification of transition systems with Maude focuses on
sophisticated model checking with a powerful associative and/or commutative
rewriting engine. There are recent attempts to extend the model checking with
Maude for verifying infinite state transition systems [1, 7]. They are based on
narrowing with unification, whereas the generate & check method is based on
cover sets with ordinary matching and reduction.

7.2 Searches on time versus space

There are quite a few researches on search techniques in model checking [5, 13].
It is interesting to observe that what we have done for the generate & check
method in this paper is a search in state space with the built-in search predicate
that amounts to the complete search across all one step transitions, whereas the
search for model checking is along time axis (i.e. transition sequences) as shown
in Figure 1.
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Fig. 1. Searches on Time versus Space

7.3 Future Issues

The generate & check method is more important for large and/or complex sys-
tems, for it is difficult to do case analyses manually for them. Once a state
configuration is properly designed, a large number of patterns (i.e. elements of
a cover set) that cover all possible cases can be generated and checked. The
generic proof scores (i.e. the seven parameterized modules) in Section 4 has a
potential to make the applications of the the generate & check method easy and
transparent. Although, we are still in an early stage of applying the generic proof
scores, the following can be expected.
– The verifications of more larger and/or complex systems become possible.
– The achieved proof scores are more well structured and transparent, and

have a high potential to be good quality verification documents.
It is interesting and important future issues to investigate to what extent the

above expectations will be realized.
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