
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Fault and Byzantine Tolerant Self-stabilizing

Mobile Robots Gathering

Author(s)

Defago, Xavier; Potop-Butucaru, Maria Gradinariu;

Stephane Messika, Julien Clement; Raipin-Parvedy,

Philippe

Citation

Research report (School of Information Science,

Japan Advanced Institute of Science and

Technology), IS-RR-2015-003: 1-24

Issue Date 2015-02-20

Type Technical Report

Text version publisher

URL http://hdl.handle.net/10119/12611

Rights

Description
リサーチレポート（北陸先端科学技術大学院大学情報

科学研究科）

Fault and Byzantine Tolerant Self-stabilizing Mobile Robots Gathering

February 20, 2015
IS-RR-2015-003

Xavier Défago
Maria Gradinariu
Potop-Butucaru

Julien Clément,
Stéphane Messika

Philippe Raipin-
Parvédy

School of Information
Science, JAIST

LIP6, UPMC, Paris 6,
France

LRI/Université Paris Sud,
France

France Telecom R&D,
France

ISSN 0918-7553

Japan Advanced Institute of Science and Technology (JAIST)
School of Information Science

1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan

http://www.jaist.ac.jp/

Fault and Byzantine Tolerant Self-stabilizing Mobile Robots Gathering
A Feasibility Study

Xavier Défago
JAIST, Japan

Maria Gradinariu Potop-Butucaru
LIP6, UPMC, Paris 6, France

Julien Clément, Stéphane Messika
LRI/Université Paris Sud, France

Philippe Raipin-Parvédy
France Telecom R&D, France

Abstract
Gathering is a fundamental coordination problem in coopera-
tive mobile robotics. In short, given a set of robots with ar-
bitrary initial locations and no initial agreement on a global
coordinate system, gathering requires that all robots, following
their algorithm, reach the exact same but not predetermined lo-
cation. Gathering is particularly challenging in networks where
robots are oblivious (i.e., stateless) and direct communication
is replaced by observations on their respective locations. In-
terestingly any algorithm that solves gathering with oblivious
robots is inherently self-stabilizing if no specific assumption is
made on the initial distribution of the robots.

In this paper, we significantly extend the studies of determin-
istic gathering feasibility under different assumptions related
to synchrony and faults (crash and Byzantine). Unlike prior
work, we consider a larger set of scheduling strategies, such
as bounded schedulers. In addition, we extend our study to
the feasibility of probabilistic self-stabilizing gathering in both
fault-free and fault-prone environments.

1 Introduction
Many applications of mobile robotics envision groups of mo-
bile robots self-organizing and cooperating toward the resolu-
tion of common objectives. In many cases, the group of robots
is aimed at being deployed in adverse environments, such as
space, deep sea, or after some natural (or unnatural) disaster.
It results that the group must self-organize in the absence of
any prior infrastructure (e.g., no global positioning), and en-
sure coordination in spite of the presence of faulty robots and
unanticipated changes in the environment.

The gathering problem, also known as the Rendez-Vous
problem, is a fundamental coordination problem in cooperative
mobile robotics. In short, given a set of robots with arbitrary
initial location and no initial agreement on a global coordinate
system, gathering requires that all robots, following their al-
gorithm, reach the exact same location—one not agreed upon
initially—within a finite number of steps, and remain there.

Similar to the Consensus problem in conventional distributed
systems, gathering has a simple definition but the existence of

This manuscript considerably extends preliminary results presented as an
extended abstract at the DISC conference [7].

a solution greatly depends on the synchrony of the systems as
well as the nature of the faults that may possibly occur. In
this paper, we investigate some of the fundamental limits of
deterministic and probabilistic gathering in the face of various
synchrony and fault assumptions.

To study the gathering problem, we consider a system model
first defined by Suzuki and Yamashita [19], and some vari-
ants with various degrees of synchrony. The model represents
robots as points that evolve on a plane. At any given time, a
robot can be either idle or active. In the latter case, the robot
observes the locations of the other robots, computes a target
position, and moves toward it. The time when a robot becomes
active is governed by an activation daemon (scheduler). In the
original definition of Suzuki and Yamashita, called the SYm
model, activations (i.e., look–compute–move) are atomic, and
the scheduler is assumed to be fair and distributed, meaning that
each robot is activated infinitely often and that any subset of the
robots can be active simultaneously. In the CORDA model of
Prencipe [16], activations are completely asynchronous, for in-
stance allowing robots to be seen while moving. Flocchini et al.
[10] provide an excellent overview on the subject.

Suzuki and Yamashita [19] proposed a gathering algo-
rithm for non-oblivious robots in the SYm model. They also
proved that gathering can be solved in systems with three or
more oblivious robots, but not in systems with only two.1
Prencipe [17] studied the problem of gathering in both SYm
and CORDA models. He showed that the problem is impossible
without additional assumptions such as being able to detect the
multiplicity of a location (i.e., knowing the number of robots
that may simultaneously occupy that location). Flocchini et al.
[11] proposed a solution to gathering, for oblivious robots with
limited visibility in the CORDA model, where robots share the
knowledge of a common direction (e.g., as given by a com-
pass). Based on that work, Souissi et al. [18] considered a sys-
tem in which compasses are not necessarily consistent initially.
Ando et al. [2] proposed a gathering algorithm for the SYm
model with limited visibility. Cohen and Peleg [6] studied the
problem when robots’ observations and movements are subject
to errors.

None of the studies mentioned above address the feasibil-
ity of gathering in fault-prone environments. One of the first
steps in this direction was done by Agmon and Peleg [1]. They

1With two robots, all configurations are symmetrical and may lead to robots
endlessly swapping their positions. In contrast, with three or more robots, an
algorithm can be made such that, at each step, either the robots remain sym-
metrical and they eventually reach the same location, or symmetry is broken
and this is used to move one robot at a time into the same location.

1

proved that gathering of correct robots (called weak gathering
in this paper) can be achieved in the SYm model even in the
face of the crash of a single robot. Furthermore, they proved
that no deterministic gathering algorithm exists in the SYm
model that can tolerate a Byzantine2 robot. Finally, they con-
sidered a stronger model, called fully synchronous, in which
all robots are always activated simultaneously, and showed that
weak gathering can be solved in that model provided that less
than one third of the robots are Byzantine.

Contribution. In this paper, we study further the feasibility
of gathering in the SYm model in both fault-free and fault-
prone (crash and, to some extent, Byzantine) environments. In
particular, we consider centralized schedulers3 (i.e., activations
occur in mutual exclusion) and bounded schedulers (i.e., be-
tween any two consecutive activations of a robot, no other robot
is activated more than k-times for some finite k).

More specifically, we obtain the following important results.
Firstly, we strengthen an important impossibility result of

Prencipe [17] by showing that it also holds in strictly stronger
models. In particular, in oblivious fault-free environments
without multiplicity, Prencipe [17] proved the impossibility of
distinct4 gathering under a fair scheduler. We considerably
strengthen this result by proving that the same problem re-
mains impossible under more restrictive schedulers, even under
a 2-bounded centralized scheduler. We further prove that the
problem of self-stabilizing gathering is impossible even under a
round-robin scheduler, and this is also conjectured for distinct
gathering.

Secondly, still without multiplicity, we prove that self-
stabilizing gathering can be solved probabilistically under a fair
bounded scheduler (with arbitrary by finite bound) when n ≥ 3
and under an unfair scheduler when n = 2, by exhibiting a sim-
ple algorithm that solves the problem.

Thirdly, given multiplicity, we prove that gathering can be
solved deterministically under a fair centralized scheduler even
if up to n−1 robots can crash. We then extend the algorithm to
prove that gathering can also be solved probabilistically even if
the scheduler is not centralized.

Fourthly, we study the case of Byzantine-tolerance by ex-
tending the range of impossibility results. Most notably, Ag-
mon and Peleg [1] proved that (3,1)-Byzantine gathering is
impossible deterministically under a fair scheduler. We extend
the result by showing that even probabilistic gathering is im-
possible under a round-robin scheduler. We also prove other
impossibility results.

More generally, we show in what situations randomized al-
gorithms can help solve the problem, and when they cannot. To
the best of our knowledge our work5 was the first to investigate
the feasibility of probabilistic gathering in both fault-free and
fault-prone systems.

2A Byzantine robot is a faulty robot that behaves arbitrarily, possibly in a
way to deliberately prevent the other robots from gathering in a stable way.

3The rationale for considering a centralized scheduler is that, with commu-
nication facilities, the robots can synchronize by running a mutual exclusion
algorithm, such as token passing.

4Distinct gathering is a tighter definition of the gathering problem, in
which robots are required to have distinct positions initially. In contrast, self-
stabilizing gathering puts no such requirements on initial configurations.

5An extended abstract of this work was presented at DISC [7] in 2006,
although it has been considerably extended since. Meanwhile, some authors
have published very insightful results on the problem [12].

Structure of the paper. The rest of the paper is structured as
follows. Section 2 describes the system model and basic termi-
nology. Section 3 formally defines the gathering problem and
recalls important lemmas found in the literature. Section 4 pro-
poses possibility and impossibility results for deterministic and
probabilistic gathering in fault-free environments. Section 5
and 6 extend the study to crash and Byzantine prone environ-
ments. Section 7 summarizes the results, and Section 8 con-
cludes the paper.

2 Model
We define the system model used in the paper, as well as de-
fine important terminology. The model we consider is based on
the SYm model [19], and most definitions are due to various
authors [19, 16, 1].

2.1 Robot network
A robot network consists of a finite set R = {r1, · · · ,rn} of
n dimensionless robots evolving in a boundless 2D Euclidean
space, devoid of any landmarks or obstacles.

Robots cannot communicate with each other and do not share
any notion of a global coordinate system. In particular, they
have no agreement on a common origin, unit distance, or direc-
tions and orientations of the axis.

2.2 Robot
A robot is modeled as an I/O automaton6 ([13]).

Robots are oblivious which means that they do not retain any
information on past actions and observations. The state of a
robot consists only of its current position in the environment,
which is neither directly readable7 nor directly writable8 by the
robot’s algorithm.

Robots are anonymous in that they are not aware of any dis-
tinctive identity and all of them execute the same algorithm
consisting of cycles of the operations: Observe, Compute,
Move. In the SYm model, the three operations are executed
atomically. Thus, for simplicity, an algorithm is expressed as
one or more Observe input actions with effects Compute and
Move, and guarded by a possible precondition.

Observe(Π)
︸ ︷︷ ︸

input

:: ⟨precondition⟩ −→ ⟨compute⟩ ;⟨move⟩
︸ ︷︷ ︸

effect

In this paper, actions being always enabled, the precondition is
always set to true.

• Observe (input action).
The parameter to the action is a set P or multiset Π of
points representing the positions occupied by all robots,
as expressed in the private coordinate system of the robot
making the observation. The origin of the private coor-
dinate system corresponds to the current position of the
robot with arbitrary unit distance and orientation.

6In the CORDA model [16], a robot exhibits a continuous behavior that can
be modeled by an hybrid I/O automaton ([14]).

7The current position is exclusively available in local coordinates.
8A robot can change its position only through move operations.

2

When the system is said to be with multiplicity,9 The ob-
servation is a multiset Π of points and the multiplicity of
an element in Π corresponds to the number of robots shar-
ing that location. Conversely, when the system is said to
be without multiplicity, then the observation is a set P.

In this paper, robots are assumed to have unlimited visibil-
ity, in that all robots are part of each other’s observation
regardless of their respective distance.

• Compute.
A stateless computation returning a target destination in
the private coordinate system.

If the algorithm is deterministic, the computation is deter-
ministic and depends only on the observation P (or Π). In
contrast, if the algorithm is probabilistic, the output may
additionally depend on random choices.

• Move (effect).
Directs the actual motion of the robot toward a designated
target destination.

The robot may or may not reach this destination. For ev-
ery robot r, there exists a reachable distance δr > 0 un-
known to r, such that, any target destination computed
within a distance δr from the current position is reached
in that step. Conversely, if the target is not reachable, then
r travels at least a distance δr. This condition is necessary
to ensure progress.

We denote by δ = min
r

δr the minimal reachable distance.
We often use δ in place of each individual δr for simplic-
ity, but only as a worst case choice.

When not explicitly specified, the trajectory of the robot is
assumed to be a straight line to the destination.

2.3 Activations and schedulers
A scheduler decides, for every configuration, which subset of
the robots is active (i.e., allowed to perform their actions). In
this paper we consider the following schedulers:

• unfair arbitrary: At each activation, a non-empty subset
of robots is activated. A non-triviality condition ensures
that, infinitely often, a non-faulty robot becomes active.

• unfair centralized: The scheduler is unfair (as described
above) with the additional restriction that at most one
(i.e., exactly one) robot is activated at each activation.

• fair arbitrary: At each activation, any non-empty subset of
the robots is activated, with the guarantee that every robot
becomes active infinitely often in an infinite execution.

• fair centralized: The scheduler is fair (see above) with the
additional guarantee that no more than one (i.e., exactly
one) robot is activated at each activation.

• fair k-bounded: The scheduler is fair with the additional
guarantee that there exists some bound k such that between
any two consecutive activations of some robot, no other

9Our definition of multiplicity is sometimes called “strong multiplicity”, in
contrast to a weaker definition where robots are only able to distinguish whether
a given location is occupied by one or by several robots [12].

Unfair

Fair

Fair k-bounded

Fair 2-bounded

Fair 1-bounded

Fully synchronous

Unfair centralized

Fair centralized

k-bounded centralized

2-bounded centralized

Round-robin

Figure 1: Relationships between scheduler classes. Conven-
tional models are highlighted: SYm [19] and CORDA [16] are
fair, and the fully synchronous model [1] is its namesake.

robot is activated more than k times. The bound may be
known or unknown to the robots. In the sequel we assume
that robots do not know the scheduler bound.

• round-robin: The scheduler is fair 1-bounded and central-
ized. This implies that the robots are activated always in
the same sequence.

• fully synchronized: Every robot is active at every activa-
tion.

Figure 1 summarizes the relationships between the schedulers
presented above. Given two schedulers A and B, A ⊃ B means
that the set of all possible executions allowed by scheduler A
strictly contains the set of all executions allowed by sched-
uler B. As a result, any algorithm that is correct under sched-
uler A is also correct under scheduler B. Likewise, any impos-
sibility proven under scheduler B also holds under scheduler A.

2.4 Executions and configurations
A configuration is the union of the local states of the robots
in the system at some discrete time t. An execution e =
(γ0, . . . ,γt , . . .) of the system is a sequence (finite or infinite) of
configurations, where γ0 is an initial configuration of the sys-
tem, and every transition γt → γt+1 corresponds to the activation
of a subset of the robots, according to the scheduler. An execu-
tion fragment is any non-empty subsequence of an execution.

The valence of a configuration γ denotes the number of dis-
tinct locations occupied by some robot in γ . Thus, a q-valent
configuration has q distinct locations (where 1 ≤ q ≤ n is the
valence and n the number of robots in the system).

A univalent configuration is a configuration in which all
robots share the same location (valence 1). A univalent config-
uration γ is said to be centered at p if p is the location occupied
by the robots in γ .

A multivalent configuration is a configuration that is not uni-
valent (q > 1).

A bivalent configuration is a multivalent configuration with
valence 2.

3

A 1-bivalent configuration is a bivalent configuration in
which one of the two locations is occupied by a single robot.

A distinct configuration is a configuration in which all robots
have distinct positions (valence n).

2.5 Fault models
The behavior of a correct robot never deviates from its specifi-
cation. In contrast, a robot is considered faulty if its behavior
deviates from its specification in some executions. In this pa-
per, we consider two classes of faults: crash and Byzantine.

(n, f)-crash model: The system consists of n robots, among
which up to f faulty robots may fail by crashing. To rule out
the trivial case, f < n, so there is at least one correct robot.

A crash may occur at any time. A robot that crashes perma-
nently stops performing any action. In particular, it no longer
moves from the position it crashed. A crash cannot be detected
by other robots.

(n, f)-Byzantine model: The system consists of n robots,
among which up to f < n faulty robots may exhibit an arbi-
trary behavior.

Byzantine robots are controlled by an adversary. The activa-
tions of Byzantine robots are subject to the restrictions imposed
by the scheduler. The behavior of the Byzantine robots can
however be based on a global awareness of the environment,
including all past actions and the current state of all robots.

Since a Byzantine robot may elect to stop performing ac-
tions, the Byzantine model is a strict generalization of the crash
model.

2.6 Computational Models
The literature proposes mainly two computational models,
namely, SYm and CORDA. The SYm model was introduced by
Suzuki and Yamashita [19]. In this model each robot performs,
once activated by the scheduler, a computation cycle consisting
of the following three actions: observation, computation and
motion. The atomic action performed by a robot in this model
is a computation cycle. The execution of the system can be
modeled as an infinite sequence of rounds. In a round one or
more robots are activated and perform a computation cycle.

The CORDA model, introduced by Prencipe [16], refines the
atomicity of actions, by decoupling observe and move actions,
as well as separate the beginning and the end of a move as
distinct events. Robots may be interrupted by the scheduler
halfway through a computation cycle. Moreover, while a robot
performs an observation, another robot may be partway through
a movement.

As stated before, in this paper we consider the SYm model,10

refined with the above scheduling strategies. We focus our
study on the case of oblivious robots, i.e., robots do not con-
serve any information between two computational cycles. A
major motivation for considering oblivious robots is that, as
observed by Suzuki and Yamashita [19], algorithms designed
for that model are inherently self-stabilizing [9].

10Note that all impossibility results proven in the SYm model necessarily
hold in the CORDA model.

2.7 Notation
Let γ be a configuration, then val(γ) denotes the valence of
configuration γ .

Let Π be a multiset of points representing the locations of
robots in configuration γ , and let p be a location in Π. Then,
mul(p) is the multiplicity of point p and corresponds to the
number of robots located at p in configuration γ .

The maximal multiplicity µ(Π) (resp. µ(γ)) of a multiset
(resp. configuration) is µ(Π) = max

p∈Π
(mul(p)).

We now define the set of points with maximal multiplic-
ity as MaxMult(Π) = {p ∈ Π | mul(p) = µ(Π)}. A point in
MaxMult(γ) is called a point of maximal multiplicity.

For convenience, we introduce the following additional ter-
minology. A tower is a location occupied by at least two robots.
A castle is a tower with maximal multiplicity.

2.8 Geometry Definitions
Given a set of points P, we have the following definitions.

Convex Hull: The convex hull, denoted Conv(P), is defined
as the smallest convex set that contains P. The convex hull is
unique. A point p in P is a vertex of the convex hull if and only
if p is outside of Conv(P\{p}).

Smallest Enclosing Circle: The smallest enclosing circle,
denoted SEC(P), is defined as the smallest circle that con-
tains all point in P. It is unique and can be computed in linear
time [15]. It is defined either by two points which form a di-
ameter, or by three or more points located on its circumference
and forming no angle greater than π . Any point in P on the cir-
cumference of SEC(P) is also a vertex of the convex hull. The
diameter of SEC(P) provides an upper bound on the distance
between any pair of points in P.

Voronoi Diagram: The Voronoi diagram Voronoi(P) is a di-
vision of the space into cells, one for each point in P, such that
the Voronoi cell Vcell(p) of point p contains all points whose
distance to p is smaller or equal to its distance to any other
points in P. The Voronoi diagram is unique and maps the entire
space. All Voronoi cells are convex polygons. Given a point p
in P, Vcell(p) has vertex at infinity if and only if p is a vertex
of the convex hull Conv(P).

3 The Self-Stabilizing Gathering Prob-
lem

In the gathering problem, robots are required to eventually
reach a configuration in which they all share the same location.
There are several variants to the problem.

3.1 Strong gathering
We define the self-stabilizing strong gathering problem as fol-
lows.

Convergence: Any execution starting in an arbitrary configu-
ration reaches a univalent configuration after a finite num-
ber of steps.

4

Closure: Any execution suffix that starts in a univalent config-
uration contains only univalent configurations.

The problem is called point formation with an equivalent def-
inition by Suzuki and Yamashita [19].

Note 1 Other authors, such as Prencipe [17], define gather-
ing as the problem of reaching a univalent configuration when
starting from any distinct configuration rather than arbitrary
ones. Let us call that definition “distinct gathering.” Distinct
gathering is however not self-stabilizing because, solving the
problem with oblivious robots does not readily make the algo-
rithm self-stabilizing.

Distinct gathering is covered by self-stabilizing gathering. In
other words, an algorithm that solves self-stabilizing gathering
also solves distinct gathering. Conversely, if distinct gather-
ing is impossible in a given system, then self-stabilizing is also
impossible in that system.

In the paper, we consider the self-stabilizing definition, ex-
cept in Section 4 when we extend impossibility results that were
originally proved for distinct gathering.

3.2 Weak gathering
The definition of strong gathering and univalent does not distin-
guish between correct robots and faulty ones. In fault-tolerant
contexts, a weaker definition of the problem is often desirable.

Let us define a gathered configuration as a configuration in
which all correct robots are located at a unique point of maxi-
mal multiplicity.

Convergence: Any execution starting in an arbitrary configu-
ration reaches a gathered configuration after a finite num-
ber of steps.

Closure: Any execution suffix that starts in a gathered config-
uration contains only gathered configurations.

In a fault-free system, univalent and gathered configurations
are identical. Consequently, the distinction between strong and
weak gathering is irrelevant in that context.

3.3 Convergence
Gathering is difficult to achieve in most environments. And
thus, weaker forms of gathering were studied so far. An in-
teresting version of this problem requires robots to converge
toward a single location rather than reach that location in a fi-
nite time. Convergence is however considerably easier to deal
with. For instance, with unlimited visibility, it can be achieved
trivially by having robots moving toward the barycenter of the
network [19].

3.4 Existing Results
We now present a few lemmas proved previously by others,
that are related to our study. When appropriate, the lemmas
have been rephrased in order to keep the terminology consis-
tent. First, the following two lemmas have been proved by
Suzuki and Yamashita [19] and refer to oblivious robots under
a fair scheduler.

Theorem 1 ([19]; Th. 3.1) There is no deterministic algo-
rithm that solves gathering for n = 2 robots under a fair sched-
uler.

Notice that, although the above theorem is expressed accord-
ing to a fair scheduler (SYm model), the execution used in
the proof to show the impossibility is compatible with a fair
bounded scheduler with the bound k = 1. It follows that the
result also applies to a system based on that scheduler.

Theorem 2 ([19]; Th. 3.4) Gathering of n ≥ 3 robots can be
solved deterministically under a fair scheduler with multiplicity
detection.

The next theorem, proved by Prencipe [17], considers dis-
tinct gathering (i.e., gathering starting from any distinct config-
uration) and also applies to oblivious robots under a fair sched-
uler.

Theorem 3 ([17]; Th. 2) Under a fair scheduler, There is no
deterministic algorithm that solves distinct gathering for n ≥ 2
robots without additional assumptions (e.g., multiplicity detec-
tion).

Finally, the following two theorems, proved by Agmon and
Peleg [1], refer to models with the presence of faulty robots.
These theorems state positive results.

Theorem 4 ([1]; Th. 3.5) Weak gathering can be solved deter-
ministically in a (3,1)-crash model under a fair scheduler with
multiplicity detection.

Note 2 Agmon and Peleg [1] also show (Th. 3.8) that weak
gathering can be solved by a deterministic algorithm in an
(n,1)-crash model for any n ≥ 3, but under the restriction that
the system is never in a configuration with more than one point
of multiplicity.

When n = 3, there cannot be more than one point of multi-
plicity, so this is not an issue. But, for n > 3, although their
algorithm does solve the distinct gathering problem, it fails
to solve self-stabilizing gathering. The definition of the latter
problem indeed requires that any configuration leads to gath-
ering, including any one with several points of multiplicity.

They also present also two highly relevant results relating to
Byzantine models.

Theorem 5 ([1]; Th. 4.4) There is no deterministic algorithm
that solves weak gathering in a (3,1)-Byzantine model under a
fair scheduler.

In contrast, they state a positive result in the fully-syn-
chronous model—a model in which all robots are activated at
every step.

Theorem 6 ([1]; Th. 5.3) Weak gathering can be solved de-
terministically in a (3,1)-Byzantine system in the fully-
synchronous model.

Theorem 7 ([1]; Th. 5.10) Weak gathering can be solved de-
terministically in an (n, f)-Byzantine system in the fully-
synchronous model for any n ≥ 3 f +1.

5

Theorem 8 ([8]; Th. 1) With strong multiplicity detection,
there exists a deterministic algorithm solving self-stabilizing
gathering in the semi-synchronous model for n robots if, and
only if, n is odd.

The following theorem synthetizes the recent results related
to the probabilistic gathering under various multiplicity condi-
tions. In particular, [12], introduces the notions of local-weak
and local-strong multiplicity. Local multiplicity means that a
robot is able to detect the multiplicity only for its current po-
sition. Local-weak multiplicity means that a robot can detect
if at its local position there are one or more than one robots.
Local-strong multiplicity means that a robot can detect the ex-
act number of robots at its location.

Theorem 9 ([12]) Probabilistic self-stabilizing gathering is
possible in constant expected time with local-strong multiplic-
ity and exponential expected time with local-weak multiplicity.
Probabilistic distinct gathering is possible in constant expected
time with local-weak multiplicity.

The next result states the possibility of wait-free11 distinct
gathering (i.e., the initial configuration must exclude balanced
bivalent configurations) in the semi-synchronous model, when
robots have strong multiplicity detection and chirality knowl-
edge.

Theorem 10 ([3]) In the semi-synchronous model, wait-free
gathering is possible with fair scheduler, under the following
assumptions: chirality knowledge and strong multiplicity de-
tection.

The following results refer to the possibility and impossibility
of convergence and, by consequence, of gathering, when some
robots in the system have Byzantine behavior.

Theorem 11 ([5]) Byzantine-resilient convergence in one-
dimensional robot networks is impossible under a fully-syn-
chronous scheduler when n ≤ 2 f .

Theorem 12 ([5]) Byzantine-resilient convergence In one-
dimentional robot networks is impossible under a fair k-
bounded scheduler (k > 1) when n ≤ 3 f .

Theorem 13 ([4]) Starting from a trivalent configuration, no
cautious algorithm is able to achieve byzantine-resilient con-
vergence in uni-dimensional networks under an asynchronous
scheduler when 3 f < n ≤ 5 f .

4 Gathering in Fault-Free Environ-
ments

In this section, we refine results showing the impossibility of
gathering [17, 1] by proving first that these results hold even
under more restrictive schedulers. Interestingly, we also prove
that some of these impossibility results hold even in probabilis-
tic settings. Additionally, to circumvent these impossibility re-
sults, we propose a probabilistic algorithm that solves the fault-
free gathering, under a bounded scheduler.

First, we introduce two support lemmas that apply to any
gathering algorithm (deterministic or probabilistic) under any
form of centralized scheduler.

11An algorithm is said to be wait-free if it tolerates the crash of up to n− 1
robots.

Lemma 1 Under a centralized scheduler and in any execution,
the valence of two consecutive configurations differs by at most
one.

PROOF: The scheduler being centralized, at most one robot is
active at each step. Regardless of the algorithm, the movement
of the active robot falls into one of three categories, depending
on the respective multiplicities of the departure and destination
locations of the movement:

Move 1: distinct → multiple.
The valence decreases by one.

Move 2: multiple → multiple or distinct → distinct.
The valence is unchanged.

Move 3: multiple → distinct.
The valence increases by one.

Therefore, when the scheduler is centralized, the valence be-
tween any two consecutive configurations differs by at most
one. ✷

Lemma 2 Under a centralized scheduler, every execution
fragment that starts in a multivalent configuration and ends in
a univalent configuration contains a 1-bivalent configuration.

PROOF: By Lemma 1 and the centralized scheduler, we
know that the valence between any two consecutive configura-
tions differs by at most one. Since the execution fragment ends
in a univalent configuration, the last multivalent configuration
in the fragment must be bivalent. This configuration necessarily
exists since the fragment starts in a multivalent configuration.

Furthermore, since only one robot moves between any two
configurations (centralized scheduler), the last bivalent config-
uration is 1-bivalent with the distinct robot doing the last move.
✷

4.1 Deterministic Gathering
We begin by proving a theorem that strengthen the impossibil-
ity result of Prencipe [17] (Lemma 3), as applied to the problem
of self-stabilizing gathering. The theorem proves that the im-
possibility not only holds under a fair scheduler, but also under
a round-robin scheduler.

Theorem 14 Under a round-robin scheduler, there is no de-
terministic algorithm that solves self-stabilizing gathering for
n ≥ 3, without additional assumptions (e.g., multiplicity knowl-
edge).

PROOF: Assume, by contradiction, that such an algorithm ex-
ists. Let A be a deterministic algorithm that solves (distinct)
gathering under a round-robin scheduler.

Without loss of generality, let the reachable distance of the
robots be so large that the robots can reach each others’ location
in a single step.

Consider the initial configuration Γ1 as described below (see
Fig 2). Γ1 is a 1-bivalent configuration such that all robots are
at one location, except one robot, r1, which is at a distinct loca-
tion.

Consider an execution e under algorithm A that starts in Γ1
and follows the round-robin activation schedule given by the

6

r1

r2

r3···n

r3···n r2

r1 r3···n

r1

r2

robot
active robot
move
transition
configuration

Γ1 Γ2 Γ3

r3···n move r1 moves

r2 moves

Figure 2: Proof of Theorem 14: From a 1-bivalent configuration Γ1 with robot r1 in a distinct location, an activation schedule
r3···n,r1,r2,r3···n, . . . generates a cycle of equivalent configurations. r3···n represent the remaining robots r3 to rn.

sequence σ = r3, · · · ,rn,r1,r2. The application of σ to config-
uration Γ1 leads to a cycle of bivalent configurations, as illus-
trated in Figure 2.

Therefore, a univalent configuration is never reached in exe-
cution e, which contradicts the fact that every execution under
algorithm A satisfies the Convergence property.

Thus, algorithm A does not exist. ✷
The impossibility of Lemma 3 is for the distinct gathering

problem, namely when initial configurations are restricted to
distinct ones.

In order to extend that result, we must prove that the im-
possibility also holds under the same conditions, namely, start-
ing from distinct configurations. As stated earlier, an impos-
sibility for distinct gathering implies an impossibility for self-
stabilizing gathering.

We introduce an additional theorem below, which stricto
senso extends the impossibility of Lemma 3. We show that,
under a k ≥ 2-bounded scheduler, every multivalent configu-
ration (this includes every distinct configuration) can lead to a
non-terminating execution. In other words, this proves the im-
possibility of distinct gathering.

Theorem 15 Under a centralized k ≥ 2-bounded scheduler,
there is no deterministic algorithm that solves distinct gather-
ing for n ≥ 3, without additional assumptions (e.g., multiplicity
knowledge).

PROOF: With no loss of generality, assume that the scheduler
is 2-bounded since this is the most restrictive case for the ad-
versary given the hypotheses of the lemma.

Let the adversary select an arbitrary sequence σ of the robots
and activate them according to a round-robin policy over σ .
The scheduler is centralized, so Lemma 2 holds and thus, from
any initial multivalent configuration, in particular any distinct
configuration, if an algorithm exists, it must necessarily lead the
system to a 1-bivalent configuration. Let γx be this 1-bivalent
configuration and let r denote the distinct robot.

If robot r is not the next robot in σ , then continue the activa-
tions in a round-robin fashion until another 1-bivalent configu-
ration is reached, and repeat the argument.

If robot r is the next robot in σ , then apply the following per-
mutation. Let r′ be the robot in the one-before-last position in
σ and r′′ the robot at the last position. The adversary updates
σ by letting r swap positions with r′. This leads to the configu-
ration Γ1 depicted in Fig. 2, where r1 = r, r2 = r′′, and r3 = r′,
and the cycle follows.

The swap is valid under the 2-bounded scheduler because no
further swap occurs, and no robot is activated more than twice
between the last activation of r before the swap and the first one
after. ✷

We strongly believe that the impossibility under a round-
robin scheduler applies not only to self-stabilizing gathering,
but also to distinct gathering. We state the following conjecture
under which the impossibility holds.

Conjecture 1 Given a system with no additional assumptions
(e.g, multiplicity knowledge). For every gathering algorithm
under a round robin scheduler, there exists an execution start-
ing in a distinct configuration such that a gathered configura-
tion is reached by activating exactly once, every robot except
one.

To substantiate why the claim might be true, let us consider
some examples.

First, say that the criteria applied by the algorithm is to select
the location of the nearest robot. Then, one distinct configura-
tion that meets the requirement of the lemma is to place a first
robot r1, and then all other robots such that their distance to r1
follows a geometric progression. Activating each robots except
r1 in the order they were placed let them gather at r1.

Second, if the criteria is to select the farthest robot, then gath-
ering is obtained from placing the robots along a line and acti-
vating them from one extremity to the next.

Third, if the criteria is to select a robot near a centroid, then
by placing robots along the circumference of a circle centered
at r1 and an interleaved activation of the robots, r1 can still re-
main near the centroid until the system reaches a bivalent con-
figuration.

This is not exhaustive, and more complex criteria can be
made to change depending on the valence of the observation.

Theorem 16 Under the hypothesis that Conjecture 1 holds,
There is no deterministic algorithm that solves distinct gather-
ing for n ≥ 3 under a round-robin scheduler, without additional
assumptions (e.g., multiplicity knowledge).

PROOF: Assume, by contradiction, that such an algorithm ex-
ists. Let A be a deterministic algorithm that solves distinct
gathering under a round-robin scheduler.

Let the reachable distance of the robots be so large that the
robots can reach each others’ location in a single step.

By assumption, Conjecture 1 holds and there exists a config-
uration Γ0 such that, by activating every robot at most once, an
execution e starting in Γ0 reaches a univalent configuration. Let

7

us name the robots such that the successful activation sequence
is r3···n,r2,r1.

Since a robot moves only once, all robots must select the lo-
cation of r1 as their target, and the configuration after activating
robots r3···n is 1-bivalent with r2 at the distinct location.

Consider execution e′ with the same prefix, but where r1 is
activated before r2. Without multiplicity, what r1 observes in e′
is the same as what r2 observes in e. Therefore, r1 moves to the
location of r2, leading to configuration Γ3 of Figure 2. And the
rest follows. ✷

Consider now the case when the system consists of two
robots. Suzuki and Yamashita [19] have proved that the deter-
ministic gathering of two oblivious robots is impossible under
a fair scheduler (Lemma 1). The simple lemma below shows
that 2-gathering is however possible when the scheduler is cen-
tralized.

Lemma 3 The 2-gathering problem can be solved determinis-
tically under a centralized scheduler (fair or unfair).

PROOF: Let r1 and r2 be the two robots. Consider the simple
algorithm which consists for one robot to move to the location
of the other robot. Given that the scheduler is centralized, at
each step only one of the two robots, say r1, is active.

If r2 is reachable from r1, then gathering is achieved in that
step. If r2 is not reachable from r1, then the distance between
both robots decreases by δr1 .

Thus, by repeating the argument, we see that the distance
between the robots decreases monotonically, until they become
reachable and then gathering is achieved in the next activation.
✷

Note that, in the above proof, it does not matter which robot
is activated in each round. In particular, even if the scheduler is
unfair, it must activate either one of the two robots.

4.2 Probabilistic Gathering
We now look at the case of probabilistic algorithms in a fault-
free environment. In the following, we prove that, for the case
of two robots, there exists a probabilistic solution for gathering
in the SYm model, under any type of scheduler.

Algorithm 4.1 Probabilistic gathering for robot p.
Actions:

Observe(P) :: true −→
with probability α = 1

|P| do
select location q ∈ P uniformly;
move towards q;

else
stay;

Algorithm 4.1 describes the probabilistic strategy of a robot.
When a robot becomes active, it decides, with probability α ,
whether it will actually compute a location and move whereas,
with probability 1−α , the robot will remain stationary. The
following lemma shows that Algorithm 4.1 reaches a univalent
configuration in constant expected steps.

Lemma 4 Algorithm 4.1 probabilistically solves gathering for
n = 2 under an unfair scheduler.

PROOF: Consider two robots r1 and r2, and an arbitrary initial
configuration γ0. If r1 and r2 are already gathered, the config-
uration is univalent and neither will move, regardless of activa-
tions and the probability α .

Since there are two robots, every non-gathered configuration
is bivalent, and thus α = 1

2 .
Assume that both robots have the same reachable distance δ

(or, if they are different, define δ conservatively as their mini-
mum).

Let us show how r1 and r2 reach a configuration in which
they are mutually reachable, from one in which they are not.
Let D0 > δ be the initial distance between r1 and r2. At each
successful move of either one of the robots, the distance be-
tween them is decreased by at least δ (by 2δ if both move).
Thus, it takes at most x = ⌈D0

δ ⌉−1 successful moves of either
one robot, for them to be within reachable distance. Since the
scheduler must activate at least one of the robots, the probabil-
ity of a successful move at each trial is at least 1

2 . The number
of failures until the xth success of a Bernoulli trial with success
probability α is known to be a random variate that follows a
negative binomial distribution NB(x,α). It follows that the ex-
pected number of steps until both robots are within reachable
distance δ is at most

E[steps to reachable]≤ ⌈D0

δ ⌉−1+E
[

NB
(
⌈D0

δ ⌉−1,
1
2

)]

≤ 2
(⌈

D0

δ

⌉
−1
)

Let us now consider gathering from a configuration in which
the two robots are reachable from each other.

Consider some discrete time t when the two robots have dis-
tinct locations. If only one of the robots, say r1, is activated by
the scheduler, then there is a probability α that r1 moves, and
thus both robots end up gathered in the next configuration (ter-
minal). If both robots are activated at time t, then they end up
in a univalent configuration only if exactly one of them changes
its position. This occurs with probability 2α(1−α).

Consequently, the probability to reach gathering during at
time t+1 is at least q=min(α,2α (1−α))= 1

2 > 0, regardless
of the choice of the scheduler. The number of failures before
first success is a random variate that follows a geometric dis-
tribution G(q). This yields the expected number of steps until
gathering as

E[steps to gathering] = 1+E[G(q)] = 1+
(1−q)

q
=

1
q
= 2

Thus, gathering is achieved in at most 2⌈D0
δ ⌉ steps in expecta-

tion. ✷
The next lemma extends the impossibility result proved in

Theorem 14 to probabilistic algorithms under a fair centralized
scheduler.

Lemma 5 There is no probabilistic algorithm that solves gath-
ering for n ≥ 3, under a fair centralized scheduler without ad-
ditional assumptions (e.g., multiplicity knowledge).

PROOF: A randomized algorithm can use randomization in
two different ways. It can select random locations (case A), or
it can toss a coin before doing a move (case B).

8

With respect to the first case, the proofs of Theorem 14
and 15 still stand when destinations are based on random
choices, except when the random choice of a robot is to select
its current location. This is however equivalent to tossing a coin
and stay still with some probability, which is in turn equivalent
to the second case.

Hence, we focus on the second case (case B) and represent a
randomized algorithm as one in which an active robot tosses a
coin and, with some positive probability α , executes an action
(and stays still otherwise). Note that, if the probability depends
on the robot, α can be defined as the minimum. It must be
positive because, since Theorem 15 shows that no algorithm
exists based on deterministic choices, a robot cannot set the
probability to zero based only on its observations.

Consider an adversary that selects a robot r and activates
r until the coin toss is successful, and r actually executes its
action. Since α is positive, the activation is fair (albeit un-
bounded). By doing so, the adversary can actually “derandom-
ize” the algorithm with the remainder of the proof being the
same as for Theorem 15. ✷

The key issue leading to the above impossibility is the free-
dom that the scheduler has in selecting a robot r until its prob-
abilistic local computation allows r to actually move. The sce-
nario can however no longer hold with systems in which the
scheduler is k-bounded. That is, in systems where a robot can-
not be activated more than k times before the activation of an-
other robot. In this type of game, robots win against the sched-
uler and the system converges to a gathered configuration.

Theorem 17 Algorithm 4.1 probabilistically solves gathering
for n ≥ 3, under a fair bounded scheduler and without multi-
plicity knowledge.

PROOF: Let k denote the bound of the scheduler. The sched-
uler being fair, there are at most k(n−1) steps between any two
consecutive activations of any robot. Let δ be the reachable
distance of the robots (or their minimum if they are different).

The probability α depends on the valence of the current
configuration. However, in multivalent configurations, it is
bounded as follows: 1

n = αmin ≤ α ≤ αmax =
1
2 .

For clarity, the proof has two parts. First, we show that, from
an arbitrary configuration, the system reaches a configuration in
which all robots are within reachable distance from each other.
Second, we show that, with high probability, in a configura-
tion where robots are reachable from each other, the valence of
successive configurations decreases until gathering is reached.

Theorem 17; Part 1: from arbitrary to reachable. Con-
sider the smallest enclosing circle SECt defined by the robots’
locations in a configuration γt . By definition of the smallest en-
closing circle, and because a circle is convex, all locations and
all segments between them are either inside the circle or on its
circumference. By Algorithm 4.1, a robot r selects a target r′
among the robots’ locations, r can move only to r′ or to some
point in the segment between them. Thus, r in γt+1 is necessary
enclosed by SECt . Thus, SECt+1 ⊆ SECt . In other words, the
smallest enclosing circle is non-increasing.

To show the convergence, we now show that, with some pos-
itive probability p, the diameter of the smallest enclosing circle
decreases by at least δ , which is a constant positive value.

Ω

ρ
=

2R
ts

in
θ −

δ

δ

δ

T

X

X′

δ
θ

Rt

SECt

Rt − δ
2

C

Figure 3: Proof of Theorem 17; Part 1: Strict decrease of the
smallest enclosing circle SECt (of radius Rt) occurs with posi-
tive probability. After all robots select T as a target and move
once (dashed lines), they are all contained inside area Ω, which
is itself contained within a circle C of radius Rt − δ

2 . Positions
are expressed in polar coordinates centered at T .

Let γt be a configuration and SECt the smallest enclosing
circle in γt . Let T be the position of a robot located on the
boundary of SECt .

Consider the situation in which all other robots take T as
their target for a successful move and let γx be the resulting
configuration (Fig. 3). We show that the smallest enclosing
circle SECx in configuration γx is smaller than SECt in diameter
by at least δ .

To characterize the movement of the robots, we consider po-
lar coordinates (θ ,ρ) centered at T . The smallest enclosing
circle SECt is given by

θ ∈ [0;π]ρ = 2Rt sinθ

Let Ω be the area that the robots will reach after moving toward
T of a distance at least δ (Fig. 3). This area can be characterized
as follows12

θ ∈
[

arcsin
δ
2

;π−arcsin
δ
2

]
ρ = 2Rt sinθ −δ

Let C be a circle with diameter 2Rt −δ and anchored at T .

θ ∈ [0;π]ρ = (2Rt −δ)sinθ

Let us show that Ω is contained within C. When

θ ∈
[

arcsin
δ
2

;π − arcsin
δ
2

]

this holds if the following inequality always holds

(2Rt −δ)sinθ ≥ 2Rt sinθ −δ
−δ sinθ ≥−δ

sinθ ≤ 1

12Note that Ω is not a circle; it is best described as the inner loop of a limaon
of Pascal.

9

which is always true. Since all robots are contained within C, it
follows that SECx is contained within C, and thus its diameter
is at most 2Rt −δ .

Notice that selecting T on the boundary is a worst case for
convergence; the best case occurs when T is located near the
center of SECt and the decrease in diameter then becomes 2δ .

Let us now show that, with positive probability p, SEC de-
creases by at least δ in diameter in a constant number of acti-
vation steps.

Note that we do not need to calculate the probability p accu-
rately. It is sufficient to show that p has a positive lower bound.
For this reason, we do not need to consider all cases.

Consider an execution fragment e[t:t +K] of K = nk suc-
cessive configurations starting in γt . The scheduler is fair k-
bounded so, regardless of its choices, every robot is activated at
least once and at most nk times in fragment e[t:t +K].

We need to calculate the probability that (1) every robot ex-
cept one (at T) makes exactly one successful move toward T
at first trial and takes no further move in the K − 1 remaining
steps, and (2) one robot (at T) makes no successful move in K
steps.

For one of the robots (except one at T), the probability that it
makes a successful move toward T at first trial is

P[1 robot moves to T at first trial]≥ αmin
1
n
=

1
n2

Assuming a worst case situation when the scheduler activates
the robot every time after the move, the probability for that
robot to take no successful move in K −1 steps is

P[1 robot stays for K −1 steps]≥ (1−αmax)
K−1 =

1
2K−1

For the n−1 robots, we combine and obtain

P[n−1 robots move once then stay]≥ 1
(n22K−1)n−1

Assuming again a worst case scheduling decision, the proba-
bility that the robot located at T takes no move in all K steps
is

P[T stays for K steps]≥ (1−αmax)
K =

1
2K

and we combine all this to obtain the probability that one robot
(at T) takes no move and that all other robots move exactly once
with T as their target

P[· · ·]≥ 1
2nK−n+1n2(n−1)

That probability P[· · ·] is a strictly positive constant because K
and n are both positive constants. To sum up, the probability
that all robots are contained in a circle with diameter decreased
by constant δ > 0 in constant K = nk steps is at least P[· · ·].

An upper bound on the expected number of steps need for
all robots to be reachable is now easily obtained from a neg-
ative binomial distribution, following the same method as in
Lemma 4. With D0 being the diameter of SEC in the initial
configuration, the number of successful progress necessary is
x = ⌈D0

δ ⌉−1, and we obtain, after much simplification,

E[steps to reachable]≤ K
x

P[· · ·] = k
⌈D0

δ ⌉−1
2kn2−n+1n2n−3

which is constant since D0, k, and n are all constant. This com-
pletes the proof of the first part.

Theorem 17; Part 2: From reachable to gathering. Start-
ing from a configuration in which all robots are mutually reach-
able, we show that we reach gathering with high probability.

First, since the smallest enclosing circle is non increasing,
once a reachable configuration has been achieved, all subse-
quent configurations are reachable.

Taking an execution fragment of nk steps starting in a reach-
able configuration, there is a positive probability that (1) every
robot except one (say T ′) makes exactly one successful move
toward T ′ at first trial and takes no further move in the nk− 1
remaining steps, and (2) one robot (at T ′) makes no successful
move in nk steps.

This is the same probability as one fragment of nk steps con-
sidered in the first part, so one additional successful fragment
will reach gathering. This yields,

E[steps from arbitrary to gathering]≤ k
⌈D0

δ ⌉
2kn2−n+1n2n−3

Thus, gathering is achieved in constant expected steps. ✷

5 Crash-Tolerant Self-Stabilizing
Gathering

We now extend the study on the feasibility of gathering to fault-
prone environments. In this section, we consider the family of
(n, f)-crash models, where n is the total number of robots and
up to f < n of them are faulty and may possibly crash.

Recall the two definitions for self-stabilizing gathering,
namely, strong and weak. Let us first state a simple impossi-
bility about strong gathering in systems with multiple faults.

Lemma 6 No algorithm can possibly solve strong gathering in
a crash-prone system with f > 1.

PROOF: Consider any multivalent initial configuration (f > 1
thus n > 1). Take any two robots with distinct locations and let
them crash before they move. They cannot move, so they will
never share the same location, and hence strong gathering is
never achieved. ✷ Notice that the above lemma holds regard-
less of the scheduler or additional assumptions of any kind, and
obviously applies to both deterministic and probabilistic algo-
rithms.

This leaves for study the case of strong gathering in the face
of a single faulty robot (in Sect. 5.1), and the case of weak
gathering with multiple faulty robots (in Sect. 5.2).

5.1 Single Crash (f = 1); Strong Gathering
We investigate the feasibility of strong gathering in the pres-
ence of a single faulty robot. We express the impossibility lem-
mas to cover one or several robots and simply refer to Lemma 6
for multiple robots so that the proof can focus on the case of a
single crash.

Lemma 7 In an (n, f)-crash system with n ≥ 3 and f ≥ 1,
strong gathering is deterministically impossible under a round-
robin scheduler, even with multiplicity knowledge.

PROOF: The case when f > 1 is covered by Lemma 6, which
leaves the case when f = 1.

10

By contradiction, assume that an algorithm A solves gath-
ering deterministically in an (n,1)-crash system under a round-
robin scheduler.

From Theorem 14, A must rely on multiplicity knowledge.
The impossibility of Theorem 14 indeed applies here because a
crash-free execution is valid in an (n,1)-crash system. Assum-
ing that A could solve gathering without multiplicity knowl-
edge would imply that it can solve it in a fault-free execution;
a contradiction.

A round-robin scheduler is centralized by definition, so
Lemma 2 applies and the system must necessarily reach a 1-
bivalent configuration before it achieves gathering. Let γr be
such a configuration and let r be the distinct robot. Consider
also an arbitrary robot in the other location and call it r′.

It is easy to see that r′ cannot chose to move to r in a 1-
bivalent configuration, or else, an adversary can lead a fault-
free execution to the same cyclic execution described in the
proof of Theorem 14 (Fig. 2).

Now, consider the case when r crashes in γr. The algorithm is
deterministic and robots are oblivious, so r′ cannot distinguish
that configuration from the fault-free one. The same decision
must hence be applied and thus r′ and r can never share the
same location; a contradiction. ✷

We now prove a similar impossibility for probabilistic algo-
rithms, but this time, under a fair centralized scheduler.

Lemma 8 In an (n, f)-crash system with n ≥ 3 and f ≥ 1,
there is no probabilistic algorithm that solves strong gather-
ing under a fair centralized scheduler, even with multiplicity
knowledge.

PROOF: The case when f > 1 is covered by Lemma 6, which
leaves the case when f = 1.

By contradiction, assume that an algorithm A solves gather-
ing probabilistically in an (n,1)-crash system under a fair cen-
tralized scheduler.

Lemma 2 applies since the scheduler is centralized, and any
gathering execution must reach a 1-bivalent configuration γr.
Let r be the distinct robot in γr and G the location of the other
robots.

We can now construct an adversary that prevents gathering.
First, let r be the faulty robot and let it crash in γr before it
moves. Second, let the adversary activate the correct robots in
turn. Each time a robot r′ moves to r, it is activated repeat-
edly until it moves back to G. The move to G must be possible
or else G could not form in the first place (recall that robots
are oblivious, anonymous, and disoriented). This activation is
compatible with the fair centralized scheduler because every
correct robot is activated infinitely often (fair) and in mutual
exclusion (centralized). This leads to an infinite execution that
holds no univalent configuration. Thus, A violates the Conver-
gence property of gathering; a contradiction. ✷

We present now a simple lemma for a probabilistic algorithm
in a system with two robots.

Lemma 9 In a (2,1)-crash system, Algorithm 4.1 solves the
strong gathering problem probabilistically under an unfair
scheduler.

PROOF: In a fault-free execution, the proof of Lemma 3 ap-
plies as it stands. In an execution with one crash, gathering is
achieved through repeated activations of the correct robot. By

the non-triviality condition of the unfair scheduler, it must acti-
vate the correct robot infinitely often. ✷

Based on the same proof, we obtain a lemma for the deter-
ministic gathering of two robots under a centralized scheduler.

Lemma 10 In a (2,1)-crash system, Algorithm 4.1 solves
strong gathering probabilistically under an unfair centralized
scheduler.

In a system with more than two robots, strong gathering can
still be achieved with a probabilistic algorithm, but requires the
scheduler to be fair bounded. The algorithm does not need to
rely on multiplicity knowledge.

Lemma 11 In an (n,1)-crash system with n ≥ 3 and under a
fair bounded scheduler, Algorithm 4.1 solves strong gathering
probabilistically.

PROOF: The proof is identical to that of Theorem 17, where
the target location T of the first part is chosen as the location of
the faulty robot (crashed or not), and the second part requires
no adaptation. ✷

5.2 Multiple Crashes (f ≥ 2); Weak Gathering
We now extend the study to the case of weak gathering in the
presence of multiple faulty robots.

We begin by proving the impossibility of deterministic and
probabilistic weak gathering under a round-robin scheduler
without additional assumptions.

Lemma 12 In a (n, f)-crash system with n ≥ 3 and f ≥ 2,
there is neither a probabilistic nor a deterministic algorithm
that solves weak gathering under a round-robin scheduler,
without additional assumptions.

PROOF: By contradiction, assume that such an algorithm ex-
ists and call it A .

Consider a fault-free execution e. The scheduler being cen-
tralized (implied by round-robin) Lemma 2 holds and every
execution under algorithm A reaches a 1-bivalent configura-
tion γb. Let r1 be the distinct robot, and {r2, · · · ,rn} the robots
in the other location.

Consider an execution e′ which differs from e in that r1 and
r2 both crash in configuration γb, leading to the 1-bivalent con-
figuration γ ′b. In the absence of multiplicity, bivalent configura-
tions are undistinguishable for the robots.

So, some robot rx in {r3, · · · ,rn} is correct and has a posi-
tive probability of moving to the other location. To see this,
consider that, otherwise, an adversary can generate an execu-
tion that is unable to transit from a 1-bivalent configuration to
a univalent configuration in the fault-free case; a contradiction.

Take the more general case and assume that A is probabilis-
tic. Assuming γ ′b does not change, the scheduler ensures that rx
is activated infinitely often. It follows that, with high probabil-
ity, rx moves, violating the Closure property; a contradiction.
✷

An immediate consequence of the previous lemma is the ne-
cessity of an additional assumption, such as multiplicity knowl-
edge, even for probabilistic solutions and even under round-
robin or bounded schedulers. Accordingly, we now consider
systems in which robots are aware of multiplicity.

11

r

q

rCW

rCCW
block

S D

Vcell(q)

ACW = S∩D∩Vcell(q)

q′
r′δr

Figure 4: Side Move: Robot r selects maximal multiplicity
point q as its target. Some robots block the way between r and
q. Robot rCW is the next robot clockwise (arbitrary choice) with
respect to q. Robot r selects a point inside area ACW, called q′,
and moves toward it.

5.2.1 Deterministic weak gathering with multiple crashes

Algorithm 5.1 is a deterministic algorithm that relies on mul-
tiplicity detection. Roughly, when a robot r becomes active, it
considers the castles in the current configuration. If there are
castles to which r does not belong, then it moves to the nearest
one, say q, with ties broken arbitrarily.

Algorithm 5.1 Deterministic fault-tolerant weak gathering for
robot r at location p
Functions:

µ(Π) :: the maximal multiplicity.
MaxMult(Π) :: the set of elements with multiplicity µ(Π).
#onSegment(p,q) :: the number of robots on segment pq.

Actions:
Observe(Π) :: true −→

if ∃q ̸= p : q ∈ MaxMult(Π) then
select nearest q ∈ MaxMult(Π)\{p};
if #onSegment(p,q)< 2µ(Π) then

// Straight Move
move toward q;

else
// Side Move (see Fig. 4)
let C := circle with center q and radius pq;
let S := largest sector in C from p with no robot;
let D := disc with diameter pq;
select some q′ inside A = S∩D∩Vcell(q);
move toward q′;

else
stay;

When several robots occupy the space between r and q, mov-
ing over these robots brings the risk of a cyclic behavior that can
never converge (see details in the appendix). To prevent this, r
is required to perform a side move (see Fig. 4), in which r se-
lects a destination within a zone ACW (resp. ACCW) constructed
as the intersection of three areas (boundaries excluded).

• Vcell(q): cell of castle q in the Voronoi diagram built from
the set of castles.

• D: the disc with segment rq as diameter.

• S: the largest sector clockwise (resp. counter-clockwise)
centered at q and starting from r that contains no robot.

By moving within the zone, this ensures that (1) the distance
between r and q decreases (r moves within D), (2) q remains the
nearest castle from r (r moves within Vcell(q)), and (3) there
are no robots between r and q (r moves within S).

Before proving the correctness of Algorithm 5.1, we estab-
lish two of its important properties.

The first property is an observation that the maximal mul-
tiplicity of configurations throughout executions of Algo-
rithm 5.1 is non-decreasing. It holds for any centralized sched-
uler.

Proposition 1 The maximal multiplicity of configurations is
non-decreasing over any execution of Algorithm 5.1, under an
unfair centralized scheduler.

PROOF: In configurations with a single point of maximal mul-
tiplicity, the condition of the test in Algorithm 5.1 evaluates to
false for any robot r that is on the point of maximal multiplicity,
and thus, r does not move and the multiplicity does not change.

When there are several points of maximal multiplicity, they
can be destroyed (one of its robot leaving the location, its mul-
tiplicity decreases) only one at a time because the scheduler is
centralized. ✷

Another important property, which holds for any fair sched-
uler (i.e., not necessarily a centralized one), states that, in dis-
tinct configurations, the minimum distance between two robots
is non-increasing.

Proposition 2 Consider an execution of Algorithm 5.1 under
a fair scheduler. Let D(γ) be a function defined as the shortest
distance between a robot and its nearest neighbor in configu-
ration γ . Then, D(γ) is non-increasing.

PROOF: Assume by contradiction that there is a configuration
γt such that D(γt) < D(γt+1). Let r and r′ be two robots with
distance D(γt) from each other in γt . If neither r nor r′ move
at time t, then D(γt) = D(γt+1). So assume that at least one of
them moves at time t. In γt+1, the distance from r to r′ must
have increased to be at least D(γt+1) so, one of the robots must
have moved away from the other, say r′ moved away from r.
This means that r′ had a neighbor r′′ ̸= r such that the distance
from r′ to r′′ was: (1) at most D(γt), or else r (not r′′) would
be the nearest neighbor of r′ and r′ must have moved toward
r, and (2) at least D(γt+1)+ δ since, after moving, the nearest
distance from a correct robot to its nearest neighbor is at least
D(γt+1). It follows that D(γt) ≥ D(γt+1)+ δ . A contradiction
with D(γt)< D(γt+1).

Hence, D(γ) is non-increasing. ✷

We can now show that a distinct configuration eventually
leads to a configuration that contains a castle.

Proposition 3 In an (n, f)-crash system, where n> f , a fair
centralized scheduler and multiplicity detection, let e be an ex-
ecution (or execution suffix) when robots move to the nearest
robot. Starting from any distinct configuration, then e contains
a configuration with maximal multiplicity larger than one.

12

PROOF: We show that, starting from any distinct configuration,
a location with multiplicity 2 is eventually formed.

Consider again the function D(γ) defined as the shortest dis-
tance from a robot to its nearest neighbor. We know already
from Proposition 2 that D(γ) is non-increasing.

We now show that there is a configuration such that D(γ)
decreases strictly. Consider some distinct configuration γt , and
let r be a correct robot with distance D = D(γt) to its nearest
neighbor r′ in γt . Then, there must be a configuration γt ′ (t ′ > t)
during which one of the following situation occurs:

1. r′ moves away from r. This means that there is a robot r′′,
originally at distance D or less from r′, toward which r′
moves. The distance from r′ to r′′ is at most D(γt)−δ , so
D(γt ′)≤ D−δ .

2. r moves and r′ is still its nearest neighbor. r moves toward
r′ by distance δ , so D(γt ′)≤ D−δ .

3. r has a robot r′′ as nearest neighbor. There are three cases:

(a) either r or r′ have moved, then we have already en-
countered one of the two previous cases, or

(b) r′′ has moved near r, then dist(r,r′′)≤ D, or

(c) the criteria used by r to break up ties among several
of its nearest neighbors makes it select r′′ instead of
r′, then dist(r,r′′) = D.

So, D(γt ′)≤ D and we can rename r′ to r′′ when iterating
over the argument.

Since the scheduler is fair, there is a time after which r moves
and D(γ) decreases by at least δ . The rest follows. ✷

Theorem 18 In an (n, f)-crash system, where n > f , Algo-
rithm 5.1 deterministically solves weak gathering under a fair
centralized scheduler if robots are aware of multiplicity.

PROOF: Let us first prove that the Algorithm 5.1 satisfies the
closure property of weak gathering, i.e., to a gathered configu-
ration follow only gathered configurations. Let gi be a gathered
configuration. By definition of a gathered configuration, there
is a unique point of maximal multiplicity that all correct robots
occupy. Since, by construction of Algorithm 5.1, the correct
robots do not move, any subsequent configuration is gathered.
This proves closure.

By Proposition 1, the maximal multiplicity is nondecreasing.
Let us now prove convergence by induction on the maximal
multiplicity of configurations.

Proposition 3 forms the basis of the induction by showing
that a distinct configuration leads to a configuration with maxi-
mal multiplicity larger than one.

Theorem 18; Induction step. We show that, starting from a
non-gathered configuration γx with maximal multiplicity M =
µ(γx) > 1, a configuration γy with maximal multiplicity M+1
is eventually reached.

We say that a robot pb is blocked if there are at least µ(c)−1
robots on the segment between pb and qb, where qb is the
castle13 that pb selects if it is active in configuration γ . Let

13C.f., definition of castle and tower in Section 2.7.

#castle(γ), #blocked(γ), and Σ(γ) respectively denote the num-
ber of castles, the number of blocked robots, and the sum of
distances from each robot to its nearest castle in configuration
γ .

We can characterize a configuration γ by the quantities µ(γ),
#castle(γ), #blocked(γ), and Σ(γ). Consider a configuration
γt with x ≤ t < y, characterized by µ(γt) = M, #castle(γt),
#blocked(γt), and Σ(γt), and consider all possible transitions
from γt to the next configuration γt+1. Since the scheduler is
centralized, one correct robot, say r, is active in configuration
γt . We can summarize the transitions as follows:

1. r is in a castle.

(a) #castle(γt) = 1.
r does not move. No change.

(b) #castle(γt)> 1.
r aims for castle q.

i. r is blocked. r takes a side move.
#castle(γt+1) = #castle(γt)−1.

ii. r does not reach q.
#castle(γt+1) = #castle(γt)−1.

iii. r reaches q.
GOAL: µ(γt+1) = M+1 and #castle(γt+1) = 1.

2. r is not in a castle (aims for castle q).

(a) r is blocked. r takes a side move.
#blocked(γt+1) = #blocked(γt)−1
and Σ(γt+1)< Σ(γt).

(b) r does not reach q.
Σ(γt+1) = Σ(γt)−δ .

(c) r reaches q.
GOAL: µ(γt+1) = M+1 and #castle(γt+1) = 1.

A first observation is that no new castle is created, in other
words, #castle(γ) never increases.

As long as there is a castle with at least one correct robot,
that robot is eventually active since the scheduler is fair. Pro-
vided that there are at least two castles, the number of castles
decreases. This happens until the system reaches a configu-
ration γt ′ (x ≤ t ′ < y) in which any one of the following two
conditions hold:

• There is one single castle.

• There are several castles, all of which consist only of
crashed robots.

In either case, no robot already located in a castle moves.
If the configuration is already gathered, convergence is

proved, so assume it is not. Then, there must be some correct
robot located outside of a castle, and that robot must eventually
become active as the scheduler is fair.

Let r′ be a correct robot located outside of a castle. Each time
r′ is active, it selects one of the castles q′ as its destination. In
case another robot reaches a castle, the induction step is proved.
So again assume that this is not the case. It follow that the
number of castles and their locations do not change, thus q′ is
the same castle across activations of r′.

Let ∆′ be the distance between r′ in configuration γt ′ . If r′
is initially blocked, then it performs a side move and r′ is no

13

longer blocked (#blocked(γ) decreases). Recall that, by con-
struction, performing a side move does not increase the distance
between the robot and its destination.

After
⌈

∆′
δ

⌉
activations of r′, it reaches castle q′ thus increas-

ing its multiplicity and proving the step.

The induction ensures that, as long as a gathered config-
uration is not reached, the maximal multiplicity increases.
The multiplicity cannot possibly be larger than the number of
robots, so it follows that a gathered configuration is eventually
attained.

This proves convergence and, since we have proved closure
before, the fact that Algorithm 5.1 solves weak gathering. ✷

5.2.2 Probabilistic weak gathering with multiple crashes

In the remainder of this section, we show that weak gathering
can be solved probabilistically in an (n, f)-crash system (with
f < n) under a fair scheduler.

Algorithm 5.2 is a probabilistic algorithm constructed on the
deterministic Algorithm 5.1. While the latter is for a central-
ized scheduler, the former is for a fair scheduler, which allows
robots to be active simultaneously.

Algorithm 5.2 Probabilistic fault-tolerant gathering for robot p
with multiplicity knowledge
Functions:

µ(Π) :: the maximal multiplicity in Π.
MaxMult(Π) :: the set of points with multiplicity µ(Π).

Actions:
Observe(Π) :: true −→

if p ̸∈ MaxMult(Π) then /* p not in a castle */
execute extended Algorithm 5.1;

else if |MaxMult(Π)|= 1 then /* unique castle */
stay;

else /* several castles */
with probability α = min

(
1

µ(Π) ,
1
2

)
do

execute extended Algorithm 5.1;
otherwise

stay;

The idea of the algorithm is that, in some situations (several
castles or distinct configurations), the simultaneous activation
of several robots could lead to endless oscillations of the sys-
tem. For instance, given two robots which are reachable and
nearest from each other, activating them together would lead to
them swapping their positions. To prevent this situation from
occurring endlessly, the robots are required to first toss a coin
and actually move only upon success.

In addition, the side move performed in Algorithm 5.1 de-
fines a region from which a target point is selected arbitrar-
ily. Due to concurrent moves under Algorithm 5.2, an arbitrary
choice is no longer adequate. Therefore, it becomes necessary
to extend Algorithm 5.1 such that the side move prevents two
simultaneously moving robots from reaching the same location.
The choice of an appropriate target is guided by the following
requirements:

• Let two robots r and r′, initially collinear with castle q,
select target points T and T ′. Then, segments rT and r′T ′

intersect if and only if r and r′ are collocated.

A construction that satisfies this requirement is presented in the
appendix (Sect. A.2). The probabilistic algorithm relies on Al-
gorithm 5.1 extended with a side move meeting those require-
ments.

We first show that the convex hull of positions is non-
increasing. This simple result is important as one factor to en-
sure that the system does not oscillate.

Proposition 4 In an (n, f)-crash system, where n> f , with any
scheduler and multiplicity detection, let e be an execution under
Algorithm 5.2.

Let γt and γt ′ be two configurations of e, and Conv(γt) (re-
spectively Conv(γt ′)) the convex hull of robot locations in γt
(resp. γt ′). Then, t ′ > t =⇒ Conv(γt ′)⊆ Conv(γt).

PROOF: Let r be an arbitrary robot that moves through Algo-
rithm 5.2: it can stay, move toward another robot, or perform a
side move.

In all three cases, the entire segment between r’s location
and its target destination must be contained within the convex
hull. When r stays, this holds trivially. When r moves toward
another robot, this holds because of the convexity of the con-
vex hull. When r performs a side move, this holds from the
definition of the side move.

As a result, no move can possibly bring a robot outside of
the convex hull, which is thus non-increasing. ✷ Notice how-
ever that the convex hull is not necessarily decreasing since
the robots located at the vertices of the convex hull could be
crashed robots.

We continue by proving important properties of executions
under Algorithm 5.2. The first proposition shows that, if the
number of castles can increase from one configuration to the
next, then the maximal multiplicity must necessarily have de-
creased.

Proposition 5 In an (n, f)-crash system, where n> f , a fair
scheduler and multiplicity detection, let e be an execution un-
der Algorithm 5.2. Let γt and γt+1 be any two consecutive con-
figurations in e. The number of castles increases in γt+1 only if
the maximal multiplicity decreases in γt+1.

PROOF: Let K denote the number of castles in γt , and M the
maximal multiplicity in γt . Suppose that there are K+1 castles
in γt+1. Now, assume by contradiction that the maximal mul-
tiplicity in γt+1 is M or more. Since there are K + 1 castles in
γt+1, at least one castle of multiplicity M or more must have
been created from M independent robots (i.e., robots that did
not belong to a castle in γt).

Consider one of the robots, call it r, independent in γt and
forming the new castle in γt+1. There are three possible cases.

• If r did not move, then there must be another robot r′ that
has moved, or else r would not have been independent in
γt . Then, consider the case of r′ instead.

• r performed a straight move. By construction of the algo-
rithm, there are less than M independent robots on the seg-
ment between r and its nearest castle, r included. But, by
construction, no robot performing a side move can reach a
ray containing robots performing straight moves.

14

• r performed a side move. The area targeted by the side
move is convex, does not contain any robot, and does not
contain any point reachable with a straight move.
Hence, all robots collocated with r in γt+1 must have per-
formed a side move.
With the extended construction of the side move, every
robot r′ collocated with r in γt+1 must have been collo-
cated with r in γt . Thus, r was forming a castle in γt . A
contradiction.

The maximal multiplicity in γt+1 is not M or more. The num-
ber of castles increases in γt+1 only if the maximal multiplicity
decreases in γt+1. ✷

Proposition 6 In an (n, f)-crash system, where n> f , a fair
scheduler and multiplicity detection, let e be an execution under
Algorithm 5.2. If a configuration has a unique castle, then all
configurations after that have only one castle and the maximal
multiplicity is nondecreasing.

PROOF: Let γt be a configuration in e with a unique castle.
By construction of Algorithm 5.2, no robots in the castle

move when activated. Thus, the maximal multiplicity does not
decrease in configuration γt+1. From Proposition 5, the num-
ber of castles increases in γt+1 only if the maximal multiplicity
decreases in γt+1. Therefore, the number of castles does not
increase in γt+1.

The rest follows by induction on configurations. ✷
An important consequence of these two propositions is that,

when a configuration with a unique castle is reached, then only
configurations with a unique castle can follow. In other words,
distinct configurations or configurations with several castles
can no longer occur. We now additionally show that the system
progresses deterministically to a gathered configuration. As a
result, we can later consider the formation of a unique castle to
be final, as it deterministically leads to gathering in finite steps.

Proposition 7 In an (n, f)-crash system, where n> f , a fair
scheduler and multiplicity detection, any execution e (or exe-
cution suffix) under Algorithm 5.2 that starts in a configuration
with a unique castle leads to a gathered configuration in finite
steps.

PROOF: Let γt be a configuration with a single castle Qt and
maximal multiplicity M = µ(γt)≥ 2. We prove that, either γt is
gathered or there exists a configuration γt ′ in e with t < t ′ such
that µ(γt ′)> M.

Since γt has a single castle, a robot located in the castle does
not move when activated. Thus, only independent robots can
move when active. In Algorithm 5.2, independent robots exe-
cute the first clause of the test, so the execution is deterministic
and depends only on the activations of the scheduler.

If there are no independent correct robots, then the configu-
ration is already gathered. Let us now consider the case when
some correct robot is independent. Let r be one such robot and
let Dt be the distance from r to Qt in configuration γt .

The scheduler being fair, it must activate r eventually. We
consider two cases, depending whether r is blocked or not in
configuration γt .

• If r is not blocked, then it takes ⌈Dt/δr⌉ activations of r to
reach Qt , thus increasing the multiplicity of Qt , and hence
maximal multiplicity, by at least one.

• If r is blocked in γt , then it performs a side move when it is
activated. It is possible that all other robots blocked on the
same ray as r are activated at the same time, performing a
side move in the same direction. Let Bt be the number of
robots blocked on the same ray as r. Bt is at most n−2M
because M robots form castle Qt and M robots block the
others on the ray (those may have crashed, so they will not
necessarily move).
Let all blocked robots move together with r, with r be-
ing the farthest robot on the ray. After completing a side
move, the number of blocked robots decreases by M. So,
after at most n

M −2 side moves, r is no longer blocked, and
the rest follows from the first case.

This proves the claim and the remainder of the proof follows
by induction on the maximal multiplicity. ✷

We now show that the shortest distance between a robot and
its nearest neighbor is also non-increasing for Algorithm 5.2.

Proposition 8 Consider an execution of Algorithm 5.2 under
a fair scheduler. Let D(γ) be a function defined as the shortest
distance between a robot and its nearest neighbors in configu-
ration γ . Then, D(γ) is non-increasing.

PROOF: In distinct configurations, all robots execute only the
third clause of the test of Algorithm 5.2. So, a robot either (1)
executes Algorithm 5.1 and D(γ) is non-increasing by Proposi-
tion 2, or (2) stays and D(γ) is non-increasing trivially. ✷

Proposition 9 In an (n, f)-crash system, where n> f , with a
fair scheduler and multiplicity detection, let e be an execution
under Algorithm 5.2, and let e[t:] be any execution suffix of e
starting in a distinct configuration γt .

Then, with high probability, e[t:] contains a configuration
with maximal multiplicity larger than one.

PROOF: Given a distinct configuration γ , let us first define
its attractor graph AG(γ) to be a weighted directed graph in
which each robot is a vertex, and such that, there is an arc from
robot r to robot r′ if and only if r is not crashed in γ and, upon
activation in γ , r will select r′ as its target destination according
to Algorithm 5.2 (and by extension Algorithm 5.1). The weight
of an arc is given by the distance separating the two robots. We
say that r′ is the attractor of r in configuration γ .

Each path in AG(γ) has non-increasing weights and ends ei-
ther in a cycle of equal weights or with a crashed robot. Since
n> f , there is at least one robot that never crashes, and hence
at least one path exists in every configuration of e.

Consider the execution fragment e[t:] starting in distinct con-
figuration γt , and take the extremity of one path in AG(γt) such
that the weight of the last arc(s) is minimal. Let us denote this
weight by ∆(γt), and consider independently the two possible
situations regarding the extremity of the path.

1. The path ends with a crashed robot.
Let r′ be the crashed robot and r the last correct robot on
the path, with r′ as attractor. Then, ∆(γt) is the distance
separating r and r′ in γt .
Over successive activations in fragment e[t:], three situ-
ations may occur. When we say that a robot gets close
to r, we mean that there is a third robot r′′ such that
dist(r,r′′) ≤ dist(r,r′) and hence r changes its attractor
from r′ to r′′.

15

(a) Robot r does not crash and no other robot gets close
to r.
After

⌈
∆(γt)

δr

⌉
successful moves of r, r reaches the

location of r′, resulting in a configuration with max-
imal multiplicity larger than one.
The number of activations follows a binomial distri-
bution, and hence this occurs after constant expected
number of activations of r. The scheduler being fair,
e[t:] contains a configuration with maximal multi-
plicity larger than one with high probability.

(b) Robot r crashes in configuration γt ′ with t ′ > t.
We apply the same argument starting with configura-
tion γt ′ and other robots. This happens at most f −1
times.

(c) Robot r changes its attractor to another robot r′′ in a
configuration γt ′ .
In γt ′ , the distance dist(r,r′′) ≤ dist(r,r′). Take the
new path in which r is now involved and continue
applying the argument over its extremity with ∆(γt ′)
such that:

∆(γt ′)≤ dist
(
r,r′′
)
≤ dist

(
r,r′
)
≤ ∆(γt)

2. The path ends in a cycle.
The cycle involves q non-crashed robots (2≤q≤n), all at
distance ∆(γt) to their attractor.
Over successive activations in fragment e[t:], there are sev-
eral situations that may occur.

(a) No robots crash and no external robot gets close.
Each time some of the robots involved in the cycle
are activated, the following situations may occur.

i. Some other robot in the cycle is not activated.
Let r be an activated robot with attractor r′, such
that r′ is not activated.
With probability at least 1

n robot r moves (while
r′ does not), and the cycle is broken. We apply
the argument again starting with the new con-
figuration γt ′ , with ∆(γt ′) such that:

∆(γt ′)≤ dist
(
r,r′
)
−δr ≤ ∆(γt)−δr

ii. All robots in the cycle are activated.
There are three sub-cases:
• With probability

(
1− 1

n
)q no robots move.

The situation does not change.
• With probability

(1
n
)q all robots move. The

situation remains if and only if (1) all robots
ri involved in the cycle have the same reach-
able distance δri , and (2) ∆[γt] = δri .
In all other cases, ∆[γt+1]< ∆[γt].

• With remaining probability, a strict subset
of the robots move and the other don’t. This
is identical to the previous case, when some
robot is not activated. This results in the
cycle being broken, and we apply the argu-
ment again starting with the new configura-
tion γt ′ , with ∆(γt ′) such that:

∆(γt ′)≤ dist
(
r,r′
)
−δr ≤ ∆(γt)−δr

(b) Some robot r in the cycle crashes in configuration γt ′

with t ′ > t.
The path no longer ends in a cycle, and we apply the
argument starting in configuration γt ′ and with ∆(γt ′)
such that ∆(γt ′)≤ ∆(γt).

(c) Some robot r changes its attractor to another robot
r′′ in a configuration γt ′ .
This breaks the cycle and defines a new path involv-
ing r. We apply the argument over the extremity of
this path, with ∆(γt ′) such that

∆(γt ′)≤ dist
(
r,r′′
)
≤ ∆(γt)

Regardless of scheduler choices, the minimal distance from a
non-crashed robot to its attractor eventually decreases and, with
high probability, the system reaches a configuration with mul-
tiplicity larger than one. ✷

Lemma 13 In an (n, f)-crash system, where n> f , with a fair
scheduler and multiplicity detection, let e be an execution un-
der Algorithm 5.2. Let e′ be any execution suffix starting in a
configuration with multiple castles. Then, with high probabil-
ity, e′ contains a configuration with a single castle.

PROOF: Let γ be a configuration with K > 1 castles of mul-
tiplicity M in e′, and let us calculate the probability to reach a
configuration γ ′ with K′ castles of multiplicity M′ after the next
activation.

Let K denote the set of castles in γ . For each castle k ∈ K, let
ik denote the number of (incoming) robots that can enter castle k
upon activation. To be counted, a robot must be correct, located
outside castle k, activated by the scheduler in configuration γ ,
have castle k as its destination, and be able to reach k in one
step. Similarly, let ok denote the number of (outgoing) robots
that can leave castle k upon activation. To be counted, a robot
must be correct, located inside castle k, and activated by the
scheduler. Note that, when castles are near, a single robot may
be counted simultaneously as an outgoing robot of some castle
and an incoming robot of another castle.

We now define a function BALANCE(i,o) to calculate the
probability that the movement of i incoming robots and o out-
going robots exactly compensate each other. This is given by
the probability that the same number of incoming and outgo-
ing robots move, so that every departure of an outgoing robot
is compensated by the arrival of an incoming one.

BALANCE(i,o) = P[none move]+
min(i,o)

∑
m=1

P[m arrive/depart]

= (1− 1
M
)i+o +

min(i,o)

∑
m=1

⎡

⎢⎢⎣

(
i
m

)
(

1
M
)m(1− 1

M
)i−m

×
(

o
m

)
(

1
M
)m(1− 1

M
)o−m

⎤

⎥⎥⎦

= (1− 1
M
)i+o +

min(i,o)

∑
m=1

[(
i
m

)(
o
m

)
(

1
M
)2m(1− 1

M
)(i+o−2m)

]

= (1− 1
M
)i+o

(
1+

min(i,o)

∑
m=1

(
i
m

)(
o
m

)
(

1
M−1

)2m

)

We define the function INCREASE(i,o,x) to return the prob-
ability that the multiplicity of a castle increases by x in the

16

presence of i incoming robots and o outgoing robots. This is
the probability that x incoming robots move with the remain-
ing incoming and outgoing robots compensating each other’s
movements.

INCREASE(i,o,x) =
(

i
x

)
(

1
M
)x ·BALANCE(i− x,o)

Let Pinc(K′,x) return the probability that configuration γ ′ has
exactly K′ castles of multiplicity M′ = M+ x. That probability
can be expressed as the probability that any subset K′ of K′

castles increase their multiplicity by x and all remaining castles
do not increase multiplicity to any value x′ larger or equal to x.
Let P=K′(K) denote the set of subsets of K of cardinality K′,
and we can express Pinc(K′,x) as follows.

Pinc(K′,x)=

⎡

⎢⎢⎢⎣

∏
K′∈P=K′ (K)

∏
k′∈K′

INCREASE(ik′ ,ok′ ,x)

× ∏
k′′∈K\K′

ik′′

∏
x′=x

(
1−INCREASE(ik′′ , ok′′ , x′)

)

⎤

⎥⎥⎥⎦

The probability of having a single castle in the next configu-
ration is obviously at least as high as having a single castle by
increasing the multiplicity of one of them by one. So, we can
state the following inequality

P [γ ′ has one single castle]≥ Pinc(K′ = 1,x = 1)

The exact probability must consider increases of the multiplic-
ity by more than one, and the change in number of castles due
to a decrease of the multiplicity. However, this is sufficient for
the proof since, as we are not concerned here with measuring
an actual convergence rate, the mere existence of a transition
with positive probability is sufficient.

Let us consider the configurations for which Pinc(K′ = 1,x =
1) is zero. From the formula obtained for Pinc, we see that it is
zero when, for all castle k, ik is zero. This can occur in several
situations.

• All robots have crashed.
This contradicts the assumption that f < n which implies
that there is at least one correct robot (i.e., a robots that
never fails).

• The “near” robots are never activated.
This contradicts the assumption that the scheduler is fair.
If some “near” and correct robots exist, they must be acti-
vated eventually.

• There are no “near” robots.
When a “far” robot r is activated, its distance to the nearest
castle decreases by δr (to simplify the discussion we omit
the case of the side move). Thus, either the configurations
of castle change or r becomes a “near” robot.

So, with high probability, e′ contains a configuration with a
single castle. ✷

Theorem 19 In an (n, f)-crash system, where n > f , Algo-
rithm 5.2 probabilistically solves weak gathering under a fair
scheduler if robots are aware of multiplicity.

PROOF: Closure is satisfied by Algorithm 5.2 because, in
a gathered configuration, all correct robots are by definition

1

single

23K⌊ n
2⌋

D

distinct

0

all destroyed

G

gathered

pKi =
(K

i
)

pi(1− p)K−i

p0i =
(⌊n/2⌋

i
) 1

2⌊
n
2 ⌋

1 1

.
pK3

pK2
pK1pKK

pK0

p00

p01p02p03p0K
p0 n

2

Figure 5: Markov chain representing the transitions of changes
in the number of castles. A number represents the number
of castles in the configurations. For every K ∈ {2, . . . ,⌊ n

2⌋},
outgoing transitions follow a binomial distribution (only K de-
picted). Transitions from K to distinct are ignored because tran-
sitioning to state 0 instead favors an adversary. State 1 (single
castle) leads to a gathered configuration, which is absorbing.
When all castles are destroyed, a worst-case choice leads to ⌊ n

2⌋
castles (e.g., with lower multiplicity) in the next configuration.

located on a unique castle, and hence do not move when ac-
tivated. Thus, a gathered configuration always follows after a
gathered configuration and closure is satisfied.

To show convergence, let us consider an adversary Adv, as
defined by (1) an initial configuration, (2) an activation strategy,
and (3) control of robot crashes. However, Adv has no control
on random choices made by robots, and no prior knowledge of
their outcomes. The goal of Adv is then to construct an infinite
execution ε̄ that contains no gathered configurations, and such
that ε̄ occurs with non-zero probability.

From Proposition 7, the formation of a single castle leads
to a gathered configuration. So, Adv must prevent the forma-
tion of a single castle. Let us now focus on the number of
castles in each configuration and look at the transitions when
this changes. Figure 5 depicts a Markov chain that represents
the changes in the number of castles. The chain provides a
conservative estimation by integrating simplifications that sys-
tematically favor Adv. Since we are not concerned here with
measuring the actual convergence rate, the mere existence of
transitions with a positive probability is sufficient. We now de-
scribe its construction.

Assume first that the system is in a distinct configuration.
From Proposition 9, Adv cannot prevent the formation of cas-
tles. It can however control activations so that several castles
are formed simultaneously. To maximize the chance of creat-
ing multiple castles, Adv can postpone the activations of every
robot that can reach its nearest neighbor, until all robots form
pairs14 of mutually nearest neighbors. Then, all robots are ac-
tivated and move with probability 1

2 , resulting in a number of
castles that follows a binomial distribution B(⌊ n

2⌋,
1
2).

P [x castles created] = p0x =

(
⌊ n

2⌋
x

)
1

2⌊
n
2 ⌋

14Situations in which robots form a chain or a cycle result in the creation of
fewer castles, which is less favorable to the adversary Adv.

17

When no castles are created, the resulting configuration is dis-
tinct and the process repeats itself.

Assume now that the system is in a configuration with K >
1 castles. The number of castles can change in two possi-
ble ways: (1) independent robots moving inside a castle, or
(2) robots leaving a castle thus destroying it.

When independent robots move inside a castle, no additional
castle can be created in the next configuration (from Proposi-
tion 5). Looking at the best case (for Adv) when one indepen-
dent robot is ready to move inside every castle, we obtain that
the probability of castle creation follows a binomial distribution
B(K, 1

M).

P [x castles created] = pKx =

(
K
x

)
(

1
M
)x(1− 1

M
)K−x

When no castles are created, the resulting configuration is iden-
tical and the situation is repeated.

When robots leaving castles result in their destruction, there
can be three possible outcomes in the configuration that fol-
lows:

• Several castles remain. There can be no more than K cas-
tles.

• A single castle remain. This is the situation that Adv must
avoid.

• All castle destroyed. The next configuration has a lower
maximal multiplicity, and can result in a larger number of
castles of multiplicity lower than M.

The probability that a given castle is not destroyed by some
robot moving outside has the following probability

P [castle not destroyed] = αM = (
1
M
)M = p(M)

For a configuration to have multiple castles, M must neces-
sarily be between 2 and ⌊ n−1

2 ⌋. For any of these values,
both p(M) and 1− p(M) are strictly positive. To simplify the
model (Fig. 5), we assume that it is a positive constant p with
0< p< 1, chosen to be the value that favors the adversary most,
and that does not depend on multiplicity. Again, its exact value
is secondary, as long as it is strictly positive for any value of K,
M, and n finite.

The number of castles in the following configuration follows
a binomial distribution B(K,αM)

P [x castles size M remain] = pKx =

(
K
x

)
px(1− p)K−x

When no castles remain, the maximal multiplicity decreases
and a larger number of castles of lower multiplicity may be
created. Unless the next configuration is distinct, there can be
no more than ⌊ n

2⌋ castles in the resulting configuration. We
observe that, from the viewpoint of the adversary Adv, the best
case is when the maximal number of castles are formed. So,
we assume that the destruction of all castles in a configuration
always leads to a configuration with the maximal number of
castles.

Putting this together gives us the Markov chain depicted
in Fig. 5. For configurations with multiple castles, the figure

shows only the transitions from state K. According to Propo-
sition 7, configurations with a single castle lead to a gathered
configuration with probability 1.

The resulting Markov chain contains a single absorbing state
G. It is a well-known result that, in an absorbing Markov chain,
the process will be absorbed with probability 1. Since the only
absorbing state is G (gathered), convergence is satisfied with
probability 1. ✷

6 Byzantine Tolerant and Self-
stabilizing Gathering

We study now the feasibility of gathering in systems prone to
Byzantine failures.

Agmon and Peleg [1] proved the impossibility of weak gath-
ering in a (3,1)-Byzantine system under a fair scheduler (The-
orem 5). The result applies to both SYm and CORDA mod-
els. The following lemma proves that the impossibility still
holds under a round-robin scheduler, and even if the algorithm
is probabilistic.

Lemma 14 In a Byzantine-prone system, there is no determin-
istic or probabilistic algorithm that solves (n, f)-weak gather-
ing, f ≥ 1 and n > f +1, under a round-robin scheduler with-
out additional assumptions.

PROOF: By contradiction, let A be an algorithm that solves
gathering. Assume that a single robot rB is Byzantine (or let the
other Byzantine robots behave like correct ones). Let A exe-
cute normally until all robots share the same location P. When
activated, let rB move to a second location P′ selected as fol-
lows:

• if A is deterministic, chose P′ such that, applying the cri-
teria used in A when selecting a target location, some cor-
rect robot r will move to P′.

• if A is probabilistic, chose any P′ ̸= P.

In either case, a correct robot r must move because, robots be-
ing oblivious, they have no way to know that gathering was
already achieved. Furthermore, in the absence of multiplicity
detection, there is no way to distinguish P and P′ by their mul-
tiplicity. Since there are at least two correct robots (n > f +1)
and the scheduler is centralized, the move of r toward P′ results
in a non-gathered configuration.

The situation can be repeated each time the system is in a
gathered configuration. This clearly violates the closure prop-
erty of weak gathering, since closure requires that any execu-
tion suffix starting in a gathered configuration contains only
gathered configurations. Thus, A does not solve weak gather-
ing. ✷

6.1 Deterministic Byzantine Gathering
The following lemma shows that if the power of the scheduler
is increased, weak gathering is impossible in a (3,1)-Byzantine
system, even if robots are aware of the system multiplicity.

Lemma 15 In a (3,1)-Byzantine system, there is no determin-
istic algorithm that solves weak gathering under a fair central-
ized k-bounded scheduler with k ≥ 2, even if robots are aware
of multiplicity.

18

PROOF: Assume an arbitrary initial configuration, a configura-
tion where robots occupy distinct positions. The general proof
idea is the following : the byzantine node plays the attractor
role, hence the system never reaches a terminal configuration.
Consider a schedule Sch such that after each execution of a cor-
rect robot the scheduler gives the permission to the byzantine
robot to move. This schedule verifies the specification of the
2-bounded scheduler. Assume that each time a correct node
chooses to move, it chooses as target the location of the Byzan-
tine node. Then, following the scheduler Sch the Byzantine
node will replace the location of the node that just joined its
location. Therefore, the system never converges.

The following lemma establishes a lower bound for the fair
centralized bounded scheduler that prevents the deterministic
gathering.

Lemma 16 In an (n, f)-Byzantine system with n even and
f ≥ 1, there is no deterministic algorithm that solves weak
gathering under a fair centralized k-bounded scheduler with
k ≥

⌈
n− f

f

⌉
, even if robots are aware of multiplicity.

PROOF: Consider an initial configuration such that the con-
figuration is bivalent with two locations having equal multiplic-
ity (n is even), and robots are reachable from each other. As-
sume that the Byzantine robots are spread evenly between the
two locations. Let g1 and g2 be the two groups, such that, if f
is odd, g1 has one more Byzantine robot than g2. Consider the
following activation schedule.

• Activate a correct robot in g2: it must necessarily move to
g1 or else no execution could possibly reach gathering.

• Activate a Byzantine robot in g1, and let it move to g2.
The resulting configuration is symmetrical to the original
one.

By repeating the same sequence, a Byzantine robot counterbal-
ances every move of a correct robot, and the system is always
in a bivalent configuration.

Since there is a total of n− f correct robots and f Byzan-
tine robots, the adversary can distribute the moves between the
Byzantine robots. Thus, between each consecutive activation of
a correct robot, the adversary must activate a Byzantine robot
only

⌈
n− f

f

⌉
times. ✷

The following lemma states a lower bound for a bounded
scheduler that prevents deterministic gathering.

Lemma 17 In an (n, f)-Byzantine system with n odd and f ≥
2, there is no deterministic algorithm that solves weak gath-
ering under a fair centralized k-bounded scheduler with k ≥⌈

n− f
f−1

⌉
, even if robots are aware of multiplicity.

PROOF: Let the initial configuration be a bivalent configu-
ration such that robots are reachable from each other and the
multiplicity of the two locations differ by one.

Let ga be the small group and gb the big one. Let all f
Byzantine robots be in gb. If there are more than half Byzantine
robots, then simply let all robots in gb be Byzantine ones.

Now, call one of the Byzantine robots in gb the switch rsw,
and consider the following schedule:

1. Activate a correct robot in ga, say r. It must be instructed
to move to the other point of multiplicity, or else gathering
would not possibly be achieved in a fault-free case.

2. Each time a correct robot moves to gb, activate a Byzan-
tine robot in gb (except the switch rsw), and let it move to
ga.

3. Repeat the procedure until one of the following condition
holds: (1) all correct robots originally in ga have moved,
or (2) all Byzantine robots originally in gb have moved,
except rsw.

4. Move rsw to ga, which becomes now the larger group.

5. Repeat the procedure with correct robots in gb so that they
move to ga.

At each iteration of the procedure, f −1 correct robots move
from one group to the other, while f−1 Byzantine robots negate
their move.

Thus, a Byzantine robot needs to be activated at most
⌈

n− f
f−1

⌉

times between two consecutive activations of a correct robot, .
✷

7 Summary
We have summarized most of the theorems, their relationships,
and their scope into tables (Table 1 and 2). Results are grouped
according to the problem (strong or weak gathering) and the
fault models: strong gathering in fault-free (Table 1a) and sin-
gle crash (Table 1b) environments; as well as weak gathering in
multiple crashes (Table 2a) and single Byzantine environments
(Table 2b).

All tables are designed to be read as follows: Each row rep-
resents a different scheduler, while columns distinguish other
assumptions, such as multiplicity, conditions on the number of
robots n, conditions on the maximum number of faulty robots
f , or whether deterministic or probabilistic solutions are admis-
sible.

Each cell answers whether the problem admits a solution un-
der the corresponding set of assumptions. A positive result ap-
pears as “OK” followed by the number of the corresponding
lemma or theorem in brackets. Conversely, a negative result
(impossibility) is denoted by “NO” and a greyed background.

An “OK” or “NO” in bold means that the cell corresponds to
the assumptions stated explicitly in the relevant theorem. When
the text appears in normal face, the result comes instead as a
consequence of the theorem and the relationship between as-
sumptions. For instance, a positive result expressed and proved
with an unfair centralized scheduler (e.g., Table 1a; L.3) nec-
essarily applies to the more restrictive schedulers, such as the
fair centralized or round-robin schedulers, even though this is
implicit.

7.1 Strong self-stabilizing gathering
The results pertaining to the strong gathering in a fault-free
model are summarized in Table 1a, while those related to the
crash model with a single faulty robot are in Table 1b. The ta-
bles are divided vertically according to the availability of mul-
tiplicity detection, then whether gathering is deterministic or
probabilistic, and finally to the number of robots n (i.e., n = 2
or n > 2). Note that, when n = 2, the detection of multiplicity
is irrelevant, and thus the results are identical in both columns.

19

Table 1: Strong gathering problem

(a) Fault-free model

multiplicity without multiplicity
deterministic probabilistic Scheduler deterministic probabilistic

n = 2 n ≥ 3 n = 2 n ≥ 3 n = 2 n ≥ 3 n = 2 n ≥ 3
NO(Th.1) OK(L.4) unfair NO(Th.1) NO(Th.3) OK(L.4) NO(L.5)
OK(L.3) OK(L.4) unfair centr. OK(L.3) NO(Th.15) OK(L.4) NO(L.5)
NO(Th.1) OK(Th.2) OK(L.4) OK(Th.2) fair NO(Th.1) NO(Th.3) OK(L.4) NO(L.5)
OK(L.3) OK(Th.2) OK(L.4) OK(Th.2) fair centr. OK(L.3) NO(Th.15) OK(L.4) NO(L.5)
NO(Th.1) OK(Th.2) OK(L.4) OK(Th.2) fair k-bounded NO(Th.1) NO(Th.15) OK(L.4) OK(Th.17)
OK(L.3) OK(Th.2) OK(L.4) OK(Th.2) fair 2-bounded centr. OK(L.3) NO(Th.15) OK(L.4) OK(Th.17)

NO(Th.1) OK(Th.2) OK(L.4) OK(Th.2) fair 1-bounded NO(Th.1) NO/?(Th.14/16)a OK(L.4) OK(Th.17)
OK(L.3) OK(Th.2) OK(L.4) OK(Th.2) round-robin OK(L.3) NO/?(Th.14/16)a OK(L.4) OK(Th.17)
a Special: Th. 14 proves the impossibility of self-stabilizing gathering. Th. 16 proves it for gathering provided Conjecture 1 holds.

(b) Crash model; f = 1

multiplicity without multiplicity (f = 1)
deterministic probabilistic Scheduler deterministic probabilistic

n = 2 n ≥ 3 n = 2 n ≥ 3 n = 2 n ≥ 3 n = 2 n ≥ 3
NO(Th.1) NO(L.7) OK(L.9) NO(L.8) unfair NO(Th.1) NO(Th.3) OK(L.9) NO(L.5)
OK(L.10) NO(L.7) OK(L.9) NO(L.8) unfair centr. OK(L.10) NO(L.7) OK(L.9) NO(L.5)
NO(Th.1) NO(L.7) OK(L.9) NO(L.8) fair NO(Th.1) NO(Th.3) OK(L.9) NO(L.5)
OK(L.10) NO(L.7) OK(L.9) NO(L.8) fair centr. OK(L.10) NO(L.7) OK(L.9) NO(L.5)
NO(Th.1) NO(L.7) OK(L.9) OK(L.11) fair k-bounded NO(Th.1) NO(L.7) OK(L.9) OK(L.11)
NO(Th.1) NO(L.7) OK(L.9) OK(L.11) fair 1-bounded NO(Th.1) NO(L.7) OK(L.9) OK(L.11)
OK(L.10) NO(L.7) OK(L.9) OK(L.11) round-robin OK(L.10) NO(L.7) OK(L.9) OK(L.11)

7.1.1 Fault-free model

As shown on Table 1a, in the absence of multiplicity detection,
a bounded scheduler is both necessary and sufficient for solv-
ing probabilistic gathering of more than two robots. There is
however no deterministic solution, regardless of the scheduler
(i.e., even if the scheduler is round-robin).

In the presence of multiplicity detection, gathering is known
to be possible with a fair scheduler, as proved by Suzuki and
Yamashita [19]. The question remains open in the case of unfair
schedulers.

When there are only two robots, gathering is known to be
more difficult than with three or more robots, since all con-
figurations are symmetrical. Suzuki and Yamashita [19] have
proved the impossibility under a fair scheduler, and their proof
actually applies to more restrictive schedulers, such as the fair
1-bounded scheduler. Interestingly, the problem becomes solv-
able under all classes of centralized schedulers, even the unfair
ones.

7.1.2 Crash model

Table 1b summarizes the results obtained for the strong gather-
ing problem with at most one robot crash.

Interestingly, without multiplicity detection, the results ob-
tained for the fault-free and the crash models are identical, al-
though they are covered by different theorems. Unlike in the
fault-free model, multiplicity detection does not seem to help
solve gathering. Indeed, in the crash model, results are identi-
cal whether or not robots are able to detect multiplicity, whereas
they differed widely in the fault-free case.

In other words, while the introduction of multiplicity detec-
tion is indeed determinant in the fault-free case, it has no effect
on solvability when faced with a single crashed robot.

7.2 Weak self-stabilizing gathering
Table 2 summarizes the results for weak gathering. Let us first
remind that, in the fault-free model, there is actually no differ-
ence between strong and weak gathering (since the only differ-
ence in definitions is about the requirements put on the faulty
robots), and thus the results of Table 1a, although not repeated,
are of course also relevant here.

Table 2a summarizes the results for weak gathering (i.e., only
the correct robots are required to gather at the same location)
and distinguishes between the case of a single crash and multi-
ple crashes. One interesting observation is that, in the case of
a single crash (left part of Table 2a), results of weak with re-
spect to strong gathering differ only if robots are able to detect
multiplicity. In particular, Theorems 18 and 19 show that weak
gathering is possible with schedulers for which strong gather-
ing is not. This is because a system may reach a stable config-
uration in which all robots except the faulty one share the same
location. In such a configuration, weak gathering is achieved
but strong gathering is not.

In the case of multiple crashes and without multiplicity de-
tection, even probabilistic gathering is impossible under any of
the schedulers considered. With multiplicity detection and fair
schedulers, however, probabilistic gathering is possible under
any fair scheduler while deterministic gathering is possible if
and only if the scheduler is also centralized. The question re-

20

Table 2: Weak gathering problem

(a) Crash model

f = 1 2 ≤ f < n
multiplicity without multiplicity Scheduler multiplicity without multiplicity

determ. proba. determ. proba. determ. proba. determ. proba.
NO(Th.3) NO(L.5) unfair NO(L.12) NO(L.12)
NO(Th.15) NO(L.5) unfair centr. NO(L.12) NO(L.12)

OK(Th.4)b OK(Th.19) NO(Th.3) NO(L.5) fair NO(N. 2) OK(Th.19) NO(L.12) NO(L.12)
OK(Th.18) OK(Th.18) NO(Th.15) NO(L.5) fair centr. OK(Th.18) OK(Th.18) NO(L.12) NO(L.12)
OK(Th.4) OK(Th.19) NO(Th.15) OK(L.11) fair k-bounded NO(N. 2) OK(Th.19) NO(L.12) NO(L.12)
OK(Th.4) OK(Th.19) NO/?(Th.14/16)a OK(L.11) fair 1-bounded NO(N. 2) OK(Th.19) NO(L.12) NO(L.12)
OK(Th.18) OK(Th.18) NO/?(Th.14/16)a OK(L.11) round-robin OK(Th.18) OK(Th.18) NO(L.12) NO(L.12)
a Special: Th. 14 proves the impossibility of self-stabilizing gathering. Th. 16 proves it for gathering provided Conjecture 1 holds.
b Note that the results derived from Theorem 4 hold for the case (3,1). According to Note 2, in the case of (n,1)-crash, weak gathering is possible only if,

during the execution, each configuration has at most one multiplicity point. Therefore, the self-stabilizing (n,1) weak-gathering is impossible since the
initial configuration can contain more than one multiplicity point.

(b) Byzantine model

multiplicity; deterministic
f = 1 2 ≤ f < n/2
n ≥ 4 n ≥ 4 n ≥ 4 n ≥ 4

Scheduler n = 3 (even) (odd) (even) (odd)
unfair NO(Th.5) NO(L.16) NO(L.16) NO(L.17)
unfair centr. NO(L.15) NO(L.16) NO(L.16) NO(L.17)
fair NO(Th.5) NO(L.16) NO(L.16) NO(L.17)
fair centr. NO(L.15) NO(L.16) NO(L.16) NO(L.17)
fair k-bounded NO(L.15) NO(L.16) NO(L.16) NO(L.17)
(k ≥ n−1)-bounded NO(L.15) NO(L.16) NO(L.16) NO(L.17)
(Γ(n, f)≤ k ≤ n−2)-bounded NO(L.15) NO(L.16) NO(L.16) NO(L.17)
(2 ≤ k < Γ(n, f))-bounded NO(L.15)
fair 1-bounded
centr. (k ≥ n−1)-bound. NO(L.15) NO(L.16) NO(L.16) NO(L.17)
centr. (Γ(n, f)≤ k ≤ n−2)-bound. NO(L.15) NO(L.16) NO(L.16) NO(L.17)
centr. (2 ≤ k < Γ(n, f))-bound. NO(L.15)
round-robin
fully synchronized OK(Th.6) OK(Th.7) OK(Th.7) OK(Th.7) if n ≥ 3 f +1
Γ(n, f) =

{⌈
n− f

f

⌉
if n even;

⌈
n− f
f−1

⌉
if n odd

}

21

mains open for unfair schedulers, but we believe that the answer
depends greatly on minute details in the definition of the unfair
scheduler.

7.3 Byzantine model
While Byzantine gathering is possible in fully synchronous en-
vironments, other positive results remain quite elusive. We
have been able to extend impossibility results, but unable to
find additional solutions for other models.

Under very specific assumptions, Algorithm 5.1 is likely to
solve Byzantine gathering for some values of f , n, and k. How-
ever, this requires very specific assumptions, among which the
requirement that Byzantine robots have a mobility range no
larger than the correct ones. We have found a counter-example
where the algorithm fails without this assumption, and thus
omitted entirely from the study, thus leaving the question open.

8 Conclusion
The results presented in this paper extend prior work on the
self-stabilizing gathering problem in fault-free and fault-prone
environments, by shading light on the subtil line between possi-
bility and impossibility. Most notably, we identify the role that
additional synchrony, embodied by schedulers, can play toward
making the problem possible. So far, our work is the most ex-
tensive study on the combined roles that randomization, mul-
tiplicity, and schedulers (centralized and bounded) can play in
allowing a solution to fault-free and fault-tolerant gathering.

In particular, we have strengthened several key impossibil-
ity results on gathering, including Prencipe’s [17] impossibility
of fault-free gathering in the absence of multiplicity strength-
ened to cover up to the round-robin or 2-bounded centralized
schedulers (depending on the definition of the problem), and
Agmon and Peleg’s [1] impossibility of Byzantine gathering
under a fair scheduler extended to cover bounded centralized
schedulers.

The main results of the paper are summarized in Table 1a for
fault-free systems; in Table 1b and Table 2a for strong, resp.
weak, gathering in crash-prone systems; and in Table 2b for
weak gathering problem in Byzantine-prone systems.

The main results of the paper are summed up in Table 1a for
fault-free systems; in Table 1b and Table 2a for strong respec-
tivelly weak gathering in crash-prone systems; and in Table 2b
for the weak gathering problem in Byzantine-prone systems.

Acknowledgments
We are grateful to François Bonnet, the editor, and the review-
ers for their insightful and valuable comments.

Research partly supported by JSPS KAKENHI Grants
No. 23500060 and No. 26330020.

References
[1] N. Agmon and D. Peleg. Fault-tolerant gathering algo-

rithms for autonomous mobile robots. SIAM Journal of
Computing, 36(1):56–82, 2006.

[2] H. Ando, Y. Oasa, I. Suzuki, and M. Yamashita. Dis-
tributed memoryless point convergence algorithm for mo-
bile robots with limited visibility. IEEE Trans. on
Robotics and Automation, 15(5):818–828, October 1999.

[3] Zohir Bouzid, Shantanu Das, and Sébastien Tixeuil. Gath-
ering of mobile robots tolerating multiple crash faults. In
IEEE 33rd International Conference on Distributed Com-
puting Systems, ICDCS 2013, 8-11 July, 2013, Philadel-
phia, Pennsylvania, USA, pages 337–346, 2013.

[4] Zohir Bouzid, Maria Gradinariu Potop-Butucaru, and
Sébastien Tixeuil. Byzantine convergence in robot
networks: The price of asynchrony. In Principles
of Distributed Systems, 13th International Conference,
OPODIS 2009, Nı̂mes, France, December 15-18, 2009.
Proceedings, pages 54–70, 2009.

[5] Zohir Bouzid, Maria Gradinariu Potop-Butucaru, and
Sébastien Tixeuil. Optimal byzantine-resilient conver-
gence in uni-dimensional robot networks. Theor. Comput.
Sci., 411(34-36):3154–3168, 2010.

[6] R. Cohen and D. Peleg. Convergence of autonomous
mobile robots with inaccurate sensors and movements.
In B. Durand and W. Thomas, editors, 23rd Annual
Symposium on Theoretical Aspects of Computer Science
(STACS’06), volume 3884 of LNCS, pages 549–560, Mar-
seille, France, February 2006. Springer.

[7] X. Défago, M. Gradinariu Potop-Butucaru, S. Messika,
and P. Raipin-Parvédy. Fault-tolerant and self-stabilizing
mobile robots gathering: Feasibility study. DISC’06,
pages 46–60, 2006.

[8] Yoann Dieudonné and Franck Petit. Self-stabilizing gath-
ering with strong multiplicity detection. Theor. Comput.
Sci., 428:47–57, 2012.

[9] S. Dolev. Self-Stabilization. MIT Press, 2000.

[10] P. Flocchini, G. Prencipe, and N. Santoro. Distributed
Computing by Oblivious Mobile Robots. Synthesis Lec-
tures on Distributed Computing Theory. Morgan & Clay-
pool Publishers, 2012.

[11] P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer.
Gathering of asynchronous mobile robots with limited
visibility. Theoretical Computer Science, 337:147–168,
2005.

[12] Ta. Izumi, To. Izumi, S. Kamei, and F. Ooshita. Feasibil-
ity of polynomial-time randomized gathering for oblivi-
ous mobile robots. IEEE Trans. Parallel Distrib. Syst.,
24(4):716–723, 2013.

[13] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann,
San Francisco, CA, USA, 1996.

[14] N. A. Lynch, R. Segala, and F. W. Vaandrager. Hybrid I/O
automata. Information and Computation, 185(1):105–
157, August 2003.

[15] N. Megido. Linear-time algorithms for linear program-
ming in R3 and related problems. SIAM Journal of Com-
puting, 12(4):759–776, 1983.

22

QFarL QFarRWL WR

rL rRD
≥ 5D

D
≥ 5D

(a) Initial Configuration: D > δ

QFarL QFarRWL WR

rL rR

(b) rR active: moves toward nearest castle (WL ∪{rR})

QFarL QFarRWL WR

rL rR

δ

(c) rL active: moves toward nearest castle (QFarL)

QFarL QFarRWL WR

rL rR

(d) rR active: moves toward nearest castle (QFarR)

QFarL QFarRWL WR

rL rR

(e) rL active: moves toward nearest castle (WR ∪{rR})

Figure 6: Illustration of the necessity of introducing the side
move. The naive algorithm (without side move) can result in
and endless cycle.

[16] G. Prencipe. CORDA: Distributed coordination of a set
of autonomous mobile robots. In Proc. 4th European Re-
search Seminar on Advances in Distributed Systems (ER-
SADS’01), pages 185–190, Bertinoro, Italy, May 2001.

[17] G. Prencipe. On the feasibility of gathering by au-
tonomous mobile robots. In A. Pelc and M. Raynal, ed-
itors, Proc. Structural Information and Communication
Complexity, 12th Intl Coll., SIROCCO 2005, volume 3499
of LNCS, pages 246–261, Mont Saint-Michel, France,
May 2005. Springer.

[18] S. Souissi, X. Défago, and M. Yamashita. Using eventu-
ally consistent compasses to gather memory-less mobile
robots with limited visibility. ACM Trans. Autonomous
and Adaptive Systems, 4(1):9:1–27, 2009.

[19] I. Suzuki and M. Yamashita. Distributed anonymous mo-
bile robots: Formation of geometric patterns. SIAM Jour-
nal of Computing, 28(4):1347–1363, 1999.

A Appendix
A.1 Necessity of the Side Move for Algo-

rithm 5.1
We must now show the necessity of introducing a side move
in Algorithm 5.1. Assuming that robots execute the naive al-
gorithm (Algorithm 5.1 without the clause executing the side
move), we exhibit a situation in which the robots are unable to
gather (depicted in Fig. 6):

Consider the initial configuration depicted in Figure 6a. As-
sume that the reachable distance of all robots is the same and

call it δ . Let D be some arbitrary distance strictly larger than δ .
The robots (or a subset thereof) are initially located such that
they form four castles on a segment. Let QFarL,QFarR be the
two castles at both ends of the segment and assume that they
consist only of crashed robots. Let WL,WR be two towers such
that they become a castle by adding one robot. For simplicity,
assume again that they also consist only of crashed robots. Let
rL,rR be two correct robots initially with WL,WR respectively.
The location of the four castles is symmetric such that the mid-
point between QFarL and QFarR is also the midpoint between
WL and WR. The distance between WL and WR is 2D and the
distance between QFarL and QFarR is at least 10D.

Consider the scheduler as an adversary following a round-
robin policy. First, rR is active (Fig. 6b). According to the
naive algorithm, rR must move toward the nearest castle, which
is the castle formed by WL and rL. The dashed lines on the
figure represent the boundaries of the Voronoi cells of each of
the three castles: {QFarL,QFarR,WL ∪{rL}}. Since rR is located
inside the Voronoi cell of castle WL ∪{rL}, it moves toward it.

Second, rL is active (Fig. 6c). Since rR has moved in the
previous step, WR is no longer the location of a castle. Now, rL
is located inside the Voronoi cell of QFarL and moves toward it.

Third, rR is active again (Fig. 6d). There are only two castles
left on the configuration, namely QFarL and QFarR. Since D >
δ , rR is located to the right of the midpoint between WL and
WR, which is also the midpoint between QFarL and QFarR. This
means that rR is in the Voronoi cell of QFarR and hence moves
toward it. But, because rR is at distance δ to WR, it ends its
movement exactly at WR, thus forming a castle again.

Fourth, rL is active and there are three castles (Fig. 6e).
By construction, WR is located at a distance at least 6D from
QFarL, and hence rL remains inside the Voronoi cell of the cas-
tle formed by WR and rR. rL is also at a distance δ from WL,
and hence ends its movement exactly at WL, forming a castle.
This leads back to the initial configuration (Fig. 6a), and thus
the cycle continues forever.

A.2 Disambiguation of Side Move for Algo-
rithm 5.2

Algorithm A.1 Disambiguation of side move (robot at p).
Procedure:

SIDEMOVE(p,q,Π) −→
set origin at q
let Πq ⊂ Π be all robots in Vcell(q) or on its boundary.
let rCW be the first robot clockwise in Πq starting from p.
let θCW be angle ∠pqrCW or π , whichever is smaller.
let θ+ be one third of θCW.
let vp be the intersection of qp and the boundary of Vcell(q).
let ray be the ray from q with clockwise angle θ+ from qp.
let Va be the intersection of ray with Vcell(q).
let Vb be the intersection of ray with the circumference of D.
let V ′ be Va or Vb, whichever is nearest q.
let vector ⃗target = dist(q,p)

dist(q,vp)
q⃗v′.

move toward point ⃗target.

Algorithm A.1 describes one method to disambiguate the
side move, and is illustrated in Figure 7. The lengths a and
b depend on the position of robot P on the ray from castle Q
relative to the boundary of the Voronoi cell of Q.

23

a

b

θ+

Q

P

Va

Vb

Vcell(q) : y=
mx+

a+
b

a′

b′P′

Figure 7: Disambiguated side move. a
a+b = a′

a′+b′ .

The construction uses a trisection of the sector S calculated
in the original side move. This ensures that a robot moving
from a different ray does not end up at the same location.

In addition, taking the minimum between points Va and Vb
ensures that the segment QV ′ lies entirely within the zone de-
sired for a side move. Since the zone is convex (intersection of
three convex areas), segment PV ′ lies entirely inside the zone.

α =
a

a+b
∈ (0;1] (1)

a′(α) = min

(
α2 cosθ+,

α
cosθ+− 1

m sinθ+

)
(2)

Since a′(α) is taken as the minimum of two functions that
are both monotonic increasing in α over the range considered,
a′(α) is itself monotonic increasing. It follows that, for two
values α1 and α2 with α1 ̸= α2, the segments from P(α) to
P′(α) do not cross.

24

