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Abstract

The explosive growth of published biomedical research provides scientists with the chance

to find correlations or associations between biomedical concepts from the literature. There-

fore, there is a growing demand to convert information in free text into more structural

forms. This demand motivates many researchers and scientists to work on relation ex-

traction, an information extraction task that aims to extract semantic relations between

important biomedical concepts. However, most of the previous studies on this topic have

focused on specific or predefined types of relations, which inherently limits the types of the

extracted relations. To overcome this limitation, we propose a relation extraction system

that attempts to locate all possible relations present in the input documents.

In building such a general relation extraction system, we face two challenges: (1) there

is no available tool that is trained on a gold standard corpus to recognize all named entities

while dictionary-based tools may generate many false positives; and (2) there is no available

annotated corpus for such a general schema of relations that can be used for training the

extraction model. Our proposed system relies on a dictionary-based named entity recognizer

and performs some post-processing to discard spurious entities. It then deals with the

second challenge by employing predicate-argument structure (PAS) patterns, which are well-

normalized forms that represent deep syntactic relations. In this dissertation, we introduce

six PAS patterns for binary relations. After matching the patterns to extract candidates

of relations, the system checks the semantic types according to a semantic network to find

true relations. Our manual evaluation on a set of 500 sentences randomly selected from

MEDLINE has shown a reasonable level of performance of the system (a pseudo F-score

of 55.89% on average) compared with other state-of-the-art systems, including ReVerb,

OLLIE and SemRep. Our system can detect broader types of relations but less precisely

than SemRep, a rule-based semantic interpreter for biomedical text. The evaluation in

another setting on pre-defined relations has also shown its wider coverage.

We then have applied our system to the entire MEDLINE corpus and produced more

than 137 million semantic relations. The extraction results are useful in their own right,

but they also provide us with a quantitative understanding of what kinds of semantic re-

lations are actually described in MEDLINE and can be ultimately extracted by (possibly
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type-specific) relation extraction systems. The entire collection of the extracted relations is

publicly available in machine-readable form, so that it can serve as a potential knowledge

base for high-level text-mining applications in the biomedical domain.

When using the extracted relations as an underlying database, the text-mining appli-

cations would meet the problem of spurious mismatches caused by the diversity of natural

language expressions. Therefore, the second task in our dissertation is to detect synonymy be-

tween relational phrases that represent the relations to alleviate the problem of mismatches.

Most of the previous work that has addressed this task uses similarity metrics between rela-

tional phrases based on textual strings or dependency paths, which, for the most part, ignore

the context around the relations. To overcome this shortcoming, we employ a word embed-

ding technique to encode relational phrases. We then apply the k-means algorithm on top

of the distributional representations to cluster the phrases. Our experimental results show

that this approach outperforms state-of-the-art statistical models including Latent Dirichlet

Allocation and Markov Logic Networks.

Keywords: relation extraction, open information extraction, predicate-argument structure,

relational phrase clustering, word embeddings.
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Chapter 1

Introduction

In this chapter, we first introduce the context of our research, which relates to biomedical text

mining–a general context of relation extraction. We then describe our research objectives:

detecting all possible relations between two biomedical concepts in a document, and synonym

resolution of relational phrases based on the output of our system on MEDLINE. Finally,

we briefly present the outline of this dissertation.

1.1 Relation Extraction from Biomedical Literature

Biomedical text mining, also known as biomedical natural language processing (BioNLP),

is a field of natural language processing that aims to develop methods for extracting useful

information from the literature in biomedical and biology domains. The goal of biomedical

text mining [26] is to provide researchers with efficient tools to search and visualize necessary

information, and uncover relationships between biomedical concepts described in the vast

amount of the documents. Not surprisingly, many biomedical text mining systems have

been developed, such as Chilibot [20], MEDIE [89, 101], EBIMed [111], Kleio [99], PathText

[58, 86], FACTA+ [144], BioCaster [28], and semantic MEDLINE [120].

Generally, a text mining task is divisible into six main subtasks including (1) sentence

segmentation, (2) tokenization, (3) part-of-speech tagging, (4) parsing, (5) named entity

recognition (NER), and (6) relation extraction. The final step of this pipeline–relation

extraction involves using the representation of the structure of the input produced in the

preceding steps to identify relations of the marked entities and recognize the types of these

relations. Most of the previous work on relation extraction from biomedical literature focuses

on specific or predefined types of relations, such as protein-protein interaction [155, 1, 87],

1



gene-protein relationship [20, 101], drug-drug interaction [127], and biomolecular events [98].

The types of relations that can be extracted by existing approaches are, therefore, inherently

limited.

Recently, an information extraction paradigm called Open Information Extraction (OIE)

has been introduced to overcome the above-mentioned limitation [8]. OIE systems (e.g.,

ReVerb [35] and OLLIE [73]) aim to extract all possible relations from Web text. Although

the concept of OIE is certainly appealing, our preliminary experiments have suggested that

these state-of-the-art systems do not perform well on biomedical text. This is partly because

biomedical literature usually uses sentences with more complex structures and specialized

vocabulary compared with Web text.

Altman et al. [4] suggested that biomedical text mining should address broader types

of entities beyond genes and proteins, and broader types of relations, including complex

relations. This suggestion and the observation that OIE systems do not perform well on

biomedical text have motivated us to develop a relation extraction that attempts to locate

all possible relations present in the literature.

We have built a system that uses Predicate-Argument Structure (PAS) patterns to detect

the candidates of possible biomedical relations. We decided to use PAS patterns because

they are well-normalized forms that represent deep syntactic relations. In other words,

multiple syntactic variations are reduced to a single PAS, thereby allowing us to cover many

kinds of expressions with a small number of PAS patterns. The system first applies a deep

syntactic parser to input sentences, and then matches its output to predefined PAS patterns

to detect relevant noun phrases (NPs). Named entities in these NPs are then detected; and

finally, relations between these entities are extracted. The output of our system is a set of

all semantic relations contained in the input.

There are two challenges for our system. Firstly, it has to recognize all types of named

entities, not only focus on specific ones. This NER task is really difficult since there is

no available annotated corpus for all kinds of entities. Therefore, we have to employ a

dictionary-based NER tool [6] in this step, which might generate many false positive entities

and affect the performance of the next step. The second challenge is that unlike most of

previous systems that perform their extraction models based on a specific ontology [28] or

a pre-defined structure of relations with gold standard corpora [1, 87, 98, 127], our system

solely relies on the textual content of documents to locate relations. This also explains for

the reason why we use PAS patterns.

Perhaps the most similar and relevant to our work is SemRep [119, 120] and the system

2



by Nebot and Berlanga [97] performed a similar task to our work. SemRep is a rule-based se-

mantic interpreter that extracts semantic relationships from free text. Their relationships are

represented as predications, a formal representation consisting of a predicate and arguments.

SemRep extracts 30 predicate types, mostly related to clinical medicine, substance interac-

tions, genetic etiology of disease and pharmacogenomics. Their predicates were created by

modifying 30 relation types of the UMLS Semantic Network1. The system by Nebot and

Berlanga [97] extracts explicit binary relations of the form <subject, predicate, object> from

CALBC initiative [110]. To detect candidate relations, they proposed seven simple lexico-

syntactic patterns. These patterns are expressed in part-of-speech tags in which relational

phrases reside between the two entities.

We have designed our system with a particular focus on recall, in regard to its extraction

performance. This is primarily because we wanted to extract all binary relations between

important biomedical concepts described in the whole MEDLINE. The use of PAS patterns

helped us to achieve relatively high recall (while keeping reasonable precision), because PAS

patterns effectively represent many lexico-syntactic patterns at an abstract level and thus

are robust to various syntactic transformations such as passivization, control constructions,

relative clauses, and their combinations, which are quite common in sentences expressing

biomedical relations.

We have then applied our system to the entire MEDLINE corpus, and produced more

than 137 million semantic relations. The extraction results are useful in their own right, but

they also provide us with a quantitative understanding of what kinds of semantic relations

are actually described in MEDLINE and can be ultimately extracted by (possibly type-

specific) relation extraction systems. The entire collection of the relations extracted from

MEDLINE can serve as a potential knowledge base for high-level text-mining applications

in the biomedical domain.

1.2 Synonym Resolution for Relational Phrases

Many of the robust text mining systems in the biomedical domain allow end-users to browse

and retrieve information from their databases [89, 111, 144]. Implementing such retrieval

functionality is usually straight-forward if the system is only concerned with a specific type

of information, such as protein-protein interaction and gene-disease association, since it is

essentially a database search problem. However, the problem becomes much more difficult

1http://semanticnetwork.nlm.nih.gov/
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when the system is designed to cover unrestricted types of relations, which requires the

relation in a query to be specified using a natural language expression, such as ‘be induced

by’ or ‘result in’. Such relational phrases expressed in natural language often cause spurious

mismatches between the user’s query and the textual data in the underlining database. For

example, given the input query “What genes are essential for cell survival?”, the system

can fail to return the result <stat1, be critical for, cell survival> due to the string-level

mismatch between be essential for and be critical for. In most situations, be essential for

is equivalent to be critical for, i.e., they form a pair of synonyms, which can be used for

alleviating the mismatch problem. Knowledge of synonymous phrases is therefore beneficial

in many biomedical text mining applications such as question answering, event extraction,

and entailment detection [117, 141].

Previous work that tackled the problem of identifying synonymy between relational

phrases employed similarity metrics based on textual strings [159] or dependency paths

[71, 83, 94] of the two relational phrases. Kok and Domingos [66] proposed a probabilistic

model based on two Markov logic networks (MLNs) [113] to simultaneously cluster objects

and relations. Nebot and Berlanga [97] used a probabilistic model inspired by statistical

machine translation to cluster relations in biomedical documents. These models are unsu-

pervised in the sense that no manual labeling of clusters by human is needed. One of the

major shortcomings of their approaches, however, is that they only focus on the textual sur-

face of arguments of a relation to estimate the synonymy probability and cannot effectively

capture other features, such as the context around the relations.

To address the above shortcoming, we apply the continuous bag-of-words (CBOW) model,

a deep-learning technique proposed by Mikolov et al. [80], to represent our relational phrases.

A relation in the format of <entity 1, relational phrase, entity 2> is identified in a sentence,

and each of the two entities and relational phrase is regarded as a newly defined word.

We thus treat the entities and the phrase differently from the other words depending on

their corresponding roles in the relation. The CBOW model then learns the distributional

representations of the relational phrases through a feed-forward neural network language

model [9], which allows us to capture the context around a relational phrase when learning

its representation.

Sun and Korhonen [135] also used the context around verbs for the task of verb classi-

fication by introducing a rich set of semantic features. The features include collocations of

verbs, prepositional preference, and lexical preference in subject, object and indirect object

relations. The key difference between their work and ours is that we cluster verbs and verb
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phrases that compose biomedical relations while they only focus on single verbs.

We have compared our approach with three unsupervised methods: bag-of-words (BOW),

latent Dirichlet allocation (LDA) [15], and Semantic Network Extractor (SNE) [66]. Regard-

ing BOW and LDA, we treat a relational phrase as a document (in LDA terms) and entities

that share the same phrase as words in the document. The BOW model represents each

relational phrase as a sparse vector of occurrence counts of entities. LDA-SP [122], which is

developed from LinkLDA [34] to model selectional preferences, simultaneously models two

sets of distributions for two entities of a relation. Each entity is drawn from a hidden topic.

LDA-SP assigns a higher probability to the state in which the two hidden topics are equal.

For each relational phrase, the model outputs a vector of the prior topic distribution. We

then apply the k-means algorithm on top of vector representations to cluster phrases into

synonymous groups.

SNE tackles the task of clustering relational phrases by a probabilistic model trained on

two MLNs. Unlike the other methods, SNE performs clustering on a database of relations,

i.e., it does not consider the context or the frequency of relations. However, SNE can

automatically identify the best number of clusters and simultaneously cluster objects and

relational phrases.

We have conducted experiments using a large set of biomedical relations extracted from

MEDLINE by our pattern-based open information extraction system presented above. The

results show that word embeddings significantly outperform BOW, LDA-SP and SNE. They

can boost the performance of clustering by more than 10% of F-score compared with the

other methods. In addition, we demonstrate how the obtained clusters of relational phrases

could be used to improve the performance of high-level text-mining applications such as

question answering and entailment detection.

1.3 Dissertation Outline

The remainder of this dissertation is organized as follows.

• Background (Chapter 2). This chapter first describes details about text mining.

Next, the background of biomedical text mining, including the two important tasks of

named entity recognition and relation extraction, and the available corpora available

in this field, are presented. Then, approaches of unsupervised biomedical relation

extraction and some notable systems are mentioned in this chapter. We also present

an overview of predicate-argument structures. Some related work and methods of
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synonym resolution for relational phrases are described in detail.

• Binary Relation Extraction for Biomedical Texts (Chapter 3). Details about

our pattern-based system, such as noun phrase pairs detection and named entity recog-

nition, are shown in this chapter. We then present the principles of manual evaluating

extracted relations. We also describe two types of our evaluation scenarios, which

is evaluating general and pre-defined relations. Comparison of our system and other

state-of-the-art ones are reported. The output of our system on the whole MEDLINE

corpus are also discussed in this chapter.

• Synonym Resolution for Relational Phrases (Chapter 4). This chapter de-

scribes three methods used for modeling the relations: bag-of-words, topic models,

and word embeddings. The original LDA-SP and our modified model, LDA-SP-sem,

are presented in detail. We also describe three ways of representing a relation when

using word embeddings. Finally, we report the experimental results and discuss the

usability of the obtained clusters in high-level text-mining applications.

• Conclusion and Future Work (Chapter 5). We give conclusions on our research

by clarifying its advantages and disadvantages. Based on the conclusions, we will

propose some future work.
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Chapter 2

Background

2.1 Text Mining

Text mining can be defined as a process that aims at extracting interesting and non-trivial

patterns or knowledge from unstructured textual data in document collections. There are

two points that distinguish text mining from data mining. First, as mentioned above, the

data source of text mining are unstructured textual data, while data mining assumes that the

data have already been in a structured format. Second, text mining systems involve natural

language processes to convert unstructured documents into more explicitly structured data,

which is not a concern in data mining systems.

Generally, a text mining system performs six main tasks as depicted in Figure 2.1. These

tasks are (1) sentence segmentation, (2) tokenization, (3) part-of-speech tagging, (4) parsing,

(5) named entity recognition (NER), and (6) relation extraction. The first four tasks are

general purpose natural language processing (NLP) tasks, while NER and relation extraction,

tasks of information extraction, are problem-dependent. In this section, we will present an

overview of the two tasks in the general domain.

2.1.1 Named Entity Recognition

Named entity recognition (NER) is to identify and classify all phrases which refer to entities,

mostly things in the real world, of specified semantic types. In general NER systems, some

common entities such as people, places, organizations, date and time [36] are detected as

illustrated in Figure 2.2. While specialized applications may be concerned with other types

of entities, e.g., percentage, monetary, products, works of art, genes, proteins and other

biological entities [6].
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Figure 2.1: An overview of text processing tasks.

[ORGANIZATION U.N] official [PERSON Ekeus] heads for [LOCATION New York].

Figure 2.2: Examples of NER in general domain.

A standard way to perform NER is assigning word-by-word tags that capture both the

boundary and the type of the named entities [56, 142]. For instance, named entities in Figure

2.2 can be represented by the B-I-O representation shown in Table 2.1. In this scheme, a B

label indicates the beginning word of an entity, an I represents the word inside the entity,

and an O indicates a word outside any entity. By using this scheme, NER is converted into

sequence labeling of words in a sentence. Next, we need to design a set of features to label

those words.

Nadeau and Sekine [95] classified common NER features into three categories: word-level

features, list lookup features and document and corpus features. Word-level features are

defined over the lexical terms composing an entities, e.g., the textual surface, part-of-speech,

the chunking tag, and the shape feature of a token as shown in Table 2.1. List lookup features

are extracted from publicly available resources, such as a list of place names – gazetteers,

dictionary of protein names, stop words, and typical words in organization names. Instead of

using available lists or dictionaries, we can perform clustering on a large data to group words

that have similar senses or meanings into clusters and use these clusters as lists to extract

features for NER. Document features are extracted from the content and the structure of

the document containing targeted entities. For instance, we can count the occurrences of a

word in uppercased and lowercased forms in a single document. We can also extract meta-

information from the document, such as the fact that news often start with a location name

or email headers are good indicators of person names.

Given a training set with the above-mentioned extracted features, we can train a classifier
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Table 2.1: Representing named entities by the B-I-O style with some word-level features.

Words
Features

Label
Text POS Chunking Shape

U.N u.n NNP B-NP upper B-ORG

official official NN I-NP lower O

Ekeus ekeus NNS I-NP cap B-PER

heads heads VBZ B-VP lower O

for for IN B-PP lower O

New new NNP B-NP cap B-LOC

York york NNP I-NP cap I-LOC

. . . O punc O

to label sequential words by using any supervised learning methods, e.g., Support Vector

Machines (SVMs) [125], Conditional Random Fields (CRFs) [74] and Hidden Markov Model

(HMM) [10].

To evaluate a NER system, we need a gold standard, a text data that is annotated by

human, and a metric that relates the gold standard and the system’s output. So far, there

are several metrics used at MUC, CoNLL and ACE conferences. In the named entity task of

MUC-7, a system is scored based on the correct type (TYPE) and the exact text (TEXT)

generated by the system [21]. An entity is counted as a correct TYPE if it is assigned the

correct semantic class regardless of its boundaries as long as there is an overlap with the

gold standard entity. An entity is counted as a correct TEXT if its boundaries are correct

regardless of the type. The precision is computed by the fraction of correct answers and the

number of entities that a system detects. The recall is computed by the fraction of correct

answers and the number of all entities in the gold standard. The final score is the harmonic

mean (F-score) of precision and recall. The highest performance of MUC-7 was an F-score

of 93.39% [79].

CoNLL used an exact-match evaluation, which is stricter than MUC-7. An entity is

counted as correct if its type and boundaries are exactly matching with the gold standard

entity. CoNLL also employed the same definition for the precision and recall as MUC-7. The

highest performance at CoNLL 2003 was about 92% F-score for PERSON and LOCATION

entities, and about 84% for ORGANIZATION [142].

The ACE score [33] is defined by the sum of the value for each system output entity
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[ORGANIZATION U.N] official [PERSON Ekeus] heads for [LOCATION New York].

Affiliation

Figure 2.3: Examples of relation extraction.

accumulated over all system output. The system output entity is calculated as:

V aluesys entity = Entity V alue(sys entity)×
∑
m

Mention V alue(sys mentionm), (2.1)

where Entity V alue and Mention V alue are functions1 that score entities or mentions based

on their matching to the gold standard.

Among the three metrics, the MUC and CoNLL are intuitive and easy to implement,

while the ACE is complex and may make the error analysis difficult.

2.1.2 Relation Extraction

The goal of relation extraction is to detect occurrences of a pre-specified type of relationship

between a pair of entities of given types, e.g., affiliation (persons to organizations), interac-

tions between genes/proteins, physiological process between proteins and cells. An example

of relation extraction based on the named entities from Figure 2.2 is shown in Figure 2.3.

The relation tells us that ‘Ekeus’ is an officer of the ‘U.N’ organization.

Approaches to relation extraction can be divided into two categories: supervised and

semi-supervised approaches.

The supervised methods require a gold standard, i.e., a small data that is annotated by

human analysts, to learn their model. A simple way is to divide relation extraction into two

subtasks: (1) detect whether there is a relationship between two entities, and (2) classify

the detected relation into pre-defined categories, e.g., affiliation, directional, and part-of

relations. The first subtask can be addressed by training a classifier to decide whether

a given pair of entities is true or false. The true pairs are extracted based on the gold

standard, while the false pairs can be generated from entities in the same sentence that

do not compose relations according to the annotated data. The second subtask can also

be implemented by training a classifier with multiple classes. Each class corresponds to a

category of relations.

Similarly to NER, after modeling the problem, the next step is to select suitable features

1More detail about these functions is available at http://www.itl.nist.gov/iad/mig/tests/ace/2004/doc/ace04-

evalplan-v7.pdf
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Table 2.2: Samples of features for the relation <U.N, Ekeus>.

Features of named entities

Entity 1 type ORG

Entity 1 head U.N

Entity 2 type PER

Entity 2 head Ekeus

Features from words

Word-distance between the two entities 1

Number of entities between the two entities 0

Syntactic features

Dependency-tree paths U.N ←nn Ekeus

Chunk base-phrase paths NP

for the classifiers. Jurafsky and Martin [56] categorized the common features into three

classes as follows:

• Features of named entities, such as headwords or types of the two entities

• Features from the words in the text, such as stemmed words, distance in words between

the two entities, and number of entities between the two entities

• Features from the syntactic structure, such as chunk base-phrase paths, dependency-

tree paths, and constituent-tree paths.

Samples of features for the relation <U.N, Ekeus> in Figure 2.3 are presented in Table 2.2.

After extracting features, we can train the classifiers by using conventional machine learning

methods, e.g., SVM [18, 46].

By using supervised methods, the system can achieve high precision and recall. However,

the annotated corpora are not available for all types of relations, and fully supervised methods

are not applicable to large-scale relations of Web texts. Another promising approach, called

semi-supervised, can create additional features or training data based on prior knowledge,

e.g., ground facts, and a large unlabeled data.

Sun et al. [134] employed word clusters as additional features for relation extraction.

They then proposed several statistical methods to select effective clusters, such as calculating

the clusters’ information gain or coverage to decide whether a cluster is appropriate feature or
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not. They used the English portion of the TDT5 corpora (LDC2006T18) as unlabeled data

for inducing word clusters. The experimental results on the benchmark ACE 2004 training

data showed that the approach outperformed the supervised relation extraction system by

Zhou et al. [46].

Another semi-supervised technique that has recently attracted many researchers in rela-

tion extraction is distant or weak supervision [53, 52, 84, 116]. This approach generates its

own training data by matching a set of facts from available knowledge-bases (e.g., YAGO

[133] and Freebase [17]) to large unlabeled texts. The distant supervision assumes that if two

entities participate in a relation, any sentences that contain the two entities might express

that relation [84]. For instance, suppose that r(e1, e2) = Founded(Jobs, Apple) is a ground

tuple in a knowledge-base and s = “Steve Jobs founded Apple, Inc.” is a sentence containing

synonyms for both e1 = Jobs and e2 = Apple, then s may be a natural language expression

of the fact that r(e1, e2) holds and could be a useful training example [52]. The generated

training data is then used to learn a relation extractor.

There are two separate methods to evaluating systems of relation extraction [56]. The

first method calculates both labeled and unlabeled recall, precision and F-score by exactly

matching the generated results with the gold standard. The labeled scores measure the

system’s ability to classify relations while the unlabeled ones focus on detected entities. The

second method computes the scores based on the extracted tuples rather than on the relation

mentions, i.e., it ignores the frequencies of a relation in the text.

2.2 Biomedical Text Mining

Biomedical text mining, also known as biomedical natural language processing (BioNLP), is

a narrow field of text mining that aims to develop methods for extracting useful information

from the literature in biomedical and biology domains. Therefore, biomedical text mining

also follows the same process as text mining. The only difference is that the process is applied

to biomedical documents, which requires us to make it suitable for the domain. This section

will describe more details about the difference in the two main tasks: biomedical NER and

relation extraction.

2.2.1 NER

Compared with general NER, there are some difficulties for biomedical NER as follows:
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• Long entity: An entity may be very long, e.g., ‘isolated peripheral blood mononuclear

cells’ and ‘oxidative-stress sensitive transcription factor’.

• Irregular name conventions: An entity may be written in various forms, such as

‘Geobacillus sp. strain T1’, ‘Geobacillus sp. T1’, and ‘Geobacillus Strain T1’. There

is no convention for presenting the short form of an entity; sometimes they are full

short form, but sometimes they are not. For instance, ‘B. cereus’ is a short form of the

bacteria ‘Bacillius cereus’; ‘M. TB.’ is a short form of ‘Mycobacterium tuberculosis’.

• Nested named entity: An entity contains another entity, e.g., the RNA entity ‘CIITA

mRNA’ includes the DNA entity ‘CIITA’.

Due to its importance to all further processing, NER is one of the most widely studied

tasks in biomedical text processing. The early NER systems in the field are typically rule-

based or lexicon-based [6, 39, 40, 41, 96, 121, 138]. MedLEE is a general natural language

processor for clinical texts, encoding and mapping terms to a controlled vocabulary [39]. GE-

NIES [40], adapted from MedLEE, identifies genes and proteins by using BLAST techniques,

specialized rules and external resources, including GeneBank and Swiss-Prot. EDGAR [121]

extracts information about drugs and genes relevant to cancer from the biomedical literature

based on their semantic and pragmatic analyses. The advantage of these systems is that they

do not need labeled data to be trained and they are applicable to large-scale texts.

After its releasing, the GENIA corpus [61] has been used for various supervised learning

models, including SVM [57, 85, 164], HMMs [163], and CRFs [76, 129, 161]. Those studies

converted NER to sequence labeling and employed the common NER features as mentioned

above to address non-nested entities. Nested entities were tackled by modeling the recog-

nition as a parsing problem [37] or by reducing the nested problem to one or more BIO

problems to make use of existing NER tools [3].

It should be noted that despite the availability of training corpora, the performance of

biomedical NER has not been as high as expected. The shared task of BioNLP/NLPBA

2004 used GENIA as dataset for training and evaluation [62], and the highest-performing

system only achieved 72.6% of F-score. In the first BioCreative challenge [51], gene mention

identification was the first subtask of task 1 and the highest F-score was about 83% [160].

In the BioCreative II, the F-score was improved to 87% [5], and even a combined system

assembled by the organizers achieved an F-score of only 90.66% [54].

Most of the previous work has focused on some specific semantic types, such as the

gene/protein names [64, 92, 129, 145, 160], gene/protein, cell line and cell type [57, 62, 161,
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164], drugs [121, 147], and chemicals [96, 147]. There are only a few studies that tackle a

general schema of biomedical entities, e.g., MetaMap[6] and CubNER [162]. MetaMap maps

biomedical text to UMLS Metathesaurus concepts. The system first performs lexical and

syntactic analysis (general NLP processes) on the input text, and then applies some matching

techniques to match the input words with Metathesaurus strings. Pratt and Yetisgen-Yildiz

[104] reported that MetaMap achieved a recall of 52.8% and a precision of 27.7% with

exact matching, and a recall of 93.3% and a precision of 55.2% with partial matching when

applying on 20 MEDLINE titles. CubNER [162] is an unsupervised biomedical NER that

has three main steps: (1) collecting seed terms from the UMLS Metathesaurus, (2) detecting

candidates of entities based on their own heuristic, and (3) calculating the similarity between

the candidates and the seed terms to classify the entities. The system achieved 53.1%, 52.2%,

53.9% and 39.5% F-score on the Pittsburgh, Beth, Partners and GENIA corpus, respectively.

2.2.2 Relation Extraction

Two series of shared tasks including BioCreative [51] and BioNLP shared tasks [60] have

significantly contributed to the progress of biomedical relation extraction. The BioCreative

tasks focused on protein-protein interaction (PPI), while the BioNLP shared tasks have

aimed at bio-molecular events.

A variety of different approaches have been proposed to solve PPI and bio-molecular

events. Airola et al. [1] constructed a kernel for learning from dependency graphs of sentences

to extract PPI. Miwa et al. [87] proposed a method that combined a bag-of-words kernel,

subset tree kernel and graph kernel to capture important information from given sentences

and applied it to PPI extraction. They achieved better performance than the Airola et al.’s

system. Björne et al. [12] represented the relationship between entities as a graph; each

node can be an entity or even an event. The semantic graph would be updated with more

nodes and edges by trigger and event detection. The graph was then post-processed by some

heuristics to generate the final semantic one, which represented for event extractions. Their

system achieved the highest performance at the BioNLP shared task 2009. The author, then,

extended their system [13] to generalized biomedical domains by using an SVM classifier at

the post-processing step instead of heuristics.

Riedel et al. [114] applied Markov Logic Networks (MLNs) to extract the event and

achieved the best results for negation and speculation events. The highest-performing system

in the 2013 shared task was TEES-2.1 [14], which achieved an F-score of about 55% for the

CG task. The system represents both binary relations and events with a unified graph and
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approaches event extraction task as a mutli-class classification task (SVMmulticlass). Liu et

al. [152] and Roller et al. [123] also employed mutli-class classification for their systems.

Other methods such as domain adaptation [88, 115] and dual composition [115] were also

applied to this task.

The above approaches require gold standard corpora (i.e. manually annotated corpora)

for their training step. It is therefore difficult to apply the learned models to other tasks

or to scale them to environments of large documents. Pattern-based methods can tackle

this limitation [42, 109, 118, 153]. Rinaldi et al. [118] introduced three levels of patterns to

detect relations. The first level is syntactic patterns; the second one is semantic rule, which

normalizes many possible syntactic variants (e.g. active, passive, nominalizations). On the

third level they combined semantic rules with lexical and ontological constraints to obtain

specialized queries that can detect a domain-specific relation.

RelEx [42] extracted protein-gene interactions by using three crafted rules. Their rules

were constructed based on the dependency parse tree of a sentence. The system then filtered

out candidates of relations by performing some post-processes including negation check,

effector-effectee detection, enumeration resolution and restriction to a set of relation terms.

RelEx was applied to about 1 million MEDLINE abstracts, and extracted about 150,000

relations with an estimated performance of both 80% precision and 80% recall. Recently,

Xu et al. [153] proposed a pattern-learning approach to extract treatment-specific drug-

disease. They first identified drug-disease pairs according to drug and disease lexicons from

the UMLS Metathesaurus and DrugBank. They then learned patterns of treatment based

on some initial extracted ones. Their system finally detected 34,305 unique drug-disease

treatment pairs from the whole MEDLINE. Though these pattern-based approaches can be

implemented without a labeled corpus, they are designed to a specific type of relations,

not to a wide range of types. In order to address this limitation, we will propose a set of

patterns that covers a wide range of relation types. More related work to this approach will

be presented in the following sections.

2.2.3 Available Resources and Corpora

A variety of biomedical resources and corpora have been published and made available to

the research community. In this section, we will introduce some notable ones that are often

used in BioNLP.
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MEDLINE/PubMed

MEDLINE/PubMed is a primary source for input documents in BioNLP. It is a collection

of documents but it is not static since it grows every year. MEDLINE is a bibliographic

database containing citations and author abstracts from more than 5,600 biomedical journals.

Currently, MEDLINE contains over 21 million references generally from 1946 to the present2.

One MEDLINE citation represents one journal paper and includes some fields, such as title,

authors, and abstract. PubMed3 is a search engine providing access to the MEDLINE

database. PubMed indexes each MEDLINE citation and assigns a PubMed Unique Identifier

(PMID) to it.

So far, there are many text mining systems applied to the whole MEDLINE, such as

MEDIE [89], Björne et al. [11], MedScan [29], AliBaba [102], and SemMedDB [59].

The Unified Medical Language System

The Unified Medical Language System4 (UMLS) is a large set of lexical resources that inte-

grates key terminology in the clinical domain. The UMLS provides three knowledge sources:

the UMLS Metathesaurus, the Semantic Network and SPECIALIST Lexicon and Lexical

Tools. The UMLS Metathesaurus is a dictionary of terms from many vocabularies. Cur-

rently, the 2014AA version contains more than 2.9 million concepts and 11.6 million unique

concept names from over 150 source vocabularies. The Semantic Network is a hierarchy

of 54 semantic relations between 133 semantic types. The semantic types in the Semantic

Network are consistent with categories of all concepts in the UMLS Metathesaurus. SPE-

CIALIST Lexicon and Lexical Tools is a set of NLP tools that support lexical variation and

text analysis tasks in the biomedical domain.

The Open Biomedical Ontologies

The Gene Ontology (GO)5 is one of the first open ontologies in the field. The GO pro-

vides a controlled vocabulary of terms representing gene product properties. It covers three

domains: (1) cellular component describes locations of sub-cellular structures and macro-

molecular complexes; (2) molecular function describes activities such as binding activities

at the molecular level; and (3) biological process, a recognized series of events or molecular

2http://www.nlm.nih.gov/pubs/factsheets/medline.html
3http://www.ncbi.nlm.nih.gov/pubmed
4http://www.nlm.nih.gov/research/umls/
5http://www.geneontology.org/
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functions.

Other ontologies for phenotype, biochemistry and anatomy structured similarly to GO

can be found at the Open Biomedical Ontologies website: http://www.obofoundry.org/.

The BioLexicon

The BioLexicon6 is a lexical resource that combines terminologies of several public data

resources such as UniProtKb7, ChEBI8 and NCBI taxonomy9. The resource [141] contains

over 2.2 million of both domain-specific and general lexicon entries with information of four

part-of-speech (POS) categories (nouns, verbs, adjectives and adverbs), and over 1.8 million

terminological variants, as well as over 3.3 million semantic relations with over 2 million

synonymy relations.

Applications of BioLexicon to lemmatisation of biomedical text, information retrieval,

and information extraction were reported in Thompson et al. [141].

DrugBank

The DrugBank database [69] is a unique bioinformatics and cheminformatics resource that

combines detailed drug (i.e. chemical, pharmacological and pharmaceutical) data with com-

prehensive drug target (i.e. sequence, structure, and pathway) information. The database

contains 7,681 drug entries including 1,545 FDA-approved small molecule drugs, 155 FDA-

approved biotech (protein/peptide) drugs, 89 nutraceuticals and over 6,000 experimental

drugs. Additionally, 4,218 non-redundant protein (i.e. drug target, enzyme, transporter, or

carrier) sequences are linked to these drug entries. Each DrugCard entry contains more than

200 data fields with half of the information being devoted to drug/chemical data and the

other half devoted to drug target or protein data.

GENIA

The GENIA corpus [61] is an annotated corpus for molecular biology. The corpus consists

of 2,000 MEDLINE abstracts with more than 400,000 words. It is fully annotated with both

linguistic and semantic markups, including sentence boundaries, token boundaries, POS

tags, and named entities of 47 biologically categories. Part of the corpus were annotated

6http://www.ebi.ac.uk/Rebholz-srv/BioLexicon/biolexicon.html
7http://www.uniprot.org/
8http://www.ebi.ac.uk/chebi/
9http://www.ncbi.nlm.nih.gov/taxonomy
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with syntactic trees, coreference resolution and biomolecular events, which have been used

in the BioNLP shared task.

The GENIA corpus has been demonstrated to be the most heavily used corpus in the

BioNLP community, as described in Section 2.1.1 and Section 2.1.2.

Five Protein-Protein Interaction Corpora

In biomedical relation extraction, protein-protein interaction (PPI) has been the most widely

studied relation because of its important role in biological processes. There are five commonly

used corpora of this relation type, including AIMed, BioInfer, HPRD50, IEPA and LLL.

AIMed10 was created from 200 PubMed abstracts containing PPI and 30 abstracts with no

PPI. BioInfer11 consists of about 1,100 sentences from PubMed abstracts that contain at least

one pair of interacting proteins. HPRD5012 consists of 50 abstracts referenced by the Human

Protein Reference Database (HPRD). The IEPA corpus [32] was constructed from about 300

PubMed abstracts, each abstract contains at least two biochemical nouns. The LLL13 corpus,

consisting of only 55 sentences, was the shared dataset for the Learning Language in Logic

2005 challenge. The domain of LLL is gene interactions of Bacillus subtilis.

All the five corpora contain annotation of identifying genes or proteins. Among them,

only LLL and BioInfer contain information on the types of the entities, such as ‘individual

protein’ and ‘protein complex’. Moreover, these two corpora also distinguish the types of

PPI, e.g., ‘positive action binding’ and ‘positive action cross-link’ in BioInfer, and ‘explicit

action’ and ‘Binding to Promoter’ in LLL, while the others only label interactions. Pyysalo

et al. [105] provided a software tool necessary to convert those corpora into a shared XML-

based format.

2.3 Open Information Extraction

Open Information Extraction (Open IE) has become prevalent over traditional relation ex-

traction methods, especially on the Web. The idea of Open IE is to avoid the need for

specific training examples and to extract a diverse types of relations. More details about

Open IE systems for Web text and for biomedical domain will be presented in this section.

10ftp://ftp.cs.utexas.edu/pub/mooney/bio-data/
11http://mars.cs.utu.fi/BioInfer/
12http://www2.bio.ifi.lmu.de/publications/RelEx/
13http://genome.jouy.inra.fr/texte/LLLchallenge/
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2.3.1 General Domain

Banko et al. [8] introduced Open IE as a novel information extraction paradigm that fa-

cilitates domain independent discovery of relations extracted from text and readily scales

to the diversity and size of the Web corpus. An Open IE system extracts tuples consist-

ing of argument phrases (arg1, arg2) from the input sentence and a relational phrase (rel)

that expresses the relation between arguments, in the format of (arg1; rel; arg2). Open IE

systems that have been developed up to now include TextRunner [8], StatSnowBall [165],

WOE [151], ReVerb [35], and OLLIE [73].

TextRunner [8] consists of three modules, including Learner, Extractor and Assessor.

The Learner first applies a parser to sentences of its own training data to detect candidate

tuples (ei, ri,j, ej), in which ei, ej are base noun phrases. It then assigns each tuple as true

or false based on some syntactic constraints. Finally, a Naive Bayes classifier was learned

on these extracted tuples. The Extractor extracts candidate tuples from input sentences by

using some heuristics and sends the tuples to the classifier, if the tuple is validated as true,

it would be passed to the Assessor. Finally, the Assessor assigns a probability to the tuple.

TextRunner was applied to a corpus consisting of over 9,000,000 Web pages and has shown

the ability of extracting a broader set of facts.

The WOE systems [151] also approached Open IE in the same way as TextRunner.

However, they made use of Wikipedia as a source of training data for their extractors, which

led to further improvement over TextRunner. In addition to traditional relation extraction,

StatSnowBall [165] also addressed Open IE on Web text. They used the discriminative

MLNs [103] to learn the weights of their generated patterns and applies some softened hand

rules to assign the weights.

Fader et al. [35] proposed ReVerb to overcome two shortcomings in Open IE systems:

incoherent extractions and uninformative extractions. ReVerb introduced a syntactic con-

straint to validate incoherent extracted relations, and a lexical constraint to avoid overly-

specific relation phrases. Their system achieved an area under the curve that is 30% higher

than WOE or TextRunner.

Since ReVerb focuses on relations mediated by verbs (verb, verb + preposition, verb

+ noun + preposition), OLLIE [73] is proposed to extract other relations mediated via

nouns and adjectives. First, it uses a set of high precision seed tuples from ReVerb to

bootstrap a large training set. Second, it learns open pattern temples over this training set.

Next, OLLIE applies these pattern templates at extraction time. Both ReVerb and OLLIE

assign a confidence value to each extracted triple, instead of simply classifying them as true
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or false.

TreeKernel, a more general method than the above systems was presented by Xu et al.

[154]. They employ multiple SVM models with dependency tree kernels for their two tasks:

determining if a sentence potentially contains a relation between two entities and confirming

explicit relation words for those entities. The shortest path between the two entities along

with the shortest path between relational words and an entity are considered as a candidate

tree path and input to a tree kernel. They finally used kernel-based SVMs to classify a

relation triple as true or false.

Recently, Mesquita et al. [78] proposed Exemplar to identify both binary and n-ary

relations. Exemplar employed six patterns based on dependency trees to extract n-ary

relations. Their experimental results implicated substantial gains over both binary and n-

ary relation extraction tasks compared with ReVerb, OLLIE and TreeKernel.

2.3.2 Biomedical Domain

SemRep [119, 120], a rule-based semantic interpreter, extracts semantic relationships from

biomedical text. Their relationships are represented as predications, a representation consist-

ing of a predicate and two arguments. SemRep extracts 30 predicate types, mostly related to

clinical medicine, substance interactions, genetic etiology of disease and pharmacogenomics.

SemRep relies on ‘indicator’ rules which map verbs and nominalizations to predicates in

the Semantic Network, such as TREATS, AFFECTS and LOCATION OF. For example,

an indicator rule says that the nominalization treatment must be mapped to the predicate

TREATS. SemRep also enforces domain restrictions by using meta-rules that require all

semantic relations to be present in the Semantic Network. For instance, a pair of semantic

types that matches to the predicate TREATS is ‘Pharmacologic Substance’ and ‘Disease

Syndrome’. Therefore, the arguments associated with treatment for example, must have

been mapped to the Metathesaurus concepts with the semantic types of ‘Pharmacologic

Substance’ and ‘Disease Syndrome’. Consequently, for each type of relations, SemRep has

to refine the corresponding ‘indicator’ rules and meta-rules based on the the UMLS Semantic

Network. Regarding this point, our patterns are more general than SemRep, since they are

tailored to capture deep syntactic relations and not restricted to any specific set of verbs.

Rosemblat et al. [124] have recently extended SemRep’s coverage to the field of medical

informatics. They adapted ontology engineering processes to build a semantic representation

of an unsupported domain, and then integrated it with the UMLS Metathesaurus so that

SemRep can be applied to the new domain. They conducted some experiments to compare
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Table 2.3: Lexico-syntactic patterns by Nebot and Berlanga [97].

Pattern Examples

[E] verb [E] [levamisole] activates [macrophrages]

[E] verb phrase [E] [PAF] consistently inhibited [killer cell]

[E] verb phrase + prep [E] [polysaccharide] was treated with [periodate]

[E] prep + noun + prep [E] [cytostatic drugs] in combination with [OK-432]

[E] to + infinitive [E] [fibroblasts] to produce [growth factor(s)]

[E] neg-verb-phrase [E] [haptens] does not inactivate [B lymphocytes]

[E] to be [E] [Strongyloidiasis] is an [intestinal disease]

SemRep and the enhanced SemRep, their results have shown that the enhanced version

performed better than SemRep in terms of precision.

McIntosh et al. [77] presented a bootstrapping system that does not use manually-crafted

seeds of tuple or pattern. The system first identifies the terms in the target categories by

using some hand-picked seed terms. Next, their relation discovery module automatically

finds the relation and their seeds based on some heuristics and sends the terms back to

the term recognition module. Their system was applied to MEDLINE abstracts to extract

relations between 10 categories of entities and achieved high precision, the highest one was

87.9%.

The system by Nebot and Berlanga [97] extracts explicit binary relations of the form

<subject, predicate, object> from CALBC [110] initiative. To detect candidate relations, they

proposed seven simple lexico-syntactic patterns as shown in Table 2.3. These patterns are

expressed in part-of-speech tags in which relational phrases reside between the two entities.

By contrast, our PAS patterns do not restrict the order of relational phrases and arguments in

sentences. This means that our system can detect more relations than Nebot and Berlanga’s

system.

2.4 Predicate-Argument Structures

A relation is described in a sentence by a composition of a predicate and its arguments,

which forms Predicate-Argument Structure (PAS). A predicate that indicates a particular

type of relation can be a verb, a phrase or a preposition. Figure 2.4 shows an example of a

PAS in a sentence. In this example, ‘activates’ is a predicate and ‘LPS’ and ‘macrophages’
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Figure 2.4: An example of predicate-argument structures.

are its two arguments, in which ‘LPS’ is the subject and ‘macrophages’ is the object. The

verb ‘activate’ indicates the relationship of interaction between the two arguments. In this

work, six PAS patterns that we propose focus on verb and preposition predicates.

Using PASs has been a practical approach to domain-independent information extraction.

Gildea and Palmer [43] and Surdeanu et al. [136] built systems that automatically identified

PAS on the output of a full parser by using machine learning methods. Some annotated

corpora of PAS frames such as PropBank [63], VerbNet [65], and FrameNet [7] were employed

in their learning models. These detected PASs were then applied to extract information in

general domains.

In the biomedical domain, Tateisi et al. [139] introduced a corpus annotated with PAS

in verbs including their normalized forms on research abstracts. PASBio [150] and BioProp

[22] are PAS frames for the biomedical domain based on PropBank. PASBio was applied to

the LSAT system [130] to extract alternative transcripts from the same gene. BioProp was

used to train the BIOSMILE system [143], a system that performs semantic role labeling on

biomedical verbs. However, these two resources are not general enough for the domain since

both of them are restricted to a limited number of verbs. More specifically, BioProp contains

2,382 predicates for 30 biomedical verbs; and PASBio has only 30 predicates14 for 30 verbs

describing molecular events15. In this dissertation, we propose six simple PAS patterns that

are expected to cover both BioProp’s and PASBio’s two-argument frames.

Instead of using hand-written patterns, Yakushiji et al. [156] automatically constructed

their PAS patterns based on the obtained syntactic structures. They then enhanced their

system [155] by dividing the patterns into combination patterns and fragmental patterns,

and learning a SVM prediction model based on the pattern matching results and scores.

The best performance of their system was an F-score of 57.3%. However, their system was

applied to PPI only since it was trained on the AIMed corpus.

Subcategorization frames (SCFs) [117] are similar to PASs. However, compared with

PASBio and BioProp, SCFs are more general in the sense that their arguments are not

restricted to a specific type but built from phrase types. For instance, a PAS for the verb

14https://sites.google.com/site/nhcollier/projects/pasbio/all-predicates
15The 30 biomedical verbs of BioProp are different from the 30 verbs of PASBio.
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‘mutate’ in PASBio is:

Arg1: physical location where mutation happen //exon, itron//

Arg2: mutated entity //gene//

Arg3: change at molecular level

Arg4: change at phenotype level

While SCFs for the verb ‘decrease’ are NP (the verb has one argument that is a noun phrase,

NP-PP (the verb has two arguments: a noun phrase and a prepositional phrase) and PP-PP

(two arguments are both prepositional phrases). Those frames are less restrictive than the

PAS frames.

In this dissertation, our proposed PAS patterns are more general than SCFs since our

patterns are not restricted to any specific verbs and accept all verbal forms.

2.5 Synonym Resolution for Relational Phrases

The task of finding synonyms for extracted relations is usually known as synonym resolution,

or paraphrase discovery. Several unsupervised systems for this task have focused on using

similarity-based, corpus-based and probabilistic techniques.

2.5.1 Similarity-based Methods

The DIRT system [71] uses a similarity measure based on mutual information statistics to

identify inference rules between relation phrases. The authors assumed that if two depen-

dency paths tend to link the same sets of words, their meanings are similar. In their context,

a path represents a binary relationship, from each pair of similar path, an inference rule is

generated. To compute the path similarity using their assumption, they collected frequency

counts of all paths and slot fillers for the paths in a corpus. Each slot filler is considered as

the path’s features. For instance, they calculated the similarity between “X finds a solution

to Y” and “X solves Y” based on the instances of the slots X and Y, with an assumption

that if the two paths tend to occur in similar contexts, i.e., the same instances of X and Y,

the meanings of the paths tend to be similar.

Min et al. [83] employed the same approach as DIRT to discover paraphrases in WEBRE.

However, there are two differences in their work. First, they measured the similarity between

two relational phrases instead of between two dependency paths. Second, features of the

relational phrases were ordered pairs of instances of the two slots X and Y while DIRT did

not consider the order of the instances. Their empirical tests showed that WEBRE could
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produce likely paraphrases but DIRT could detect general inference rules.

Hasegawa et al. [48] also employed a similarity metric in their method. The method first

calculates the cosine similarity among pairs of named entities based on the context words

present between the two entities. They then used a hierarchical clustering technique to

cluster those pairs. Resolver’s [159] uses the same method but the similarity is computed

based on a formal probabilistic model.

2.5.2 Corpus-based Methods

Sekine [128] proposed an unsupervised method to discover paraphrases from a large unlabeled

corpus, without using any seed phrase. They first extracted Named Entity (NE) pairs from

the corpus and found keywords for each NE pair. The top-ranked word based on the TF/IDF

metric was selected as the keyword of a pair. Finally, all phrases that have the same keyword

are clustered in the same group. If the same pair of NE is used in different groups, those

groups will be linked together. They conducted experiments on newswire corpora; depending

on the evaluated domain, the accuracy of paraphrasing was from 73% to 99%.

Davidov and Rappoport [31] presented another unsupervised method to find groups of

relation patterns. As a first step, a set of hook words, i.e., words whose frequency is not higher

than FC and not lower than FB, are selected. For each hook word, a hook corpus is created

by extracting a set of contexts that contain the hook word. Those corpora are then filtered

based on their general patterns and some heuristics. The resulting corpora are considered as

pattern clusters. They then merge those clusters by their own clustering algorithm. Their

evaluation has shown a similarity between their clusters and human notions.

2.5.3 Probabilistic Methods

Nebot and Berlanga [97] employed a statistical model for their clustering algorithm. The

algorithm takes the candidate relations <s1, rs, s2> and calculates the synonymy probability

of two relation strings (r1, r2) based on the semantic types (Td, Tr) of the head entities of s1

and s2. The joint probability, inspired by a statistical translation method, can be estimated

as follows:

p(r1 ∼ r2|(Td, Tr)) ∝
∑

(e1,e2)∈(Td,Tr)

p(r1|(e1, e2)) · p(r2|(e1, e2)) · p((e1, e2)) (2.2)

Finally, to check whether two relation strings are being used properly under the given context,

they compared their distributions across all pairs of semantic types (Td, Tr) by using the
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Kullback-Leibler divergence.

Based on the output of TextRunner [8], Kok and Domingos [66] built a Semantic Network

Extractor (SNE) to detect groups of entities and relational phrases of relations. Their model,

which is enhanced by two Markov Logic Networks (MLN), can simultaneously cluster both

entities and phrases. The model learns the log-posterior of each cluster assignment Γ as

shown in Equation 2.3, in which R is the set of relations, K is the set of cluster combinations,

and tk and fk are the empirical numbers of true and false atom in a cluster combination k,

respectively.

logP (Γ|R) =
∑
k∈K

[
tk log

(
tk + α

tk + fk + α + β

)
+ fk log

(
fk + β

tk + fk + α + β

)
− λmcc + µd+ C

]
(2.3)

Other parameters in Equation 2.3 present the following meanings:

• α + β: They are smoothing parameters used to estimate the MAP (maximum a pos-

teriori) weight of an instance of the atom prediction rule.

• λ: A weight corresponds to the number of cluster combinations (mcc) being formed.

• µ: A weight accompany with the number of pairs of symbols that belong to different

clusters (d).

Yao et al. [158] addressed the problem of polysemy by disambiguating the sense of each

cluster and using hierarchical agglomerative clustering to group them into semantic relations.

To cluster the entity pairs of a single relation pattern into senses they employed a topic model

that is modified based on latent Dirichlet allocation (LDA). In their model (Sense-LDA),

they defined a path as a list of entity pairs co-occurring with the path in their tuples. The

topic distribution of each path is drawn from a set of features, including entity names, words

between and around two entities, document theme and sentence theme. Their experimental

results showed that the approach discovered more accurate clusters than other baselines.

These above-mentioned models are unsupervised in the sense that no manual labeling of

clusters by human is needed. One of the major shortcomings of their approaches, however,

is that they only focus on the textual surface of arguments of a relation to estimate the

synonymy probability and cannot effectively capture other features, such as the context

around the relations. In this dissertation, we propose a representation for relational phrases

that can capture both of the textual surface property and the context around them.
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Figure 2.5: Graphical model representation of LDA. The boxes are plates representing repli-

cates. The arrows indicate the conditional dependencies between two variables.

2.6 Latent Dirichlet Allocation

2.6.1 Formal Definition

Latent Dirichlet Allocation (LDA) is a generative model that provides full generative proba-

bilistic semantics for documents [15]. Documents are modeled via a hidden Dirichlet random

variable that specifies a probability distribution on a low-dimensional topic space. The dis-

tribution over words of an unseen document is a continuous mixture over document space

and a discrete mixture over all possible topics.

Blei et al. [15] assumed that there are T underlying latent topics according to which

documents are generated, and that each topic is represented as a multinomial distribution

over |W | words in the vocabulary. A document is generated by sampling a mixture of these

topics and then sampling words from that mixture. The graphical model representation of

LDA [15] is shown in Figure 2.5, in which, wi is a word in a document, a topic zi ∈ {1, ..., T}
is drawn from a Multi(θ) distribution p(zi = j|θ) = θj, θd is sampled from a Dirichlet

(α1, ..., αT ) distribution. The probability of the i word in a given document is calculated as

follows [45]:

P (wi) =
T∑

j=1

P (wi|zi = j)P (zi = j) (2.4)

We can represent P (w|z) with a set of T multinomial distributions φ over the W words, such

that P (w|z = j) = φ
(j)
w .

Formally, LDA generates each word in the documents as follows [122]:

for each topic t = 1 . . . T do

Generate φt according to symmetric Dirichlet distribution Dir(β).

end for

for each document d = 1 . . . D do

Generate θd according to Dirichlet distribution Dir(α).
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for each word i = 1 . . .W do

Generate zd,i from Multinomial(θd).

Generate the word wd,i from multinomial φzd,i .

end for

end for

2.6.2 Gibbs Sampling for LDA

To estimate the parameters φ and θ, Griffiths and Steyvers [45] considered the posterior

distribution over the assignments of words to topics, P (z|w). The complete probability

model is

wi|zi, φ(zi) ∼ Discrete(φ(zi))

φ ∼ Dirichlet(β)

zi|θ(di) ∼ Discrete(θ(di))

θ ∼ Dirichlet(α)

in which α and β are assumed to be single values. Because P (w, z) = P (w|z)P (z) and

φ and θ only appear in the first and second terms, respectively, we can perform integrals

separately. When integrating out φ for the first term, we have

P (w|z) =

(
Γ(Wβ)

Γ(β)W

)T T∏
j=1

∏
w Γ(n

(w)
j + β)

Γ(n
(.)
j +Wβ)

, (2.5)

in which n
(w)
j is the number of times word w has been assigned to topic j, and Γ(.) is the

standard gamma function. Similarly, integrating θ for the second term, the result is

P (z) =

(
Γ(Tα)

Γ(α)T

)D D∏
d=1

∏
j Γ(n

(d)
j + α)

Γ(n.
(d) + Tα)

, (2.6)

The goal is to estimate the posterior distribution

P (z|w) =
P (w, z)∑
z P (w, z)

(2.7)

However, we cannot directly compute this distribution because the sum in the denominator

does not factorize and involves TW terms. To tackle the problem, Griffiths and Steyvers

used Gibbs sampling, where the next state is reached by sequentially sampling all variables

from their distribution when conditioned on the current values of all other variables and data
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[45]. To apply Gibbs sampling, it is necessary to calculate the full conditional distribution

P (zi|z−i,w). Based on Equations 2.5 and 2.6, this distribution can be estimated as:

P (zi = j|z−i,w) ∝
n
(wi)
−i,j + β

n
(.)
−i,j +Wβ

n
(di)
−i,j + α

n
(di)
−i,. + Tα

, (2.8)

where n
(.)
−i is a count that exclude the current assignment of zi. Equation 2.8 can be inter-

preted as the probability distribution approximates the probability of wi under topic j (the

first ratio) multiplied by the probability of topic j in the document di (the second ratio).

Having the full conditional distribution, the Gibbs sampler can be implemented as follows.

First, the zi variables are initialized to values in {1, 2, . . . T}. Then, by using Equation 2.8,

we assign words to topics with counts that are computed from the subset of the words which

have been seen so far rather than the full data. We run this step for a number of iterations;

in each iteration a new state is found by sampling zi. After enough iterations, the current

values of zi are recorded.

For any single sample, we can estimate φ and θ by

φ̂
(w)
j =

n
(w)
j + β

n
(.)
j +Wβ

(2.9)

θ̂
(w)
j =

n
(d)
j + α

n(d)
. + Tα

(2.10)

2.6.3 Applications

LDA is widely used in many NLP applications, e.g., relation extraction [70, 149, 157]. Yao

et al. [157] proposed Rel-LDA and Type-LDA models for modeling tuples. In the Rel-LDA

model, a set of relation tuples is considered as a document. Each relation tuple is represented

by a set of its features, and the feature is generated independently from a hidden variable.

The output of this model is a clustering of observed relation tuples. In order to capture

the relationship between two arguments in a relation, they extended the Rel-LDA model to

the Type-LDA model. In this model, in addition to a set of features as Rel-LDA, a relation

is presented by two hidden entities types of the two arguments. These hidden types are

drawn independently from the hidden relation. Each type is presented by a set of entity

level features. Other extend versions of LDA have also been proposed to tackle relation

extraction, e.g., ERD-MedLDA [70] and BioLDA [149].

LDA has been applied to selectional preference discovery [122, 126]. Ritter et al. [122]

presented Lda-sp, which ultilizes the LinkLDA model [34], to extract inference rules be-

tween relation phrases. The model tries to capture the information about the pair of topics
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of the two arguments in a relation. In this model, each relation phrase is treated as a docu-

ment and two sets of entities that share the same relation phrase are treated as words in the

document. The experimental results on three different tasks (pseudo-disambiguation, selec-

tional preferences for inference rules, and class-based selectional preferences) have shown the

effectiveness of the model.

Séaghdha [126] also applied LDA models to selectional preferences. They proposed two

models, namely ROOTH-LDA and DUAL-LDA, for this task. Unlike Lda-sp that models

predicates with two arguments, in this study, they focused on predicates that take only

a single argument, including verb-object, noun-noun and adjective-noun. ROOTH-LDA

models the joint probability of co-occurring of a predicate and an argument, while DUAL-

LDA models the classes of predicates and arguments separately. The two models performed

competitively on identifying semantic classes on text corpus.

Other applications of topic models are sense disambiguation (Sense-LDA [158]), unsuper-

vised coreference resolution [47], summarization [30], document alignment and segmentation

[19].

2.7 Distributed Word Representations

2.7.1 Neural Network Language Model

Bengio et al. [9] proposed a neural network language model (NNLM) that can learn dis-

tributed representations for words based on their neighboring context. Given a sequence of

w1w2...wT of words, wt ∈ V and V is the vocabulary of the training data, the objective of the

model is to maximize a function f(wt, ..., wt−n+1) = P̂ (wt|wt−1
1 ). The function is decomposed

into two parts:

• A mapping C from any element i of V to a real vector C(i) ∈ Rm, where C is a matrix

of |V | ×m and shared across all the words in the context.

• A function g that maps the input sequence (C(wt−n+1), ..., C(wt−1)) to conditional

probability distributions of P (wt = i|C(wt−n+1), ..., C(wt−1)).

As illustrated in Figure 2.6, the function g is implemented by a feed-forward neural

network that consists of four layers: one projection layer, two hidden layers and one output

layer. At the projection layer, each word in the input sequence is represented by a column

in the matrix C. The column is indexed by the position of the word in the vocabulary. The

concatenation or sum of the vectors is used as input word features x for the hidden layers.
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Figure 2.6: Neural architecture: f(i, wt−1, ..., wt−n+1) = g(i, C(wt−1), ..., C(Wt−n+1)), where

g is the neural network and C(i) is the i-the word feature vector. [9]

Among the two hidden layers, there is an optional layer that directly connects from the

projection to the output layer. The other layer, namely the ordinary hyperbolic tangent

hidden layer, calculates unnormalized log-probabilities for each input word i as follows:

y = b+Wx+ U tanh(d+Hx), (2.11)

where b,W,U, d and H are parameters that trained by using stochastic gradient ascent on

the neural network.

Finally, the output layer computes the conditional probability through a softmax func-

tion:

P̂ (wt|wt−1, ..., wt−n+1) =
eywt∑
i e

yi
(2.12)

Interestingly, by using word distributed representations, the similarity of word can be

computed by algebraic operations, e.g., C(‘King’) - C(‘Man’) + C(‘Woman’) is close to the

vector of the word ‘Queen’ [80].

2.7.2 Hierarchical Softmax

Performing the normalization as shown in Equation 2.12 requires huge computation on the

whole vocabulary V . To reduce the computational cost, hierarchical softmax is proposed
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[91, 93].

The hierarchical softmax represents the output layers by a binary tree whose leaf nodes

correspond to the V words and inner nodes include the relative probabilities of their child

nodes. This setup replaces one V -way choice by a sequence of O(log V ) binary choice [91].

As a result, when we traverse from the root to the target word, we perform a sequence of

O(log V ) local binary normalizations.

The concrete formula of the hierarchical softmax is defined by Mikolov et al. [82] as

follows. Let n(w, j) be the j-th node on the path from the root to w, and let L(w) be the

length of the path, so n(w, 1) = root and n(w,L(w)) = w. For any inner node n, let ch(n)

be an arbitrary fixed child of n and let JxK be 1 if x is true and -1 otherwise. Then the

hierarchical softmax is computed as:

p(w|wI) =

L(w)−1∏
j=1

σ
(
Jn(w, j + 1) = ch(n(w, j))K · v′n(w,j)

>vwI

)
(2.13)

where σ(x) = 1/(1 + exp(−x)), vwI
is the vector representation of the context around the

word w, and v′n(w,j) is the vector representation of the jth ancestor. Since σ(x) +σ(−x) = 1,

it is easy to verify that
∑V

w=1 p(w|wI) = 1.

The structure of the tree used by the hierarchical softmax affects considerably the training

speed. Mnih and Hinton [91] proposed some methods for automatically constructing the tree

structure and showed the effects on both of the training time and the accuracy of the model.

Mikolov et al. [82] used a binary Huffman tree because the tree assigns short codes to the

frequent words, which results in fast training.

2.7.3 Applications

Recently, distributed representations have been shown to effectively improve the performance

of many NLP tasks.

Socher et al. [131] proposed unsupervised recursive autoencoders (RAE) to address

the task of paraphrase detection. Given a list of word vectors produced by a NNLM, the

autoencoders learn feature vectors for phrases in syntactic trees. They then compute a

similarity matrix of two sentences based on the feature vectors. A softmax classifier is finally

used to decide whether the two sentences are paraphrase or not. The experimental results

showed that the autoencoders achieved state-of-the-art performance compared to previous

approaches.

The authors then modified the autoencoders so that it can jointly learn phrase represen-

tations, phrase structure and sentiment distributions [132]. In order to predict a sentence-
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or phrase-level target distribution, they extended RAE to semi-supervised setting by adding

a supervised softmax layer on top of nonterminal nodes. The model then used L-BFGS to

learn its parameters. They evaluated the model on standard datasets and the results showed

that RAE outperformed competitive baselines.

Pyysalo et al. [107] reported that using word representations are beneficial for entity

mention tagging in the biomedical domain. They first employed the Skip-gram model [82] to

learn word vectors on all PubMed Central Open Access (PMC OA) texts. Next, they clus-

tered the words to 1000 groups by using the k-means algorithm. Features for the supervised

entity tagging were derived from the word clusters. Their evaluation on three biomedical

corpora including the BioCreative II Gene Mention task, the Anatomical Entity Mention,

and the NCBI Disease, revealed that their approach surpassed previous methods in two out

of the three corpora.

Word representations have also been applied to machine translation. Out-Of-Vocabulary

(OOV) is one of the most difficult problems of classical Statistical Machine Translation

(SMT). However, Mikolov et al. [81] found that it is possible to tackle the problem by using

distributed representations of words and phrases. The key idea behind their method is that

when we represent words by using vector format, words that share the same concept in two

different languages can have similar geometric arrangements in both spaces. Hence, we can

learn an accurate linear mapping, namely a rotation and scaling, from one space to another.

By using the linear mapping, the model can infer missing words based on other words in

the vocabulary. The results on translating English to Spain indicated that the model could

achieve a very high Precision@5 metric (around 90%).

Zou et al. [166] applied word representations to phrase-based SMT in another way.

Given two sets of word representations in two languages and their alignment, they defined a

new objective function that embodies both monolingual semantics and bilingual translation

equivalence. As a result, the proposed neural model can learn bilingual semantic embedding

for words across the two languages. The bilingual embeddings were then applied to a phrase-

based SMT system and the experimental results showed that the model improved a BLEU

score of 0.48 on NIST08 Chinese-English task.

Other applications of word representations are semantic relation classification [49], word

alignment [137], and information retrieval [55].
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Chapter 3

Binary Relation Extraction for

Biomedical Texts

We have built a system, hereafter called PASMED, to extract binary relations from biomed-

ical literature. The system uses a set of PAS patterns to detect candidates of semantic

relations. First, Mogura [72], a high-speed version of the Enju parser [90], is employed to

extract NP pairs that satisfy predefined PAS patterns from sentences. Next, named entities

in the NP pairs are identified by MetaMap [6]. Because MetaMap uses string matching to

map biomedical texts to the concepts in the UMLS Metathesaurus [16], its output contains

many spurious entities. In order to remove false positives, we conduct post-processing us-

ing information on parts-of-speech and frequencies of entities. Finally, a relation between

two entities is extracted if and only if the pair of semantic types is included in the UMLS

Semantic Network1. An illustration of the working flow of our system is shown in Figure 3.1.

3.1 Predicate-Argument Structure Patterns

Since we attempt to extract unrestricted types of relations, there are no labeled corpora

suitable for learning an extraction model. We therefore took a practical approach of creating

PAS-based extraction patterns manually by observing actual linguistic expressions. We

decided to use PASs in this work primarily because PASs are a viable formalism for building

shallow semantic representations of biomedical verbs [27]. As a result of recent advances in

parsing technology, there are now publicly available deep parsers that can output PASs and

are both scalable and accurate. The Enju parser is one of those parsers and has shown to

1The Unified Medical Language System Semantic Network (http://semanticnetwork.nlm.nih.gov/)

33



Figure 3.1: The working flow of our system.

be one of the most accurate syntactic parsers for biomedical documents [90].

3.1.1 Crafting Patterns

In order to find appropriate PAS patterns, we have first observed textual expressions that

represent biomedical relations in the GENIA corpus [61] and found that those relations

are usually expressed with verbs and prepositions. Examples of those are EntityA {affect,

cause, express, inhibit ...} EntityB and EntityA {arise, happen, ...} {in, at, on ...} Location.

Based on these observations, we create patterns that consist of three elements: (1) NP1

containing EntityA, (2) NP2 containing EntityB and (3) a verbal or prepositional predicate

that has the two NPs as arguments. Our patterns in predicate-argument form and their

corresponding examples are presented in Table 3.1. It should be noted that no sentences

in the GENIA corpus, which we examined for developing these patterns, were used in the

evaluation experiments described in Section 3.3.

Pattern 1 and 2 capture expressions of transitive verbs in active and passive voices re-

spectively. Their relevant NP pairs consist of subjects and objects of the verbs. Pattern 3

deals with verbal structures in which transitive verbs modify a noun phrase to describe spe-

cific actions, e.g., ‘play a role’ and ‘produce changes’. Pattern 4 is used for linking verbs. A

linking verb modifies an adjective. Hence, if a noun phrase related to the adjective is found,

the phrase and the subject of the verb form a relevant NP pair. To deal with intransitive

verbs, we use Pattern 5. An intransitive verb has no direct object, but it can be modified by

a prepositional phrase to describe in detail about the action. In this case, the prepositional

phrase and the subject of the verb constitute a relevant NP pair. The final pattern (Pattern
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Table 3.1: Our PAS patterns focus on verb and preposition predicates. An arrow going from

a to b means that a modifies b, where a is called a predicate, and b is called an argument.

<NP1, NP2> is a relevant NP pair in each pattern.

No. PAS Patterns Examples

1 NP1 ← Verb→ NP2 protein RepA(cop) ← affects → a single amino acid

2 NP1 ← Verb→ by + NP2 Diabetes ← induced → by streptozotocin injection

3 NP1 ← Verb→ NP ′ Endothelin-1 (ET-1) ← had → a strong effect
↑

Prep.→ NP2

↑
in → all trabeculae

4 NP1 ← Link.Verb→ ADJP EPO receptor ← be → present
↑

Prep.→ NP2

↑
in→ epithelial cells

5 NP1 ← Verb← Prep.→ NP2 Apoptosis ← involved ← in → CD4 T lymphocytes

6 NP1 ← Prep.→ NP2 vitronectin ← in → the connective tissue

6) is used for prepositions, which would capture localization and whole-part relations.

It should be noted that although the first three patterns for transitive verbs seem to

overlap each other, they do capture different instances. When we map Enju’s output to

these patterns, if the input contains a transitive verb, it can only satisfy one pattern.

The elements NP1 and NP2 in each pattern shown in Table 3.1 are considered as can-

didates of our relation extraction step. For instance, the resulting candidate from the first

example is (protein RepA(cop), a single amino acid), and so on for the other ones.

In order to estimate the coverage of our patterns, we applied them to three protein-

protein interaction (PPI) corpora (AIMed, BioInfer and LLL [1, 106]), two drug-drug in-

teraction (DDI) corpora (MedLine and DrugBank [127]), and the GENIA corpus [61]. We

then checked if the entities in the annotated relations are included in the NP pairs of our

patterns. For instance, according to the AIMed corpus, there is a PPI between ‘IFN-gamma’

and ‘IFN-alpha’ in the sentence “Levels of IFN-gamma is slightly increased following IFN-

alpha treatment”. This PPI is covered by Pattern 2, in which NP1 is ‘Levels of IFN-gamma’

and NP2 is ‘IFN-alpha treatment’.

The results in Table 3.2 show that the patterns cover over 80% of the entities in the

GENIA events and PPIs of the LLL corpus sufficiently. This is somewhat expected since

our PAS patterns are created based on the observations on the GENIA corpus and the LLL

corpus contains only 50 sentences. However, for the other cases, our patterns only cover a

small portion, e.g., 46% relations of the BioInfer, and 53% of the AIMed. Relations that our

patterns miss can be categorized into two groups: (1) nominal relations, e.g., ‘CD30/CD30L

interaction’, and (2) relations that need other information, such as coreference resolution,
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Table 3.2: Expected recall of our PAS patterns on various corpora.

PPI DDI
GENIA

AIMed BioInfer LLL MedLine DrugBank

53% 46% 82% 64% 62% 80%

to be inferred. These kinds of relations are hard to identify by only using a pattern-based

approach and are left for future work.

3.1.2 Matching Patterns

Based on the Mogura’s output format, we encoded our PAS patterns by using data structures

as follows:

structure PASPattern structure PASComp

{ {
string pred type; string pred type;

PASComp ∗comp; PASComp arg1, arg2;

}; };

To extract candidates of relations, we input the PAS of each sentence (by the Mogura

parser) to our matching algorithm shown in Algorithm 1. The algorithm receives the PAS

of a sentence and our PAS patterns as input, and outputs a set of tuples containing two

noun phrases and a relation phrase. This is an exhaustive search algorithm that traverses all

words in a sentence and match them with the patterns. If there is a word whose predicate

type is identical to that of a PAS pattern, the algorithm will match the word’s argument

with the first component of the pattern to detect the first noun phrase. Then it will match

other components of the pattern with other words until it finds the second noun phrase and

the relation phrase, or there is no word or component left.

The complexity of this searching algorithm is O(n) in the best case when there is no

word satisfying the predicate type of the PAS patterns. The complexity in the worst case is

O(n2) when the algorithm has to traverse (n− 1) other words to find np2.

3.2 Extracting Semantic Relations

After obtaining NP pairs by matching sentences to the patterns, our system relies on

MetaMap for named entity recognition and post-processing identified relations by check-
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Algorithm 1 The brute-force algorithm to match our PAS patterns.
Input:

PAS of a sentence with n words, W = {w1, w2, ..., wn}
PAS patterns, Patt = {pa1, pa2, pa3, pa4, pa5, pa6}

Output: tuples T = {< np11, rp1, np12 >, ..., < npm1, rpm, npm2 >}

1: for each wi ∈ W do

2: for each paj ∈ Patt do

3: if predicate type of wi equals to paj.pred type then

4: if predicate type of argument 1 of wi equals to paj.comp[0].pred type then

5: np1 := argument 1 of wi

6: else

7: continue

8: rp := wi

9: for each w−i ∈ W do

10: find np2 and update rp by matching w−i with paj.comp

11: insert < np1, rp, np2 > to T

12: return T

ing semantic types in the UMLS Semantic Network.

3.2.1 Named Entity Recognition

Named entity recognition (NER) is an important text processing step that needs to be

performed before relation extraction. Most of previous machine-learning NER tools have

focused on detecting gene/protein names [64], gene/protein, cell line and cell type [62],

drugs and chemicals [147]. Those tools perform well with the targeted entities but it is not

easy to extend them to other types of entities. Moreover, they only locate entities in text

and do not offer other information such as global identifiers (IDs) of the recognized entities,

which will be useful for linking them with information stored in biomedical databases. In

this work, we use MetaMap [6], a dictionary-based tool that maps biomedical texts to the

concepts in the UMLS Metathesaurus [16].

The Metathesaurus is a large database that contains biomedical and clinical concepts from

over 100 disparate terminology sources. In order to integrate them into a single resource,

a unique and permanent concept identifier (CUI) is assigned to synonymous concepts or
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Figure 3.2: A hierarchical structure of MMO.

meanings2. For instance, the Metathesaurus maps the two strings of ‘Chronic Obstructive

Lung Disease’ from Medical Subject Headings (MSH) and ‘COLD’ from National Cancer

Institute thesaurus (NCI) to a concept whose CUI is ‘C0009264’. By using MetaMap, we

can obtain the CUI and the source names of an entity. Although MetaMap does not perform

as well as machine-learning tools in terms of recognition accuracy, it meets our requirement

of detecting every entity in texts and outputs the Metathesaurus concept unique identifier

(CUI), i.e., a global ID for each entity.

Reading MetaMap’s Output

MetaMap delivers its output for the whole MEDLINE3 in the form of MetaMap Machine

Output (MMO)4. MMO consists of five main kinds of objects as shown in Figure 3.2. These

objects are always placed in a fixed order.

Among the five objects, we focus on the chunked input texts, namely utterance objects, to

extract information about detected entities. More specifically, we extract the list of mappings

in each utterance. Each mapping is presented by a negative score and an ev structure with

twelve fields: the score of the candidate mapping, CUI, the matched string, the preferred

name of the concept, the lowercased words, the semantic types of the concept, the matched

mapping, the head of the matched phrase, the overmatch field, the list of unique sources

in which the concept appears, the position of the matched phrase, and the status of the

concept. A list of mappings of the phrase ‘Eye’ is presented in Table 3.3.

It should be noted that for each identified entity, there are occasionally more than one

mapping. In such cases, we select the mapping that has the highest score. When all mappings

have the same score, we choose the first one. For instance, there are two mappings for the

phrase ‘Eye’ in the example in Table 3.3, the first mapping will be selected. The obtained

2http://www.ncbi.nlm.nih.gov/books/NBK9676/
3http://mbr.nlm.nih.gov/Download/MetaMapped Medline/2012/
4http://metamap.nlm.nih.gov/Docs/2012 MMO.pdf
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Table 3.3: An example of MetaMap Machine Output with the utterance object.

utterance(‘16691646.ti.1’,“Statement of Cases of Gonorrhoeal and Purulent Ophthalmia

treated in the Desmarres (U. S. Army) Eye and Ear Hospital, Chicago, Illinois with

Special Report of Treatment Employed.”,156/191,[228,303]).

...

phrase(‘Eye’,[head([lexmatch([eye]),inputmatch([‘Eye’]),tag(noun),tokens([eye])])],

258/3,[]).

mappings([

map(-1000,[ev(-1000,‘C0015392’,‘Eye’,‘Eye’,[eye],[bpoc],[[[1,1],[1,1],0]],yes,no,[‘COSTAR’,

‘FMA’,‘HL7V2.5’,‘LCH’,‘LNC’,‘MSH’,‘MTH’,‘NCI’,‘SNM’,‘SNOMEDCT’,‘UWDA’,

‘AOD’,‘CHV’,‘CSP’,‘ICPC’,‘OMIM’,‘SNMI’,‘ICF-CY’,‘ICF’],[258/3],0)]),

map(-1000,[ev(-1000,‘C1280202’,‘Eye’,‘Entire eye’,[eye],[bpoc],[[[1,1],[1,1],0]],yes,no,

[‘MTH’,‘SNOMEDCT’],[258/3],0)])

]).

...

‘EOU’.

mapping can be interpreted as ‘Eye’ is an entity that has a concept identifier of ‘C0015392’,

a semantic type of ‘Body Part, Organ, or Organ Component’ (bpoc); this entity appears in

many resources, e.g., MeSH (‘MSH’) and Online Mendelian Inheritance in Man (‘OMIM’);

and its position in the original text is 258 with a length of 3 characters.

Post-processing Entities

Since MetaMap uses string matching techniques to identify entities, it generates many false

positive entities. We apply two post-process steps to remove these entities from MetaMap’s

output. In the first step, we remove all entities that are verbs, adjectives, prepositions or

numbers because we are only interested in noun or noun phrase entities. The second step is

used to avoid common noun entities, e.g., ‘study’, ‘result’ and ‘relative’. We first construct

a dictionary of named entities based on MetaMap’s results of the whole MEDLINE and

remove highly frequent entities from it. This dictionary is then used to check the validity of

named entities.

To evaluate the effectiveness of these post-processing steps, we conducted a small set of

experiments using several annotated corpora. We employed MetaMap to detect proteins in
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Table 3.4: Performance of our post-processing on proteins and drugs detection. These scores

were generated by using the CoNLL 2000 evaluation script.

Protein Acc. Pre. Re. F. (%)

MetaMap 58.10 15.72 63.21 25.18

After filtering 88.93 55.77 47.61 51.37

Drug

MetaMap 62.61 20.86 79.51 33.04

After filtering 93.96 83.26 62.47 71.38

AIMed, BioInfer and LLL [1, 106], and drugs in the SemEval-2013 task 9 corpus [127]. We

then post-processed these outputs and compared them with labeled entities to evaluate the

performance of our post-processing. The scores in Table 3.4 show that our filtering improved

the F-scores significantly for both proteins and drugs, resulting in F-scores of 51.37% on

proteins and 71.38% on drugs. This performance is comparable to that of CubNER, an

unsupervised NER tool for biomedical text [162].

Moreover, our statistical results on the whole MEDLINE show that the post-processes

filtered about 70.83% entities out of the MetaMap output. This filtering helps our system

avoid extracting irrelevant relations.

3.2.2 Relation Extraction

We obtain named entities in candidates of NP pairs after our post-processes. Next, each

entity in NP1 is coupled with every entity in NP2 to create a candidate of semantic relation.

It should be noted that separate entities inside a noun phrase are not considered to constitute

a relation. Let us denote by <NP1, NP2> a relevant NP pair, by e1i (i = 1, 2, ...) entities

in NP1, and by e2j (j = 1, 2, ...) entities in NP2. Every pair of entities <e1i, e2j> can

compose a candidate of semantic relation. However, this process may create many spurious

relations. Therefore, we use the UMLS Semantic Network as a constraint of extracting

semantic relations to improve the precision of our system.

The Semantic Network consists of (1) a set of 133 semantic types that provides a con-

sistent categorization of all concepts represented in the UMLS Metathesaurus, and (2) a set

of semantic relations that exists between semantic types. Therefore, to determine a correct

relation we need to know the right semantic type of each entity. Although MetaMap involves
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Table 3.5: Frequency of semantic types of methyl violet and hydrochloride in MEDLINE.

Entity Semantic Type Count

methyl violet

Indicator, Reagent, or Diagnostic Aid 170

Pharmacologic Substance 170

Organic Chemical 170

hydrochloride

Inorganic Chemical 13265

Pharmacologic Substance 13259

Amino Acid, Peptide or Protein 6

Immunologic Factor 6

Organic Chemical 5

Element, Ion, or Isotope 4

Antibiotic 2

Classification 2

Quantitative Concept 2

Indicator, Reagent, or Diagnostic Aid 1

a word sense disambiguation process [6], it usually assigns multiple semantic types to a single

entity. For instance, in the above example, MetaMap assigns ‘Indicator, Reagent, or Diag-

nostic Aid’ (irda) to intercalators; ‘Indicator, Reagent, or Diagnostic Aid’ (irda), ‘Organic

Chemical’ (orch) and ‘Pharmacologic Substance’ (phsu) to methyl violet; and ‘Inorganic

Chemical’ (inch) and ‘Pharmacologic Substance’ (phsu) to hydrochloride. In order to choose

one semantic type for each entity, we calculate the frequency of each pair of entity-semantic

type in the whole MEDLINE and assign the highest frequency semantic type to the entity.

Table 3.5 shows the entity-semantic type pairs of methyl violet and hydrochloride. Our sys-

tem assigns Indicator, Reagent, or Diagnostic Aid to methyl violet, and Organic Chemical to

hydrochloride because those semantic types have higher frequencies than the others.

As mentioned above, the Semantic Network provides a relation ontology that consists

of a set of relations between semantic types, such as relations between ‘Gene or Genome’

and ‘Enzyme’, or ‘Hormone’ and ‘Disease or Symptom’. Let us denote by <s1, s2> the

pair of semantic types of <e1i, e2j>. If and only if <s1, s2> exists in this relation ontology,

<e1i, e2j> can constitute a relation. For example, we obtained a candidate pair of (Diabetes,

streptozotocin injection) from the second row in Table 3.1. The MetaMap’s output of this

pair is <Diabetes, streptozotocin> and its corresponding pair of semantic types is <Disease
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or Symptom, Antibiotics>. According to the Semantic Network, there are relations between

these two semantic types, such as ‘affected by’, ‘treated by’ and ‘prevented by’. Therefore,

<Diabetes, streptozotocin> can constitute a semantic relation in our system.

3.3 Experiments and Results

We have conducted two series of experiments to evaluate the performance of our system on

general and pre-defined relations. Regarding general relations, we have created a test set

of 500 sentences by randomly selecting from MEDLINE and manually evaluated the output

of our system according to our criteria presented below. By setting this evaluation, we

attempt to estimate the performance of PASMED from a perspective of open-domain relation

extraction from MEDLINE. While with pre-defined relations, we automatically evaluated our

system on protein-protein and drug-drug interactions by using gold standard corpora. In

both series, we have compared our system with other state-of-the-art systems.

3.3.1 Criteria of Manual Evaluation

In this work, an extracted relation is a biomedical binary relation composed by two biomed-

ical entities and it usually represents some association or effect between the entities. To

evaluate these relations, we have defined evaluation criteria for entities and relations.

Evaluating Entities: An entity is correct if and only if (1) it is a noun or a base noun

phrase (a unit noun phrase that does not include other noun phrases), and (2) its content

words represent the complete meaning within the sentence containing it. The first condition

is set up in this criterion because MetaMap can only detect entities that are nouns or base

noun phrases. The second one is to guarantee the meaning of the annotated entities. For

example, Figure 3.3(a) shows a relation between two entities ‘Laminin’ and ‘membrane’. In

this case, the entity ‘Laminin’ is correct, but the entity ‘membrane’ is not. The reason is

that ‘membrane’ does not reflect the full meaning intended in this sentence; the right entity

should be ‘basal membrane’.

Evaluating Relations: A correct relation must satisfy the following two conditions:

• The two entities composing the relation must be correct according to the above-

mentioned criterion.
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(a)Laminin was located in the zone of the basal membrane .

(b)For the quantitative investigation, 2 parameters were selected: a) the mean nucleolar
area of the Sertoli cells ; and b) the mean thickness of the tubular basal lamina .

(c)Apoptosis is involved in elimination of CD4 T lymphocytes .

Figure 3.3: Examples of biomedical binary relations. (a) The relation is not correct because

of one incorrect entity. (b) The relation is not correct because the relationship between the

two entities is not represented explicitly by any semantic clue. (c) The relation is correct

because it satisfies our two criteria of manually evaluation.

• The relationship between two entities in a correct relation must be described explicitly

by some linguistic expression.

Any relations that break one of the above conditions are considered to be incorrect. For

example, the extracted relation in Figure 3.3(c) is correct since it meets our criteria, while

the extracted relations in (a) and (b) are not. The relation in (a) does not meet the first

criterion since the entity ‘membrane’ is not correct. The relation in (b) does not meet the

second criterion because this sentence only lists two selected parameters that are related to

‘Sertoli cells’ and ‘tubular basal lamina’, and no relationship between these two entities is

mentioned. More details about our evaluation guideline can be seen in Appendix A.

3.3.2 Results of General Relations

For the purpose of evaluation, we have created our original test set from MEDLINE since

there is no labeled corpora for evaluating the various types of relations targeted in this thesis.

This test set was created by randomly selecting 500 sentences from MEDLINE. Our system

was given this set as input, and returned a set of binary relations as output. For comparison,

we conducted experiments using two state-of-the-art Open IE systems for general domains,

namely, ReVerb [35] and OLLIE [73]. We employed these two systems to extract relevant

NP pairs in place of our PAS patterns. The other processes were applied in exactly the same

way as our system. We also compared our system with the latest version of SemRep5 on the

test set.

Two annotators were involved in evaluating general relations. The two annotators have

different backgrounds. Annotator A has a PhD in biology, majoring in genetics. Annotator

B has a master degree of computer science, majoring in natural language processing; he is

5http://semrep.nlm.nih.gov/
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Figure 3.4: The number of true relations of the four systems on our test set according to

the agreement of the two annotators. The mean numbers are 40.5, 77.5, 216, and 370.5,

respectively. PASMED achieved the highest ones in all cases.

also a bachelor of medical biotechnology. The annotators were required to strictly follow

our criteria when evaluating the outputs of the four systems: ReVerb, OLLIE, SemRep and

PASMED. Both Annotator A and B were blind to the identity of the systems, i.e., they do

not know which output was produced by which system.

Both ReVerb and OLLIE assign a confidence value to each extracted triple instead

of simply classifying them as true or false. In our experiments, this value was used as the

threshold for extracting relations. We selected the values generating the best harmonic mean

of precision and the number of true positives in our experiments, which turned out to be 0.7

for both systems. On our test set, ReVerb, OLLIE, SemRep and PASMED extracted 77,

164, 346, and 781 relations, respectively.

Figure 3.4 shows the numbers of true relations output by the four systems according to

the two annotators. PASMED identified the highest number of true relations than the other

systems. Specifically, the number of true relations extracted by PASMED was 71% higher

than that of SemRep, which was the second best among the four systems. It should be noted

that we can decrease the thresholds of ReVerb and OLLIE to increase their recalls. However,

even when the thresholds were 0.3, their numbers of true positive relations were much lower

than that of PASMED, which were about 52 and 103 on average, respectively.

In order to estimate the recall of these systems, we used relative recall defined by Clarke
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Table 3.6: Evaluation results of the four systems according to the two annotators. SemRep

achieves the highest precision, PASMED achieves the highest relative recall.

System
Annotator A Annotator B Mean

Pre. Re. F. Pre. Re. F. Pre. Re. F.

ReVerb 44.15 6.75 11.72 61.04 9.34 16.20 52.59 8.05 13.96

OLLIE 40.85 13.32 20.10 53.65 17.49 26.38 47.25 15.41 23.24

SemRep 59.37 40.95 48.47 65.13 38.83 48.65 62.25 39.89 48.56

PASMED 43.27 67.19 52.65 51.50 69.24 59.13 47.39 68.22 55.89

and Willett [25]. Let a, b, c and d denote the true relations of ReVerb, OLLIE, SemRep and

PASMED respectively. We created a pool of gold-standard relations by merging a, b, c, d

and removing duplicates. Let r denote the number of relations in the pool (a, b, c, d < r ≤
a+ b+ c+ d), the recall of ReVerb is calculated as a/r and similarly for the other systems.

We reported all scores of the four systems in Table 3.6. The higher recalls of PASMED in the

table are in large part explained by the fact that the system has no restriction in predicate

types, thereby accepting diverse biomedical relations. SemRep achieves a better precision

score than PASMED by restricting the predicate types with its ontology but misses many

relations due to the constraint. These results will be analyzed in more detail in the next

section.

A significance test on the F-scores of SemRep and PASMED was conducted by using

approximate randomization [100]. We performed 1000 shuffles on the output of SemRep and

PASMED and the approximate p-values according to the two annotators A and B are 0.35

and 0.02, respectively. These p-values indicate that with a rejection level of 0.05, there is a

chance that the difference between SemRep and PASMED is statistically significant, which

can be interpreted as the overall performance of PASMED is better than SemRep.

We have also calculated the Inter-Annotator Agreement (IAA) in each system by using

κ statistics adapted to multiple coders [38]. We reports the values and their scales according

to Landis and Koch (1977) [68] and Green (1997) [44] in Table 3.7. The IAA scales indicate

that the evaluation results are reliable enough.

3.3.3 Error Analysis

We have listed the numbers of PASMED’s false positive relations caused by different types

of errors in Table 3.8. On average, our system generated 410.5 false positive relations;

45



Table 3.7: The inter-annotator agreement scores of the four systems and their corresponding

scale according to two different standards.

IAA
ReVerb OLLIE SemRep PASMED

0.664 0.598 0.680 0.741

Landis and Koch (1977) Substantial Moderate Substantial Substantial

Green (1997) Good Good Good Good

Table 3.8: Numbers of false positive PASMED’s relations according to the two annotators.

We have classified them into three types of errors: C1–false positives caused by incorrect

entity extraction (criterion 1), C2–false positives caused by not presented explicitly by lin-

guistic expressions (criterion 2), and Both–false positives due to both C1 and C2.

C1 C2 Both Total

Annotator A 257 120 66 443

Annotator B 311 50 17 378

Mean
284 85 41.5 410.5

69.18% 20.71% 10.11%

among them (1) about 69.18% of them (284 false positive ones) are due to incorrect entitiy

extraction (criterion 1), (2) 20.71% of false positive ones are not presented explicitly by

linguistic expression (criterion 2) and (3) 10.11% break both criteria. The reason for the

first case is that MetaMap occasionally fails to capture named entities with multiple tokens

like the example in Figure 3.3(a).

The second case is caused by parser errors and our greedy extraction. For instance, with

this input:

Laminin was located in the zone of the basal membrane, whereas tenascin was mainly found in

the mucosal vessels.

The system detected a NP pair as follows

NP1: [Laminin]

NP2: the zone of the basal [membrane], whereas [tenascin] was mainly found in the mucosal

[vessels]

Based on the NP pair, the system returned three relations: r1 (Laminin, membrane), r2

(Laminin, tenascin), and r3 (Laminin, vessels). Among them, r2 and r3 break both evaluation
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conditions. In this example, the parser failed to detect the second NP of the pair; the correct

one should be ‘the zone of the basal membrane’, not including ‘whereas’ clause. Then, from

this incorrect pair, our greedy extraction generated r2 and r3 since we assume that every

pair of entities in a NP pair constitutes a relation; even using the Semantic Network could

not help in this case.

As reported in the previous section, PASMED extracted many more relations than the

other three systems. In the case of ReVerb and OLLIE, the main reason for their low

performance is that these systems failed to capture NP pairs in many sentences. More

specifically, ReVerb and OLLIE could not extract NP pairs from 150 sentences and 95

sentences respectively; our system could not extract pairs only from 14 sentences. Given the

input sentence:

Total protein, lactate dehydrogenase (LDH), xanthine oxidase (XO), tumor necrosis factor

(TNF), and interleukin 1 (IL-1) were measured in bronchoalveolar lavage fluid (BALF).

ReVerb and OLLIE could not extract any tuples, while our system generated a NP pair of

NP1: [Total protein], [lactate dehydrogenase] (LDH), [xanthine oxidase] (XO),

[tumor necrosis factor] (TNF), and [interleukin 1] (IL-1)

NP2: [bronchoalveolar lavage fluid] (BALF)

and returned five correct relations between ‘bronchoalveolar lavage fluid’ and five entities in

NP1. In the case of SemRep, the main reason why it detected fewer relations than PASMED

is that SemRep is restricted with a fixed set of verbs, which limits the set of relations found.

For instance, SemRep also fails to extract relations in the above sentence because its ontology

does not include the verb ‘measure’.

However, since our PAS patterns focus on verbs and prepositions, there are relations that

our system misses unlike SemRep, e.g., relations in the forms of modification/head of noun

phrases. For example, SemRep identified a relation between ‘tumor’ and ‘malignancy’ in

the sentence “Spontaneous [apoptosis] may play a role in evolution of [tumor] [malignancy]”

while our system could not. It, instead, extracted the relation of (‘apoptosis’, ‘malignancy’)

based on the phrase ‘play a role in’.

Our system does not extract some relations that SemRep does since it filters MetaMap’s

output. Given the sentence “We monitored a group of [patients] with [pollinosis] sensitive

to Olea.”, SemRep output a relation between ‘patients’ and ‘pollinosis’. PASMED ruled

out ‘patients’ from MetaMap’s output at its filtering step because this entity is an overly

frequent entity in MEDLINE.

Nevertheless, this filtering step helps our system to discard many spurious relations that

SemRep does not. For example, given the phrase “Morbidity risk for [alcoholism] and [drug
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abuse] in [relatives] of [cocaine addicts]”, two relations (‘relatives’, ’alcoholism’) and (‘rela-

tives’, ‘drug abuse’) were extracted by SemRep. The two annotators assessed these relations

as incorrect on the ground that the word ‘relatives’ alone is not specific enough. By contrast,

PASMED discarded ‘relatives’ because this entity is too frequent in MEDLINE. No relation

composed by the entity was thus identified. Instead, PASMED detected two other relations,

(‘alcoholism’, ‘cocaine addicts’) and (‘drug abuse’, ‘cocaine addicts’), which were assessed

as correct by the annotators. We should note, however, that these relations are not strictly

correct either, since the full description for the latter entity should be ‘relatives of cocaine

addicts’.

As for the set of PAS patterns used in PASMED, it is not impossible to extend them

to detect more relations. The maximal recall that could be reached is about 80% in the

best case (the same recall of the GENIA corpus, see Table 3.2), but there is a higher risk

that the precision will be decreased substantially due to three sources of errors, including

MetaMap’s errors, parser’s errors and our greedy extraction. Currently, PASMED relatively

covers 68.22% of general relations on average, which we deem to be high enough for the

current trade-off.

Here we clarify the differences—besides the fact that PASMED uses deep syntax—

between ReVerb, OLLIE, SemRep and PASMED, which are all based on a pattern-based

approach. Regarding ReVerb and OLLIE, a major difference is that they employ a parser

for the general domain while PASMED uses a parser specifically tuned for the biomedical

domain. One of the biggest differences between SemRep and PASMED is the way the ex-

tracted relations are verified. SemRep restricts its relations using a predefined predicate

ontology based on the Semantic Network. PASMED also depends on the Semantic Network

but uses it in a less restrictive manner, which contributed to the systems higher recall.

3.3.4 Evaluating on Predefined Relations

We also conducted experiments to see how well our PAS patterns cover predefined relations

such as Protein-Protein Interaction (PPI) and Drug-Drug Interaction (DDI). Regarding PPI,

we applied our patterns to AIMed, BioInfer and LLL–three popular corpora in this domain

[1, 106]. The gold-standard entities available in these corpora were used instead of MetaMap

output. We conducted the same experiment for DDI on the SemEval-2013 task 9 corpus

[127].

For comparison and reference, we show the precision and recall of some notable systems

on PPI and DDI. It should be noted that since these systems used machine learning methods,
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Table 3.9: Performance of our system on AIMed, BioInfer and LLL corpora, compared with

some state-of-the-art systems for PPI.

AIMed BioInfer LLL

Pre. Re. Pre. Re. Pre. Re.

Yakushiji et al.[155] 71.8 48.4 - - - -

Airola et al.[1] 52.9 61.8 47.7 59.9 72.5 87.2

Miwa et al.[87] 55.0 68.8 65.7 71.1 77.6 86.0

PASMED 33.9 58.7 53.9 47.3 87.2 81.2

Table 3.10: Performance of our system on MedLine and DrugBank corpora of SemEval-2013

Task 9 [127], compared with the highest and lowest-performing systems in that shared task.

MedLine DrugBank

Pre. Re. Pre. Re.

Highest-performing system 55.8 50.5 81.6 83.8

Lowest-performing system 62.5 42.1 38.7 73.9

PASMED 27.0 62.5 41.0 61.6

they were evaluated by using 10-fold cross-validation or using the test set; while our method

is pattern-based and thus we simply applied our patterns to the whole labeled corpora. The

experimental results are shown in Table 3.9 and Table 3.10. Quite expectedly, PASMED is

outperformed by the supervised systems, although it shows comparable performance for the

LLL corpus.

Besides the parser’s errors and greedy extraction presented in the previous section, the

seemingly low precision scores of PASMED are caused by the system’s generality. As stated

before, our extraction schema covers any kinds of relations; it does not only focus on the

interaction relationship. Therefore, even when the extracted relations are true, if they are

not interaction relations, they are treated as false positives according to the gold-standard

annotations. Figure 3.5 shows examples that PASMED extracted true relations between

two proteins ‘IFN-gamma’ and ‘IFN-alpha’ in (a) and two drugs ‘fluoroquinolones’ and

‘antibiotics’ in (b), but their relationships are (a) ‘associated with’ and (b) ‘is a’, which are

judged as false positives when compared with the annotated PPI and DDI corpora. We may

improve the precision of our system by setting rules to filter out those kind of relations. For
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(a)Levels of IFN-gamma were slightly increased following IFN-alpha treatment.

(b)The fluoroquinolones are a rapidly growing class of antibiotics with a broad
spectrum of activity against gram-negative.

Figure 3.5: Examples of true extracted relations that are treated as false positive ones

according to the annotated PPI and DDI corpora. (a) ‘associated with’ relation. (b) ‘is a’

relation.

Figure 3.6: An example of two PPIs that need coreference information to be identified. Our

system can detect a NP pair according to Pattern 5 but cannot extract any relations.

example, we can use a set of verbs that describe the relation of interaction, such as interact

and activate, to validate the extracted relations.

The low recall scores are due to the lack of patterns and coreference resolution. Figure 3.6

illustrates an example that our system missed two PPIs since it has no information about

coreference that is essential to infer them. In this example, our system can detect a NP

pair of (a novel factor, PGDF alpha) according to Pattern 5. The system, then, could not

identify any relation since the first NP does not contain any entity. However, in fact, there

are two PPIs between ‘PGDF alpha’ and the two coreferences of ‘a novel factor’, which are

‘Platelet-derived growth factor’ and ‘PDGF-C’.

We have investigated 100 false negative PPIs on the AIMed corpus and found that there

are 21 false negative ones (21%) caused by this error. It is clear that if PASMED could

perform accurate coreference resolution, it would cover more interactions. Another solution

is that we can create more patterns to capture interaction expressions, such as ‘an interaction

between A and B’, ‘a complex of/between A and B’, ‘A-B complex’, and ‘A-B binding’. There

are 28 false negative interactions satisfying the expressions. However, these patterns are not

general enough for all type relations; they are only specific for PPI and DDI.
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3.4 Large-Scale Semantic Relation Extraction

In the biomedical domain, large-scale event extraction has attracted many researchers [119,

89, 11, 120, 59, 146, 140]. Miyao et al. [89] propose a system that extracts verb-mediated

relations between genes, gene products, and diseases from MEDLINE. The output of this

system is served as a database for MEDIE [101], a semantic search engine on MEDLINE.

Björne et al. [11] apply their system to the titles and abstracts of all PubMed citations. The

extraction is performed using a pipeline composed of the BANNER named entity recognizer,

the McClosky-Charniak domain-adapted parser, and the Turku Event Extraction System.

Kilicoglu et al. [59] also run their system on the entire set of PubMed citations to create

SemMedDB, a repository of semantic predications.

We have applied our system to the whole MEDLINE6, which consists of about 113.6

million of sentences. We, then, counted the number of candidates and relations extracted

by each PAS pattern to see its distribution in MEDLINE. Finally, we have analyzed the

extracted relations and discussed about their semantic types in the context of the previous

large-scale systems.

3.4.1 Distribution of PAS patterns

We have counted the matching times and the number of relations extracted from each pattern

in the whole MEDLINE and report the statistical results in Table 3.11. The table shows that

Pattern 6 generated the highest number of candidates and the highest number of extracted

relations. However, this pattern also produced the highest number of invalid relations; it

extracted about 63.28% of candidates but contributed only 36.53% of extracted relations.

Compared with Pattern 6, Pattern 1 and 5 are more effective since they created significantly

lower numbers of candidates but comparable numbers of relations. Furthermore, if we divide

six patterns into 3 categories, including transitive verbs (Pattern 1, 2, 3, and 4), intransitive

verbs (Pattern 5) and prepositions (Pattern 6), the category of transitive verbs are the most

effective patterns. This group contributed only 23.04% of candidates but 41.72% of extracted

relations, which outperforms the group of prepositions. We conclude that most of semantic

relations in MEDLINE extracted by our system are composed by transitive verbs.

6http://www.nlm.nih.gov/bsd/licensee/2012 stats/baseline med filecount.html
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Table 3.11: The distribution of our PAS patterns in MEDLINE.

Pattern 1 2 3 4 5 6

#Candidates
39.9M 6.0M 8.2M 4.8M 35.0M 162.0M

15.58% 2.37% 3.21% 1.88% 13.68% 63.28%

#Relations
34.2M 6.6M 11.9M 4.3M 29.8M 50.0M

24.95% 4.86% 8.73% 3.18% 21.75% 36.53%

Table 3.12: The ten most frequent types of semantic relations extracted from the whole

MEDLINE.

Semantic Relation Type
#Rel. #Uni.

Entity 1 Entity 2

1 Amino Acid, Peptide or Protein Amino Acid, Peptide or Protein 3.4M 1,057K

2 Cell Amino Acid, Peptide or Protein 3.1M 711K

3 Gene or Genome Amino Acid, Peptide or Protein 1.8M 766K

4 Disease or Syndrome Disease or Syndrome 1.7M 599K

5 Body Part, Organ, or Organ Comp. Amino Acid, Peptide or Protein 1.7M 561K

6 Amino Acid, Peptide or Protein Disease or Syndrome 1.6M 631K

7 Gene or Genome Cell 1.1M 315K

8 Organic Chemical Organic Chemical 1.1M 365K

9 Body Part, Organ, or Organ Comp. Body Part, Organ, or Organ Comp. 1.1M 270K

10 Laboratory Procedure Amino Acid, Peptide or Protein 1.1M 453K

3.4.2 Analyzing Semantic Relations

Our system extracted more than 137 millions of semantic relations in the format of (entity 1,

relation phrase, entity 2) from the whole MEDLINE. The ten most frequent types of relations

are listed in Table 3.12. The most common semantic relation type is the relation between

‘Amino Acid, Peptide or Protein’ entities, which count up to 3.4 million. This explains

partially why PPI has been attracting considerable attention in the BioNLP community.

Many of the previous studies focus on improving PPI performance [1, 87, 67]. There are many

large-scale databases constructed from MEDLINE and they focus on PPI, e.g., MedScan [29],

AliBaba [102], and Chowdhary et al.[23].

Another type of relation that is also extensively studied in the community is the relation

between genes and proteins, which is ranked third in Table 3.12. As with PPI, there are
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Semantic Relation
Count

Entity 1 Entity 2

Amino Acid, Peptide or Protein Amino Acid, Peptide or Protein 3.4M

Gene or Genome Amino Acid, Peptide or Protein 1.8M

Gene or Genome Gene or Genome 793K

Nucleic Acid, Nucleoside, or Nucleotide Amino Acid, Peptide or Protein 579K

Gene or Genome Nucleic Acid, Nucleoside, or Nucleotide 319K

Amino Acid Sequence Amino Acid, Peptide or Protein 172K

Nucleotide Sequence Gene or Genome 121K

Nucleic Acid, Nucleoside, or Nucleotide Nucleic Acid, Nucleoside, or Nucleotide 218K

Amino Acid Sequence Gene or Genome 66K

Nucleotide Sequence Nucleic Acid, Nucleoside, or Nucleotide 46K

Amino Acid, Peptide or Protein Enzyme 61K

Nucleotide Sequence Nucleotide Sequence 21K

Enzyme Gene or Genome 19K

Nucleic Acid, Nucleoside, or Nucleotide Enzyme 13K

Total 7.6M

Table 3.13: Statistics of protein-protein interactions in the whole MEDLINE.

many studies and databases related to this type of relations, such as Chilibot [20], MEDIE

[89], EVEX [146] and the BioNLP Shared Task [98].

The second most common type of relations in our extraction result is the ones between cell

and protein entities, which appeared more than 3.1 million times in MEDLINE. This type

of relations contain many localization and whole-part relations, the information of which

is potentially very useful in biology. These relations are covered partially by localization

events in the GENIA corpus. The events are represented as ‘Localization of Protein to

Location’ where Location can be cells. Recently, the CG task [108] has also targeted events

on ‘Localization of Proteins at/from/to Cells’.

Somewhat unexpectedly, the relations between genes and diseases, which are another

important type of biomedical relations [24], turned out to be much less common than PPIs.

More specifically, its rank was the 41th and the number of relations extracted from MEDLINE

was about 583,000.

The last column in Table 3.12 shows that the diversity of the semantic relations is slightly

different from their occurrences. For instance, the cell-protein relations are more frequent
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but less diverse than the gene-protein ones.

We grouped the following semantic types:

• Amino Acid, Peptide or Protein,

• Amino Acid Sequence,

• Enzyme,

• Gene or Genome,

• Nucleic Acid, Nucleoside, or Nucleotide,

• Nucleotide Sequence

as protein type. We then calculated how many types of protein-protein interactions exist in

MEDLINE.

Table 3.13 describes the actual number of semantic relations of each type. In total, our

system generated more than 7.6 millions of protein-protein interactions in MEDLINE. Based

on our precision reported above, more than 3.5 million relations (7.6 x 0.47) are expected to

be correct.
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Chapter 4

Synonym Resolution for Relational

Phrases

The module of synonym resolution is input a set of relations in the format of <relational

phrase, entity 1, semantic type 1, entity 2, semantic type 2> (relations that are produced by

PASMED), and outputs clusters of synonymous relational phrases. To perform this task, we

first encode the relational phrases into vector format by using three different unsupervised

techniques: bag-of-words, topic models and word embeddings. Next, we combine the last

two models by using the results of topic models to initialize the word embedding model. We

then apply the k-means algorithm on top of these vector representations to cluster relational

phrases into synonymous groups. An overview of our working flow is shown in Figure 4.1.

We finally compare the three methods with Semantic Network Extractor (SNE) [66], a

probabilistic model trained on two MLNs.

4.1 Representing Relational Phrases

4.1.1 Bag-Of-Words Model

The bag-of-words (BOW) model is a simple model commonly used in a variety of text pro-

cessing tasks. In this model, a document is represented simply as a set of words regardless

the syntax and even word order. Each word is represented by its index in the vocabulary

and its frequency in the document. In our scenario, each relational phrase is treated as a

document and a set of entities that share the same phrase as a set of words in the document.

Consequently, a relational phrase has two bags of entities for the two corresponding argu-

ments. The relational phrase are thus represented by a sparse vector of occurrence counts
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Figure 4.1: An overview of our methods.

of entities, i.e., a sparse histogram over the vocabulary.

Assuming that our training data has one relational phrase ‘treat with’ with six relation

instances as presented in Table 4.1. Consequently, the vocabulary of the pseudo-training data

contains eight entities as shown in Table 4.2. We index the entities from 1 to 8, respectively.

As a result, the phrase ‘treat with’ is represented as a vector with eight dimensions as (32,

5, 8, 19, 66, 49, 10, 7). Applying the same process for the whole training data, we obtain

the vector representations for all relational phrases.

4.1.2 Topic Models

We have employed LDA-SP [122], an extension of the LinkLDA model [34], to model our

relations for clustering. LDA-SP considers a relational phrase as a document, and a set of

entities that share the same relational phrase as a set of words in a document. The advantage

of this model is that it simultaneously models two sets of distributions of the entities for

each topic. The graphical representation of LDA-SP is shown in Figure 4.2 (a).

In this model, each argument ai is drawn from a different hidden topic zi; however, the

zi’s are drawn from the same distribution θr for a given relation r. LDA-SP allows two

arguments of a given relation to be generated from |Z|2 possible pairs. Since z1 and z2 are

drawn from the same distribution θr, the model assigns a higher probability to states in

which z1 = z2. The output of this model is the prior topic distribution of each relational

phrase in R. More specifically, a relation phrase r is represented as a vector whose elements

are the probabilities that the phrase belongs to a topic p(r|t).
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Table 4.1: A pseudo-training data that contains a relation phrase of ‘treat with’ with six rela-

tion instances. The full forms of semantic types are: Disease or Syndrome (dsyn), Therapeu-

tic or Preventive Procedure (topp), Pharmacologic Substance (phsu), and Organic Chemical

(orch).

Entity 1 Sem. Type 1 Entity 2 Sem. Type 2 Freq.

Parkinson’s disease dsyn

dopaminergic drugs phsu 5

levodopa phsu 8

deep brain stimulation topp 19

asthma dsyn

corticosteroid phsu 49

montelukast orch 10

immunotherapy topp 7

Table 4.2: Vocabulary of the pseudo-training data in Table 4.1.

Index Entity Freq.

1 Parkinson’s disease 32

2 dopaminergic drugs 5

3 levodopa 8

4 deep brain stimulation 19

5 asthma 66

6 corticosteroid 49

7 montelukast 10

8 immunotherapy 7

One limitation of LDA-SP is that it only considers the surface string of the entities.

For example, ‘Parkinson’s disease’ and ‘asthma’ are both diseases but they are regarded as

completely different entities. Exploiting the commonality of the entities belonging to the

same semantic type [16] could therefore lead to improved performance since the types of the

relations are largely determined by the semantic types of the entities.

To integrate the information on the semantic types into the LDA-SP model, we made a

small modification to the model. In what follows, we call the resulting model LDA-SP-sem.

LDA-SP-sem defines two roles for the semantic types (st1, st2) of the entities as illustrated

in Figure 4.2 (b). It should be noted that the argument and its semantic type have different
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Figure 4.2: The graphical representations of (a) the LDA-SP [122] model and (b) the LDA-

SP-sem model. The LDA-SP-sem model sets different roles for the semantic type of each

argument. The semantic types are constrained to be in the same topic as their entities.

word distributions but they are drawn from the same hidden topic. For instance, referring

to the pseudo-training data in Table 4.1, the word distribution of a1 is (Parkinson’s disease:

32, asthma: 66), while that of st1 is (dsyn: 98).

We implemented the LDA models by using collapsed Gibbs sampling [45] for inference1.

4.1.3 Word Embeddings

Mikolov et al. [80] introduced two effective techniques for learning vector representations of

words from large amounts of unstructured text data: the Continuous Bag-Of-Word (CBOW)

model and the continuous Skip-gram model.

The CBOW model is similar to the feed-forward neural network language model [9],

where there is no hidden layer and the projection layer is shared for all words. Unlike the

BOW model, this model predicts a word by using the continuous context around that word.

Given a sequence of training words w1, w2, w3...wT , the objective of this model [82] is to

maximize the average log probability as shown in Equation 4.1, where c is the size of the

1The LDA models are implemented by Makoto Miwa.
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context window.
1

T

T∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt|wt+j) (4.1)

The basic model defines p(wt|wt+j) using a softmax function:

p(wO|wI) =
exp(v′wO

>vwI
)∑V

w=1 exp(v′w
>vwI

)
(4.2)

where vw and v′w are the input and output vector representation of the word w, and V is

the number of words in the vocabulary. In contrast with the CBOW model, the Skip-gram

model receives the current word and predicts words within a certain window.

In this work, we use the CBOW model2 to estimate vector representations of our re-

lational phrases. More specifically, for each relation in the format of <entity 1, relational

phrase, entity 2>, which is given by PASMED, we retrieve the sentence that contains the re-

lation from the original text database. We then identify the words or phrases that correspond

to the entities and relational phrases, and create newly-defined words for them depending

on their roles in the relation. For example, the relation of <parkinson’s disease, treat with,

dopaminergic drug> in the sentence “Many patients with Parkinson’s disease are treated

with dopaminergic drugs” will produce the following training example for the CBOW model:

“many patient with parkinson’s disease@arg1 be treat with@pred dopaminergic drug@arg2”

Note that multi-word terms are grouped with underscores and the roles in the relation are

indicated by artificial suffixes such as ‘@arg1’.

After training the CBOW model, we extract the distributed feature vector v′w associated

with each relational phrase w and apply k-means clustering to them.

4.2 Evaluation Settings

4.2.1 Data

Training data More than 70 millions of biomedical relations in the format of <relational

phrase, entity 1, semantic type 1, entity 2, semantic type 2> were extracted from MEDLINE

in a period of 2004-2012 by PASMED (described in Chapter 3). We normalized our data by

removing relations whose

• relational phrase is not a verb or a verb phrase,

2The model is implemented in the word2vec tool: https://code.google.com/p/word2vec/
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• entity 1 or entity 2 is not composed by continuous words, or

• occurrence is lower than 5.

As a result, our data consists of 763,065 unique relations and 7,132 unique relational phrases.

All entities and relational phrases were stemmed and lower-cased before training.

Evaluation data To evaluate our clustering results, we created a gold standard of synony-

mous groups based on Nebot and Berlanga’s data [97]. We stemmed every phrase, discarded

duplicate terms in each group, and removed groups that have only one term. As a result,

our gold standard consists of 286 relational phrases clustered into 100 non-singleton groups

with an average cluster size of 3.9.

4.2.2 Perplexity

There are several metrics that can be used for evaluating topic models [148]. In this work,

we use the perplexity on the training and testing set. Formally, for a set S of M documents,

perplexity is calculated as Equation 4.3 [15], in which p(wm) is computed according to the

value θ of the model.

Per(S) = exp

(
−
∑

m log p(wm)∑
m |wm|

)
(4.3)

The lower the perplexity, the better the model.

4.2.3 Resolver Metric

The precision, recall and F scores of our generated clusters were computed by using the

Resolver metric [159]. The scores are calculated by measuring the overlap of the best

matches between the gold standard groups and the non-singleton generated clusters, i.e.,

clusters that have more than one term. Precision is the fraction of terms in the generated

clusters which are also in the gold standard. It should be noted that the terms that are not

included in the gold standard were removed from the data set before evaluating precision.

Similarly, recall is computed by swapping the roles of the generated and the gold standard

clusters. We finally used micro-averaging to calculate the global scores.

For example, we have three gold standard clusters of (a b), (c d e f g), (h k l) and two

generated clusters of (a b c d f g), (e h k l). When we map from the generated clusters to

the gold standard, the best matches are (c d f g) and (h k l). Hence, the precision is 7/10.

Vice versa, the best matches from the gold standard to the generated clusters are (a b), (c

d f g) and (h k l), which produce a recall of 9/10.
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Table 4.3: Perplexity of LDA-SP and LDA-SP-sem on the training and testing sets.

Model Set
Number of topics

10 50 100 200 300

LDA-SP
Training 722.6 476.2 414.5 370.0 347.5

Testing 688.8 452.2 394.0 352.9 331.2

LDA-SP-sem
Training 690.2 448.7 390.6 350.0 330.9

Testing 688.3 448.7 392.3 352.7 333.3

4.2.4 CBOW Configurations

For a fair comparison, we set the dimension of the CBOW model based on the number of

topics used in the topic models. We select a hierarchical softmax classification for the output

layer and a context window size of 5.

4.3 Experimental Results

We first conduct experiments to find out the suitable number of topics for the LDA models.

Then a sequence of experiments on clustering is carried out to evaluate the performance of

our approaches and compare them with that of SNE.

4.3.1 Perplexity of The LDA Models

In this evaluation, we divided our training data into 10 parts; 9 parts were used for training

and the other part for testing. Elements in the training and testing sets share the same

indices of relational phrases.

We ran 2,000 iterations for inference with a varied number of topics and obtained the

corresponding perplexity results of training and testing sets in Table 4.3. These results show

that the perplexities of LDA-SP-sem are slightly lower than those of the LDA-SP on the

training set but they are comparable each other on the testing set. LDA-SP-sem exhibits

overfitting in contrast to LDA-SP since its perplexities on the testing set are higher than

those on the training set.

In both models, the perplexities decreased when the number of topics increased but they

did not substantially change from 200 topics. Hence, we used the output of 200 topics for

our clustering step and the dimension of the CBOW model was set to 200.
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Table 4.4: Clustering results when BOW, LDA-SP and LDA-SP-sem are used to represent

relational phrases.

k
BOW LDA-SP LDA-SP-sem

Pre. Re. F. Pre. Re. F. Pre. Re. F.

100 18.94 23.13 20.77 29.73 20.88 24.52 22.38 17.79 19.75

200 20.80 21.65 21.17 35.21 18.62 24.36 26.18 14.60 18.74

300 23.19 19.88 21.38 36.39 17.30 23.44 26.88 12.30 17.52

400 24.36 18.95 21.27 37.91 16.95 23.41 27.86 12.20 16.97

500 26.27 17.77 21.15 39.54 16.41 23.19 29.14 11.46 16.44

4.3.2 Clustering Results

After representing the relational phrases as vectors, we applied k-means clustering in Bayon3

on top of those vectors with varying numbers of clusters (k). For each value of k, we run

k-means with 10 random seeds and calculate the mean scores. We also compare our methods

with Semantic Network Extractor (SNE) [66], a probabilistic model based on two MLNs.

Experimental results in Table 4.4 indicate that BOW boosts the recall while LDA-SP

and LDA-SP-sem boost the precision. Our error analysis shows that BOW usually produces

clusters that can cover different gold clusters. For example, the two gold clusters, (activate,

initiate, stimulate, trigger) and (affect, induce, inhibit, suppress) are grouped into one cluster

by BOW with k=100. This grouping leads to a higher recall but might affect the precision.

In terms of F-scores, LDA-SP is slightly better than BOW, but LDA-SP-sem, unexpect-

edly, yields the worst performance. Based on the above example, the low recall of LDA-SP-

sem can be explained by the fact that the model separates gold clusters into many clusters.

For instance, (affect, induce, inhibit, suppress) is distributed into two different groups; one

group contains (induce, inhibit, suppress) and the other contains ‘affect’. Among the three

models, the highest performance is an F-score of 24.52%, produced by LDA-SP when k is

100.

In case of SNE, we directly input more than 763 thousand unique relations to produce

clusters of synonymous strings. SNE4 allows us to tune three parameters: the total value of

α + β, λ, and µ. We started with the empirical values reported in [66], which are 10, 100,

and 100 respectively. According to Equation 2.3 (Chapter 2), the number of non-singleton

3https://code.google.com/p/bayon/
4http://alchemy.cs.washington.edu/papers/kok08/
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Table 4.5: Clustering results of SNE with varying values of (α + β, λ, µ).

Values of parameters Pre. Re. F.

(10, 100, 100) 21.01 24.81 22.75

(20, 200, 200) 23.68 25.06 24.35

(30, 300, 300) 22.81 23.53 23.16

(40, 400, 400) 19.33 21.23 20.23

(50, 500, 500) 19.67 23.02 21.21

clusters will be increased if we increase the value of the three parameters. Hence, we tuned

those values in increments of 10, 100 and 100 to find out the best performance. Table 4.5

shows that SNE produced lower precision but slightly higher recall than LDA-SP on our

data set. The best score of SNE is 24.35%, where the three parameters are 20, 200, and 200

respectively.

Regarding word embeddings, we investigate the performance of the CBOW model with

three different representations of a relation:

(i) Relation: treating a relation as a sentence. This representation uses the same informa-

tion as BOW, LDA-SP, and SNE.

(ii) Sentence: embedding the relation in the sentence in which it appears and assigning a

role to the relational phrase.

(iii) Role: embedding the relation in the sentence in which it appears and assigning corre-

sponding roles to the relational phrase and its two entities.

For instance, a relation of <parkinson’s disease, treat with, dopaminergic drug> extracted

from the sentence “Many patients with Parkinson’s disease are treated with dopaminergic

drugs” will be represented by three ways shown in Table 4.6.

Table 4.7 presents the size of vocabulary and the number of words in the training data

corresponding to each representation. It is reasonable that by assigning roles to entities we

increased the size of vocabulary and the number of words in the training phase, i.e., the

training data is sparser. In case of the Relation representation, since we do not use the

context around a relation, the vocabulary and words are substantially lower than the others.

The experimental results of clustering are shown in Table 4.8. The performance of each

representation is not consistent in terms of the value of k. The highest scores were obtained
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Table 4.6: Three ways of modeling a relation of <parkinson’s disease, treat with, dopamin-

ergic drug>.

Type Representation

Relation “parkinson’s disease treat with dopaminergic drug”

Sentence “many patient with parkinson’s disease be treat with@pred

dopaminergic drug”

Role “many patient with parkinson’s disease@arg1 be treat with@pred

dopaminergic drug@arg2”

Table 4.7: Vocabulary size and number of words by each representation.

Relation Sentence Role

Vocabulary size 340K 494K 653K

Number of words 126M 268M 268M

by 100 clusters for Role, 200 clusters for Sentence, and 300 clusters for Relation. Among

them, the Role representation performs slightly better than the others despite the fact that

this representation make the training data sparser.

Our observation shows that this type of representation generated more correct clusters.

For example, with Sentence and Relation, three strings ‘infect’, ‘be infectious for’ and ‘infest’

were assigned to two different clusters. However, in case of Role, those strings were grouped

in one clusters, which is more accurate according to the gold standard. Among the three

representations, Sentence and Role can capture the continuous context around relations while

Relation cannot. Therefore, these two representations yield better results than Relation.

Compared with BOW, SNE, and LDA-SP, CBOW boosts the performance of clustering

on both precision and recall scores. CBOW tends to produce more correct synonymous

terms in clusters. For instance, it can assign eleven verbs of laboratory procedures into one

group, while the other methods can partially do it, i.e., they can assign at most six terms

into one group, as illustrated in Table 4.9. It is clear that by using word embeddings, the

performance of clustering was improved significantly.

We collect the highest performance figures of each method and show them in Table 4.10.

χ2 tests with one degree of freedom were conducted on the precision and recall of three

pairs of methods including SNE vs. CBOW-Relation, LDA-SP vs. CBOW-Relation, and
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Table 4.8: Clustering results when the CBOW model is used to learn relational phrases’

vectors.

k
Relation Sentence Role

Pre. Re. F. Pre. Re. F. Pre. Re. F.

100 32.48 32.32 32.38 29.56 35.20 32.09 29.19 36.50 32.33

200 34.39 26.69 30.01 36.17 31.60 33.66 34.18 32.69 33.35

300 36.92 25.99 30.50 38.85 28.62 32.93 39.80 29.95 34.14

400 37.42 25.11 30.02 40.03 27.95 32.89 39.49 28.09 32.80

500 41.25 24.41 30.65 41.55 26.69 32.44 42.54 28.29 33.95

Table 4.9: An example of clustering verbs that convey laboratory procedures by the four

methods. The italic phrases are incorrect terms according to the gold standard.

Method Clustering result

BOW analyse, assess, examine, evaluate, estimate, test

LDA-SP analyze, assess, examine, evaluate, investigate, test

SNE assess, examine, evaluate, measure, compare, confirm, detect

CBOW analyse, analyze, assay, assess, define, estimate, evaluate, exam-

ine, investigate, measure, test, characterise, characterize, compare,

determine, map

CBOW-Relation vs. CBOW-Role. Regarding the first pair, we gained p-value < 0.05 for

both precision and recall. With LDA-SP vs. CBOW-Relation, the p-value was less than 0.05

in case of recall, while this happened in case of precision for CBOW-Relation vs. CBOW-

Role. These results can be interpreted as (1) when using the same information as SNE and

LDA-SP, the CBOW model performs significantly better than the two methods; and (2) the

precision is further improved by embedding the relations into sentences with keeping their

roles.

4.3.3 Combining Word Embeddings and LDA-SP

As shown in Equation 4.2, the CBOW model first initializes the input vector representations

vw of the word w and then learns the output vector v′w based on the training data. Instead

of initializing the input vectors randomly for the CBOW model, we use the output vectors
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Table 4.10: The highest performance of each method on our evaluating data.

Method Feature Pre. Re. F

BOW Relations 23.19 19.88 21.38

SNE Unique Relations 23.68 25.06 24.35

LDA-SP Relations 29.73 20.88 24.52

CBOW-Relation Relations 32.48 32.32 32.38

CBOW-Sentence Embedded relations 36.17 31.60 33.66

CBOW-Role Embedded relations with roles 39.80 29.95 34.14

Table 4.11: Clustering results when using LDA-SP’s output vectors to initialize CBOW.

k
Relation Sentence Role

Pre. Re. F. Pre. Re. F. Pre. Re. F.

100 31.98 31.74 31.80 28.85 35.64 31.80 29.24 35.87 32.15

200 37.53 28.16 32.14 33.25 29.88 31.43 33.82 30.22 31.89

300 38.14 26.18 31.02 37.09 27.95 31.85 37.37 29.27 32.81

400 40.37 24.92 30.78 38.94 27.06 31.89 39.17 26.95 31.91

500 40.25 23.44 29.60 40.61 25.53 31.33 40.50 27.06 32.42

of the LDA-SP. The experimental results in Table 4.11 show that although we used a smart

initialization, the performance of clustering could not be improved further. Compared with

the CBOW model, the combined model failed to identify some synonymous phrases. For in-

stance, the CBOW model can assign (be sensitive to, sensitise, sensitize) in one cluster, while

the combined model can detect only a pair of ‘sensitise’ and ‘sensitize’. These preliminary

results indicate that the output vectors by LDA-SP might not be suitable for initializing the

CBOW model and finding a solution for this will be follow-up work.

4.4 Discussion

Unlike previous work that tried to cluster both entities and relational phrases [66, 159], our

work only aims at clustering the phrases. However, since we treated entities in relations as

words in sentences, the trained model by CBOW can also be used to cluster entities. By

calculating the cosine similarity between vector representations of entities, we can detect

similar or synonymous entities. For instance, according to our model, the closet to the
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entity ‘gastric cancer’ are ‘gastric carcinoma’ and ‘gastric adenocarcinoma’ with a value of

0.82, and indeed they are synonymous. This is an advantage that does not exist in BOW or

LDA-SP.

Moreover, we have found that the property of algebraic operations on vector represen-

tations is maintained in this task. As stated above, we group continuous relational phrases

as words, but not with discontinuous phrases. For example, the relational phrase between

entities in the the following sentence is discontinuous.

“... we investigate surviving messenger RNA MRNA expression in gastric cancer ...”

However, as expected, vector(investigate) + vector(in) is close to vectors of ‘investigate in’,

‘assess in’, and ‘evaluate in’, which means that they are similar phrases. This property,

again, confirms the robustness of the CBOW model in comparison with BOW, SNE and

LDA-SP.

The highest empirical F-score achieved in our experiments was 34.14%. This is not an

ideal level of performance but at the same time is an encouraging performance figure, consid-

ering that the clustering is done in a fully unsupervised fashion and the evaluation criteria are

strict. An interesting line of future work would be to incorporate some level of supervision

to further improve the clustering accuracy. In Table 10, we show some clusters of relational

phrases obtained by our model, in which most of the phrases are indeed synonymous.

These synonymous clusters will be useful for question-answering systems that support

natural language queries such as Linked Open Data Question-Answering (LODQA)5. Assum-

ing that the system queries on a database of general relations output by our Open IE system

(PASMED). When we input a query of “What genes are essential for cell survival?”, this

system first generates a predicate-argument relation graph and creates a pseudo SPARQL

query as follows:

SELECT ?t1

WHERE {
?t1 [:isa] [genes] .

?t2 [:isa] [cell survival] .

?t1 [be essential for] ?t2 .

}
As a result, the system will return 58 unique relations in which the semantic type of the first

entity is gene, the second entity is ‘cell survival’, and the relational phrase is ‘be essential

5Currently, LOQDA (http://lodqa.dbcls.jphttp://lodqa.dbcls.jp) queries on the Online Mendelian Inher-

itance in Man (OMIM) database.
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Table 4.12: Examples of good clusters of relational phrases. Each cluster is assigned a name

that conveys its meaning.

Laboratory procedures analyse at, analyze at, ascertain at, assess at, collect at, compare

at, determine at, do at, evaluate at, examine at, exercise at, har-

vest at, identify at, investigate at, isolate at, measure at, monitor

at, note at, obtain at, perform at, record at, remove at, sample at,

screen at, study at, take at, test at

Localization relations accumulate at, be localized in, be localized to, bud at, cluster

at, colocalise with, colocaliz in, colocaliz with, colocalize in, co-

localize in, co-localize to, colocalize with, co-localize with, colo-

calize within, concentrate at, concentrate in, enrich at, enrich on,

localise in, localise to, localize at, localize in, localize on, localize

to, localize with, localize within, localized to, locate to, recruit

to, shuttle between, target to, translocate from, translocate into,

translocate to

Necessity relations be central in, be central to, be critical for, be critical in, be critical

to, be crucial for, be crucial in, be crucial to, be dispensable for, be

essential for, be essential in, be essential to, be fundamental to, be

important for, be important in, be important to, be instrumental

in, be integral to, be key to, be necessary for, be pivotal in, be

sufficient for, contribute to, cooperate in, function in, involve in,

participate in, require for

for’. However, if we use the synonymous cluster of necessity relations (the third row in Table

4.12), the search term can be expanded and the number of the answers would be increased

to 261. We, therefore, conclude that the synonymous clusters would help the QA system to

find more results.

Another application-level example is applying synonymous groups to entailment detec-

tion. Rei and Briscoe [112] defined four entailment relations between two fragments A and

B: A → B, B → A, A = B, and A 6= B. Our synonymous groups can be directly used for

the third relation and for expanding results of the other relations. For instance, according

to their pilot dataset6, there is an entailment relation as “investigates = examines”, which

is identical to our synonymous pair (investigate, examine). Also, an entailment relation

6http://www.marekrei.com/?cat=projects&page=fragmentail
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between “stimulate → affect” can be expanded to “activate → affect” since we know that

‘activate’ is a synonym of ‘stimulate’.

One of the limitations of our work is that we only focus on hard clustering, i.e., a phrase

is assumed to be in only one cluster. However, in practice, a phrase can belong to more than

one cluster when it is polysemous. For instance, there is about 26% of polysemous phrases,

which occupy about 47% of occurrences, in the evaluating data. The output vector of the

LDA-SP model can be interpreted as a result of soft clustering, in which LDA-SP assigns,

for instance, a probability of 0.3 for topic 1, 0.15 for topic 2, 0.4 for topic 3 ..., to a phrase a.

Let consider the topics as senses of a phrase. If we set a threshold of 0.2, the phrase a will

belong to senses 1 and 3. But, if we set a threshold of 0.5, the phrase a has no sense. Ideally,

for a polysemous phrase, instead of assigning a probability to each sense, the method should

assign the probability of having more than two senses. This issue may be addressed by using

statistical models for partial membership [50], but we leave it for future work.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this dissertation, we have developed PASMED to extract diverse types of relations between

biomedical entities from the literature. Six simple but effective PAS patterns have been

proposed to detect relevant NP pairs. Our evaluation results have confirmed that our pattern-

based system covers a wide range of relations. Although the precision scores of PASMED fell

short of those of SemRep, the overall results suggest that PASMED compares favorably with

SemRep, extracting a significantly higher number of relations. We have applied PASMED

to the entire MEDLINE corpus and extracted 137 million semantic relations. This large-

scale and machine-readable output can be used to scale-up high-quality manual curation of

a relation ontology or served as a knowledge base for semantic search.

Our extraction schema is limited in several ways. First, the filtering process discards

frequent named entities, which causes the missing of relations that involving those entities.

Second, there is no coreference resolution module incorporated into the system, therefore

the system cannot identify relations that are inferred based on coreference information. And

third, since the PAS patterns only focus on verbs and prepositions, they cannot cover other

complex predicate types, e.g, nominalizations.

After extracting general relations from MEDLINE, we next perform synonymy detection

for relational phrases that represent the relations. Four unsupervised methods were applied

to cluster relational phrases. The first three methods, BOW, LDA-SP and CBOW, encode

relational phrases into vector format, while SNE approaches the task by using a probabilistic

model enhanced with two Markov logic networks. Our experimental results on a part of the

relations extracted from MEDLINE indicate that CBOW significantly outperforms BOW,
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LDA-SP and SNE. This finding confirms the effectiveness of using word embeddings to detect

synonymous phrases. We also tried initialize CBOW by using the output from LDA-SP but

the combined model unexpectedly performed worse than the CBOW model alone. Our

observation on the best clustering result has revealed some synonymous groups that will be

useful for high-level tasks in biomedical text mining, e.g., question answering and entailment

detection.

A limitation of our work is that we currently ignore soft clustering, i.e., we assume that

each relational phrase belongs to a cluster and do not concern about polysemous phrases.

Addressing soft clustering may be a follow-up work in the near future.

5.2 Future Work

We wish to extend our system to address n-ary relations [2, 75]. Relations of this type

are more informative than binary ones since they can include details about the site, con-

text or conditions under which biomedical relations occur. For example, given the following

sentence: “The integrated [stress response] is activated by [halofuginone] in [mammary ep-

ithelial cells]”, our system can detect two binary relations of (stress response, halofuginone)

and (halofuginone, mammary epithelial cells). However, in this case, it should be better if

we can identify an n-ary relation composed by the three entities, which describes that the

activation of ‘stress response’ and ‘halofuginone’ happens in a specific location of ‘mammary

epithelial cells’, not in any location. By presenting more details about relations, the n-ary

relations can be treated as biomedical events.

Another future work would be to build a real text-mining application that allows end-

users to browse or retrieve information about biomedical relations using queries in natural

language like LODQA. Basically, the application can employ the Enju parser to analyze

the queries, and then match the parsed components with the whole collection of relations

extracted from MEDLINE. The application can also make use of the synonymous relational

phrases to extend its search terms. Additionally, we need to create an interface between the

users and the application, and to implement a good string matching algorithm. This appli-

cation would help biologists and researchers in the biomedical domain to search information

quickly and accurately.
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Appendix A

Guideline for Manual Evaluation

A.1 Biomedical binary relations

In our scenario, a biomedical binary relation is composed by two biomedical entities to

show associations or effects between the entities. For instance, in Figure A.1a, there is

one binary relation between ‘Apoptosis’ and ‘CD4 T lymphocytes’, which indicates that

‘Apoptosis’ somehow affects ‘CD4 T lymphocytes’. Figure A.1b presents three relations

r1(heart, camels), r2(Purkinje cells, collagen fibres) and r3(Purkinje cells, connective tissue),

these relations tell us that there are associations between these entities. The associations

can be of any type, such as ‘part-of’, ‘separated by’, and ‘surrounded by’ relations.

(a)

(b)

Figure A.1: Examples of biomedical binary relations.
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A.2 Evaluation criteria

We define two evaluation criteria for entities and relations.

A.2.1 Evaluating entities

Entities in our setting are nouns or base noun phrases in a sentence. An entity is correct

if and only if its content words represent the most complete meaning within the sentence

containing it.

Example 1: Alterations in the microcirculatory bed of the thalamus resulting from

thermal trauma ...

Entity Correct? Comments

microcirculatory bed Yes

thalamus Yes

trauma No It should be ‘thermal trauma’

In example 1, the first two entities ‘microcirculatory bed’ and ‘thalamus’ are correct, but the

entity ‘trauma’ is NOT. The reason is that trauma’ does not reflect the complete meaning

that this sentence aims at; the right one should be thermal trauma’.

Follows are some rules applied to some specific cases.

Rule 1 for discontinuous entities

• It should be noted that in biomedical text, sometimes, entities appear in discontinuous

text regions. For instance, given the following sentence:

Example 1a: We investigated spontaneous and lipopolysaccharide (LPS) stimu-

lated production of tumor necrosis factor alpha (TNF alpha), interleukin (IL) 1,

IL-6, and IL-8 .

Entity Correct? Comments

LPS Yes

tumor necrosis factor alpha Yes

interleukin 1 Yes Correct even though it is discontinuous.

IL-6 Yes

IL-8 Yes

In this sentence, the entity ‘interleukin 1’ is correct even though it is discontinuous.
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• There are cases in which discontinuous entities are not correct, such as entity ‘interven-

tricular septum’ in example 1b. The entity is not correct, it should be ‘interventricular

membranous septum’.

Example 1b: The atrioventricular bundle entered the lower part of the interventric-

ular membranous septum ...

Entity Correct? Comments

atrioventricular bundle Yes

interventricular septum No It should be ‘interventricular membranous septum’.

Rule 2 for noun modifiers

• An entity is correct even if it fails to include the common nouns or head nouns located

at the end of the phrase, as long as the entity conveys the main meaning of the phrase.

For instance, entities ‘probiotic’ in example 2a is correct since its meaning is sufficient

without including the word ‘effects’. More specifically, in the noun phrase ‘probiotic

effects’, ‘effects’ is the head noun and modified by ‘probiotic’, which is a bacteria name

that expresses the main meaning of this phrase. Therefore, ‘probiotic’ can be correct

in our setting. The same explanation applies to ‘ciguatera’ in example 2b.

Example 2a: Saccharomyces boulardii is a strain of yeast which has been exten-

sively studied for its probiotic effects.

Entity Correct? Comments

Saccharomyces boulardii Yes

probiotic Yes ‘probiotic’ is equal to ‘probiotic effects’

yeast Yes

Example 2b: Ciguatoxins, the principal causative toxins of ciguatera seafood poi-

soning, are large ladder-like polycyclic ethers.

• If the extracted entities are common nouns or head nouns, they are not correct. For

example, ‘progastrin’ in example 2c is the head of noun phrase ‘tissue progastrin’ and

modified by ‘tissue’. It is not correct since in this context it should include the modifier

‘tissue’ to be specific enough.

Example 2c: ... tissue progastrin was elevated by only about 50%.
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Entity Correct? Comments

Ciguatoxins Yes

toxins Yes** According to rule 3

ciguatera Yes* It is correct since ‘ciguatera’ itself also includes the

meaning of ‘seafood poisoning’.

poisoning No ‘ciguatera seafood poisoning’

ethers No It should be ‘large ladder-like polycyclic ethers’ or

‘ladder-like polycyclic ethers’.

Entity Correct? Comments

progastrin No It should be ‘tissue progastrin’.

Rule 3 for adjective modifiers

• Ideally, adjectives/adjective phrases that modify nouns/noun phrases should be in-

cluded in the extracted entities. However, if the adjectives/adjective phrases are gen-

eral ones, such as ‘large’, ‘excessive’, ‘principal’, and ‘causative’, they can be excluded

from the entities. For instance, entity ‘toxins’ in example 2b is correct even though

it does not include the adjective phrase ‘principal causative’. Entity ‘selenium’ in

example 4c is also correct without the adjective ‘excessive’.

• By contrast, if that adjective or adjective phrase presents a biological meaning, it must

be included in the entity, such as in example 1, the adjective ‘thermal’ must be included

in ‘thermal trauma’ to make its meaning complete. This rule is demonstrated in the

following examples.

Example 3a: The atrioventricular bundle ran through the fibrous trigone ...

Entity Correct? Comments

atrioventricular bundle Yes

trigone No It should be ‘fibrous trigone’.

Example 3b: ... was investigated in thirty prepubertal children.

Entity Correct? Comments

children No It should be ‘prepubertal children’.

Example 3c: Laminin is located in the zone of the basal membrane.
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Entity Correct? Comments

Laminin Yes

membrane No It should be ‘basal membrane’.

Rule 4 for possessive forms

• If there is a preposition ‘of’ between two entities to show their part-whole relation,

and these two entities have sufficient meaning, they are correct. For example, entities

‘heart’ and ‘camels’ in the following sentence are correct, even though the proper entity

should be ‘heart of camels’. The same explanation applies to ‘strands’ and ‘Purkinje

cell’.

Example 4a: the AVB in the heart of camels comprised multiple strands of Purkinje

cells ...

Entity Correct? Comments

heart Yes Even though the proper one is ‘heart of camels’.

camels Yes Even though the proper one is ‘heart of camels’.

strands Yes Even though the proper one is ‘strands of Purkinje cells’.

Purkinje cells Yes Even though the proper one is ’strands of Purkinje cells’.

Example 4b: Responses of rhesus monkeys were reinforced by delivery of either a

pentobarbital (4.0 mg/ml) solution or a vehicle (water) or saccharin solution under

a concurrent signaled differential reinforcement of low rates 30-s schedule.

Entity Correct? Comments

rhesus monkeys Yes* ‘responses of rhesus monkeys’

pentobarbital Yes According to rule 2a

saccharin Yes According to rule 2a

Example 4c: An excessive selenium supply compensated to a great extent for the

effects of vitamin E deficiency on IgG and IgA.

Entity Correct? Comments

selenium Yes According to rule 3

vitamin E deficiency Yes* ’effects of vitamin E deficiency’

IgA Yes

• Strictly speaking, in example 4b, the entity ‘rhesus monkeys’ should be ‘responses of

rhesus monkeys’, which is more specific and accurate in this context. However, in our
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setting, ‘rhesus monkeys’ is acceptable because we can infer from the sentence that

somehow there is a vague relation between ‘rhesus monkeys’ and ‘pentobarbital’, and

we would like to extract such vague relations also. Entity ‘vitamin E deficiency’ in

example 4c also demonstrates this exception.

A.2.2 Evaluating extracted relations

A correct relation must satisfy the following two conditions:

• The two entities composing the relation must be correct according to the above-

mentioned criteria.

• The semantic relationship between two entities in the relation must be represented

explicitly by some linguistic expression.

Any relations that break one of the above two conditions are incorrect.

For example, all extracted relations in Figure A.1 are correct since they satisfy our

criteria: (1) all extracted entities are correct; (2) their semantic relationship are presented

explicitly such as “[Apoptosis] ... involved in ... [CD4 T lymphocytes]”; “... [Purkinje cells]

separated by [collagen fibres] ...”

By contrast, all extracted relations in Figure A.2 are not correct. The two relations r1

and r4 break condition 1 since the entities ‘membrane’ and ‘vessels’ are not correct. Relation

r2 breaks condition 2 because this sentence has two clauses: one is about ‘Laminin’ and the

other is about ‘tenascin’, and there is no information to show their semantic relationship.

Relation r3 breaks both conditions because entity ‘vessels’ is not correct and the relationship

between ‘Laminin’ and ‘vessels’ is not presented in this sentence.

Figure A.2: Examples of extracted relations that do not satisfy the two evaluation principles.

r1 and r4 break principle 1; r2 breaks principle 2; r3 breaks both principle.

For illustrating condition 2 clearly, we have listed more examples of extracted relations

that break this condition in Table A.1.
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Table A.1: Examples of extracted relations that are incorrect because their semantic rela-

tionships are not shown in the sentence.

Extracted relations Evaluation

The relation between ‘men’ and ‘women’ is in-

correct since their semantic relationship is not

mentioned in this sentence.

This extracted relation is incorrect because of

two reasons. Firstly, it breaks condition 1

since entity ‘benzodiazepine receptors’ is in-

correct. Secondly, this sentence discusses two

independent topics, one is ‘PBR’ and the other

is ‘clonazepam’.

All four extracted relation are incorrect be-

cause they breaks condition 2. We can see

that ‘IgG1’, ‘IgG2a’, ‘IgG2b’ and ‘IgG2c’ are

subtypes of ‘IgG’, and this sentence lists ‘IgA’

and ‘IgG’ but says nothing about their rela-

tion. Therefore, there is no relationship be-

tween ‘IgA’ and ‘IgG’ subtypes.

The relation between ‘iron deficiency anemia’

and ‘rabbits’ is incorrect. We can infer from

this sentence that ‘Ferrum’ was used for two

independent purposes. One is related to ‘iron

deficiency anemia’, and the other is related

to ‘negative MRI contrast agent in rabbits’.

However, this sentence does not mention the

relationship between these purposes.

This relation is incorrect since it breaks both

conditions. Firstly, entity ‘basal lamina’ is not

correct, it should be ‘tubular basal lamina’.

Secondly, this sentence lists two selected pa-

rameters that are related to ‘Sertoli cells’ and

‘tubular basal lamina’, but no relationship be-

tween them are mentioned.
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Figure A.3: An example of indirect relations (dash lines). These relations are not directly

represented through the syntactic structure but can be inferred based on syntactic clues.

Exception 1

There are some cases where the relation between two entities is not directly shown by the

syntactic structure, but if that relation can be inferred through the sentence, it can be

assessed as a TRUE relation. The example in Figure A.3 illustrates this case.

The system extracts nine relations; three of them, represented by solid lines, are correct

since we can see the syntactic clues very clearly. The relation between ‘heart’ and ‘Purkinje

cells’, represented by a dash line, is inferred based on the following reasoning: ‘the AVB’ is

a part of the ‘heart’, ‘the AVB’ comprises ‘strands of Purkinje cells’, therefore ‘heart’ and

‘Purkinje cells’ most likely have some relations. The other five indirectly relations can be

inferred in the same way.

A.3 The output’s format

A test set including 500 sentences randomly selected from MEDLINE was given to four

different systems. These systems returned a set of binary relations as output. Each binary

relation is presented in four fields consisting of (1) the start position of the first entity, (2)

the first entity, (3) the start position of the second entity and (4) the second entity in a

sentence, as shown in Table A.2.

A.4 Tasks for annotators

The annotators are required to:

• Evaluate all binary relations extracted from the 500 sentences by the four systems.

• Strictly follow our guideline to assess the extracted relations:

– Extracted relations that satisfy the two conditions are TRUE,
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Table A.2: Samples of the output and the evaluation of binary relations, the two final

columns are filled by annotators.

Start1 Entity 1 Start2 Entity 2 TRUE/

FALSE

Comments

Sentence 1: The atrioventricular bundle ran through the fibrous trigone and entered the

lower part of the interventricular membranous septum, beneath the right endocardium,

then lay over or slightly to the side of the centre of the muscular interventricular crest.

4 atrioventricular bundle 52 trigone FALSE P1

4 atrioventricular bundle 148 endocardium FALSE P1

4 atrioventricular bundle 4 interventricular septum FALSE P1

4 atrioventricular bundle 246 crest FALSE P1

Sentence 2 :The detection of the illegal use of clenbuterol (CBL) as a growth promoter

has relied on detecting residual concentrations of the drug in body fluids or tissues.

36 clenbuterol 138 body fluids TRUE

36 clenbuterol 153 tissues TRUE

– otherwise they are FALSE.

When the evaluators assign FALSE to a relation, please specify which condition is not

satisfied. If it breaks the first condition, please write ‘P1’ in the column ‘Comments’. If it

breaks the second one, please write ‘P2’. If it breaks both, please write ‘both’. Otherwise,

please tell us your opinion. In case of exception 1 in section 2.2, if the annotators assign

FALSE to indirect relations and the reason is not P1, they have to explain their reasoning

clearly. In case the annotators do not follow any rules or principles, please clarify the reason.

99


