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Ab-initio study of electronic and transport properties of
single- and co-doped silicon nanostructures

Mizuta Lab, 1140210, Le The Anh

Abstract
Keywords: binding energy, density functional theory, non-equilibrium Green’s function, single-doped

silicon nanostructures, co-doped silicon nanostructures.
Recently, single dopant electronics has opened a new group of extremely-small and low power devices,

including single-electron FETs. The basic operations of single dopant devices are based on single-electron
tunneling mediated by a single dopant. The binding energy of donor electrons should be much higher than
the thermal energy to ensure single dopant devices operate at room temperature; therefore, it is important
to accurately estimate the binding energy of donor electrons not only for single dopant devices in particular,
but also for nanometer-scale devices in general. In bulk silicon, the donor ground state is shallow and
independent from the bottom of the conduction band of Si crystal. In nano silicon, which has dimensions
smaller than the Bohr radius of donor electrons in bulk, the interaction between the donor related states
and the host Si conduction states becomes significant due to the strong nanoscale confinement. The binding
energy in nano Si therefore should be studied from a different point of view to the binding energy in bulk Si.

By performing DFT calculations, I have determined the binding energy of electrons bound to a single
phosphorus donor atom in silicon nanorods. The projected density of states (PDOS) and 3D wavefunctions
(3DWFs) analysis can clarify the gradually decreasing contribution of the phosphorus electron states from
the donor ground states to the higher energy donor excited states due to the hybridization of the donor
electron states and silicon electron states. Therefore, I can identify the energy of the first conductive state.
The binding energy of the donor electrons in the single P-doped Si nanorods, which have an average radius
smaller than 1.4 nm (which is smaller than a0 = 3nm, the Bohr radius for phosphorus electrons in bulk Si)
is calculated as the difference between the first conductive state and the donor ground state. I have found
that the binding energy is still around 1.5 eV. As the size decreases below 1.4 nm, the first conductive state
is capped near the top of the atomistic effective potential at the phosphorus donor site, whereas above the
potential top the electron wavefunctions are more delocalized and can attribute to conduction. This causes
the binding energy in sub-1.4 nm Si nanorods to be weakly dependent on the sizes. This fact signifies the
good tolerance level of the binding energy, which governs the operating temperature of single dopant-based
transistors in practice. The transmission spectra calculated by the non-equilibrium Green’s function, which
reflects into the transport properties of electrons in silicon nanorod devices, show consistent results with the
PDOS-3DWFs method, proving the validity of the new method.

Following this, I have applied the PDOS-3DWFs method to investigate the dependence of binding energy
on the position of P atoms in single P-doped cross-shaped Si nanotructures. When the P atom is located at the
wing of the cross-shaped nano structure, it is more difficult for the wavefunction to spread entirely within
the structure, especially along the horizontal transport direction; this results in higher binding energy for
the P atom at the wing of the cross-shaped Si nanostructure. The experimental study of stub-channel FETs,
which is similar to cross-shaped model established by the Tabe group from Shizuoka University, shows that
electron tunneling has higher barrier energy than conventional straight shape FETs. The theoretical results
of the cross-shaped Si nanostructures are consistent with the experimental results for the stub-channel FETs.

Finally, the interaction between donor D0 and acceptor A0 ground states have been investigated theo-
retically in phosphorus-boron co-doped silicon nanorods; the different effective atomistic potential at the P
site and B site decreases from about 1.5 eV to around 0.5 eV when the two dopants move closer towards
each other from 2.17 nm to 0.23 nm. This suggests that the built-in atomistic potential in co-doped silicon
nanorods strongly depends on the P-B separation. Moreover, the D0 wavefunction is destructive at the boron
site, whereas the A0 wavefunction is destructive at the phosphorus site. When two dopants come closer, the
overlapping of the B and P original atomic orbitals increases. As a result, the values of wavefunctions of A0

and D0 at the boron and phosphorus sites decrease. The wavefunctions become less localized and shallower,
which is consistent with the transmission analysis that transmissions associated with dopant induced states
change in nature from discrete to continuous.
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Chapter 1

Introduction

1.1 Miniaturization of Si devices

The International Technology Roadmap for Semiconductors (ITRS) 2013 forecasts
that the MOSFET will become a sub-10 nm device after 2020, when its physical
gate length reaches 9 nm (Fig. 1.1). State-of-the-art MOSFETs in 65 nm tech-
nology nodes (2007) featuring a physical gate length of 25 nm with conventional
architecture have been demonstrated in a research environment. As the CMOS
scaling continues to reduce the feature size, variability will become a major issue
among other problems as identified in the ITRS; there are various different sources
of variability in current silicon device/process technologies such as ultrathin SOI
MOSFET channel thickness fluctuation and lithography-defined gate pattern size
fluctuation. These are called line-edge roughness fluctuations and they produce
a quantitative measure of the roughness along the side edges of lithographically
printed patterns [1, 2, 3]. In state-of-the-art silicon CMOS technology (16/14 nm
technology nodes), the line-edge roughness fluctuation is not negligible.

The most critical variability however is the potential fluctuation induced by
dopant atoms, which are completely randomly distributed in the Si substrate and
heavily-doped sources and drain regions as illustrated in the insets to Fig. 1.1.
The variation in the number and position of dopant atoms in the active region
makes each MOSFET microscopically different and has already caused significant
variations from device to device. The variations in dopant statistics will have a fatal
impact on the functionality, yield, and reliability of the corresponding circuits and
systems at a time when the fluctuation margins shrink due to continuous reduction
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Figure 1.1: CMOS miniaturization trend targets from the International Tech-
nology Roadmap for Semiconductors with schematic MOSFET images (Source:
http://www.itrs.net/Links/2013ITRS/).

in supply voltage and an increased transistor count per chip. The CMOS scaling
theory [5] argues that the channel doping concentration in scaled MOSFETs should
be high enough to suppress the impact of drain-to-channel capacitive coupling on
the energy barrier height from the source to the channel. As a result, considering
the volume of the channel region and the doping concentration of the sub-32 nm
planar bulk MOSFETs [6], one can conclude that the average number of impurities
in planar bulk MOSFETs approaches a few ten of dopant atoms.

1.2 Random dopant fluctuations

A number of theoretical and experimental studies have discussed the impacts of
random dopant fluctuations on the significant variations in the threshold voltage
and drive current of MOSFETs [7, 8, 9]. In their 3-D atomistic simulation studies,
A. Asenov and his colleagues [8, 9] showed that threshold voltage fluctuations
are determined not only by the fluctuation in the dopant number but also in
the individual dopant position. Figure 1.2 shows the potential distributions at
the Si/SiO2 interface of two microscopically different MOSFET’s, both with 170
dopant atoms in the channel depletion region. The upper device in figure 1.2
has a threshold voltage of 0.78 V, while the lower device in figure 1.2(b) has a
threshold voltage of 0.56 V. In the upper device, six to seven dopants in the middle
of the channel almost equally spaced along the channel width block the current
path and are responsible for the high threshold voltage. In the lower device on
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Figure 1.2: Potential distributions at the Si/SiO2 interface of two microscopically
different MOSFETs both with 170 dopant atoms in the channel depletion region.
Upper: MOSFET with threshold voltage 0.78 V; Lower: MOSFET with threshold
voltage 0.56 V. After [9] .

the other hand there is virtually no dopant at the surface, resulting in a low local
threshold voltage. This study demonstrates that random dopant fluctuations are
an increasingly significant factor in sub-100 nm CMOS technology.

Hiramoto and his colleagues also experimentally studied the impact of SOI
thickness fluctuations on threshold voltage (Vth) variation in ultra-thin body SOI
MOSFETs [10] confirming that Vth variation drastically increases as the SOI thick-
ness of the channel region is thinned down to 3 nm. Figure 1.3 shows the Vth shift
increase in the SOI thickness below 3 nm in detail in [10].

In order to improve the uniformity of the dopant distributions and well con-
trol the dopant positions, some techniques have been developed for deterministic
doping. Shinada and his colleagues used the developed single-ion implantation
technique, which enables them to implant dopant ions one-by-one into a fine
semiconductor region until the desired number is reached. Figure 1.4shows the
schematic picture of a Single-ion implantation system, while the following demon-
strates the atomic force microscope (AFM) image of etch-pits created in a fission
track detector by single ions. There are an average of three P ions in a pitch of
100x100 nm with lateral precision of about 50 nm. Another technique that allows
matter to be controlled at the atomic scale is the scanning tunneling microscope
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Figure 1.3: Calculated threshold voltage shift by the quantum confinement effect.
Only the lowest energy level is taken into account. After [10].

[12], which can manipulate individual atoms and molecules on surfaces. Fig-
ure 1.4 shows the schematic picture of a scanning tunneling microscope atomic
manipulation; there is an average of one P atom included in a 3-Si-dimers area
and the lateral precision is about +/- 3.8 Å. These two techniques have made
significant efforts to control single dopants but the fact is that they are still the
state-of-the-art-technology and are still far from industrial fabrication.
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Figure 1.4: left: the schematic picture of a Single-ion implanation system, right:
the schematic picture of a scanning tunneling microscope atomic manipulation.
The microscope pictures were taken from Ref. [11, 12].
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1.3 Single dopant electronics

Although the single-ion implantation technique and the scanning tunneling mi-
croscope technique allow us to well control the positions of the dopants, these
techniques are still the state-of-the-art-technology and are still far from industrial
fabrication. On the other hand, in parallel simple technological progress offers
the possibility of utilizing individual dopant atoms to realize novel functional de-
vices at the nanometer scale [13, 14] to make devices in practice. One of the basic
operations of these nanometer-scale devices is based on single-electron tunneling
mediated by a single dopant. First, let me briefly discuss single electron transistors
(SET) and silicon single electron transistors. The first SET was proposed by Averin
and Likharev in 1986 [15], , and the first experimental work was demonstrated
by Fulton and Dolan in 1987 at Bell Laboratories [16]. The SET consists of two
electrodes known as the drain and the source, connected through tunnel junctions
to one common electrode with a low self-capacitance known as the island. The
electrical potential of the island can be tuned by a third electrode, known as the
gate, capacitively coupled with the island. In the blocking state no accessible en-
ergy levels are within the tunneling range of the electron on the source contact,
and all energy levels on island electrodes with lower energies are occupied. When
a positive voltage is applied to the gate electrode the energy levels of the island
electrodes are lowered. The electron can tunnel into the island, occupying a previ-
ously vacant energy level. From there it can tunnel into the drain electrode where
it inelastically scatters and reaches the drain electrode. SETs have been used to
measure quantum bit [17], to calculate the local chemical potential in semiconduc-
tor systems [18], , to characterize and operate single electron pumps and traps [19],
, and for macroscopic charge quantization [20]. Silicon based Single Electron De-
vices (SEDs) have attracted significant attention because of their higher operating
temperature and larger potential for circuit applications with a clear emphasis on
silicon-on-insulator (SOI) substrates [21, 22].

Single electron transport through one or several dopant atoms in low-doped
channels of FETs has been characterized both experimentally [23, 24, 25] and
theoretically [26, 27, 28]. These single-dopant devices have been considered as
the building blocks for applications such as quantum computing [29, 30], single
electron transfer [31, 32], and single-dopant ionization detection [33]. Recent
progress in dopant engineering [34] and dopant mapping techniques [35, 36] is
promising in terms of improving our understanding of single-dopant devices.

6



Figure 1.5: Left: Schematic structure of the ultra thin disk-shaped-channel FET and
the TEM cross-section image. Right: The Isd −Vg characteristics of untral thin disk-
shaped-channel FET. Arrows indicate two smooth peaks originated from single
electron transport through single dopants. After [37].

The operation of single-dopant devices is based on single-electron tunneling
mediated by a single dopant. These individual dopants can be accessed even
in dopant-rich environments, where the channel contains more than one isolated
dopant atom. In Physical Review Letters [37] the Tabe group from Shizuoka
University reported that single-electron transport through a single dopant can be
achieved even in a random background of many dopants without any precise
placement of individual dopants. Figure 1.5 shows the Isd −Vg characteristics of
randomly doped devices at 17 K; they exhibit single-peak features for the first
observable current peaks, which is a signature of the creation of a single quantum
dot in the channel, and two observed peaks arise due to single-electron transport
through different single-dopant quantum dots. Due to quantum confinement
effect, a high barrier energy for electron tunneling via single dopants and therefore
a high operation temperature close to room temperature can be achieved.

The fact that single dopants can be accessed electrically even in dopant-rich
environments offers the opportunity to develop applications based on dopant
arrays. The Tabe group showed that dopant-based single-electron turnstiles can
be achieved and tuned with a combination of two gates [31, 38]. Moreover, a new
memory device concept based on the interaction between dopants has also been
developed [39]; they demonstrated that with one donor as a sensor (conduction
path) and another donor as a memory node (trap), a system could be used for
memory in which sensing is done by a single-electron tunneling current via one
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Figure 1.6: Single-electron transfer between two donors. (a) Low temperature
ID −VG charateristics showing a single-donor current peak used as a sensor for
detecting charging and discharging of a neighboring donor. (b)-(c) Charging and
discharging are sensed as abrupt jumps of the current and (d) as RTS in the time-
domain measurements. After [38].

donor atom while storage is ensured by an individual donor working as a memory
node [38, 39, 40]. They measured ID −VG characteristics by up-ramping and
consecutively down-ramping VG around the first peak , as shown in figure 1.6.
Furthermore, they indentified abrupt current jumps reflecting sudden charges in
potential due to a charging or discharging event; thus, they identified devices in
which two donors work as a sensor and as a memory node, respectively.

Another application for donor-based systems relies on the interaction between
photons and dopants. It has been determined that quantum dot (QD) arrays may
work as a building block for single-photon detection, and the Tabe group showed
that QD arrays can be replaced by an array of donors [38]. They measured the low-
temperature (15 K) ID −VG characteristics, as shown in figure 1.7, under conditions
if visible light illumination (λ= 550 nm) with low incident flux. The characteristics
exhibit irregular current peaks similar to front-gate devices. They also found that
RTS characteristics under light illumination are different compared to those evi-
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Figure 1.7: Photon-generated electron trapping in donor arrays (a) Device structure
of a back-gate SOI-FET for light illumination measurements. With VG set on the
first observable current peak (b), effect of photon absorption in the nanoscale
channel can be observed as RTS in the time-domain measurements (c). After [38].

dent under dark conditions, proving that photon-induced carriers remain trapped
in the channel for a sufficient amount of time. RTS has mainly two levels, which
suggests that only one trap is responsible for the observed current switching.
Based on such interactions, dopant-based optoelectronic devices could be devel-
oped [38, 40, 41]. Single dopant electronics opens a new group of extremely small
and low power devices, including single-electron FETs, single electron memory,
single electron transfer devices, and photonic devices.

1.4 Purpose of this study

The basic operations of single dopant devices are based on single-electron tunnel-
ing mediated by a single dopant. The binding energy of donor electrons should be
much higher than the thermal energy to ensure the operation of the single dopant
devices at room temperature, therefore it is important to accurately estimate the
binding energy of donor electrons not only for single dopant devices in particular
but also for nanometer-scale devices in general. In bulk silicon, the donor ground
state is shallow and independent from the bottom of the conduction band of Si
crystal, whereas in nano silicon, which has dimensions below the Bohr radius of
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donor electrons in bulk, the interaction between the donor related states and host
Si conduction states becomes significant due to the strong nanoscale confinement.
The binding energy in nano Si therefore should be studied from a different point
of view to the binding energy in bulk Si. By performing projected density of state
(PDOS) and 3D wavefunctions (3D-WFs) analysis, in this study I have calculated
the binding energy of P donor electrons in single P-doped Si nanorod models.

Moreover, nanoscale p-n junctions have not received as much attention as
transistors from the point of view of transport via the individuality of dopants.
Due to the importance of p-n junctions as building blocks of complex electronic
devices, specific study must be dedicated to these structures in terms of the impact
of individual dopants on their behavior [42]. Although a theoretical study on
the electronic and transport properties of nanoscale p-n junctions in terms of the
impact of individual dopants on these properties is required, such a study has
not been reported in the past. In this study, I perform first-principle calculations
to investigate the electronic and transport properties of phosphorus and boron
co-doped silicon nanostructures.

1.5 Organization of this dissertation

This thesis consists of six chapters. The content of the thesis is as follows:

Chapter 1: Introduction.I first explain miniaturization in silicon technology
and the issue of random dopant fluctuation. Techniques for improving the uni-
formity of dopant distributions and the position controllability of single dopants
are discussed. Following this I introduce single dopant electronics, which offers
the possibility of utilizing individual dopant atoms in positive ways. Finally, the
purpose of this study is discussed.

Chapter 2: Methodology.In this chapter, I summarize the fundamental calcu-
lation methods used in this study. Density functional theory (DFT) has been used
for the electronic calculation, while the non-equilibrium Green’s function (NEGF)
is used for the transport calculation.

Chapter 3: Binding energy of electrons bounded to a single phosphorus
donor atom in silicon nanorods. In this chapter, the binding energy of the phos-
phorus donor electrons in the single phosphorus-doped silicon nanorods will
be calculated using projected density of states (PDOS) and 3D wavefunctions
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(3DWFs) analysis. The results will be compared with the results from the conven-
tional method. The origins of the different results from the PDOS-3DWFs method
and the conventional method will be discussed.

Chapter 4: Single phosphorus-doped cross-shaped silicon nanostructures.
I discuss how to estimate the binding energy of phosphorus electrons in sin-
gle phosphorus-doped cross-shaped silicon nanostructure models by using the
PDOS-3DWFs method, as mentioned in Chapter 3. The correlation between my
calculations and the experimental study of Si nano stub-shaped transistors will be
discussed.

Chapter 5: Phosphorus-boron co-doped silicon nanostructures. In this chap-
ter, I perform DFT and NEGF calculations to investigate the electronic and trans-
port properties of phosphorus-boron co-doped silicon nanostructures.

Chapter 6: Conclusion and future work.

11



Chapter 2

Methodology of theoretical study

Recently, numerical simulations have been widely used to provide important
information of the electronic and transport properties of materials. In this part
of the thesis, I summarize the fundamental theory of the methods used in this
simulation studies.

2.1 Ab-initio calculation

2.1.1 Born-Oppenheimer approximation

The aim of ab-initio calculations is to obtain properties of materials from simula-
tions without using any experimental data. First, the Born-Oppenheimer approx-
imation is introduced as the begining of the simulations. Let us assume that we
have M nuclei with N electrons. The spin (σ) and position (~r) coordinates of all
electrons are:

(~r1, σ1, ~r2, σ2, ..., ~rN, σN) ≡ (~x1, ~x2, ..., ~xN) ≡ ~x

The spin (Σ) and position (~R) coordinates of all nuclei are:

( ~R1,Σ1, ~R2,Σ2, ..., ~RN,ΣN) ≡ ( ~X1, ~X2, ..., ~XN) ≡ ~X

The wavefunction of our system is: Ψ = Ψ(~X, ~x) The Schrodinger equation
takes the form:

ĤΨ = (Ĥk,n + Ĥk,e + Ĥp,e−e + Ĥp,n−e + Ĥp,n−n)Ψ(~X, ~x) = E ·Ψ(~X, ~x) (2.1)

12



where the Ĥk,n and Ĥk,e are kinetic energies of nuclei and electrons, respectively. The
Ĥp,e−e, Ĥp,n−e, Ĥp,n−n are electron-electron potentials, nucleus-electron potentials,
and nucleus-nucleus potentials, respectively. The uncertainty principle gives:

∆x · ∆p = ∆x ·m∆v ≥ ~ (2.2)

∆X · ∆P = ∆X ·M∆V ≥ ~ (2.3)

The first equation is for electron. The second one is for nuleus. The mass of a
nulei is thousands times larger than that of an electron. Furthermore, the average
kinetic energy equals 3/2kT. Hence, we have:

∆X · ∆V
∆x · ∆v

=
m
M
� 1 (2.4)

and
<

1
2

MV2 >=<
1
2

mv2 >=
3
2

kT. (2.5)

We simply set:
∆V =< V2 >1/2 (2.6)

∆v =< v2 >1/2 (2.7)

Then, we can obtain:

∆V
∆v
'

√
m
M
� 1 (2.8)

∆X
∆x
'

√
m
M
� 1 (2.9)

Equation 2.8 and 2.9 mean the nuclei move much more slowly and are much
more localized in space than the electrons . Hence, we can write:

Ψ(~X, ~x) = Ψn(~X) ·Ψe(~X, ~x) (2.10)

Equation 2.10 comprises the Born-Oppenheimer approximation. We have sep-
arated the motion of nuclei and the motion of electrons in BO approximation, but
the Schrödinger equation still remains very complicated. For many years, many
efforts have been done for solving this equation approximately. The first important
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evolution is Hatree-Fock approximation. Based on Hatree-Fock approximation,
many advanced approaches have been proposed, for instance configuration in-
teraction (CI), Mφller-Plesset pertubation theory (MP2, MP4, etc), coupled cluster
methods (CC), etc.

2.1.2 Hatree-Fock method

In Hatree-Fock (HF) approximation the many body wavafunctions are built from
single particle wavefunctions in the form of Slater determinant.

Ψ(x1, x2, . . . , xN) =
1
√

N!

∣∣∣∣∣∣∣∣∣∣∣∣∣
χ1(x1) χ2(x1) · · · χN(x1)
χ1(x2) χ2(x2) · · · χN(x2)
...

...
...

χ1(xN) χ2(xN) · · · χN(xN)

∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.11)

where χi is a single-electron wavefunction and xi is the general coordinates (in-
cludes spin coorinates) of an electron. Minimizing the expectation value of Hamil-
tonian with respect to single-particle wavefunction χi by Lagrange method, one
obtains Hatree-Fock equation

F̂χi(x) = εiχi(x) (2.12)

where

F̂ = ĥ1 +

N∑
j=1

(ĝ j − k̂ j) (2.13)

is Fock operator. The Coulomb (ĝ j) and exchange (̂k j) operators are defined as:

ĝ jχi(x2) = [
∫
χ∗j(x1)

1
r12
χ j(x1)]χi(x2) (2.14)

k̂ jχi(x2) = [
∫
χ∗j(x1)

1
r12
χi(x1)]χ j(x2) (2.15)

It is obvious that in HF approximation one replaces the complex Schrodinger
equation by set HF equations for each particle through the introduction of Coulomb
and exchange operator. In other words we can say that in HF approximation the
complex many particles problem by one particle in the average field of other
reaming particles. Since Fock operator depends on the wavefunction that it acts
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on, we must solve HF equation iteratively. We start from a set of guessed single
particle wavefunction to determine Fock operator, then we solve HF equations to
obtain new set of single particle wavefunctions. This procedure is iterated until
the convergence criterion is achieved.

Solving 2.12 requires not only the real constants εi but also each of orbitals χ(i)
in every single point i. Roothaan suggested that instead of varying all orbitals
in all points, only a finite variation was considered. This was made possible by
expanding the orbitals in a set of fixed basis functions:

Ψl(~x) =

Nb∑
p=1

χp(~x)cpl (2.16)

where the basis function χ as well as their number Nb have been chosen in ad-
vance and only the expansion coefficients cpl (whose number is finite) are varied.
According to the variational method:

∂F
∂cpl

=
∂F
∂c∗pl

= 0 (2.17)

HF equation now becomes:

Nb∑
p=1

[〈χp | ĥ1 | χm〉+

N∑
i=1

Nb∑
n,q=1

cnic∗qi(〈χpχq | ĥ2 | χmχn〉−〈χqχp | ĥ2 | χmχn〉)]cml = εl

Nb∑
m=1

〈χp | χm〉cml

(2.18)

This is the Hartree-Fock-Roothaan equation that have made HF calculations so
widely used. From one set of solution (cml), one can obtains a matrix eigenvalue
equation:

Fcl = εlOcl (2.19)

where F ≡ (Fpm)NbNb ; O ≡ (Opm)NbNb ; cl ≡ (cl)Nb1; Opm ≡ 〈χp | χm〉cml

Solving this equation, we obtain a new set of solution (cml) and so on until the
procedure converges.
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2.1.3 Density functional theory

Density functional theory

Parallel to HF methods, different line of electronic structure theory, density func-
tional theory (DFT), was marked by L. H. Thomas and E. Fermi (1927-1928) [43].
Although their approach does not give good result, it introduced an important
idea that the energy can in fact be written in term of electronic density. The most
important development of DFT was introduced in 1964 by Hohenberg and Kohn
[44]. In this work, Hohenberg and Kohn proved two theorems that form a solid
mathematical ground for DFT.

Theorem 1: The external potential is uniquely determined. except for a constant, by
the ground state electronic density.

Since the ground state electronic density uniquely determines vext, it also de-
termines the Hamiltonian. It hence determines the ground state wavefunction by
solving the full many body Schrödinger equation. Ground state electronic density,
therefore, determines all properties of the system.

Theorem 2: A universal functional for the energy E[ρ] in term of electronic density
can be defined, valid for any external potential vext. For any particular vext, the exact
ground state energy of the system is the global minimum value of this functional, and the
density ρ(r) that minimizes the functional is the exact ground state density

Thus, the complicated full many body problem now can be replaced by a
variational problem of minimizing the energy functional E[ρ] with respect to elec-
tronics density. However, not all electronic density can be put into the functional
E[ρ] for the variation. We can only use the densities that are associated with a
certain external potential vext in this minimization. These densities are so-called
vext-representable. And it raises the question of how such electrnic density can be
recognized.

Kohn-Sham method

In order to put DFT in practice, Kohn and Sham [45] introduced the concept of
non-interacting reference system that have the same density with the real system.
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This system is described by the Hamiltonian

ĤR =

N∑
i=1

[−
1
2
∇

2
i + vR(ri)] (2.20)

where N is number of electrons. The reference potential, vR(ri), is defined so that
the ground state density of ĤR equals to the density of the interest system. Since the
Hamiltonian has no electron-electron interactions, its ground state wavefunction
can be expressed in the form of Slater determinants as shown in Eq. 2.11. The
Density can be written as

ρ(r) =

N∑
i=1

| χi(r) |2, (2.21)

and the kinetic energy can be approximated as

TR[ρ] = −
1
2

N∑
i=1

〈χi | ∇
2χi〉 (2.22)

The single-particle orbitals, χi(x), are the N lowest-energy eigenfunctions of one
electron Hamiltonian

ĤR = −
1
2
∇

2 + vR(r) (2.23)

We can now write the energy density functional as follows:

EKS = −
1
2

Nocc∑
i=1

〈χi | ∇
2χi〉 +

∫
ρ(r)vext(r)dr +

1
2

"
ρ(r)ρ(r′)
| r − r′ |

drdr′ + EXC[ρ]. (2.24)

The exchange-correlation functional, EXC[ρ], includes the exchange-correlation
effect and the difference of real kinetic energy, T[ρ], and reference kinetic energy,
TR[ρ]. By using Lagrange method with the constraint of the orthonormalization
of the single-particle wavefunction, χi(r), to minimize the energy functional with
respect to the single-particle wavefunction, we obtain Kohn-Sham equation

[
1
2
∇

2 + ve f f (r)]χi = εiχi (2.25)

where effictive potential, ve f f (r), is defined as

ve f f = vext +

∫
ρ(r))
| r − r′ |

dr + vXC (2.26)
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The exchange-correlation potential, vXC, is the functional derivetives of the exchange-
correlation functional with respect to ρ

vXC =
δEXC

δρ
(2.27)

Since efective potential, Eq. 2.26, depends on the density, we need to solve it
iteratively. We start from a set of guess single-particle wavefunction to calculate
the density. From this density we next calculate effective potential, and the solve
Kohn-Shame equation, Eq. 2.25 to get a new set of single-particle wavefunction.
The procedure will stop, if the convergence criterion is achieved. If the conver-
gence criterion is not achieved, then we start again with this set of single-particle
wavefunction.

Exchange-correlation functionl

In Khon-Sham formalism, most of the contributions to the electronic energy of
an interested system can be treated exactly. All unknown parts are now put in
to the exchange-correlation functional VXC, which include non-classical portion of
electron-electron interaction and the component of the kinetic energy not covered
by the non-interacting reference system. The quality of the DFT approach is
mainly determined by the accuracy of the chosen approximation to VXC. Unlike
conventional wave function based methods, in DFT there is no systematic way
towards improved approximate functionals. It is very important to carefully study
the performance of particular functional with respect to a suitable set of reference
data.

2.2 Electronic transport calculation

In this section, I present some fundamentals of electronic transport in mesoscopic
systems. The main results are refereed from the paper of Wingreen [46] and the
book of Datta [47].
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2.2.1 Transverse modes

There are analogous to the transverse modes of electromagnetic waveguides. In
narrow conductors, the different transverse modes are well seperated in energy
and such conductors are often called electron waveguides. We consider a rectangu-
lar conductor that is uniform in the x-direction and has some transverse confining
potential U(y). The motion of electrons in such a conductor is described by the
effective mass equation:

[Es +
h2k2

2m
+

py
2

2m
+ 1/2mω2y2]χ(y) = Eχ(y) (2.28)

where χ(y) is the transverse function. The eigenenergies and eigenfunctions are
given by: χn,k(y) = un(q) where q =

√
mω0/hy

E(n, k) = Es +
h2k2

2m
+ (n + 1/2)hω0 (2.29)

The dispersion relation is sketched in Fig. States with different index n are said to
belong to different subbands just like the subbands that arise from the confinement
in the z-direction. The subbands are often referred to as transverse modes in
analogy with the modes of an electromagnetic waveguide.

2.2.2 The current and conductance

To calculate the current we note that the states in the narrow conductor belong
to different transverse modes or subbands. Each mode has a dispersion relation
E(N,k) with a cut-off energy εN = E(N, k = 0) below which it cannot propagate. The
number of transverse modes at an energy E is obtained by counting the number
of modes having cut-off energies smaller than E:

M(E) =
∑

N

θ(E − εN) (2.30)

The current is given by

I =
2e
h

∫ + inf

− inf
f (E)M(E)dE (2.31)

The conductance of large samples obeys an ohmic scaling law: G = σW/L. But as
we go to smaller dimensions there are two corrections to this law. Firstly there is
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an interface resistance independent of the length L of the sample. Secondly the
conductance does not decrease linearly with the width W. Instead it depends on
the number of transverse modes in the conductor and goes down in discrete steps.
The Landauer formula incorporates both of these features:

G =
2e2

h
MT (2.32)

The factor T represents the average probability that an electron injected at one end
of the conductor will transmit to the other end. If the transmission probability
is unity, we recover the correct expression for the resistance of a ballistic conduc-
tor including the contact resistance. We could view the Landauer formula as a
mesoscopic version of the Einstein relation:

σ = e2NsD < − > G =
2e2

h
MT (2.33)

with the conductivity replaced by the conductance, the density of states replaced
by the number of transverse modes (or subbands) and the diffusion constant
replaced by the transmission probability.

2.2.3 Non-equilibrium Green’s function method

A system including a central scattering region connected by two lead is considered.
The Hamiltonian for this system can be expressed as:

H = Hll + Hrr + HC + HC,ll + HC,rr (2.34)

where Hll, and Hrr are the Hamiltonian of the left and right lead, respectively. The
Hamiltonian of the central region:

HC =
∑

n

(εn + qUn)d+
n dn (2.35)

The term Un is the self-consistent Coulomb potential of the central region. The
couplings between the central region and the left and right leads are described by
the term HC,ll and HC,rr. Theoretically, the Hamiltonian, H, of the system must be
calculated seft-consistently. When H is determined, the current flow through the
system is also determined. The steady current can be written as: where Hll and
Hrr are the Hamiltonian of the left and right lead, respectively. The Hamiltonian
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of the central region:

I = Ill = Irr =
q
h

∫
dε[ f (ε − µL) − f (ε − µR)]T(ε) (2.36)

where, T(ε), is the transmission coefficient. It can be expressed as:

T(ε) = Tr[γL(ε − qvL)]Gr(ε)γR(ε − qvR)]Ga(ε)] (2.37)

Here, Gr and Ga are the retarded and advanced Green’s function of the central
region. A central results of the NEGF method is that the density matrix of the
central region under non-equilibrium conditions, ρ, is given by:

ρ = −
i

2π

∫
G<(ε)dε (2.38)

where G<(ε) is calculated using the Keldysh equations:

G<(ε) = Gr(ε)
∑

(ε)Ga(ε) (2.39)

and ∑
(ε) = iγL(ε − qvL) fα(ε − µL) + iγR(ε − qvR) fα(ε − µR) (2.40)

The advantage of the NEGF method is that it includes all information of the non-
equilibrium quantum effects and the non-preiodic boundary conditions.

2.2.4 Combination of DFT and NEGF calculations

The DFT method can take into account the many-body interaction effects, while the
NEGF method can treat the non-equilibrium effects and the non-preiodic bound-
ary conditions. The combination of the DFT and the NEGF methods, therefore,
allows us to calculate electronic transport properties of open systems accurately.
In this research, all first-principles calculations were performed using the software
OpenMX, which is implimented both the DFT and the NEGF methods. In par-
ticular, the first-principles calculations were performed using the code OpenMX,
which is based on density functional theories (DFT) [44, 45], norm-conserving
pseudopotentials [48, 49, 50, 51, 52], and pseudoatomic localized basis functions
[53]. All calculations are performed by using generalized gradient approximation
(GGA) PBE version of the exchange-correlation potential [54]. The convergence
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threshold for the self-consistent field (SCF) iteration is 10−6 Hartree. The pseudo-
atomic orbitals are used as basis functions to expand one-particle Kohn-Sham
wave functions. The cut-off radius of the basis functions is 7.0 . Due to the large-
scale calculation, only s-, p-, and d-state radical functions are used to represent the
basis functions of Si, P, H, and Au. The k grid 1x2x3 is used for the SCF calculation.
For the isolated Si nanorods, we use the conventional diagonalization method in
the SCF iterations. For the Si nanorods sandwiched by two semi-infinite Au elec-
trodes, we use the non-equilibrium Green’s function (NEGF) method within the
collinear DFT [55], which is implemented in the OpenMX code in the SCF iteration.
The NEGF method enables us to calculate the transmission spectra of electrons
through the Si nanorods from the left to the right lead.
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Chapter 3

Binding energy of electrons bounded
to a single phosphorus donor atom in
silicon nanorods

3.1 Introduction

The technological progress offers the possibility of utilizing individual dopant
atoms to realize novel functional devices at the nanometer scale [13, 14]. One of
the basic operations of these nanometer-scale devices is based on single-electron
tunneling mediated by a single dopant [37]. The binding energy of donor electrons
should be much higher than the thermal energy to ensure the operation of single
dopant devices at room temperature [13].; therefore, it is important to accurately
estimate the binding energy of donor electrons not only for single dopant devices
in particular but also for nanometer-scale devices in general. In past studies, the
binding energy of dopant electrons has been defined as the difference between
the ionization energy calculated for single phosphorus-doped (P-doped) silicon
nanostructures and the electron affinity calculated for un-doped silicon nanos-
tructures [56, 57, 58, 59, 60, 61]. This definition has been frequently used in many
calculations, from tight binding calculations to full DFT real-space calculations
[56, 57, 58, 59, 60, 61]. The first conductive state was determined through the
electron affinity of the un-doped silicon nanostructures, thus this conventional
definition is similar to the definition of binding energy in bulk silicon. In bulk
silicon, the donor ground state is shallow and independent from the bottom of the
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Si crystal conduction band. In nano silicon, which has dimensions below the Bohr
radius of donor electron in bulk, the interaction between the donor related states
and host Si conduction states becomes significant due to the strong nanoscale
confinement. The binding energy in nano Si should therefore be studied from a
different perspective to the binding energy in bulk Si. The conventional definition
however fails to include the strong interaction of electrons at excited states and
phosphorus ions, which can be described by the hybridization of donor electron
states and silicon electron states in extremely downscaled silicon nanostructures.
This hybridization undoubtedly takes a predominant role in the electronic and
transport properties of nanometer-scale devices, along with the quantum confine-
ment [62, 56] and dielectric confinement effects [57]. In this study, binding energy
is investigated at nanoscale for the first time, which considers the hybridization
of the phosphorus donor electron states and silicon electron states explicitly. By
utilizing the DFT total energy calculation, the binding energy of the P donor elec-
trons in the single P-doped Si nanorods from the projected density of state (PDOS)
and 3D wavefunctions (3D-WFs) analysis can be calculated. Finally, I have con-
ducted the transport calculation for the single P-doped Si nanorod connected to
the source and drain electrodes. This study has been published in the Journal of
Applied Physics 116 (6) 063705 (2014).

3.2 Structures of the single phosphorus doped silicon

nanorods

The Si nanorods used in this study are built with the < 100 >orientation along
the Z direction and are covered with H atoms in order to passivate all of the dan-
gling bonds. To investigate the effects of quantum confinement on the electronic
properties of the nanorods, I built five Si nanorods Si12H28P, Si61H75P, Si167H147P,
Si357H243P, and Si652H364P - with different sizes. The shapes of the five nanorods are
analogous. In all these structures, I consider the P atom to be at the center substi-
tutional site. Table I shows the dimensions of five Si nanorods along the X, Y, and
Z axes. I have labeled the five Si nanorods Si12H28P,Si61H75P,Si167H147P,Si357H243P,
and Si652H364P as SNR-A, SNR-B, SNR-C, SNR-D, and SNR-E, respectively. The
average radius Ravg = ((Rx + Ry + Rz)/3) is also reported in table I. Figure 3.1(a)
shows the views of SNR-B (Si61H75P) on the XY and XZ planes.The five SNRs have
been embedded in large supercells in order to prevent interactions between the
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periodic replicas (about 20 Å of vacuum separates neighboring clusters in the X,
Y, and Z directions). To build single P-doped Si nanorods with two electrodes,
I used two semi-infinite Au nanowires as the left and right leads, as shown in
Fig. 3.1(b). The channels are SNRs. The channels are SNRs. Due to the large
scale calculation, the number of Au atoms in each lead has been optimized as 20.
The distance between the lead interfaces and the nanorods is about 1.5 Å. The Z
< 100 > direction is set as the transport direction from the left lead to the right
lead. To minimize the hybridization between the states from two electrodes and
the states of the nanorods, fully hydrogen terminated Si nanorods have been used.

Table 3.1: The dimensions of five Si nanorods labeled from SNR-A to SNR-E

Structure Rx (nm) Ry (nm) Rz (nm) Ravg (nm)
SNR-A

(Si12H28P) 0.356 0.221 0.491 0.356
SNR-B

(Si61H75P) 0.627 0.352 0.898 0.627
SNR-C

(Si167H147P) 0.898 0.496 1.304 0.898
SNR-D

(Si357H243P) 1.069 0.638 1.718 1.069
SNR-E

(Si652H364P) 1.441 0.767 2.146 1.441

3.3 The hybridization of the phosphorus electron states

and silicon electron states

It is well known that, in an un-doped Si nanostructure, the lowest unoccupied
orbital degenerates into three groups: one A1 state, one threefold T2 state, and one
twofold E state [62, 60]. The A1 orbital has s-like symmetry at its nanostructure
center, while the T2 and E orbitals have a node at the center. The inter-valley cou-
plings split these states. According to the tight binding calculation, the splittings
in spherical un-doped Si quantumdot range from 0.1 meV for diameters of 10.32
nm up to 68 meV for diameters of 1.85 nm. As for the P-doped Si nanostructures, I
have calculated the splittings of the A1, T2, and E states in SNR-B with an average
diameter of 1.25 nm. Figure 3.2 shows the projected density of states onto the P
donor, with Gaussian broadening of 0.15 eV and Kohn-Sham energy levels from
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Figure 3.1: (a) The single P-doped Si nanorod SNR-B (Si61H75P) viewed on the XY
and XZ planes, (b) The view of SNR-B with two Au electrodes (named SNRD-B)
on the XZ plane. The white, yellow, green, and blue balls represent H, Si, Au, and
P atoms, respectively.
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0 eV up to 5 eV with respect to the Fermi level in the SNR-B (Si61H75P) with an
average diameter of 1.25 nm. The donor ground state is 0 eV in the LUMO state.
The excited donor states LUMO+1, LUMO+2, and LUMO+3 are shown in Fig. 2.
I denote that the LUMO+i is the ith excited state above the donor ground state
LUMO, and the A1 state is the donor ground state. The T2 state is the LUMO+2,
while the E state is the LUMO+10 state, which is not indicated in Fig. 3.2. Due to
the Gaussian broadening in the PDOS spectrum, one PDOS peak may consist of a
number of quantum states. The splitting between the A1-T2 and T2-E is 350 meV
and 600 meV, which are both much larger than the splitting in the tight binding
calculation [62]. Such enhancement of the splitting is common due to the strong
quantum confinement of the central-cell donor potential in nano Si [63]. Next,
we will study the hybridization of the P electron states and Si electron states in Si
nanorods.

Figure 3.3 shows the top and side views of the wavefunctions of the A1, T2 and
E states in the SNR-B on the XZ and YZ planes, respectively. As we can see, the
A1 orbital has a large projection on the center dopant atom compared to T2 and E
states; therefore, the dopant in the center stabilizes the A1 state more than the T2

and E state. This leads to the fact that the donor ground state is the A1 state. In
Fig. 3.3I show the s, p, and d components of the PDOS onto the P atom and onto
the first neighboring Si atom in SNR-B. The A1 state has a contribution not only
from the s orbital of the P dopant but also from the p and d orbitals of the first
neighboring Si. The T2 state includes contributions from the p and d orbitals of the
P dopant and the s, p, and d orbitals of the first neighboring Si. Finally, the E state
has contributions from the s, p, and d orbitals of the P dopant and the s, p, and d
orbitals of the first neighboring Si. This means there is hybridization between the
P electron states and Si electron states in SNRs. This hybridization can be observed
not only at the donor ground state A1 but also at the donor excited states such as T2

and E. In bulk Si, the first conductive state is considered as the lowest unoccupied
state of the un-doped Si crystals. In nanostructures, there is hybridization between
phosphorus electron states and silicon electron states at both donor ground states
and donor excited states. The hybridization becomes significantly stronger when
the sizes of Si nanostructures are smaller than the Bohr radius of the P donor
in bulk Si (around 3 nm) because the electrons are confined by the size of the
nanostructures and continue to interact with the P donor in higher-energy excited
states. Accordingly, this hybridization must be taken into account to determine
the first conductive states in Si nanostructures. The next section will discuss how
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Figure 3.2: Upper: The projected density of states onto the P atom in SNR-B. Lower:
the Kohn-Sham energy levels with respect to the Fermi energy, the position of the
A1, T2, and E states are indicated.

to locate the first conductive states in SNRs and the binding energy of the donor
electrons.
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Figure 3.3: Upper: The top and side views of the wavefunctions of the A1, T2 and
E states in SNR-B on the XZ and YZ planes, respectively; Lower: The s, p, and d
components of the PDOS onto the P atom and onto the first neighboring Si atom.
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3.4 The first conductive state and binding energy cal-

culation for isolated silicon nanorods

As discussed in the previous section, the phosphorus electron states hybridize
with the Si electron states. According to the LCAO theory, the wavefunction of the
entire systemφ is a linear combination of individual atomic orbitals. The weight of
the contribution of the phosphorus atomic orbital φP is important in determining
how strongly the donor electrons interact with the P dopant in the nanostructures.
Based on the change in the weight of the φP contribution, we can find the first
conductive state relative to the donor ground state. Let us consider which states
in the density of states belong to phosphorus atom in a nanostructure. This can be
qualitatively considered by using the PDOS, which is obtained by projecting the
wavefunction φ onto localized atomic orbitals φP of phosphorus atoms; therefore,
the total DOS can be resolved into partial components of PDOS onto individual
atoms. The ratio PDOS/DOS, where PDOS is the projected density of states onto
the P donor and DOS is the total density of states, presents the relative weight of the
states associated with the P dopant compared to the whole system. This ratio can
be attributed to the contribution of the P electron states to the states of the whole
system. Figure 3.4 shows the PDOS onto the P atoms and the PDOS/DOS ratios for
SNR-A, SNR-B, SNR-C, SNR-D, and SNR-E. The five Si nanorods were embedded
in large vacuum supercells in order to prevent interactions between the periodic
replicas (about 20 Åof vacuum separates neighboring nanorods in the X, Y, and Z
directions). The Fermi level was set at 0 eV, and the A1 donor ground states were
set at 0 eV the Fermi level. We can see from Fig. 3.4 that the PDOS/DOS ratios
at low energy regimes (below the dashed blue lines) are high and then decrease
as energy increases. This can be interpreted as follows: at low energy levels near
the donor ground state, the relative weight of the phosphorus electron states is
high due to the strong confinement from the atomistic donor potential. At higher
energy levels (above the dashed blue line), the relative weight is low due to the
decreasing confinement. As a result, the PDOS/DOS ratios decrease almost to
zero. Therefore, based on the change in the PDOS/DOS ratios, we can directly
estimate the binding energy of the donor electrons in SNRs. I believe that the
position of the first conductive state is at the energy level where the PDOS/DOS
ratio starts to approach zero. For SNR-A, SNR-B, SNR-C, SNR-D, and SNR-E, the
first conductive states are estimated as the positions of the dashed blue lines.
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Figure 3.4: The PDOS (red) onto the P atom and the ratio PDOS/DOS (green) of
the nanorods SNR-A, SNR-B, SNR-C, SNR-D, and SNR-E. The dashed blue lines
present the positions of the first conductive states.
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To clarify the exact positions of the first conductive states in SNRs, I have ana-
lyzed the 3D wavefunctions associated with the donor ground states and the donor
excited states. Figure 3.5 shows the projections of the wavefunction squares along
the < 100 > direction associated with the donor ground state and seven donor
excited states of nanorod SNR-B: LUMO+3, LUMO+9, LUMO+24, LUMO+28,
LUMO+32, LUMO+74, and LUMO+125. For convenient presentation, only seven
donor excited states have been shown. Z is the coordinate in the < 100 > direc-
tion while the P atom is at the center, which is 15 Å away from the origin. We
can see from Fig. 3.5(a) that the projections of the wavefunction squares near the
center P atom gradually decrease from donor ground state LUMO to LUMO+28.
However from LUMO+28 the decrease cannot be observed clearly. This is con-
sistent with the PDOS analysis that the PDOS/DOS ratio rapidly changes at low
energy regimes and then becomes closer to zero at critical energies. The energy
level of LUMO+28 is 1.62eV, which is equal to the critical energy (the position
of the dashed blue line) found by the PDOS analysis. The right-hand panels in
Fig.3.5(a)show the wavefunction visualization of LUMO+28, viewed on the XZ
(upper panel) and YZ (lower panel) planes. We can see that the wavefunction
of the state LUMO+28 spreads throughout the structure without any significant
localization, which suggests that electrons can successfully transport throughout
the structures in this state. By combining the PDOS and the 3D-wavefunction
analyses, I have found that the energy level of the first conductive state in SNR-
B is 1.62 eV. Similarly, the energy levels of the first conductive states in SNR-A,
SNR-C, SNR-D, and SNR-E are 1.36 eV, 1.42 eV, 1.36 eV, and 1.21 eV, respectively.
The binding energy is calculated as the difference between the A1 donor ground
state and the first conductive state. The A1 donor ground states were found at the
Fermi level 0 eV for the five SNRs, hence binding energies that were equal to the
energy levels of the first conductive states in five SNRs. As we can see from Fig.
3.4, the positions of the first conductive states (the positions of the dashed blue
lines) do not monotonously increase toward higher energies when the size of the
nanorods decrease according to the simple quantum confinement effect. In order
to understand the mechanism behind this trend, I have investigated the atomistic
effective potential in SNRs. The atomistic effective potential is defined as the sum
of the neutral atom potential and the Hartree potential, which considers Coulomb
electron-electron interactions [64, 65]. In Fig. 3.5(b) the atomistic effective poten-
tial of SNR-B is plotted, and the two arrows indicate the edge of the nanorod.
The atomistic effective potential at the P donor site is deeper than that at the Si
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sites, which causes the strong localization of the wavefunction of electrons near
the P atom site at donor ground state, which is shown with large projections of the
wavefunction squares of the LUMO state near the center P atom in Fig. 3.5(a). Fig-
ure 3.6 shows the energy levels of the donor ground state and donor excited states
along with the atomistic effective potential; we can see that the state LUMO+28
is almost higher than the atomistic effective potential peak at the P atom. Above
this peak, the interaction between the donor electrons and the core P ion is small
because the electrons are no longer confined by the atomistic effective potential at
the P site. As a result, the projections of the wavefunction squares near the P atom
remain small from the state LUMO+28 to the higher-energy excited states as we
can see from Fig. 3.5(a).

Figure 3.6 shows the atomistic effective potential of SNR-A, SNR-B, SNR-C,
SNR-D, and SNR-E. The left panels show the PDOS onto the P atoms, and the
positions of the first conductive states with respect to the vacuum level are denoted
by the horizontal lines. When the sizes of the nanorods decrease from SNR-E
to SNR-A, the first conductive state slightly rises due to the simple quantum
confinement effect. However, the interesting thing is that in addition to the simple
quantum confinement effect, the atomistic effective potential distribution, which
can be reflected into the hybridization of the P electron states and Si electron
states, plays a role in determining the energy of the first conductive states. As we
can see in Fig. 3.6,the positions of the first conductive states obtained from the
PDOS-3DWFs method are still near the peak atomistic effective potential at the P
donor site. Except SNR-A with an average radius of 0.35 nm, which is close to
the size limit for a P atom while retaining its sp3 hybridization, the electrons are
still confined by the extremely small size of the nanorod and continue to interact
strongly with the P atom at high-energy states, even above the top of the atomistic
effective potential at the P site. Therefore, the first conductive state for SNR-
A is quite far away from the top of the atomistic effective potential. For other
larger structures, the electrons can be conductive near the peak atomistic effective
potential due to the weaker confinement. When the size decreases from the bulk
size to the size of SNR-E (Ravg = 1.441 nm), the first conductive state lifts up due
to the increase in the quantum confinement and nearly reaches the peak atomistic
effective potential at the SNR-E size. Above the peak, the interaction between
the donor electrons and the core P ion is reduced. The electron wavefunctions
are more delocalized and can attribute to the conduction. If the size continues
to decrease however, the first conductive states still stay close to the peaks of the
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Figure 3.5: (a) The projections of wavefunction squares of the A1 donor ground
state (LUMO) and donor excited states in SNR-B along Z [100] direction, the right
panel shows the wavefunction visualization of the donor excited state LUMO+28
viewed on the XZ (upper panel) and YZ (lower panel) planes; (b) The atomistic
effective potential of SNR-B along the Z direction, the arrows indicate the edge of
the nanorod; (c) The atomistic effective potential of SNR-B along the Z direction
plotted with the electronic energy levels, the lines show the positions of the LUMO-
donor ground state and the donor excited states.
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atomistic effective potentials. As a result, the positions of the first conductive
states are weakly dependent on size when the structures are smaller than SNR-E.

According to previous published studies, the binding energies of P donor
electrons in Si nanostructures are proportional to the inversed radii of the nanos-
tructures due to the quantum confinement effect. In order to conduct a direct
comparison, I calculated the binding energies for the Si nanorods by using the
conventional formula: [56]:

Eb
conv = Id − Au (3.1)

Where Id = Ed(n-1) −Ed(n) and Au = Eu(n) −Eu(n+1) are the ionization energy
and electron affinity of the doped and un-doped systems, respectively. Ed and Eu

are the total energy of the doped and un-doped systems.

In this conventional method, the first conductive state is determined as the
lowest unoccupied state of the un-doped Si nanostructure. Hence, it fails to in-
clude the hybridization of the phosphorus electron states and Si electron states at
the first conductive states; the binding energy obtained by this method is simply
a decreasing function of the size due to the simple quantum confinement effect.
Figure 3.7 shows the binding energy of the dopant electrons as a function of the
nanorods average radius, which is calculated by using both the PDOS-3DWFs
method and the conventional method. From Fig. 3.7 we can see that the con-
ventional method shows a non-linear decrease in the binding energy when the
size increases, whereas the PDOS-3DWFs method results in a binding energy of
approximately 1.5 eV, which is virtually unaffected by the nanorods dimensions.
In extremely small nanostructures that are smaller than about 1.4 nm, the energy
levels of the first conductive states are capped near the peak atomistic effective
potential at the P donor site, even for the smallest nanorod SNR-A. As a result, the
binding energy calculated by the PDOS-3DWFs method shows virtual indepen-
dence from the size, as can be seen from Fig. 3.7. This fact signifies good tolerance
of the binding energy, which governs the operating temperature of single dopant-
based transistors.
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Figure 3.6: The atomistic effective potential of the SNR-A, SNR-B, SNR-C, SNR-D,
and SNR-E. The right side shows the PDOS onto the P atoms. The energy of
the first conductive states with respect to the vacuum level is presented by the
horizontal lines.
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Figure 3.7: The binding energy of the donor electrons as a function of the nanorods
average radius calculated by using the PDOS-3DWFs method and the conventional
method. The lines are only for eye guide.

3.5 The first conductive state and binding energy cal-

culation for silicon nanorods sandwiched with two

gold electrodes

In this section, I study single P-doped Si nanorods sandwiched with two semi-
infinite Au electrodes as indicated in Fig. 1(b) in order to discuss the donor
electron binding energy in terms of the transmission spectra. The Si nanorods are
labeled with the electrodes Au−Si12H28P,Si61H75P−Au,Au−Si167H147P−Au,Au−
Si357H243P−Au, and Au−Si652H364P−Au as SNRD-A, SNRD-B, SNRD-C, SNRD-D,
and SNRD-E, respectively. Figure 3.8 shows the PDOS onto the P atoms of SNRD-
A to SNRD-E. The energy of the donor ground states is marked by the dashed
purple lines. In these calculations without any bias between the left and the right
leads, the Fermi levels of the left and the right leads were set at 0 eV and the donor
ground states were then shifted to above the Fermi energy levels. Compared with
the PDOS spectra for SNRs in Fig. 3.4, the individual peaks in the PDOS spectra
obtained for SNRDs are broader. This is presumably caused by the broadening of
quantum energy levels of SNRs induced by the electrodes, which is the estimated
part of the self-energies of the electrodes. Moreover, the amplitudes of the PDOS at
low energy regimes near the donor ground states gradually decrease from SNRD-
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A to SNRD-E, reflecting the gradual delocalization of the wavefunction of the
donor electrons. Therefore, the evolutions of the PDOS with respect to energy can
be used to estimate the binding energy of electrons, as discussed in the previous
section.

To prove the validity of the PDOS-3DWFs method in the previous section, I
have undertaken transport calculations for electrons through the Si nanorods with
two electrodes. The transmission rate T(E) is calculated according to the Landauer
formula, which is implemented using the OpenMX code. Figure 3.9 shows the
transmission spectra (blue) and the corresponding atomistic effective potentials
(red) for the five SNRDs; in these plots, the vacuum level was set as 0 eV. The
positions of the P, Si, and Au atoms along the Z direction are also indicated, and
the energy of the donor ground state D0 is indicated by the lower horizontal black
lines. We can see from Fig. 3.9 that the transmission rates are very low at the energy
of the donor ground states and increase dramatically as the energy increases. This
is due to the strong contributions of P electron states near the donor ground states,
which causes the strong concentrations of electrons at the P donor sites. The
low transmission peaks near the donor ground states D0 reflect the transportation
of single-electron tunneling mediated by single dopants [13]. The transmission
rates increase as energy increases because the contributions from the P electron
states gradually decrease, leading to greater wavefunction delocalization in the
donor electrons. To find the positions of the first conductive states, we define the
positions where the transmission rates exceed one (100

In Fig. 3.10,the binding energies of the five devices from SNRD-A to SNRD-
E calculated from the transmission spectra are compared with those of the five
isolated Si nanorods from SNR-A to SNR-E, calculated using the PDOS-3DWFs
method. The green squares represent the binding energies for SNRDs, while the
blue triangles indicate the binding energy for SNRs. The virtual Ravg independence
binding energy can be seen clearly for both methods. The binding energies are
found at around 1.5 eV. This can be attributed to the capping of the first conductive
states near the tops of the atomistic effective potentials at the P donor site. In my
transport calculation, the transmission via state H0 describes the transportation of
electrons via the donor ground state H0. The transmission via H1 on the other hand
describes the transportation of electrons via state H1. The different energy between
H0 and H1 is the excitation energy for electrons from H0 to H1. In this calculation, I
define the first conductive state (CS) as when the transmission rate begins to equal
100As for the operation of single dopant devices, the isolated current peak at a
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SNRD-B

Figure 3.8: The PDOS onto the P atom of five Si nanorods sandwiched with two
electrodes SNRD-A to SNRD-E. The dashed purple lines present the positions of
the donor ground states..
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Figure 3.9: left panels: the transmission rates T(E); right panels: the corresponding
atomistic effective potentials of the SNRD-A to SNRD-E. Two black lines show the
positions of the donor ground states D0 (the lower lines) and the first conductive
states 1st CS (the upper lines). .
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Figure 3.10: The binding energies of the donor electrons as a function of the
nanorods average radius. The green squares and blue triangles represent the
binding energies for SNRDs and SNRs calculated by the transmission method and
the PDOS-3DWFs method, respectively. The lines are only for eye guide..

certain temperature can be considered as the tunneling current via an individual
dopant; therefore, the barrier energy required for electrons to tunnel via a single
dopant is particularly important. The new definition of the first conductive state
has been introduced in order to calculate this kind of barrier energy.

3.6 Conclusion

I have studied the electronic properties of single P-doped Si nanorods by using
the DFT calculation. It has been determined that the hybridization of the donor
electron states and the Si electron states is significant, not only at the donor ground
state but also at donor excited states in Si nanorods. The PDOS-3DWFs analysis has
clarified the gradually decreasing contribution of the phosphorus electron states
from the donor ground states to the higher-energy donor excited states. I have
defined the first conductive state as the point at which electrons start to fully pass
through the structure. As for the operation of single dopant devices, the isolated
current peak at a certain temperature can be considered as the tunneling current via
an individual dopant. Therefore, the barrier energy required for electrons to tunnel
via a single dopant is especially important. A new definition of the first conductive
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state has been introduced in order to calculate this kind of barrier energy. By using
the PDOS-3DWFs analysis, I have been able to identify the first conductive states.
The binding energies of the donor electrons in the single P-doped Si nanorods,
which have an average radius of smaller than 1.4 nm, have been calculated as
the difference between the first conductive state and the donor ground state. It
has been found that the binding energy is around 1.5 eV while the conventional
method results in an increasing function by reducing the nanorod’s radius. The
difference is due to the fact that the conventional method does not include the
hybridization between the donor electron states and Si electron states at the first
conductive state. As the radius decreases below 1.4 nm, the first conductive state
is capped near the top of the atomistic effective potential at the P donor site. Above
the potential peak, the interaction between the donor electrons and the core P ion
is significantly reduced, while the interaction between donor electron states and
Si electron states increases. Therefore, the electron wavefunctions above the top
are more delocalized and can attribute to the conduction. This causes the binding
energy in small nanorods that are smaller than 1.4 nm to be weakly dependent on
the size when the size continues to decrease. This fact signifies the good tolerance
of the binding energy, which governs the operating temperature of single dopant-
based transistors in practice. The transmission spectra, which reflects the transport
properties of electrons in Si nanorod devices, shows consistent results with the
PDOS-3DWFs method and this fact proves the validity of the new method. This
study has been published in the Journal of Applied Physics 116 (6), 063075 (2014).
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Chapter 4

Single phosphorus-doped
cross-shaped silicon nanotructures

4.1 Introduction

In this chapter, I discuss how to estimate the binding energy of phosphorus elec-
trons in single phosphorus-doped cross-shaped silicon nanostructures by using
the PDOS-3DWFs method mentioned in Chapter 3. Recent progress in silicon
nanotechnology has allowed electrical measurements of electron or hole tunnel-
ing through individual dopants in the channel of silicon transistors [23, 67, 37,
68, 69, 12, 70], and one of the basic operations of these nanometer-scale devices
is based on single-electron tunneling mediated by a single dopant. The binding
energy of donor electrons should be much higher than the thermal energy to en-
sure the operation of single dopant devices at room temperature. However, there
are no reports on tunneling operation via dopants at elevated temperatures, even
though a higher tunneling operation temperature is crucial for applications using
CMOS-based electronics. The results reported so far have been mostly obtained for
transistors that have channels without any special patterns [23, 67, 37, 68, 69, 12, 70].
Aiming at high temperature operation of electron tunneling via a single donor, the
Tabe group from Shizuoka University designed single-donor transistors with nano
stub-shaped channels in which the tunnel barrier height is enhanced due to dielec-
tric confinement. In this project, I contribute the first-principles calculation dis-
cussed in this chapter; the PDOS-3DWFs method is applied to estimate the binding
energy of phosphorus electrons in single phosphorus-doped cross-shaped silicon
nanostructures, which are similar to real nano stub-shaped channels in shape but
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much smaller.

4.2 Structures of the cross shaped silicon nanotruc-

tures

The single phosphorus-doped cross-shaped silicon nanostructures used in this
study are built with the < 100 > orientation in the X direction. The structures
are covered by H atoms in order to passivate all of the dangling bonds. To
investigate the effect of the position of the P atom on the electronic and transport
properties, we built Si structures Si96PH130 - with different P atom positions. In all
of these structures, we have studied the P atom at the central substitutional site, the
off-central substitutional site, and the substitutional site at the edge. These three
models are labeled as SNC-z+0, SNC-z+2, SNC-z+4. Figure 4.1(a)shows the views
of SNC-z+0 on the XY and XZ planes. The SNCs have been embedded in large
supercells in order to prevent interactions between the periodic replicas (about 20
Å of vacuum separates neighboring clusters in the X, Y, and Z directions). To build
Si nanostubs with two electrodes, we used two semi-infinite Au nanowires as the
left and right leads as shown in Fig. 4.1(b). The channels are SNCs. Due to the
large scale calculation, the number of Au atoms in each lead is optimized to be 24.
The distance between the lead interfaces and the nanorods is about 2.0 Å. The X
< 100 >direction has been set as the transport direction from the left lead to the
right lead. To minimize the hybridization between the states from two electrodes
and the states of the nanorods, fully hydrogen terminated Si nano were used. Fig.
4.1(c) shows the positions of the P atom when it moves from the center to the edge.

4.3 The projected density of states - 3D wavefunctions

analysis

Figure 4.2 shows the PDOS onto the P atoms and the PDOS/DOS ratios of SNC-z+0,
SNC-z+2, and SNC-z+4. The three cross-shaped Si nanotructures were embedded
in large vacuum supercells in order to prevent interactions between the periodic
replicas (about 20 Å of vacuum separates neighboring nanorods in the X, Y, and Z
directions). The Fermi level is set at 0 eV, and the A1 donor ground states are at this
level. We can see from Fig. 4.2 that the PDOS/DOS ratios at low energy regimes
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Figure 4.1: (a) The single P-doped cross-shaped Si nanostructure SNC-z+0
(Si96PH130) viewed on the XY and XZ planes, (b) The view of SNC-z+0 (Si96PH130)
with two Au electrodes on the XZ plane, (c) The positions of the P atom when it
moves from the center substitutionl site to the edge substitutionl site. The white,
yellow, green, and blue balls represent H, Si, Au, and P atoms, respectively.
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Figure 4.2: The PDOS (red) onto the P atom and the ratio PDOS/DOS (green) of the
SNC-z+0, SNC-z+2, and SNC-z+4. The dashed blue lines present the positions of
the first conductive states.

(below the dashed blue lines) are high and then decrease as energy increases. This
is due to the fact that at low energy levels near the donor ground state, the relative
weight of the P electron states is high due to the strong confinement from the
atomistic donor potential. At higher energy levels (above the dashed blue lines),
the relative weight is low due to the decreasing confinement. As a result, the
PDOS/DOS ratios decrease nearly to zero.

To clarify the exact positions of the first conductive states in SNCs, I have
analyzed the 3D wavefunctions associated with the donor ground states and the
donor excited states. Figure 4.3 shows the wavefunction visualization along the
Y direction for the donor ground state at 0 eV and for donor excited states at
higher energies. The blue and red represent the positive and negative parts of the
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wavefunction. All wavefunctions were visualized with the fixed isovalue of 0.015.
For convenient presentation, we only show some selected donor excited states. We
can see from Fig. 4.3 that the wavefunction at the donor ground state is strongly
localized around the P atom. For the structure SNC-z+0, the wavefunction is
gradually delocalized at energy levels higher than 0.81 eV. It is evident that above
1.81 eV the wavefunction becomes fully distributed within the entire volume of
the structure. For the structure SNC-z+2, the wavefunction gradually spreads
around when energy increases from 0 eV to 0.79 eV and continues to spread.
From 1.92 eV, the wavefunction can be considered as fully distributed. Finally,
for the structure SNC-z+4, which has a P atom at the wing of the channel, the
wavefunction gradually spreads around when energy increases from 0 eV to 1.82
eV. Even at higher energy levels than 1.82eV, the wavefunction still does not
spread entirely within the structure. From 2.20 eV the wavefunction becomes
fully distributed, which can be explained as follows: when the P atom is located at
the wing of the channel, it is more difficult for the wavefunction to spread entirely
within the structure, especially in the horizontal direction. As a result, higher
energy is needed for the first fully distributed wavefunction.

From the PDOS and the 3D-wavefunction analyses, I have found that the
energy levels of the first conductive state in SNC-z+0, SNC-z+2, and SNC-z+4
are 1.81, 1.92 and 2.20eV, respectively. The binding energy is calculated as a
difference between the A1 donor ground state and the first conductive state. The
A1 donor ground states were found at the Fermi level 0 eV, hence the binding
energies are equal to the energy level of the first conductive states. According
to previous published studies [56, 66], the binding energies of P donor electrons
in Si nanostructures are proportional to the inversed radii of the nanostructures
due to the quantum confinement effect. In order for a direct comparison, we have
calculated the binding energies for the Si nanorods by using the conventional
formula [56]:

Eb
conv = Id − Au (4.1)

Where Id = Ed(n-1) −Ed(n) and Au = Eu(n) −Eu(n+1) are the ionization energy
and electron affinity of the doped and un-doped systems, respectively. Ed and Eu

are the total energy of the doped and un-doped systems.

Figure 4.4 shows the binding energy of the dopant electrons as a function of
the position of the P atom, which is calculated by using both the PDOS-3DWFs
method and the conventional method. From Fig. 4.4 it is evident that the conven-
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Figure 4.3: The wavefunction visualization along the Y direction associated to the
donor ground state at 0eV and donor excited states at higher energy. The blue and
red represent the real and imaginary part of the wavefunction. All wavefunctions
were visualized with the isovalue of 0.015.
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Figure 4.4: The binding energy of the dopant electrons as a function of the position
of the P atom, which is calculated by using the PDOS-3DWFs method (red) and
the conventional method (black). The lines are only for eye-guide.

tional method shows a binding energy of approximately 2.1 eV, which is virtually
independent from the position of the P atom. The PDOS-3DWFs method results
in an increased binding energy when the P atom moves toward to the edge. In
the conventional method, the first conductive state is determined as the lowest
unoccupied state of the un-doped Si nanostructure. Hence, it fails to include the
impact of the P position on the energy of the first conductive states. The binding
energy obtained by this method is unchanged when the P atom moves from the
center to the edge.

4.4 Experimental study of Si nano-stubshape transis-

tor

In this section, I will discuss the experimental study of Si nano-stub shape transis-
tors. These studies were done by Shizuoka University’s Tabe group, and the results
were published in [13, 14]. In this project, I have contributed to the first-principles
calculation as discussed above.

The structure of silicon-on-insulator field-effect transistors (SOI-FETs) is shown
in Fig 4.5. The top Si layer is n-type doped by thermal diffusion with phosphorus
to a concentration of ND =1x10−18 cm−3. The TEM image shows the ultra-thin
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Figure 4.5: (a) Birds eye view of silicon-on-insulator transistor under study. (b),
Cross-sectional TEM image taken across the device channel (higher-resolution
image of the channel is shown in the float-up, indicating the thickness of the top Si
layer of about 2 nm). (c), (d), Scanning Electron Microscope (SEM) images before
final oxidation for smallest devices with: non-stub channel (c) and stub channel
(d). The solid lines mark the edges of the channels. P donor atoms within the
channel and adjacent source (S) and drain (D) pads are schematically shown as
dots.After [13].
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SOI channel (around 2 nm). The width W for the stub-channel is the width of
the narrow constrictions, while the width across the stub region is designed to
be 2W. Figure 4.6 shows the temperature dependence of ID − VG characteristics
with both a non-stub channel (15-300 K) and a stub-channel (16-220 K). At the
lowest temperatures (around 15 K), the ID − VG characteristics exhibit a number
of isolated current peaks, which are the result of electron tunneling transport via
donor induced quantum dots forming in the channel. In Figs. 4.6(c) and 4.6(d),
for clarity, only the temperatureassociated lowest-VG current peaks are extracted
from the full ID − VG characteristics and are plotted in the VG-temperature plane.
These peaks appear successively with increasing temperatures and are ascribed to
tunneling via P donors with deeper ground-state energies. With increasing tem-
perature however, due to the broadening of the Fermi-Dirac electron distribution
in the reservoir as illustrated in Fig.4.6(e), the tunneling rate is enhanced and the
corresponding current peaks successively emerge, exceeding the detectable cur-
rent level. It has been determined that, for the stub-channel FET, the last emerging
current peak appears at T=100 K [Fig. 4.6(d)].

Tunnel barrier heights (Ebarrier) were extracted from the Arrhenius plots of ID

for elevated temperatures (T > 150K). For a VG value corresponding to a current
peak, Ebarrier represents the energy difference between the donors ground state and
the potential barrier maximum along the source-drain direction, as illustrated in
Fig.4.6(e)(left panel). In Figs.4.6(c) and4.6(d), these extracted Ebarrier values are
shown on top of each emerging current peak. The barrier energy was calculated
according to the Arrhenius equation:

ln ID = ln AT2
−

Ebarrier

kBT
(4.2)

where A is a parameter.

It is worth mentioning that the stub-channel FET with the narrowest W has the
highest barrier energy. This energy systematically decreases for the stub-channel
FETs with larger W as highlighted in Fig 4.7. This fact suggests that a higher
barrier energy is ensured when donors can be located in the sharp corners of the
narrowest sub-channel. This is because in such locations P donors experience
both the dielectric confinement effect and the quantum confinement effect. The P
dopants are more confined at the edge of the narrowest stub-channel transistor in
comparison to wider stub-channel transistors. These results are consistent with
the DFT calculation of the binding energy for the single P-doped cross-shaped Si
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Figure 4.6: (a), (b), Temperature dependence of ID −VG characteristics (VD = 5
mV) for smallest devices with: (a), non-stub channel (20-300 K) and (b), stub
channel (20-220 K). At lowest temperature, isolated current peaks can be observed.
As temperature is increased, new current peaks at negatively larger VGs become
measurable. (c), (d), Emerging current peaks extracted as a function of temperature
for transistors with: non-stub channel (c) and stub channel (d). Each current
peak corresponds to tunneling via a different P donor, with activation energy as
indicated in the graph. Most remarkably, for the stub-channel transistor in (d),
last-observable current peak (at VG = 0.7 V) emerges at T = 100 K. (e), Schematic
illustration of single-electron tunneling via a P donor atom (P2). Transport via
the deepest-energy P donor (P1) cannot be detected at low temperatures (LT), at
which the peak is buried below the noise level, but the current peak emerges at
higher temperatures (HT). After [13].
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nanostructures; when the P atom is located at the edge of the nanostructures, it is
likely more difficult for the wavefunction to spread entirely within the structure,
especially along the horizontal direction as discussed in the DFT calculation. The
positional dependence of the P donor therefore results in higher barrier energy in
stub-channel transistors.

Although the dielectric confinement effect is not considered in the PDOS-
3DWFs method, the similar trends in the results of the ab-initio calculations in
the previous section and the experimental results is clear. In the ab-initio calcu-
lations, the binding energy for the case P atom at the edge is higher than that for
the case P atom at the center of single P-doped cross-shaped Si nanostructures.
This can be interpreted as a result of the positional dependence of the binding
energy on the dopant. When the P atom is situated at the edge of the nanostruc-
ture, it becomes more difficult for the wavefunction to spread entirely within the
structure, especially along the horizontal direction. Therefore, higher energy is
needed for the first fully distributed wavefunction. For the stub-channel FETs, the
barrier energy attracted from the ID-VG characteristics shows a higher value for
the conventional straight channel transistor, which is due to the fact that P donors
experience at the stub locations.
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Figure 4.7: (a), (b), Temperature of emergence of the final peak for devices with:
stub channel (a) and non-stub channel (b). Data is plotted as a function of channel
width, in which each data point corresponds to a different device (A and B indicate
two different devices with nominally same dimensions). SEM images and their
zoomed-in sketches show that the shape of the stub area changes from round to
pointed-hat as the channel width decreases, and the ratio of SiO2 to Si increases,
as indicated by (iii), (ii), and (i) in (a). For pointed-hat shape device, a P donor is
mostly surrounded by SiO2. Therefore, tunnel barrier is enhanced due to strong
dielectric confinement effect. As a result, high-temperature current peak (100 K)
appears (a). For non-stub device, the SiO2 to Si ratio is almost constant with
respect to channel width. Dielectric confinement effect is less dominant and, as
a result, all the high-temperature peaks are below 60 K (b). (c), (d), Activation
energy extracted for the lowest-energy P donor (for VG corresponding to the last-
observable emerging peak) as a function of channel width for devices with stub
channel (c) and non-stub channel (d). After [13].
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4.5 Conclusion

The binding energy of phosphorus electrons in the single P-doped cross-shaped
Si nanostructures have been calculated using the DFT framework. I have defined
the first conductive state as where electrons start to fully transport through the
structure. As for the operation of single dopant devices, the isolated current peak
at a certain temperature can be considered as the tunneling current via an indi-
vidual dopant. Therefore, the barrier energy required for electron can tunnel via
single dopant is particularly important. This new definition of the first conductive
state is introduced in order to calculate this kind of barrier energy. By using the
PDOS-3DWFs analysis, I have been able to identify the first conductive states.
The binding energies of the donor electrons in the single P-doped cross-shaped Si
nanostructures have been calculated as the difference between the first conductive
state and the donor ground state at 0 eV. I have found that the binding energy
increases when the P atom moves from the center toward to the wing, while the
conventional method suggests an independent function by changing the P po-
sition. The difference is due to the fact that the conventional method does not
include the impact of the P position on the energy of the first conductive state.
When the P atom is situated at the wing of the channel, it is more difficult for the
wavefunction to spread entirely within the structure, especially in the horizontal
transport direction. As a result, higher energy is needed for the first fully dis-
tributed wavefunction. The barrier energy (binding energy) for the experimental
stub-channel FET is higher than that for the conventional straight channel FET,
which is consistent with the computational study of the single P-doped cross-
shaped Si nanostructures. In the ab-initio calculations, the binding energy for the
case P atom at the edge is higher than that for the case P atom at the center. This
can be interpreted as a result of the positional dependence of the binding energy
on the dopant. When the P atom is located at the edge of the channel, it becomes
more difficult for the wavefunction to spread entirely within the structure, es-
pecially along the horizontal direction. Again, this means that higher energy is
needed for the first fully distributed wavefunction. For the stub-channel FETs, the
barrier energy attracted from the ID-VG characteristics shows a higher value for the
conventional straight channel transistor. This comes from the fact that P donors
experience at the stub locations.
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Chapter 5

Phosphorus-boron co-doped silicon
nanostructures

5.1 Introduction

Recently, the co-doping of Si nanocrystals with P and B has been studied inten-
sively with the aim of tuning the optical properties of Si nanocrysals [71, 72, 73,
74, 75, 76, 77, 78, 79]. Experimental studies show that it is possible to control the
Si-nc photoluminescence by simultaneous doping with n- and p-type impurities
[77, 78, 79]. Theoretical studies [71, 72, 73] demonstrate that co-doping signifi-
cantly reduces the nanocrystal bandgap and presents the valence and conduction
band edge states, which can establish optical transition and qualitatively consis-
tent with the experimental studies. Another aim of studying P-B co-doping in
Si nanocrystals is to utilize the electronic and transport properties of nanoscale
p-n junctions [74, 80, 42]. Through further reduction in the size of nanoscale p-n
junctions, the impact of P and B as individual dopants on the electronic and trans-
port properties will undoubtedly become more significant. Although a theoretical
study on the electronic and transport properties of nanoscale pn junctions in term
of the impact of individual dopants on these properties is required, such a study
has not yet been reported. In this chapter, I perform first-principles calculations
to investigate the electronic and transport properties of phosphorus and boron
co-doped silicon nanostructures.
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5.2 Structures of the phosphorus-boron co-doped sil-

icon nanostructures

Fig. 5.1(a) shows the top and side view of the isolated P-B co-doped Si nanorod.
The Si nanorod (SNR) was built with the < 100 > orientation along the X direction,
and the H atoms were used to passivate all of the dangling bonds on the surface.
I place the phosphorus and boron atoms at substitutional sites. The SNR was
embedded in large supercells in order to prevent interactions between the periodic
replicas (about 20 Å of vacuum separates neighboring clusters in the X, Y, and Z
directions). The structures have 601 atoms in total. The number of silicon atoms
and dopants is 357. To build a two-terminal SNR, I used two semi-infinite Au
nanowires as the left and right lead as shown in Fig. 5.1(b). Fig. 5.1(c) shows the
positions of the P and B atoms when the distances between them change. Due to
the large scale calculation, the number of Au atoms in each lead is optimized at
20. The distance between the lead interfaces and the SNR is about 1.5 Å, while the
X < 100 > direction is set as the transport direction from the left to the right lead.
To minimize the hybridization between the electronic states of two electrodes and
the electronic states of the SNR, fully hydrogen terminated SNR was used.

5.3 The atomistic buit-in potential in phosphorus-boron

co-doped silicon nanorods

First, let us discuss the built-in potential in p-n junctions. After joining p-type
and n-type semiconductors, electrons from the n region near the pn interface tend
to diffuse into the p region. As electrons diffuse, they leave positively charged
ions (donors) in the n region. Likewise, holes from the p-type region near the pn
interface begin to diffuse into the n-type region, leaving fixed ions (acceptors) with
negative charge. The regions close to the pn interfaces lose their neutrality and
become charged, forming a space charge region or depletion layer. The electric
field created by the space charge region opposes the diffusion process for both
electrons and holes. There are two concurrent phenomena: the diffusion process,
which tends to generate more space charge, and the electric field generated by the
space charge, which tends to counteract the diffusion. The two counterbalancing
phenomena establish an equilibrium, which forms a potential difference across the
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Figure 5.1: (a) The P-B co-doped Si nanorod (P-B SNR) (Si356PH244) viewed on the
XY and XZ planes, (b) The view of P-B SNR with two Au electrodes on the XZ
plane, (c) The positions of the P and B atom when they come closer. The white,
yellow, green, red, and blue balls represent H, Si, Au, P, and B atoms, respectively.
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Figure 5.2: The effective atomistic potentials along the X direction, which acrosses
the P and B sites. With the distance of 1.38 nm, 0.85 nm, 0.38 nm, and 0.23 nm, the
P atom does not locate at the same line with the B atom. The donor energy level
(red) and acceptor energy level (blue) are also indicated at the position of the P
and B atoms, respectively.

junction. This potential difference is called the built-in potential.

In bulk Si, the D0 and A0 are shallow (around 45 meV below and above the
conduction and valence bands, respectively). Hence, the electrons and holes can
easily diffuse into the opposite sites to form a built-in potential. However, in nano
Si of less than 3 nm, the D0 and A0are deep due to the strong confinement effect.
This results in large energy separation of the D0 and A0 in nano Si. The atomistis
built-in potential strongly depend on the interaction between the donor D0 and
acceptor A0 ground states.

Figure 5.2 shows the effective atomistic potentials along the X direction, which
crosses the P and B sites. The atomistic built-in potential is calculated as the
sum of the neutral atom potential and the Hartree potential, which considers the
Coulomb electron-electron interactions and can be obtained using the Poisson
equation. With distances of 1.38 nm, 0.85 nm, 0.38 nm, and 0.23 nm, the P atom
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is not situated on the same line as the B atom. The donor energy level (red) and
acceptor energy level (blue) are also indicated at the positions of the P and B atoms,
respectively. We can see clearly that the position of the donor energy level is well
below the peak effective atomistic potentials near the P site compared with the
value of 45 meV in the bulk (¿ 1 eV for the D0 in the 3nm Si nanorod). The different
effective atomistic potentials at the P site and B site are clearly evident, and this
difference decreases from about 1.5 eV to around 0.5 eV when two dopants move
towards each other from 2.17 nm to 0.23 nm. The decrease in the atomistic built-in
potential can be explained by the increase in the D0 in the 3nm Si nanorod). The
different effective atomistic potential at the P site and B site can be easily seen. This
difference decreases from about 1.5 eV to around 0.5 eV when two dopants come
closer from 2.17 nm to 0.23 nm. The decrease of the atomistic built-in potential
can be explained by the increase of the D0 and A0 energy separation. When two
dopants come closer, the A0 and D0states repel each other and become shallower.
The increase in the D0 state leads to an increase in the effective atomistic potential
at the phosphorus site, while the decrease in the A0 state leads to a decrease in the
effective atomistic potential at the boron site. As a result, the different atomistic
built-in potentials of the phosphorus site and boron sites decrease. In the next
section, I will discuss in detail how the D0 and A0 interact in nano Si.

5.4 The interaction of donor ground state and acceptor

ground state in phosphorus-boron co-doped sili-

con nanorods

First, I will discuss the donor and acceptor ground state in a P-B co-doped Si
nanorod. Figure 5.3 shows the donor and acceptor ground state in a P-B co-doped
Si nanorod. The PDOS at P atom is dominated by the s-orbital while the PDOS at
the B atom is dominated by the p-orbital. The donor ground state D0 is therefore
non-degenerated with s-like symmetry. The acceptor ground state A0 is three-
fold degenerated with p-like symmetry. The wavefunctions corresponding to the
non-degenerated donor ground state D0 and the three-fold degenerated acceptor
ground state A0 are plotted in Fig. 5.3. According to linear combination atomic
orbitals theory, the donor ground state D0 is combined mainly by s orbitals of P
atoms and p orbitals of Si atoms, while the acceptor ground state A0 is combined
mainly by p orbitals of B atoms and p orbitals of Si atoms.
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Figure 5.3: The donor and acceptor ground state in a P-B co-doped Si nanorod.
The donor ground state D0 is non-degenerated with s-like symmetry. The acceptor
ground state A0 is three-fold degenerated with p-like symmetry. The wavefunc-
tions were viewed from the top and the side of the Si nanorod.
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To study the interaction between the donor D0 and acceptor A0 ground states,
I changed the P-B seperation in a Si nanorod. Figure 5.4 shows the changes of the
PDOS onto P and B atoms and the molecular energy spectra when the distance
between two dopants decreases from 2.17 nm to 0.23 nm. The Fermi level was
set at 0 eV. The states below 0 eV correspond to the acceptor A0 ground states
and HOMOs (the highest occupied molecular orbitals),, while the density of states
above 0 eV correspond to the donor D0 and LUMOs (the lowest unoccupied
molecular orbitals).

When two dopants come closer, the energy gap between the A0 and D0 in-
creases, which is similar to the bonding and antibonding behavior in the two-level
model.

Figure ?? shows the energy levels of acceptor ground states and donor ground
states when the two dopants come closer. The energy gaps between the A0 and
D0 are plotted as a function of the distance between the two dopants. It is evident
that the energy gaps increase when the distance decreases. The increase in the
energy gaps results in the acceptor and donor ground states becoming shallower,
as indicated in Fig 5.2. Figure 5.6 shows the donor ground state in P-B co-doped
Si nanorods with different P-B separations: 2.17, 1.08, 0.38, and 0.23 nm. The
wavefunctions were viewed from the top and the side of the Si nanorod. Here, it
can be seen that the donor ground state is distorted when the two dopants come
closer. Figure 5.7 shows acceptor ground states in P-B co-doped Si nanorods with
different P-B separations: 2.17, 1.08, 0.38, and 0.23 nm. Again, the wavefunctions
were viewed from the top and the side of the Si nanorod. It can be seen that the
acceptor ground state is distorted when the two dopants come closer. Such interac-
tions of the A0 and D0an be understood from the point of view of molecular orbital
theory. According to molecular orbital (MO) theory, when atomic orbitals interact
the resulting molecular orbital can be classified as one of three types: bonding,
antibonding, or nonbonding. Here, we focus on bonding and antibonding. Bond-
ing MOs are bonding interactions between atomic orbitals and are constructive
(in-phase) interactions, and they are lower in energy than the atomic orbitals that
combine to produce them. Antibonding MOs are antibonding interactions be-
tween atomic orbitals and are destructive (out-of-phase) interactions, with a nodal
plane where the wavefunction of the antibonding orbital is zero between the two
interacting atoms. Antibonding MOs are higher in energy than the atomic orbitals
that combine to produce them. Figure 5.5 shows the wavefunctions of edge states
in single P-doped, pure Si, single B-doped and co-doped P-B. I call the first state
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Figure 5.4: The PDOS onto P and B atom and the molecular energy spaectra in Si
nanorod when P and B come closer.
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below the D0 is D−1, the first state above A0 is A1. Compared to the LUMO state
of pure nano Si, the D0 state is constructive. Compared to the LUMO state of pure
nano Si, the A1 state is destructive. In Fig.5.5, when two dopants P and B are co-
doped, the D0 wavefunction is destructive at the Boron site, the A0 wavefunction
is destructive at the Phosphorus site. The wavefunctions become less localized
and shallower.

To study the transport via the A0 and D0, I have carried out the transmission
spectra calculation as shown in Fig. 5.9. When two dopants come closer, the A0 and
D0 states move closer to the Si related valence state and the Si related conduction
state, respectively. The decrease in the PDOS at A0 and D0 also shows that the
localization around the dopants of the A0 and D0 states decreases. Consistently,
the transmission peaks at the D0 states increase. The transmission at the A0 is very
small compare to the transmission at the D0 and cannot be seen in 5.9, which is
due to the fact that the atomistic effective potential at the B site is deeper than
that at the P site. The amplitude of the wavefunction square at the B site is higher
than that at the P site, as can be seen in Fig. 5.8. This suggests that the acceptor
ground state is more localized than the donor ground state. The transmission
via the acceptor ground states is therefore lower than transmission via the donor
ground state. Moreover, because the A0 and D0 states both become shallower
the transmissions associated with dopant induced states change from discrete in
nature to continuous.
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Figure 5.5: The wavefunctions of edge states in single P-doped, pure Si, single
B-doped and co-doped P-B.
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Figure 5.6: The donor ground state in a P-B co-doped Si nanorods with diferent
P-B separations: 2.17, 1.08, 0.38, and 0.23 nm. The wavefunctions were viewed
from the top and the side of the Si nanorod.
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Figure 5.7: The acceptor ground state in a P-B co-doped Si nanorods with diferent
P-B separations: 2.17, 1.08, 0.38, and 0.23 nm. The wavefunctions were viewed
from the top and the side of the Si nanorod.

67



0.85nm

1.62nm

1.38nm

1.08nm

0.54nm

0.38nm

0.23nm

P

P

P P

P

P

P

B

B

B

B

B

B

B

Figure 5.8: The projections of the wavefunction squares of the D0 and three de-
generated A0 onto the X direction when two dopants come closer.
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Figure 5.9: The PDOS onto the P and B atom plotted with the transmission sprectra
when two dopants come closer.
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5.5 Summary

In this chapter, I have conducted first-principles calculations to investigate the
electronic and transport properties of P-B co-doped Si nanostructures. When two
dopants move closer, the energy gap between the A0 and D0increases. This is
similar to the antibonding behavior in the two-level model. Furthermore, when
two dopants come closer, the donor and acceptor ground state repel each other.
The distortions in wavefunctions are due to the destructive interaction of the B
and P original atomic orbitals. As a result, the A0 and D0 states become less
localized and shallower. This is consistent with the transmission analysis that
the transmissions associated with dopant induced states change from discrete in
nature to continuous.
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Chapter 6

Conclusion and future work

6.1 Conclusion

In this thesis, the binding energy of donor electrons in single P-doped Si nanorods
was studied theoretically by using DFT and non-equilibrium Green’s function
method. It has been determined that the hybridization of the phosphorus electron
states and the silicon electron states is significant not only at the donor ground state
but also at the donor excited states in silicon nanorods. The PDOS-3DWFs analysis
has enabled me to clarify the gradually decreasing contribution of the phosphorus
electron states from the donor ground states to the higher-energy donor excited
states. The first conductive state has been defined as where electrons start to fully
transport through the structure. As for the operation of single dopant devices, the
isolated current peak at a certain temperature can be considered as the tunneling
current via an individual dopant. Thus, the barrier energy required for electron
can tunnel via single dopant is especially important. The new definition of the
first conductive state was introduced in order to calculate this kind of barrier
energy. By using the PDOS-3DWFs analysis, I have been able to identify the first
conductive states. Following this, I applied the PDOS-3DWFs method to estimate
the binding energy of phosphorus electrons in single P-doped cross-shaped Si
models. The results of both the ab-initio calculations and the experimental results
of the stub-channel FETs are consistent. For the single P-doped cross-shaped Si
models, the PDOS-3DWFs method shows an increase in binding energy when
the P atom moves toward the edge. When the P atom is situated at the wing
of the cross-shaped model, it is more difficult for the wavefunction to spread
entirely within the structure, especially along the horizontal transport direction
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compared to cases where the P atom is located at the center. For the stub-channel
FETs, the barrier energy attracted from the ID-VGcharacteristics shows a higher
value for the conventional straight channel transistor. The P atoms are more
confined at the edge of the stub-channel transistor compared to the conventional
straight channel transistor. The DFT calculation for the positional dependence
of the P dopants of the binding energy has therefore produced results that are
consistent with the experimental study. Finally, the interaction between the donor
ground state and the acceptor ground state was investigated theoretically in P-B co-
doped Si nanorods; when the two dopants come closer, the energy gap between
the A0 and D0increases, which is consistent with the transmission analysis that
the transmissions associated with dopant induced states change from discrete in
nature to continuous. Moreover, the different effective atomistic potential at the
P site and B site decreases from about 1.5 eV to around 0.5 eV when the two
dopants move towards each other from 2.17 nm to 0.23 nm. This suggests that the
atomistic built-in potential in co-doped silicon nanorods strongly depends on the
P-B separation.

I have concluded my study as follows:

• In bulk silicon, the donor ground state is shallow and independent from
the bottom of the conduction band of Si crystal. In nano silicon, which has
dimensions smaller than the Bohr radius of donor electrons in bulk, the in-
teraction between the donors related states and host Si conduction states
becomes significant due to the strong nanoscale confinement. The binding
energy in nano Si therefore need to be studied from a different point of view
to the binding energy in bulk Si. In past studies, the binding energy of dopant
electrons in nano Si has been defined as the difference between the ionization
energy calculated for the single P-doped Si nanostructures and the electron
affinity calculated for un-doped Si nanostructures. The first conductive state
was determined through the electron affinity of the un-doped Si nanostruc-
tures. This definition however is similar to the definition for bulk Si and fails
to include the strong interaction between phosphorus electrons and silicon,
which can be described by the hybridization of the donor electron states
and the Si electron states in extremely downscaled Si nanostructures. The
PDOS-3DWFs analysis has enabled me to clarify the gradually decreasing
contribution of the phosphorus electron states from the donor ground states
to the higher-energy donor excited states. I have defined the first conductive
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state as where electrons start to be fully transported through the structure.
As for the operation of single dopant devices, the isolated current peak at a
certain temperature can be considered as the tunneling current via an indi-
vidual dopant. Therefore, the barrier energy required for electron can tunnel
via single dopant is particularly significant. The new definition of the first
conductive state is introduced in order to calculate this kind of barrier en-
ergy. By using the PDOS-3DWFs analysis, I have been able to identify the
first conductive states. (Chapter 3)

• I have calculated the binding energy of donor electrons in the single P-doped
Si nanorods, which have a smaller average radius smaller than 1.4 nm as the
difference between the first conductive state and the donor ground state. I
have found that the binding energy is around 1.5 eV, while the conventional
method results in increasing function due to the reduction in the nanorod’s
radius. The difference is due to the fact that the conventional method does
not include the hybridization between the phosphorus electron states and
silicon electron states at the first conductive state. As the size decreases
below 1.4 nm, the first conductive states are capped near the peak atomistic
effective potentials at the P donor sites. This causes the binding energy in
small nanorods, which are smaller than 1.4 nm, to be weakly dependant on
the size when the size continues to decrease. (Chapter 3)

• This fact signifies a good tolerance of the binding energy, which governs the
operating temperature of the single dopant-based transistors in practice. The
transmission spectra, which reflects the transportation properties of electrons
in the Si nanorod’s bandwidth by two electrodes, shows consistent results
with the PDOS-3DWFs method and this fact proves the validity of our new
method. (Chapter 3)

• I used the PDOS-3DWFs method to estimate the binding energy of phospho-
rus electrons in single P-doped cross-shaped Si models, concluding that the
binding energy increases when the P atom moves from the center toward
to the wing of the cross structures while the conventional method results
an independent function by changing the P position. The difference is due
to the fact that the conventional method does not include the impact of the
positional dependence of the P dopant on the energy of the first conductive
states. When the P atom is situated at the wing of the cross-shaped structures,
it becomes more difficult for the wavefunction to spread entirely within the
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structure, especially along the horizontal transport direction compared to
cases where the P atom is located at the center. As a result, higher energy is
needed for the first fully distributed wavefunction. (Chapter 4)

• The results obtained from the ab-initio calculations are consistent with the
experimental results for the stub-channel FETs [13]. For the single P-doped
cross-shaped Si models, the PDOS-3DWFs method shows an increase in
binding energy when the P atom moves toward the wing. For the experi-
mental stub-channel FETs, the barrier energy extracted from the ID-VG char-
acteristics shows a higher value for the stub-channel transistor than for the
conventional straight channel transistors, which is due to the fact that the P
dopants are more confined at the stub of stub-channel transistor compared
to the conventional straight channel transistors. This leads to a deeper donor
ground state or higher barrier energy. This suggestion has been confirmed
by my simulation of single P-doped cross-shaped Si models. (Chapter 4)

• The D0 wavefunction is detractive at the boron site whereas the A0 wave-
function is detractive at the phosphorus site. When the two dopants come
closer, the destructive interaction of the B and P original atomic orbital in-
creases. As a result, the wavefunction values of A0 and D0 at the boron and
phosphorus sites decrease. The wavefunctions become less localized and
shallower. This is consistent with the transmission analysis that the trans-
missions associated to dopant induced states changes from discrete in nature
to continuous. (Chapter 5)

6.2 Future work

The dopant-based devices produced from single dopant electronics will es-
tablish a new group of extremely-small and low power devices, including
single-electron FETs, single electron memory devices, single electron transfer
devices, and photonic devices. Furthermore, aiming at room temperature
operation of dopant atom devices for practical implementation, a new ap-
proach will be proposed such as utilizing the interacting-dopants in the
channel. The PDOS-3DWFs analysis can be used to theoretically investigate
the interaction between dopants. Moreover, this method is also useful for
estimate the binding energy of other donors such as Sb and Bi in nano Si. For
photonic devices, tunneling transport via the donor and acceptor ground
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states in P-B co-doped Si nanorod models using the DFT-NEGF theory is
expected to clarify inter-band tunneling transportation in real nano p-n junc-
tions. Significant progress was made in the first decade of the 21st century
and it was demonstrated that the power of a large number of small processors
can be utilized to achieve high performance. In 2004, the Earth Simulator
supercomputer built by NEC at the Japan Agency for Marine-Earth Science
and Technology (JAMSTEC) reached 35.9 teraflops using 640 nodes, each
with eight proprietary vector processing chips. In July 2011, the 8.1 peta
flop Japanese K computer became the fastest in the world using over 60,000
commercial scalar SPARC64 processors housed in over 600 cabinets. The fact
that the K computer is over 60 times faster than the Earth Simulator and that
the Earth Simulator is ranked as the 68th fastest system in the world only
seven years after holding the top spot demonstrates both the rapid increase
in top performance and the widespread growth of supercomputing technol-
ogy worldwide. This fact encourages scientists to simulate bigger and bigger
structures, and the gap between the calculations and experimentation can
therefore be filled in near future.
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Minor-Reaserach Theme

Electron tunneling via many-donor quantum dots in nano channel
SOI-FETs: Low-temperature ID-VG measurements

This experimental minor project was conducted jointly with Doctor Daniel
Moraru and Mr. Tsutaya, under the supervision of Professor Michiharu
Tabe from Research Institute of Electronics, Shizuoka University. In this
project, I measure the ID-VG characteristics of selectively P-doped SOI-FETs
at low temperature (below 20 K) to observe the electron tunneling via deep
donor-induced electronic states of the clusters formed by many P donors
in the selective region. It is found that with the regular small positive VD

( 5 mV) and small negative VG ( − 1 V), the cluster P donors may not
be fully ionized. Therefore, the initialization test is done to fully deplete
electrons from clusters. The comparisons of the ID-VG characteristics before
and after the initialization show that the spectra are red-shifted and new
features emerge after the initialization. The emerging of new features, which
correspond to the tunneling via deeper donor-induced electronic states of
the clusters, proves that the initializations effectively deplete electrons from
cluster P donors.
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