
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title Empirical Study of Adaptive EDF

Author(s) WU, QIONG

Citation

Issue Date 2015-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/12625

Rights

Description Supervisor :Tanaka kiyofumi, 情報科学研究科, 修士

Empirical Study of Adaptive EDF

By WU Qiong

A thesis submitted to
School of Information Science,

Japan Advanced Institute of Science and Technology,
in partial fulfillment of the requirements

for the degree of
Master of Information Science

Graduate Program in Information Science

Written under the direction of
Associate Professor Kiyofumi Tanaka

March, 2015

Empirical Study of Adaptive EDF

By WU Qiong (1310021)

A thesis submitted to
School of Information Science,

Japan Advanced Institute of Science and Technology,
in partial fulfillment of the requirements

for the degree of
Master of Information Science

Graduate Program in Information Science

Written under the direction of
Associate Professor Kiyofumi Tanaka

And approved by

Associate Professor Kiyofumi Tanaka
Professor Mineo Kaneko

Professor Yasushi Inoguchi

February, 2015 (Submitted)

 Copyright © 2015 by WU Qiong

Acknowledgements

First of all, I would like to express my deepest thanks to my Supervisor,

Associate Professor Tanaka Kiyofumi. He helped me a lot to finish my

master study with his knowledge, enthusiasm and patience. I especially

treasure the experience gained over the past year from him.

 Also won’t forget my family for their continuous support and sacrifice. My

parents with their great love and full understanding all through those years,

I was strongly motivated to go on in my study and pursue my life goals.

I would also like to extend warmest thanks to Ishikawa Prefecture for the

generous scholarship I was lucky to receive.

I also want to show my gratitude for my lab-mates and friends for their help,

encouragement that got me through many difficult periods.

Abstract

Due to the growing complexity of embedded systems, real-time task

scheduling is becoming increasingly important for real-time systems. A

real-time operating system (RTOS) should manage both periodic and

aperiodic tasks. In order to handle different scenarios, RTOS manages tasks

using well-defined and sophisticated scheduling algorithms. There exist

various scheduling algorithms such as RM, EDF, TBS and adaptive EDF.

Adaptive EDF is known to reduce response times and jitter for some

particular tasks.

In this thesis, the basic EDF scheduler is extended with Adaptive EDF and

the new retrospective releasing technique. The combination is implemented

and compared to other methods. The schedulers are evaluated using a

clock-cycle-based CPU simulator which simulates binary codes consisting of

tasks’ codes and ITRON kernel codes and reports response times and jitters

of tasks. The evaluation is performed for 31 task sets.

EDF shows the worst results, while Adaptive EDF has around 50% faster

response times and 30% less jitters. The retrospective releasing with

Adaptive EDF is little worse than Adaptive EDF. Combining the

retrospective releasing and EDF is better than EDF but a little worse than

the latter two algorithms.

i

Contents

1 Introduction 1

 1.1 Research Background ．．．．．．．．．．．．．．．．．．．．． 1

 1.2 Objective and Contributions ．．．．．．．．．．．．．．．．． 2

 1.3 Thesis Outline ．．．．．．．．．．．．．．．．．．．．．．．．． 3

2 Related Works 4

 2.1 Real-Time Operating Systems ．．．．．．．．．．．．．．．．． 4

 2.2 EDF Algorithm ．．．．．．．．．．．．．．．．．．．．．．．．． 5

 2.3 RM Algorithm ．．．．．．．．．．．．．．．．．．．．．．．．．． 6

 2.4 Total Bandwidth Server Algorithm ．．．．．．．．．．．．．．． 8

3 Adaptive EDF 10

 3.1 Introduction of Adaptive EDF ．．．．．．．．．．．．．．．．． 1 0

 3.2 Adaptive EDF Algorithm ．．．．．．．．．．．．．．．．．．． 1 1

 3.3 Example of Adaptive EDF ．．．．．．．．．．．．．．．．．．． 1 4

4 Retrospective Releasing 16

 4.1 Introduction of Retrospective Releasing . . . ．．．．．．．．．1 6

 4.2 Retrospective Releasing Algorithm ．．．．．．．．．．．．．．1 7

 4.3 Example of Retrospective Releasing ．．．．．．．．．．．．．．1 9

5 Implementation 20

 5.1 ITRON ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．2 0

 5.2 EDF Implementation ．．．．．．．．．．．．．．．．．．．．． 2 1

 5.3 Adaptive EDF Implementation ．．．．．．．．．．．．．．．． 2 3

 5.4 Retrospective Releasing Implementation ．．．．．．．．．．． 2 6

ii

6 Evaluation 29

 6.1 Evaluation Environment . . . ．．．．．．．．．．．．．．．．．2 9

 6.2 Task Sets ．．．．．．．．．．．．．．．．．．．．．．．．．．． 3 0

 6.3 Results ．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 3 3

7 Conclusion and Future Work 37

References 39

iii

List of Figures

2.1 Example of Earliest Deadline First (EDF) Scheduling ．．．．．．． 6

2.2 Example of Rate Monotonic (RM) Scheduling ．．．．．．．．．．．． 7

2.3 Example of Total Bandwidth Server (TBS) Scheduling ．．．．．．． 9

3.1 Task Deadline Initialization ．．．．．．．．．．．．．．．．．．． 13

3.2 Task Switching Setting ．．．．．．．．．．．．．．．．．．．．．． 13

3.3 Task Execution Time & Deadline update ．．．．．．．．．．．．． 14

3.4 Example of the EDF and Adaptive EDF ．．．．．．．．．．．．． 15

4.1 Pseudo code of Retrospective Releasing Algorithm ．．．．．．．．． 18

4.2 Example of Retrospective Releasing ．．．．．．．．．．．．．．．． 19

5.1 Original insert function (FIFO) ．．．．．．．．．．．．．．．．．． 22

5.2 EDF insert function (ADL sorted) ．．．．．．．．．．．．．．．．． 22

5.3 EDF Absolute Deadline Initialization ．．．．．．．．．．．．．．． 23

5.4 Deadline initialization in Adaptive EDF algorithm ．．．．．．．． 24

5.5 Initialization of the target task’s execution time in Adaptive EDF ． 24

5.6 Adaptive EDF execution time management ．．．．．．．．．．．． 25

5.7 Start time setting in Adaptive EDF ．．．．．．．．．．．．．．．． 25

5.8 Main code of Retrospective Releasing Technique ．．．．．．．．． 26

5.9 The recording empty slots and previous deadlines ．．．．．．．．． 27

6.2 Normalized Average Response Time ．．．．．．．．．．．．．．．． 35

6.3 Normalized Worst Response Time ．．．．．．．．．．．．．．．． 35

6.4 Normalized Average Absolute Jitter ．．．．．．．．．．．．．．．． 36

iv

List of Tables

2.1 Periods and execution times for two periodic tasks respectively ． ． ． 6

2.2 Periods and execution times for two periodic tasks respectively ． ． . 7

2.3 The comparison of RM and EDF ． ． ． ． ． ． ． ． ． ． ． ． 8

2.4 Periods and execution times for two periodic tasks respectively ． ． ．9

3.1 Task set for EDF and Adaptive EDF Example ． ． ． ． ． ． ． ． 15

6.1 Up= 0.6 NO.1 ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． 30

6.2 Up= 0.6 NO.2 ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． 30

6.3 Up= 0.6 NO.3 ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． 31

6.4 Up= 0.6 NO.4 ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． 31

6.5 Up= 0.6 NO.5 ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． 31

6.6 Up= 0.6 NO.6 ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． 31

6.7 Up= 0.6 NO.7 ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． 31

6.8 Up= 0.6 NO.8 ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． 31

6.9 Up= 0.7 NO.1 ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． 31

6.10 Up= 0.7 NO.2 ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． 31

6.11 Up= 0.7 NO.3 ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． 31

6.12 Up= 0.7 NO.4 ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． 31

6.13 Up= 0.7 NO.5 ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． 31

6.14 Up= 0.7 NO.6 ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． 31

6.15 Up= 0.7 NO.7 ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． 32

6.16 Up= 0.7 NO.8 ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． 32

6.17 Up= 0.8 NO.1 ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． 32

6.18 Up= 0.8 NO.2 ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． 32

6.19 Up= 0.8 NO.3 ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． 32

6.20 Up= 0.8 NO.4 ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． 32

v

6.21 Up= 0.8 NO.5 ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． 32

6.22 Up= 0.8 NO.6 ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． 32

6.23 Up= 0.8 NO.7 ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． 32

6.24 Up= 0.9 NO.1 ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． 33

6.25 Up= 0.9 NO.2 ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． 33

6.26 Up= 0.9 NO.3 ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． 33

6.27 Up= 0.9 NO.4 ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． 33

6.28 Up= 0.9 NO.5 ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． 33

6.29 Up= 0.9 NO.6 ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． 33

6.30 Up= 0.9 NO.7 ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． 33

6.31 Up= 0.9 NO.8 ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． ． 33

1

Chapter 1

Introduction

Real-time computing is an important part of our daily life. Real-time

operating systems (RTOS) are designed to handle real time-applications [9].

RTOS manages the execution of programs with specified time constraints.

That means RTOS should guarantee to finish tasks within a certain time.

The increasing complexity of embedded systems makes task scheduling

more important for real-time operating systems. In this thesis, a basic EDF

scheduler is extended with Adaptive EDF [1] and a new retrospective

releasing technique [10]. This combination is implemented and tested. The

four schedulers will be compared in the evaluations.

1.1 Research Background

Various scheduling algorithms were proposed to handle tasks with

different time constraints.

Earliest Deadline First (EDF) [3] scheduling algorithm is widely used as a

representative real-time task scheduler. EDF was first proposed to handle

tasks with dynamic priorities and can operate when the system is utilized by

up to 100%. EDF algorithm assigns dynamic priorities to tasks based on

their absolute deadlines. The main drawback is that EDF cannot give some

particular important tasks fixed priorities and faster responsiveness.

Rate Monotonic (RM) [3] scheduling algorithm was designed to prefer

important tasks with faster responsiveness. RM algorithm is one of

static-priority scheduling algorithms that assign fixed priorities to tasks.

The demerit is that RM cannot guarantee schedulability when the processor

2

utilization reaches 100%.

Total Bandwidth Server (TBS) schedules both periodic tasks and aperiodic

tasks. TBS is basically extended EDF by assuming that aperiodic tasks have

some calculated deadlines. That makes TBS another dynamic priority

algorithm that can exhibit fair responsiveness for aperiodic tasks.

Adaptive EDF [1] [2] is also based on EDF. It can decrease the response

times of particular (important) tasks. Adaptive EDF is a dynamic priority

assignment scheduler. It can make some target important tasks run before

the other tasks. Therefore Adaptive EDF achieves shorter response times

and smaller jitters for the target important tasks similar to RM while still

being able operate at 100% processor utilization.

1.2 Objective and Contributions

The purpose of this research is to test the practicality of Adaptive Earliest

Deadline First (Adaptive EDF) [1] [2]. In addition, it includes evaluating,

through quantitative experiments, how much Adaptive EDF reduces

response times of real-time periodic tasks, involving the runtime overheads

of the operating system.

According to the research in [1] [2], the Adaptive EDF shortens response

times more than the other existing algorithms. However, since probability

distribution models were used for generating task sets (execution times,

periods, etc.), the practicability was not assured.

The contribution of this thesis is:

 Using an actual real-time operating system (RTOS) and real

programs running on a CPU simulator. Both EDF and Adaptive EDF

have been implemented and evaluated.

 A new additional function “retrospective releasing” to EDF and

Adaptive EDF. This newly proposed scheduling technique is

3

implemented, and the effectiveness is evaluated in the evaluation.

1.3 Thesis Outline

This chapter introduces the research background, objective and

contributions. Chapter 2 explains some of the related works: real-time

operating system, EDF, RM and Total Bandwidth Server. Chapter 3 explains

Adaptive EDF algorithm in detail. Chapter 4 introduces a new technique,

the retrospective releasing. Chapter 5 describes ITRON and how to

implement algorithms considered. Chapter 6 shows the evaluation

environment and task sets that used in the evaluation. Then, the scheduling

results of the ITRON original baseline, EDF, Adaptive EDF, and combination

of Adaptive EDF and retrospective releasing. Finally, Chapter 7 draws

conclusions of the thesis and some of the future works.

4

Chapter 2

Related Works

2.1 Real-Time Operating Systems

A real-time system is a class of systems that when some events happen it

processes data with specified time constraints. This kind of time-related

requirement can be seen in various fields: automotive control, industrial

control, manufacturing plants, etc.

Real-time systems are classified into two types; first is hard real-time

computing systems (HRTCS) and the other is soft real-time computing

systems (SRTCS). HRTCS demands that tasks must meet their deadlines in

all working cases. If tasks cannot complete the work in time, the system will

terminate with a failure. At the worst, it results in catastrophic

consequences. For example, when traffic accident happens, airbags must be

inflated instantaneously on impact. On the other hand, SRTCS allow tasks

to occasionally miss their deadlines, which do not lead to serious damage to

the system.

Operating systems manage hardware resources and applications. The

difference between general OSs and real-time OSs is that the latter have the

following additional feature. It is designed to run applications with precise

timing constraints. There are two main goals for any RTOS. The first is

meeting the tasks timing constraints, which requires timely execution of

those tasks. The second is shortening response times and reducing jitters of

important tasks compared to the other application tasks.

There are several basic features of RTOS to be introduced

(1) Timeliness

Operating systems provide time control (management) to handle tasks

5

with time constraints by using real-time scheduling algorithms.

(2) Predictability

It guarantees in advance deadline satisfaction. If not possible, it informs

the result, which is not allowed in HRTCS.

(3) Fault tolerance

Soundness should be maintained even if hardware or software failures

occur.

(4) Design for peak load

Overload situations must be considered and managed.

(5) Maintainability

In RTOS methodologies, to deal with different scenarios, there are

various scheduling algorithms: ex.) algorithms only for periodic tasks,

other algorithms for both periodic and aperiodic tasks. In the following

sections, several representative scheduling algorithms are introduced.

2.2 EDF Algorithm

Earliest Deadline First (EDF) [3] is an optimal dynamic priority

scheduling algorithm for periodic tasks. It assigns dynamic priorities to

tasks based on their absolute deadlines. Tasks with earlier absolute

deadlines have higher priorities. In other words, the EDF scheduler always

schedules a task with the earliest absolute deadline.

Dynamic scheduling algorithms have higher schedulability bounds than

fixed priority algorithms. Therefore, they can provide higher overall

processor utilization factors. EDF has a merit that it can fully make

processor utilization reach 100% with schedulability. However, it is

impossible to give tasks fixed priorities and therefore it cannot keep response

6

times or jitters small for particular (important in the system) tasks.

Figure 2.1 is an example to explain the EDF rule. The horizontal axis

shows processor time in ticks. In this example, there are two periodic tasks τ1

and τ2. As shown in Table 2.1, τ1 has a period of 5 and execution time of 2. Τ2

has a period of 7 and execution time of 4. In the beginning at tick 0, task τ1

has the earliest absolute deadline, so it has the highest priority and is

executed first. At tick 15, task τ2 is preempted by the higher priority task τ1

since the new instance of task τ1 has an earlier absolute deadline of 20,

earlier than the deadline of task τ2’s current instance.

Task Period (T) Execution time (C)

τ1 5 2

τ2 7 4

Table 2.1: Periods and execution times for two periodic tasks respectively

Figure 2.1: Example of Earliest Deadline First (EDF) Scheduling

2.3 RM Algorithm

Rate Monotonic (RM) is an optimal static-priority scheduling algorithm for

periodic tasks [3]. It assigns fixed priorities based on task periods. That

means tasks with shorter periods have higher priorities. In other words, RM

7

schedules tasks with shorter periods preferentially.

RM has a merit that it is possible to achieve short response times for some

particular tasks by giving shorter periods to them. However, tasks with long

periods cannot be given higher priority even if they are important in the

system. In other words, importance must depend on periods. Unlike EDF,

RM cannot utilize processor up to 100% while maintaining schedulability.

Figure 2.2 is an example of RM scheduling. Tasks τ1 and τ2 have periods 5

and 7, respectively. Their execution times are 2 and 4, respectively. Since

task τ1 has the shortest period, it always has the highest priority and is

executed first. At tick 5, task τ2 is preempted by the higher priority task τ1.

At tick 7, the first instance of task τ2 has not finished yet and therefore it

experiences time overflow, or deadline missing. This task set has the

processor utilization of 5/7 + 2/4 = 34/35. This value is larger than the

allowable utilization value for RM [3]. Therefore, a deadline miss necessarily

happens.

Task Period (T) Execution time (C)

τ1 5 2

τ2 7 4

Table 2.2: Periods and execution times of two periodic tasks respectively

Figure 2.2: Example of Rate Monotonic (RM) algorithm scheduling

8

The comparison between RM and EDF is shown in Table 2.3. The

comparison is carried out with respect to their priority, processor utilization,

and jitter and response times.

Scheduling

algorithm
Priority

Processor

utilization

Jitter and

response times for

high-priority

tasks

Rate

Monotonic

Fixed priorities based on

periods

Cannot

reach

100%

Small (good)

Earliest

Deadline

First

Dynamic priorities based

on absolute deadlines

Can reach

100%

(good)

Not small

Table 2.3: The comparison of RM and EDF

2.4 Total Bandwidth Server Algorithm

Total Bandwidth Server (TBS) is a scheduling algorithm which can handle

both periodic tasks and aperiodic tasks. TBS schedules tasks based on EDF.

When an aperiodic task execution is requested, it assigns a deadline to it

immediately by using equation 1.

𝑑𝑘 = max(𝑟𝑘 , 𝑑𝑘−1) +
𝐶𝑘

𝑈𝑠
 (1)

rk is the release (request/arrival/invocation) time of the kth aperiodic request.

Ck is the execution time of the request. Us is the server bandwidth which can

be dedicated to aperiodic tasks’ executions. In addition, dk-1 is the absolute

deadline of the k-1th (previous) aperiodic execution. d0 is defined as zero.

When the kth aperiodic task execution is requested, the calculated deadline is

assigned to the job. After that, the job is inserted into the ready queue of the

9

system and all tasks are scheduled by the EDF algorithm.

Figure 2.3 shows an example of two periodic tasks τ1 and τ2 along with an

aperiodic task which is served by TBS. τ1 and τ2 have periods T1 =4 and T2 =6

and execution times C1 =1 and C2 =3, respectively. TBS has the server

utilization of Us =1 – Up = 1 – (1/4 + 3/6) = 0.25. The first aperiodic request

arrives at the releasing time r1 = 1. The deadline is calculated by equation 1

which is d1 = r1 + C1/Us =1 + 1/0.25 =5. Since d1 is the earliest deadline at the

moment, this aperiodic task is executed immediately. Similarly, the second

aperiodic request arrives at r2 =4 and the deadline is calculated as d2 = r2 +

C2/Us = 5 + 2/0.25 =13. Notice that r2 < d1 and then d1 is used in the deadline

calculation. This time the aperiodic task cannot be run immediately, since at

time 4, other periodic tasks (τ1 and τ2) have earlier deadlines, 8 and 6,

respectively. After τ2’s first instance finishes at time 5, τ1’s second instance is

executed until time 6. Then τ2’s second instance starts to run since it has

deadline of 12, earlier than the aperiodic job. Further, τ1’s third instance has

priority over the aperiodic task. Finally, the second aperiodic task is

scheduled at time 10 and it finishes at 12. Further instances of τ1 and τ2

follow this scenario.

Task Period (T) Execution time (C)

τ1 4 1

τ2 6 3

Table 2.4: Periods and execution times for two periodic tasks respectively

Figure 2.3 Example of Total Bandwidth Server (TBS) Scheduling

10

Chapter 3

Adaptive EDF

3.1 Introduction of Adaptive EDF

With the increase of complexity of embedded systems, the importance of

task scheduling keeps increasing for real-time operating system. Adaptive

EDF is a scheduling algorithm for periodic tasks which aims to reduce

response times of certain important tasks as well as their jitter in real-time

systems. Adaptive EDF was devised based on Earliest Deadline First (EDF).

According to the evaluation in [1] [2], the decrease of response times of a

particular (target or important) task is better compared to most of the

existing algorithms. This research focuses on Adaptive EDF, implementing it

on ITRON environment to evaluate its practicality.

Adaptive EDF is an improvement of the basic EDF algorithm. EDF is

widely used as a representative real-time task scheduler. EDF is based on

dynamic priority assignment. The earlier the task’s deadline, the sooner it is

scheduled to run. In addition, EDF is superior to Rate monotonic (RM) in

terms of processor utilization, that is, it can maintain schedulability even

when the processor utilization reaches 100%. However, since the priorities

used in EDF change dynamically, it is difficult for the system to keep the

response times and jitters short for target important periodic tasks. On the

other hand, RM is a scheduling algorithm which fixes tasks’ priorities and

schedules the tasks with shorter periods preferentially. However, the

processor utilization can never reach 100%.

RM can give the target tasks short response times only when the tasks

have relatively short periods. Thus, it is impossible to decide the importance

of tasks independent of their periods, as shown in the section 2.4. Hence, to

reduce the response times and jitters of such particular periodic tasks,

11

Adaptive EDF [1] [2] was proposed.

Adaptive EDF can make target important tasks run before the other tasks

even when the target tasks have longer periods or later deadlines. Therefore

Adaptive EDF achieves shorter response time and smaller jitters for the

target important tasks.

3.2 Adaptive EDF Algorithm

This section introduces Adaptive EDF algorithm. Adaptive EDF basically

follows the EDF algorithm. In other words, the task with the earliest

deadline is scheduled and executed first. However, the additional feature of

Adaptive EDF focuses on the fluctuation of actual execution times of tasks.

Adaptive EDF tries to divide execution of some tasks into two or more sub

instances (or jobs). Based on predictive execution times (PET), Adaptive EDF

gives tasks stepwise deadlines. That is, the deadlines are updated during the

tasks’ execution. Accordingly, short response times and small jitters can be

obtained when the actual execution finishes earlier than supposed times.

Before explaining the Adaptive EDF algorithm, both predictive execution

times (PET) and server utilization (Us) are introduced. Adaptive EDF uses

predictive execution times (PET), instead of worst case execution times

(WCET), to shorten the deadlines, which leads to reduction of response times

and jitters.

In real-time operating systems, WCET is usually regarded as the task

execution time. Real-time systems, especially hard real-time ones, must

guarantee that every task execution can completely meet its own deadline.

However, sometimes, actually the execution time is not so much longer than

WCET. Besides, the overhead exists in the operating system processing such

as dispatching, task switching, scheduling process, and so on. From the

safety point of view, WCET tends to be estimated much larger than the

actual execution time (AET). Thus, there is a large gap between WCET and

AET. Hence, Adaptive EDF algorithm tries to reduce this gap by using

different predictive execution time (PET) in order to reduce the response

time and jitter.

12

In Adaptive EDF, when an invocation request for the target task is made,

PET is estimated to be one tick. Then the corresponding deadline is

calculated according the PET. To account for a longer execution time, when

the task execution exceeds one tick, PET is re-estimated to be one and then

the deadline is updated.

The target task is virtually served by a server. The server utilization is Us .

Then Adaptive EDF uses the same concept as Total Bandwidth Server (TBS)

algorithm [4]. That is, the deadline is calculated to allow the task execution

to occupy the server utilization. The schedulability is satisfied when the total

processor utilization, summation of utilization by each task, is equal to or

less than one. In Adaptive EDF, Us for the target task is shown in Equation 2.

Ui is the utilization of the target periodic task (τi), which is calculated by

using the task’s WCET (WCETi) and period (Ti), that is WCETi /Ti. Up is the

total utilization of all periodic tasks.

 𝑈𝑖 = 𝑈𝑡+(1 − 𝑈𝑝) (2)

The calculations of deadlines in Adaptive EDF are as follows.

The deadline of the target periodic task can be divided into two or more sub

instances. The first instance (J1) starts from the beginning to one tick later,

and the following sub instances (Ji) starts from j-1 ticks to j ticks.

Equation 3 is the absolute deadline of the first sub instance of the kth

execution instance for the target periodic task. Ti is the period of the target

task. In this task set model, each task has a relative deadline which is equal

to its period. Us is the server utilization. By using equation 3, the deadline of

the first sub instance of the target task is computed. Equation 4 is the

absolute deadline of the rest instances of the target task. If the target task

can be finishes in the first sub instance, Equation 4 is not needed to be

𝑑𝑘
1 = 𝑘 × 𝑇𝑖 +

1

𝑈𝑠
 (3)

𝑑𝑘

= 𝑑𝑘

 −1
+

1

𝑈𝑠
 (𝑗 > 1) (4)

13

calculated. If the target task finishes in j ticks, j+1-th and following sub

instances are not needed to be executed.

The Adaptive EDF algorithm is divided into 3 parts. The following 3 code

blocks are the cores of Adaptive EDF.

IF (targettsk == current_task) {

 ADL = current_tim + 1/Us

}

Figure 3.1. Task Deadline Initialization

As shown in Figure 3.1, the first code block, Task deadline initialization, is

executed on every new task instance invocation (releasing). First, the code

checks whether the running task is target task. If so, it initializes the

absolute deadline by the current time plus the reciprocal of the server

utilization Us as shown in Equation 3.

IF (schtsk == targettsk) {

// next is target

target_start_time = current_tim

 }

Figure 3.2. Task Switching Setting

The second code block, task switching setting in Figure 3.2, is executed

every time task switching happens. First, the code checks whether the next

(scheduled) task is the target task. If so, it saves the current time as the

target task’s re-start time.

The third code block, task execution time and deadline update, is shown in

Figure 3.3. This code is executed on every tick timing and task switching.

14

IF (current_task == targettsk){

target_exec_time += current_tim - target_start_time;

IF (target_exec_time >= (80% of TICK)) {

targettsk -> ADL += 1/Us

target_exec_time = 0

}

}

Figure 3.3. Task Execution Time & Deadline Update

First, the code checks whether the running task is the target task, If so, it

updates the target task’s execution time (target_exec_time). The target

task execution time will be incremented by the current time – start time.

Then it checks whether the cumulative execution time of the target task is

larger than 80% of the tick time. If so, it updates the deadline. The absolute

deadline of the target task is incremented by the reciprocal of the server

utilization Us. Finally, it resets the target task execution time to 0. If

execution time of the target task is found to be less, nothing is done.

3.3 Example of Adaptive EDF

Figure 3.4 is an exmple of scheduling by EDF and Adaptive EDF. The

horizontal axis is time in ticks. In both algorihms, two tasks, τ1 and τ2, have

periods, 4 and 6, respectively. WCET is 2 for both of them. Therefore, the

processor utilizations for τ1 and τ2 are calculated as U1 = 2/4 = 0.5 and U2 =

2/6 = 0.33, respectively. The actual execution times for τ1 and τ2 are given as

2 and 1 respectively. In this example, task τ2 is assumed to be the target

(important) task favored by Adaptive EDF.

Using the formulas (2), the deadlines of τ2 are calculated. In case of

Adaptive EDF, the deadlines of τ2 are calculated 3, 9, and 15 as illustrated in

Figure 3.4. By Adaptive EDF, the average response time of the three

instances of τ2 is (1+1+1)/3 = 1. On the other hand, the average response time

by EDF for the same instances of τ2 is (3+1+3)/3 = 2.33. This means that

15

Adaptive EDF has shorter response time than EDF for the selected target

task τ2.

Task Period (T) Execution time (WCET) Actual exec.time (AET)

τ1 4 2 2

τ2 6 2 1

Table 3.1 Task set for EDF and Adaptive EDF Example

Figure 3.4. Example of the EDF and Adaptive EDF

16

Chapter 4

Retrospective Releasing

4.1 Introduction of Retrospective Releasing

This section introduces a new technique, Retrospective Releasing. It is

basically a function added on top of both EDF and Adaptive EDF.

Retrospective releasing is used to further achieve shorter response times

and small jitters for particular periodic tasks. This technique will achieve

the goal by assuming an advanced release (invocation) time and obtaining

corresponding earlier deadlines.

The main idea of retrospective releasing is an enhancement of Total

Bandwidth Server (TBS) [3]. TBS is a scheduling algorithm which can

schedule (handle) both periodic and aperiodic tasks. In TBS, actual arriving

times of tasks are used as the releasing times to calculate the absolute

deadline. Therefore, assuming an earlier release time for a particular task,

an earlier deadline can be obtained. For periodic tasks, the releasing time is

its own period. Accordingly, it is impossible to advance the releasing time,

however, retrospective releasing technique, tries to assume an earlier release

time to obtain an earlier deadline. Thus, it produces the shorter response

times and small jitters.

The retrospective releasing technique advances release times but never

influences the past schedules. This means that the retrospective releasing

technique can be performed only when tasks’ scheduling order never changes

between the virtual release time and the actual release time. Therefore, in

order to use this kind of technique, there are three conditions to be discussed.

They are previous deadline, empty slot, and maximum used deadline which

are explained below.

17

(1) Previous deadline

In the retrospective releasing technique, the virtually advanced release

time of the target task must not exceed (be earlier than) the deadline of

previous task, since it is not allowed in the basic rules of TBS [5]. To

achieve this checking, the previous task’ deadline should be recorded.

(2) Empty slot

When trying to advance the virtual release time, it must be checked

whether the time slot to be passed over is an empty slot or not. This is

because the past schedules must not be changed. Therefore, it is

necessary to record the last empty slot number.

(3) Maximum used deadline

The retrospective releasing technique must guarantee that the virtual

release time is not earlier than any deadlines which have been already

used in the past scheduling. In order to check this condition, an array is

prepared. Each element of the array records the deadline of the task that

was executed in the corresponding time slot.

4.2 Retrospective Releasing Algorithm

In this section, the retrospective releasing algorithm is described. The

pseudo code is shown as the basic retrospective releasing algorithm.

The presented pseudo code of the retrospective releasing algorithm focuses

on applying only to the target task. First, several variables are introduced in

this algorithm. “rk” is the actual release time of the target task and “vk” is the

virtual release time of the task. “dk-1” is the deadline of the previous task and

“dk” is the absolute deadline of the target task. “C” is the worst cast execution

time or the predicted execution time in case of Adaptive EDF. “Us” is the

server utilization of this task. “last_empty” is used to record the last empty

slot number and array “dl” records the used deadline of the executed tasks.

The retrospective releasing algorithm works as follows. In lines 1-2,

max_dl is initialized to 0 and vk is initialized to rk. At line 3, the whole loop

starts. At first, the absolute deadline of the target task, dk, is computed by

18

using the current virtual release time (vk). In lines 6-8, the first condition

(previous deadline) is examined. If vk is equal to the deadline of the previous

task dk-1, the algorithm finishes.

 Figure 4.1 Pseudo code of Retrospective Releasing Algorithm

If vk is not equal to dk-1, in lines 10-12, the algorithm checks the second

condition (empty slot). If the vk is equal to the last_empty number pulse one,

the algorithm finishes since it encounters an empty slot.

In lines 13-18, the third condition (maximum deadline) is checked. As

preparation, comparing the max_dl and dl[vk-1], max_dl is updated if

necessary. Then dk is compared to max_dl. If the former is equal to or earlier

than the latter, the algorithm finishes. When all the conditions above are

passed, the virtual release time is decremented (or advanced) by one slot in

1. max_dl ⇐ 0 /* initialize the maximum deadline */

2. vk ⇐ rk /* initialize the virtual release time */

3. while TRUE do

4. dk ⇐ vk + C/Us

5. /* the previous task deadline constraint (dk-1) */

6. if vk =dk-1 then

7. break

8. end if

9. /* empty slot condition */

10. if vk =last_empty +1 then

11. break

12. end if

13. if max_dl < dl[vk-1] then

14. max_dl ⇐ dl[vk-1]

15. end if

16. /* maximum deadline comparison */

17. if dk ≤ max_dl then

18. break

19. else

20. /* virtual release advance one slot */

21. vk ⇐ vk-1

22. end if

23. end while

19

line 21. Then the loop is repeated.

In order for the retrospective releasing algorithm not to alter the past

schedules, previous deadline, last empty slot and maximum used deadline

must be checked before advancing the release time.

4.3 Example of Retrospective Releasing

There is an example to demonstrate the retrospective releasing technique.

In Figure 4.2, there are three periodic tasks. Task τ1 is assumed to be the

target task. Task τ1 has the original release time of 5, and the original

deadline of 11. By applying the retrospective releasing technique, the

release time of τ1 is set to 2 and at the same time, its deadline is set to 8.

Therefore, the shorter response time can be obtained. Note that the past

schedule between 2 and 5 is not changed by this technique.

Figure 4.2. Example of Retrospective Releasing

20

Chapter 5

Implementation

5.1 ITRON

In conventional scheduling theories [3], it seems that the overheads of

RTOS execution such as scheduling and dispatching are zero. Similarly in [1]

[2], RTOS overhead is not taken into account. However, in practical systems,

RTOS overheads exist.

Thus, in this research, baseline algorithm in ITRON, EDF, Adaptive EDF,

EDF plus the retrospective releasing technique and Adaptive EDF plus the

retrospective releasing technique will be evaluated quantitatively by

executing not only tasks’ codes but also RTOS codes on the CPU simulator.

In this research, the μITRON4.0 [6] operating system is used as the

evaluation environment. Industrial The Real-time Operation system

Nucleus (ITRON) introduces the standards for real-time operating systems.

Its real-time kernel specifications can be applied to any small–scale

embedded systems. μITRON4.0 is implemented for numerous 8-bit, 16-bit

and 32-bit Microcontroller Units (MCUs).

There are several basic characteristic of ITRON.

(1) Supporting multi-tasking

(2) Task scheduling using fixed/static priority

(3) Communication and synchronization mechanisms

(4) Real-time clock control

(5) Fully pre-emptible kernel hard real-time response

 In this evaluation, the μITRON4.0 kernel implementation in [7] is used as

the baseline. This kernel provides all functions and system calls in the

standard profile defined in [6].

21

5.2 EDF Implementation

In the used ITRON system, when a task is invoked (released), it is

originally inserted as a new task at the end/tail of the ready queue with the

corresponding fixed priority. The scheduler will always select the head task

of the ready queue with the highest priority which has activated tasks.

Therefore, in a ready queue, it schedules tasks based on first-in-first-out

(FIFO) rule.

The original queue handling (insert/sort) functions are all in the

“kernel_queue.c” file. The “_kernel_queue_insert_prev” function handles

inserting new tasks in the ready queue. If a sorting algorithm different from

the original ITRON specification is used during the task insertion, a

different priority scheduling algorithm can be implemented, e.g. RM or EDF

algorithm.

Figure 5.1 presents the original insert function

“_kernel_queue_insert_prev”. The function adds the new task “entry” before

the task pointed to by the “queue” pointer. The ready queue is double circular

linked. If a new task is inserted before the head of the ready queue pointer

(“queue”), then the new task will be the tail of the queue. In that case, the

new task will be considered to be of lowest priority in the corresponding

priority. If the new task were inserted differently from the ITRON

specification, different scheduling algorithms would be implemented.

In order to implement EDF, the process of inserting tasks in the ready

queue should be modified by changing the order of tasks. EDF was easily

implemented by sorting the queue according to the absolute deadlines of the

tasks. Then the system would schedule the task with the earliest deadline

first.

The change was made by adding a new function to insert the tasks in the

right order. Then, the new function was called instead of the original

function throughout the kernel codes. The new function was conveniently

placed in the same file as the original function, “kernel_queue.c”.

In Figure 5.2, the new EDF insert function, “_kernel_queue_insert_ADL”

searches in the main loop for a task with priority lower (later deadline) than

22

that of the new task. The new task is then inserted before the task found

using the original “_kernel_queue_insert_prev” function.

void _kernel_queue_insert_prev (_KERNEL_QUEUE * queue,

_KERNEL_QUEUE *entry)

{

entry -> prev = queue -> prev;

entry -> next = queue;

queue -> prev -> next = entry;

queue -> prev = entry;

}

Figure 5.1.Original insert function (FIFO)

void _kernel_queue_insert_ADL (_KERNEL_QUEUE *queue,

_KERNEL_QUEUE *entry)

{

_KERNEL_QUEUE *ptr;

INT ADL = entry -> self -> act_fifo.head -> ADL;

// Search by ADL to find the position to insert in order

for (ptr = queue -> next; ptr != queue; ptr = ptr -> next)

if (ADL < ptr -> self -> act_fifo.head -> ADL)

break;

// insert

_kernel_queue_insert_prev (ptr, entry);

}

Figure 5.2. EDF insert function (ADL sorted)

In the kernel, every time the task is released, the function “iact_tsk(ID)” is

called. To implement EDF, this function was modified to initialize the

absolute deadline as shown in Figure 5.3. The absolute deadline of each task

is initialized to be the sum of both _kernel_systim and RDL. (“RDL” means

the task’s relative deadline, or period.) “_kernel_systim” is the system

23

current time at which the task is invoked.

act_cell -> ADL = _kernel_systim + tcb -> RDL;

Fig 5.3 EDF Absolute Deadline Initialization

5.3 Adaptive EDF Implementation

Before introducing how to implement the Adaptive EDF algorithm, several

global variables are described. All the variables below are declared in the

“kernel_globals.c” file.

(1) ID _kernel_trgttskID

A certain particular target task will be preferred by Adaptive EDF. This

variable indicates the target task. This variable is set in the “init_system

(VP_INT)” function which is the system initialization function.

(2) _KERNEL_TCB *_kernel_prevtsk

This is a pointer in TCB (Task Control Block) structure. This pointer

recodes the previously-scheduled task. This information is used for a

timer handling routine, one of managers of Adaptive EDF, to find whether

the previously-scheduled task is the target task or not.

(3) TIME _kernel_target_start_time

This variable records the target task’s (re-)starting time.

(4) TIME _kernel_target_exec_time

This variable is used to accumulate the execution time of target task.

(5) SYSTIM Vs

This variable represents the reciprocal of the server utilization (1/Us). It

is set in the “init_system (VP_INT)” function.

Adaptive EDF basically follows the EDF algorithm. Adaptive EDF first

calculates the absolute deadline of the target task using the estimated

24

execution time. Then, the task is inserted into the ready queue and

scheduled using EDF.

The main code fragments of Adaptive EDF are shown in Figures 5.4 to 5.7.

When the “iact_tsk” function is called on every releasing of the target task,

the deadline of the target task is initialized as in Figure 5. The initial

deadline is set to the sum of _kernel_systim (the current time of the system)

and Vs (1/Us) as in equation 3. For other (not target) tasks, the deadline is

initialized using the basic EDF.

if (_kernel_trgttskID == tskid)

 act_cell -> ADL = _kernel_systim + Vs;

 else

 act_cell -> ADL = _kernel_systim + tcb -> RDL;

 act_cell -> next = (_KERNEL_ACT_CELL *) NULL;

Figure 5.4 Deadline initialization in Adaptive EDF algorithm

The variable for the execution time of the target task is initialized as in

Figure 5.5.

if (_kernel_trgttskID == tskid) {

 _kernel_target_exec_time = 0;

 }

Figure 5.5 Initialization of the target task’s execution time in Adaptive EDF

The scheduler function, _kernel_sched (int), is called every time the ready

queues are updated. One of the situations is on tick/timer handling. In this

function, every tick timing, the execution time information and absolute

deadline for the target task are managed if necessary as in Figure 5.6. If the

previously running task is the target task, the cumulative execution time is

incremented. At the same time, if the cumulative execution time reaches the

tick period length (approximately 80% of the tick period), the corresponding

absolute deadline should be updated by adding Vs according to the Adaptive

EDF definition. Then the cumulative execution time information is reset to

zero.

25

_kernel_iget_tim (&tim);

if (_kernel_prevtsk -> tskid == _kernel_trgttskID){

 _kernel_target_exec_time += tim - _kernel_target_start_time;

 if (_kernel_target_exec_time >= (TIME) (.8 *

(UINT)_KERNEL_TICK)) {

 _kernel_prevtsk -> act_fifo.head -> ADL += Vs;

 _kernel_target_exec_time = 0;

 }

 }

Figure 5.6 Adaptive EDF execution time management.

In the last Adaptive EDF code fragment shown in Figure 5.7, on every task

switching or tick timing, the (re)start time of the target task is set to the

current cycle time (tim).

if (_kernel_schtsk -> tskid == _kernel_trgttskID)) {

 _kernel_target_start_time = tim;

 }

Figure 5.7 Start time setting in Adaptive EDF

26

5.4 Retrospective Releasing Implementation

Retrospective releasing technique can be implemented by adding it to EDF

or Adaptive EDF. The algorithm is shown in Figure 5.8.

if (_kernel_trgttskID == tskid) {

 max_dl = 0;

 vr = _kernel_systim; // release time

 while (1) {

 dk = vr + Vs;

 if (vr == dk_1)

 break;

 if (vr == last_empty + 1)

 break;

 if (max_dl < dl[vr-1])

 max_dl = dl[vr-1];

 if (dk <= max_dl)

 break;

 else

 vr = vr - 1;

 }

 act_cell -> ADL = dk;

 dk_1 =dk;

 }

Figure 5.8 Main code of Retrospective Releasing Technique

The variables used in this technique:

(1) INT dl [4096]

This array records the deadlines used in past tick slots. This is used to

guarantee that the retrospective releasing technique never changes the

past schedules, as described in the previous chapter.

27

(2) TIME last_empty

This variable records the tick number of the last empty slot encountered.

The code of Figure 5.8 is added in the “iact_tsk.c” file as part of the

“iact_tsk” function. It has already explained in detail in chapter 4. The actual

implementation is not different from this algorithm code except it includes

few additional data structures and pointers.

Figure 5.9 shows code fragments for the deadline and empty slot recording.

This part was introduced in the function “_kernel_sched (int)” of the

“kernel_sched.c” file to run every task switching or tick. If the CPU is idle

(_kernel_schtsk=0), the last empty is set as the current tick (_kernel_systim).

Otherwise, it checks if the scheduled task is the same as the previously

running task and if the currently running task is the operating system

(_kernel_runtsk=1) (This corresponds that the “_kernel_sched” function is

called on tick timing.). In that case it records the deadline of the newly

scheduled task in the corresponding element of dl[]. On the other hand, in

case that the newly scheduled task is different from the previously running

task, it replaces the corresponding dl[] element with the new task’s deadline

value if the latter is later.

if (_kernel_schtsk -> tskid == 0) // this tick has an empty slot.

 last_empty = _kernel_systim; // tick time;

 else if ((_kernel_schtsk -> tskid == _kernel_prevtsk -> tskid) &&

(_kernel_runtsk ->tskid == 1)) // this case same task continue running

through this tick

 dl[_kernel_systim] = _kernel_schtsk -> act_fifo.head -> ADL;

 else if ((_kernel_schtsk -> tskid != _kernel_prevtsk -> tskid) &&

(_kernel_schtsk -> act_fifo.head -> ADL > dl[_kernel_systim])) // this case

is task switch

 dl[_kernel_systim] = _kernel_schtsk -> act_fifo.head -> ADL;

Figure 5.9 The recording empty slots and previous deadlines

This implementation can be readily added to either EDF or Adaptive EDF

without any additional modifications in their code fragments. (Precisely,

28

when it is added to the EDF version, two variables, _kernel_trgttskID and Vs,

must be added.)

29

Chapter 6

Evaluation

6.1 Evaluation Environment

In this research, the existing CPU simulator is used for evaluating the

scheduling algorithms. The CPU simulator executes binary executable codes

in a cycle-based fashion. The target instruction set is SPARC version 8 [8].

Basically, the execution of one instruction takes one clock cycle.

(Multiplication and division take several cycles.) The modeled

microprocessor includes primary instruction/data caches of one cycle for hit

and ten cycles for miss hit. In this evaluation, binary codes consisting of

tasks’ codes and OS codes are input to the simulator. Therefore, this

evaluation enables accurate quantitative assessment of the whole system.

Five different methods are compared in this evaluation.

1. The ITRON original scheduling using a single priority, FIFO ready

queue. This is called “baseline.”

2. EDF model implementation

3. Adaptive EDF model implementation on top of the EDF model.

4. Retrospective Releasing model implementation on top of the EDF

model.

5. Retrospective Releasing model implementation on top of the Adaptive

EDF model.

The evaluation exposes improvement in both response time and jitter

caused by the different scheduling models. The simulator runs each of the

task sets (described in the next section) one time on every model. The

simulator keeps running for 13 periods of the target periodic task.

30

The platform used in those experiments is a PC having Intel i3 Core, 1.33

GHz and 2GB main memory, which is running CYGWIN_NT-6.1-WOW64 1.

7.15 (0.260/5/3) i686 Cygwin, on top of Windows 7, Service Pack 1, 64 bits.

6.2 Task Sets

In this evaluation 31 task sets are used, each set consists of a number of

periodic tasks. The name of the particular (target) task is always a task “C”

in all task sets. Task sets have a different number of tasks to test different

scenarios. The task sets are grouped by the total processor utilization (Up) of

all the tasks in that set: 60%, 70%, 80% and 90%. Each group has 7 or 8 task

sets.

Up is based on WCETs of all tasks in the following tables. The first task set

group having 60% total utilization (Up) is shown in tables 6.1 - 6.8. Each task

has its WCET and period (T) in ticks. Ui is the task’s utilization, which is

shown only in Table 6.1 and can be calculated by dividing the WCET of the

task by its period. This information is omitted for the other tables but can be

calculated similarly.

Tables 6.9 - 6.16 show the tasks sets of processor utilization group with

70%. Tables 6.17 - 6.23 show the tasks sets of processor utilization group

with 80%. Finally, tables 6.24 - 6.31 show the tasks sets of processor

utilization group with 90%.

Task WCET T Ui Task WCET T

A 9 72 0.125 A 9 72

B 8 80 0.1 B 2 16

C 3 24 0.125 C 5 40

D 2 10 0.2 D 3 24

E 5 100 0.05 E 8 80

Table 6.1 Up=0.6 NO.1 Table 6.2 Up=0.6 NO.2

31

Task WCET T Task WCET T Task WCET T

A 9 72 A 9 72 A 9 90

B 2 16 B 6 48 B 5 100

C 3 12 C 9 45 C 6 120

D 8 160 D 3 20 D 4 10

E 5 100

Table 6.3 Up=0.6 NO.3 Table 6.4 Up=0.6 NO.4 Table 6.5 Up=0.6 NO.5

Task NO. WCET T Task NO. WCET T Task NO. WCET T

A 8 40 A 3 10 A 9 90

B 9 45 B 8 80 B 3 20

C 3 15 C 9 90 C 3 20

D 9 45 D 9 90 D 9 45

Table 6.6 Up=0.6 NO.6 Table 6.7 Up=0.6 NO.7 Table 6.8 Up=0.6 NO.8

.

Task WCET T Task WCET T Task WCET T

A 5 40 A 3 20 A 3 20

B 6 60 B 3 20 B 5 50

C 3 24 C 5 50 C 3 10

D 8 40 D 8 40 D 6 120

E 3 20 E 10 100 E 9 90

Table 6.9 Up=0.7 NO.1 Table 6.10 Up=0.7 NO.2 Table6.11 Up=0.7 NO.3

Task NO. WCET T Task NO. WCET T Task NO. WCET T

A 3 20 A 5 40 A 9 36

B 9 45 B 9 72 B 6 24

C 3 20 C 8 40 C 8 40

D 6 30 D 9 36

Table 6.12 Up=0.7 NO.4 Table 6.13 Up=0.7 NO.5 Table 6.14 Up=0.7 NO.6

32

Task NO. WCET T Task NO. WCET T

A 9 36 A 9 45

B 3 20 B 3 20

C 9 30 C 3 20

 D 9 45

Table 6.15 Up=0.7 NO.7 Table 6.16 Up=0.7 NO.8

.

Task WCET T Task WCET T Task WCET T

A 8 64 A 7 56 A 3 20

B 2 20 B 6 60 B 8 40

C 3 24 C 3 24 C 3 20

D 5 25 D 3 20 D 6 30

E 7 28 E 3 10 E 9 90

Table 6.17 Up=0.8 NO.1 Table 6.18 Up=0.8 NO.2 Table6.19 Up=0.8 NO.3

Task NO. WCET T Task NO. WCET T Task NO. WCET T

A 5 20 A 5 20 A 5 25

B 4 16 B 3 20 B 3 15

C 7 35 C 3 10 C 3 15

D 9 90 D 9 90 D 8 40

Table 6.20 Up=0.8 NO.4 Table 6.21 Up=0.8 NO.5 Table 6.22 Up=0.8 NO.6

Task NO. WCET T

A 5 20

B 3 20

C 3 20

D 9 36

Table 6.23 Up=0.8 NO.7

33

.

Task WCET T Task WCET T Task WCET T

A 10 50 A 10 40 A 5 40

B 3 15 B 3 20 B 3 24

C 3 15 C 3 10 C 3 10

D 5 25 D 4 40 D 6 60

E 6 60 E 5 50 E 4 16

Table 6.24 Up=0.9 NO.1 Table 6.25 Up=0.9 NO.2 Table 6.26 Up=0.9 NO.3

Task NO. WCET T Task NO. WCET T Task NO. WCET T

A 6 24 A 5 50 A 8 80

B 3 20 B 3 29 B 3 20

C 3 20 C 3 20 C 3 20

D 5 20 D 6 30 D 6 60

E 4 40 E 3 10 E 4 10

Table 6.27 Up=0.9 NO.4 Table 6.28 Up=0.9 NO.5 Table 6.29 Up=0.9 NO.6

Task NO. WCET T Task NO. WCET T

A 9 90 A 6 24

B 3 20 B 3 15

C 3 20 C 3 15

D 8 32 D 8 32

E 6 24

Table 6.30 Up=0.9 NO.7 Table 6.31 Up=0.9 NO.8

6.3 Results

In this section, the result of evaluated algorithms will be considered.

Figure 6.2 shows the normalized average response time of all the task

sets. The horizontal axis shows the 4 different groups of task sets, 60%

utilization group first from the left. The vertical axis shows the obtained

average normalized response time.

34

When running the task sets, the target periodic task has different

response times in every period, which is averaged. The average response

time is normalized, dividing it by the baseline model for the same task set.

The normalized response times from all the task sets in the same processor

utilization group is finally averaged to represent the group. Only the target

task response times are considered in this evaluation.

The top green line represents the baseline scheduling model as a reference,

which is always at 1. Among the other four scheduling methods, the EDF

scheduling model always exhibits the longest average response time, not

much better than the baseline model, corresponding to 95%-85% of the

baseline response time. The two combinations of retrospective releasing

(EDF+R and AEDF+R) have almost the same results as the Adaptive EDF

(AEDF). AEDF clearly shows the fastest response time, on average half the

response time of the original baseline model. At smallest, for 60% processor

utilization group, AEDF is still 62% faster than the baseline model. Totally,

its average response times are 38% - 62% shorter than the original baseline

model.

The combination of retrospective releasing with EDF (EDF+R) shows

similar performance to the best performance of AEDF. Only a little longer

response time is observed in all processor utilization groups, especially in

processor utilization group 60% and 90%, but not much. Totally, it exhibits

The combination of retrospective releasing with Adaptive EDF (AEDF+R)

lies in between both AEDF and EDF+R. The results of AEDF+R seem to

approach that of AEDF with very small difference. While its difference from

EDF+R is a little more in all processor utilization groups. The reason why

AEDF is a little worse than AEDF is that the execution overhead of the

retrospective releasing algorithm influenced the overall performance.

Figure 6.3 shows the normalized worst response time of all the task sets.

The same as figure 6.2 the top green line as a reference regards the baseline

scheduling. Among the other four scheduling methods, the red line which is

the EDF scheduling model always has the longest worst response time. To

improve EDF by adding the new technique Retrospective Releasing (EDF

+R), the worst response time is much shorter than before (purple line). The

35

blue line and the yellow line are respectively AEDF and AEDF + R

scheduling models, they are same and exhibit the shortest worst response

time.

Figure 6.2 Normalized Average Response Time

Figure 6.3 Normalized Average Response Time

0.0

0.2

0.4

0.6

0.8

1.0

1.2

60% 70% 80% 90%A
e
ra

g
e
 R

e
la

ti
v
e
 R

e
s
p

o
n

se
 T

im
e

(B
a

s
e
li

n
e
 a

s
 r

e
fe

re
n

ce
)

Processor Utilization

Nomalized Response Time

Baseline

EDF

EDF+R

AEDF

AEDF+R

0.0

0.2

0.4

0.6

0.8

1.0

1.2

60% 70% 80% 90%

A
ve

ra
ge

 W
o

rs
t

R
e

sp
o

n
se

 T
im

e

(B
as

el
in

e
as

 a
 r

e
fe

re
n

ce
)

Processor Utilization

Nomalized Worst Response Time

Baseline

EDF

EDF+R

AEDF

AEDF+R

36

Figure 6.4 Normalized Average Absolute Jitter

Figure 6.4 shows the normalized absolute jitter of all the task sets. When

executing each task set, the target task’s behavior is observed to record its

response times in all the 13 periods of the target task. The absolute jitter of

the target task is the difference between its maximum and minimum

response times. The jitter is normalized, dividing it by the baseline model for

the same task set. The normalized jitter from all the task sets in the same

processor utilization group is averaged to represent the group. Only the

target task’s jitters are considered in this evaluation.

The average absolute jitters of EDF are the worst compared to the other

models, which correspond to 40% - 75% of the baseline jitters.

EDF+R has a similar tendency to AEDF. AEDF and AEDF+R are exactly

identical. Both show minimum jitter, 27% - 43% of the original baseline

model. EDF+R is only a little worse in the 80% and 90% processor utilization

groups, which are 32% - 43% of the baseline.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

60% 70% 80% 90%

A
e
ra

g
e
 R

e
la

ti
v
e
 J

it
te

r

(B
a

s
e
li

n
e
 a

s
 r

e
fe

re
n

ce
)

Processor Utilization

Normalized Jitter

Baseline

EDF

EDF+R

AEDF

AEDF+R

37

Chapter 7

Conclusion and Future Work

In this research, the basic EDF scheduler was first implemented then

Adaptive EDF was added. The new retrospective releasing technique was

then implemented and added to both the EDF scheduler and the Adaptive

EDF scheduler. The four scheduling methods were evaluated using the CPU

simulator with the actual tasks’ and OS’s codes to test response times and

jitters of the target important task.

Adaptive EDF was found to achieve the fastest response times and

smallest jitters for the all the task sets used. Basic EDF had only a little

improvement over the baseline and it was the worst results when compared

with the other three advanced schedulers. Retrospective releasing combined

with Adaptive EDF gave almost similar results to but a little worse results

than Adaptive EDF. The results of combining the retrospective releasing and

EDF were found worse than Adaptive EDF (whether with or without the

retrospective releasing). The combination of the retrospective releasing with

EDF is not much different than both Adaptive EDF schedulers.

Adaptive EDF was clearly more complicated than EDF or even the

combination of EDF and retrospective releasing. The complexity of Adaptive

EDF was further increased by adding retrospective releasing.

Obviously, the performances of combination of EDF and the retrospective

releasing and both Adaptive EDF schedulers are not much different from

each other. Thus, the scheduler with less complexity could be preferred for

less scheduling overhead.

From the results, it can be concluded that the Adaptive EDF is effective

and the retrospective releasing is effective only with EDF, not Adaptive EDF.

As mentioned in the previous section, this is because the execution overhead

of the retrospective releasing becomes an obstacle to further improvement.

38

Therefore, implementation of this technique with more light-weight

complexity should be explored. In addition, more task sets from various

benchmarks should be used to obtain widely acceptable results.

39

References

[1] K.Tanaka, “Adaptive EDF: Using predictive Execution Time,” ACM

SIGBED Review, Vol.10, No.4, pp.41-44, 2013.

[2] K.Tanaka, “Improvement of Adaptive EDF,” ACM SIGBED Review, Vol.11,

No.3, pp.40-43, 2014.

[3] G.C. Buttazzo, “Hard Real-Time Computing Systems: Predictable

Scheduling Algorithms and Applications,” 3rd edition, Springer, 2011.

[4] C.L.Liu and J.W.Layland, “Scheduling Algorithms for Multiprogramming

in Hard-Real-Time Environment,” Journal of the Association for

Computing Machinery, Vol. 20, No. 1, pp. 46-61, 1973.

[5] M.Spuri and G.C.Buttazzo, “Efficient Aperiodic Service under Earliest

Deadlne First Scheduling,” Proc. of Real-Time Systems Symposium,

pp.2-11, 1994.

[6] ITRON Committee, TRON ASSOCIATION, “μITRON4.0 Specification

Ver.4.00.00.”

[7] K.Tanaka, “Real-Time Operating System Kernel for Multithreaded

Processor,” Proc. of Intl. Workshop on Innovative Architecture for Future

Generation High-Performance Processors and Systems, pp.91-99, IEEE

Computer Society, 2006.

[8] The SPARC Architecture Manual Version 8. SPARC International Inc.,

Prentice Hall, 1992.

[9] G.C.Buttazzo and F.Sensini, “Optimal Deadline Assignment for

Scheduling Soft Aperiodic Tasks in Hard Real-Time

Environments,” IEEE Trans. Computers, Vol.48, No.10, 1999.

40

[10] K.Tanaka, “Real-Time Scheduling for Reducing Jitters of Periodic Tasks,”

Proc. of ISPJ Embedded Systems Symposium, pp.36-45, 2004.

