
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
A Binary Code Analysis and Approximation

Techniques

Author(s) BINH, NGO Thai

Citation

Issue Date 2015-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/12640

Rights

Description
Mizuhito Ogawa, School of Information Science,

Master



A binary code analysis and approximation techniques

BINH, NGO Thai (1310022)

School of Information Science,
Japan Advanced Institute of Science and Technology

February 12, 2015

Keywords: constant propagation, BE-PUM, binary analysis.

There are two main targets of binary code analysis. The first one is
System software, which is compiled code but its source is inaccessible, due
to legacy software and/or commercial protection. It is often large, but
relatively structured from the compiled nature, and the main obstruction
is scalability. The second one is Malware, which is distributed in binary
only. It is often small, but with tricky code for obfuscation.

Many model generation tools for binary programs have been proposed.
They attempt to infer a control flow graph (CFG) of the program, on
which popular techniques like model checking can be adopted. A CFG
of high-level programming language is straightforward and is obtained by
syntactical parsing. However, binary code consists of bit sequences, which
is parsed dynamically and has no distinction between code and data, hence
the CFG can only be built on-the-fly. Based on Jakstab, a static-based
binary disassembler, our collaborator at VNU-HCM has developed BE-
PUM (Binary Emulation for PUshdown Model generation) that focuses on
building the CFG of malware programs.

There is a proplem that although we have assumed that programs are
terminating, there are cases that BE-PUM almost does not terminate, even
for a simple program. One reason is because the initial environment is not
fixed. We apply constant propagation analysis on the partial CFG and
use the analyzed data to decide whether BE-PUM will or will not continue
the path. A variable is called a constant at one location ` if regardless

Copyright c© 2015 by BINH, NGO Thai

1



of the initial environment, after executing on the same path, its the value
at ` must be the same. Our approach is that if a jump revisits a node
that was explored in the graph, we will continue checking the node only if
the condition is a constant. This process is similar to loop unrolling, but
we only unroll if there is a guarantee that the normal execution will also
follow the same path, and since we have assumed that input programs are
terminating, the unrolling process will also terminate.

Contribution

1. We have modified BE-PUM in a way that instead of blindly follow any
path, we only follow if there is a guarantee that the path is always
taken for any initial environment. The judgment bases on a constant
propagation analysis on the partial CFG, which is done on-the-fly
during graph construction.

2. We have designed a constant propagation analysis that can be applied
to X86 assembly programs (including memory and the stack, although
they are restricted), and can be done on-the-fly together with BE-
PUM execution.

3. The runs of BE-PUM with constant propagation application will even-
tually terminate, if the input programs are correctly implemented ,i.e.
terminating for all input environments, and the set of the possible
locations of the next instructions is finite, for any instruction in the
program (this is due to the exhaustive destination check of BE-PUM).

4. Experiments have been done to compare the three versions: normal
unrolling, convergence check and unrolling based on the result of con-
stant propagation, on 1000 from real-world malware samples.

One remark is that although CP eventually finishes, its result is an under-
approximation of the binary program: there have the cases that the skipped
paths eventually go to new locations. To generate the complete CFG,
we will need further analysis such as loop invariant, refinements, . . . Such
problems are regarded as future works.

2


