
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
A Binary Code Analysis and Approximation

Techniques

Author(s) BINH, NGO Thai

Citation

Issue Date 2015-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/12640

Rights

Description
Mizuhito Ogawa, School of Information Science,

Master

A binary code analysis and approximation techniques

By BINH, NGO Thai

A thesis submitted to
School of Information Science,

Japan Advanced Institute of Science and Technology,
in partial fulfillment of the requirements

for the degree of
Master of Information Science

Graduate Program in Information Science

Written under the direction of
Professor Mizuhito Ogawa

March, 2015

A binary code analysis and approximation techniques

By BINH, NGO Thai (1310022)

A thesis submitted to
School of Information Science,

Japan Advanced Institute of Science and Technology,
in partial fulfillment of the requirements

for the degree of
Master of Information Science

Graduate Program in Information Science

Written under the direction of
Professor Mizuhito Ogawa

and approved by
Professor Mizuhito Ogawa
Professor Tachio Terauchi

Associate Professor Nao Hirokawa

February, 2015 (Submitted)

Copyright c© 2015 by BINH, NGO Thai

Contents

1 Introduction 4
1.1 Binary code analysis . 4
1.2 Problems . 5
1.3 Solution and experiments . 5
1.4 Contribution . 7
1.5 Outline for later sections . 7

2 Abstract Interpretation 8
2.1 Simple programs - Syntax and semantics 8

2.1.1 Program syntax . 8
2.1.2 Program semantics . 9

2.2 Abstract interpretation . 10
2.3 Constant Propagation . 11

3 X86 Assembly - Syntax and semantics 13
3.1 Syntactic sets . 13
3.2 Semantics . 15

4 BE-PUM 16
4.1 CFG generation . 16
4.2 BE-PUM architecture . 17
4.3 Exhaustive checking for indirect destination 18
4.4 Related works . 19

5 Constant Propagation on BE-PUM 21
5.1 Problems . 21
5.2 Constant propagation for X86 assemblies 22
5.3 Model restriction . 23

5.3.1 Memory operands . 23
5.3.2 The stack . 23
5.3.3 Self loop instructions . 24

5.4 Interaction with BE-PUM . 24
5.5 Termination . 25

1

6 Experimental result 26
6.1 Assumptions . 26
6.2 Halting condition . 27
6.3 Experimental results . 27

7 Summary and Future works 29

2

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Professor Mizuhito Ogawa
for the continuous support of not only my thesis but also my life. He taught me a lot, not
only in researching, but also the attitude when we deal with a problem, and evaluating
the works.

My sincere thanks also goes to Associate Professor Nao Hirokawa for his detailed and
constructive comments and also for his important support through this work. I learned a
lot from him how to write scientific documents.

Also I owe my loving thanks to my parents and my friends. Without their encouragement
and understanding it would have been impossible for me to finish this work.

3

Chapter 1

Introduction

1.1 Binary code analysis

There are two main targets of binary code analysis. The first one is System software, which
is compiled code but its source is inaccessible, due to legacy software and/or commercial
protection. It is often large, but relatively structured from the compiled nature, and the
main obstruction is scalability. IDA Pro 1 is the most popular disassembler, combining
recursive disassembly and linear sweep. The second one is Malware, which is distributed
in binary only. It is often small, but with tricky code for obfuscation.

Many model generation tools for binary programs have been proposed [1, 9, 5, 7]). They
attempt to infer a control flow graph (CFG) of the program, on which popular techniques
like model checking can be adopted [6]. A CFG of high-level programming language is
straightforward and is obtained by syntactical parsing. However, it is not easy for binary
code:

Binary difficulties

– Instruction code is an element of the memory and is treated as data, which can be
modified during execution. The current state will have the location of the current
instruction in the memory, from which the instruction is parsed and executes. With-
out such information, there is no difference between program data and instruction
code.

– Moreover, the location of the next instruction is decided by both the current in-
struction and the current environment. During execution, if there are unexpected
operations, such as division by zero, reference to the restriction memory locations,
or hardware-errors, . . . an exception will occur and control is passed to the address
of the exception handler, instead of the address stated by the instruction.

For such reasons, the CFG can only be built on-the-fly. Based on Jakstab [7], a static-
based binary disassembler [8], our collaborator at VNU-HCM has developed BE-PUM

1https://www.hex-rays.com/products/ida/

4

(Binary Emulation for PUshdown Model generation) that focuses on building the CFG
of malware programs, which tend to be small in size and the code is often obfuscated.

BE-PUM generates the CFG in an under-approximation manner: it tries to find all
possible execution paths and updates the graph on-the-fly. Symbolic execution is used
to symbolically runs the program, which maintains a symbolic state (`, ρ) where ` is a
program location and ρ is the path formula of the path from program entry point to `.
A path formula ρ describes the precondition of the execution path to `, starting from
the precondition at the program entry. At one state, the location of next instruction is
decided by the dynamic run on a SAT instance of the path formula. However, although
we have assumed that programs are terminating, experiment data shows that BE-PUM
still has the problem of infinite loop unrolling.

1.2 Problems

Consider the following program:

0x401000: cmpl ecx, 0
0x401003: jle 0x401008

0x401005: decl ecx
0x401006: jmp 0x401000

0x401008: call ExitProcess

The program starts from the instruction at 0x401000, and ExitProcess is a system API
that terminates the program and passes the control back to the operating system. Here
we implicitly use ecx as an input parameter. Before it executes, the system will move the
input value to ecx and jump to the start instruction. Depending on such value, call n, we
will go through the loop n times (for simplicity, we only decrease ecx and do nothing else
within the loop). We have a conditional jump at location 0x401003, where the location of
the next instruction may be 0x401005 or 0x401008, depending on the current value of ecx.
For each path, BE-PUM will check for satisfiability of the path condition. If it is SAT,
the path is viable and BE-PUM will continue the analyzing process 2. The above program
has one problem that the number of times of loop unrolling is not explicitly bounded in
the code. In general, the value of ecx ranges between −231 and 231 − 1. BE-PUM will
blindly follow the loop without finding any new instruction.

1.3 Solution and experiments

We will apply constant propagation analysis on the partial CFG and use the analyzed data
to decide whether BE-PUM will or will not continue the path. The constant propagation
environment at each location maps the variables in the program (i.e. registers, memory
locations, . . .) to the abstract domain, which consists of three elements ⊥ v C v ∗
stands for unknown, constant and not-a-constant, respectively. Let e be the constant

2BE-PUM v2 uses embedded emulator, and next address is calculated from the SAT instance

5

propagation environment at a location `, and x is a variable in the program, e(x) = C
means that regardless of the initial environment, after executing on the same path, the
value of x at ` must be the same. As in the program, the value of ecx at any location
is not-a-constant. Our approach is that if a jump revisits a node that was explored in
the graph, we will continue checking the node only if the condition is a constant. This
process is similar to loop unrolling, but we only unroll if there is a guarantee that the
normal execution will also follow the same path, and since we have assumed that input
programs are terminating, the unrolling process will also terminate.

Remark 1. The result of constant propagation is an approximation and constant propaga-
tion analysis is not sufficient to solve the infinite loop unrolling problem. There are 30%
of the cases that the result CFG when applying constant propagation is smaller than the
original one. Such cases can be further reduced by applying heuristic methods to detect
some cases such as xor eax, eax, which is often used in binary code to initialize the value
of a register.

We do the experiment on 1000 real-world malwares of 733 families3 from the database
of VX Heaven4, and do the comparison between the three choices of loop unrolling:

1. (BP) BE-PUM with normal unrolling (i.e. we continue exploring the path even
when it goes to an already explored location)

2. (CP) BE-PUM where we only unroll if the condition of a conditional jump is a
constant. The constant propagation environment will be calculated when a new
edge is added to the partial graph.

3. (CC) BE-PUM where loop unrolling is replaced by convergence check: the path is
skipped if it goes to an already explored location.

Since CP is a better choice than CC, there is no surprise that CP always results the better
graph if it terminates (907/1000 samples). Comparing CP and BP, there are 299 cases
that BP finishes with better results than CP. This is expected since CP results an under-
approximation of the CFG. We only unroll the loop if there is a guarantee that the path is
taken for any initial environment. There have the cases that the skipped paths eventually
go to new locations. We will need further analysis such as loop invariant for this problem,
but it is outside of the thesis, and we regard it as future work.

Remark 2. There are cases that CP results time-out. This is because we have set the
time-out limit for each run. Most of the cases involve running the fixed point operations
multiple times with the big-size graph. Running CP version again without time limit on
such samples eventually finishes.

3Each family originates from a single source base and exhibits a set of consistent behaviors
4http://vxheaven.org/

6

1.4 Contribution

1. We have modified BE-PUM in a way that instead of blindly follow any path, we
only follow if there is a guarantee that the path is always taken for any initial
environment. The judgment bases on a constant propagation analysis on the partial
CFG, which is done on-the-fly during graph construction.

2. We have designed a constant propagation analysis that can be applied to X86 as-
sembly programs (including memory and the stack, although they are restricted),
and can be done on-the-fly together with BE-PUM execution.

3. The runs of BE-PUM with constant propagation application will eventually termi-
nate, if the input programs are correctly implemented ,i.e. terminating for all input
environments, and the set of the possible locations of the next instructions is finite,
for any instruction in the program (this is due to the exhaustive destination check
of BE-PUM).

4. Experiments have been done to compare the three versions: normal unrolling, con-
vergence check and unrolling based on the result of constant propagation, on 1000
from real-world malware samples.

1.5 Outline for later sections

– In chapter 2, we will talk about the abstract interpretation and a brief idea of
constant propagation analysis.

– Chapter 3 explains about x86 assembly programs, the environment and its opera-
tional semantics.

– BE-PUM architecture is explained in chapter 4, including the exhaustive check
algorithm and related works.

– Chapter 5 is a detailed look at the constant propagation analysis, and current re-
striction when applying to X86 assemblies.

– Chapter 6 is the experimental data, and we summarize the thesis in chapter 7.

7

Chapter 2

Abstract Interpretation

2.1 Simple programs - Syntax and semantics

Regarding the programs with the following syntax:

2.1.1 Program syntax

Let Z be the set of numeric values, V the set of variables, and Bool = {true, false} the
set of boolean values. We use metavariables n, x, and b for elements of Z,V and Bool,
respectively.

Definition 1. The sets Aexp of arithmetic expressions, Bexp of boolean expressions and
Com of program commands are defined as:

Aexp ::= n | x | Aexp + Aexp | Aexp− Aexp | Aexp× Aexp1,

Bexp ::= b | Aexp = Aexp | Aexp < Aexp | Bexp ∧ Bexp | Bexp ∨ Bexp | ¬Bexp, and

Com ::= start | exit | skip | x := Aexp.

For an arithmetic expression expr ∈ Aexp, we write varRef(expr) for the set of all of its
variables. A program is a 4-tuple P = 〈Q, q0,E, L〉, where

– Q is the set of locations, q0 ∈ Q is the start location,

– E ⊆ Q× Bexp× Q is the set of transition relations, and

– L : Q→ Com maps each location to its command, with L(q0) = start.

Let pred, succ : Q→ 2Q where:

pred(q) = {q′ | (q′, q) ∈ E}, and
succ(q) = {q′ | (q, q′) ∈ E},

we require that for all q ∈ Q:

– pred(q0) = ∅, and pred(q) 6= ∅ if q 6≡ q0.

– If L(q) = exit then succ(q) = ∅. Otherwise, succ(q) 6= ∅.
1We use abstract syntax and precedence does not take into account

8

2.1.2 Program semantics

Definition 2. Let Env = [V → Z] be the set of all functions from V to Z. Given e ∈ Env,
the evaluations of arithmetic and boolean expressions are defined as aval : Aexp×Env→ Z
and bval : Bexp× Env→ Bool. Let i ∈ Z, x ∈ V, a0, a1 ∈ Aexp, b, b0, b1 ∈ Bexp, we have:

aval(i, e) = i, aval(x, e) = e(x),

aval(a0 + a1, e) = aval(a0, e) + aval(a1, e),

aval(a0 − a1, e) = aval(a0, e)− aval(a1, e),

aval(a0 × a1, e) = aval(a0, e)× aval(a1, e),

bval(true, e) = true, bval(false, e) = false,

bval(a0 = a1, e) =

{
true if aval(a0, e) = aval(a1, e),
false otherwise,

bval(a0 < a1), e =

{
true if aval(a0, e) < aval(a1, e),
false otherwise,

bval(b0 ∧ b1, e) =

{
true if bval(b0, e) = bval(b1, e) = true,
false otherwise,

bval(b0 ∨ b1, e) =

{
false if bval(b0, e) = bval(b1, e) = false,
true otherwise, and

bval(¬b, e) =

{
false if bval(b, e) = true,
true otherwise.

Definition 3. A state is an element of Q × Env describing the current location and the
current environment. The initial state is 〈q0, e0〉 where e0 is the initial environment. The
next state relation → describes how we move from one state to another in one step, and
is defined as follows:

(q, b, q′) ∈ E bval(b, e) = true L(q) ∈ {start, skip}
〈q, e〉 → 〈q′, e〉

(q, b, q′) ∈ E bval(b, e) = true L(q) = x := expr
〈q, e〉 → 〈q′, e[aval(expr, e)/x]〉

Given a program P and an initial state s0 = 〈q0, e0〉, the result of executing the program
is an environment e such that we have 〈q0, e0〉 →∗ 〈q, e〉 for some q ∈ Q & L(q) = exit.

Example 1. Given a program P as in the below figure, where the initial state is

〈En, {(x,−1), (y,−1), (z, 2)}〉

A transition (q, b, q′) is represented as an edge with b is the edge label (which is omitted
when b = true). The execution of the program starting from the initial state is:

9

〈En, {(x,−1), (y,−1), (z, 2)}〉
→ 〈A1, {(x,−1), (y,−1), (z, 2)}〉
→ 〈A2, {(x, 0), (y,−1), (z, 2)}〉
→ 〈T, {(x, 0), (y, 1), (z, 2)}〉
→ 〈A3, {(x, 0), (y, 1), (z, 2)}〉
→ 〈A4, {(x, 0), (y, 1), (z, 2)}〉
→ 〈T, {(x, 1), (y, 1), (z, 2)}〉
→ 〈A3, {(x, 1), (y, 1), (z, 2)}〉
→ 〈A4, {(x, 1), (y, 3), (z, 2)}〉
→ 〈T, {(x, 2), (y, 3), (z, 2)}〉
→ 〈Ex, {(x, 2), (y, 3), (z, 2)}〉.

〈En〉 start

〈A1〉 x := 0

〈A2〉 y := 1

〈T 〉 if x < 2

〈A3〉 y := y + x× z

〈A4〉 x := x+ 1

〈Ex〉 exit

T

F

Hence the result of executing the program is the environment {(x, 2), (y, 3), (z, 2)}.

2.2 Abstract interpretation

Hereafter, if 〈S,v〉 is an arbitrary lattice, we write t for the least upper bound operator
on S. Let s1, s2 ∈ S, we have

s1 t s2 = s ∈ S s.t. s1 v s & s2 v s & (∀s′.s1 v s′ & s2 v s′ =⇒ s v s′) .

We denote
−→
S = [Q → S] with the ordering sv v sv′ iff ∀q ∈ Q. sv(c) v sv′(c). Clearly

〈
−→
S ,v〉 is a lattice and it is complete if 〈S,v〉 is complete.

Definition 4. Given a program P with an initial state s0 = 〈q0, e0〉, we define the con-
text at some location q to be the set of all environments that may associate to q during
computation sequences of P. The context vector maps each location to a context. Let
Cont = 2Env, the context vector CV of P is defined as:

CV ∈
−−→
Cont, where CV(q) = {e | ∃n ≥ 0.〈q0, e0〉 →∗ 〈q, e〉}.

Example 2. The content of the context vector of the program in example 1 is:

(EN, {{(x,−1), (y,−1), (z, 2)}})
(A1, {{(x,−1), (y,−1), (z, 2)}}), (A2, {{(x, 0), (y,−1), (z, 2)}})
(T, {{(x, 0), (y, 1), (z, 2)}, {(x, 1), (y, 1), (z, 2)}, {(x, 2), (y, 3), (z, 2)}})
(A3, {{(x, 0), (y, 1), (z, 2)}, {(x, 1), (y, 1), (z, 2)}})
(A4, {{(x, 0), (y, 1), (z, 2)}, {(x, 1), (y, 3), (z, 2)}})
(EX, {{(x, 2), (y, 3), (z, 2)}}).

10

Definition 5. An interpretation I of a program is a tuple I = 〈I-Cont,v, Int〉, where

〈I-Cont,v〉 is a complete lattice, and Int : Q×
−−−−→
I-Cont→ I-Cont is order-preserving. We

define
−→
Int to be a function between context vectors:

−→
Int :

−−−−→
I-Cont→

−−−−→
I-Cont, with

−→
Int(cv) = λq ∈ Q.Int(q, cv).

Clearly
−→
Int is monotonic. By Tarski fixed point theorem, it has fixed points, and the set

of all fixed points forms a complete lattice.

Definition 6. Given two interpretations

I = 〈I-Cont,v, Int〉, and I ′ = 〈I-Cont,v, Int〉,

we say that I ′ is a consistent abstraction of I, iff there exist two functions α, γ called
abstraction and concretization functions, such that:

– α : I-Cont→ I-Cont′, γ : I-Cont′ → I-Cont,

– α and γ are order-preserving,

– ∀c′ ∈ I-Cont′.c′ = α(γ(c′)),

– ∀c ∈ I-Cont.c v γ(α(c)),

– Let −→γ :
−−→
Int′ →

−→
Int s.t. −→γ (cv′) = λq ∈ Q.γ(cv′(q)), then we have

Int(q,−→γ (cv′)) v γ(Int′(q, cv′) for all q ∈ Q, cv′ ∈
−−−−→
I-Cont′.

Lemma 1. Let ` be least fixed point of
−→
Int, `′ be least fixed point of

−−→
Int′, then

` v −→γ (`′).

Proof. Based on two observations:

∀x ∈
−−−−→
I-Cont. u {`,

−→
Int(x)} v x⇒ ` v x, and

−→
Int(−→γ (`′)) v −→γ (

−−→
Int′(`′)) v −→γ (`′),

we have: u{`,
−→
Int(−→γ (`′))} v u{`,−→γ (`′)} v −→γ (`′) ⇒ ` v −→γ (`′).

Our target is that by using abstract interpretation, it will be easier to find the least

fixed point of
−−→
Int′, which is then concretized into an approximation of the one in

−→
Int.

2.3 Constant Propagation

Abstract interpretation can be applied to static program analysis. In normal setup, the
abstract domain is a finite cpo, hence the fixed point of the recursive function can be

11

calculated in finite steps of iterations. Consider the abstract domain AVal which is a cpo
with three elements: ⊥ v C v ∗. The abstract environment AEnv = [V → AVal] is
attached to each location. Let e be the environment at a location q and x ∈ V , then
e(x) = C means that regardless of the initial environment, after executing on the same
path, the value of x at q must be a constant: ∀e0, e′0 ∈ Env, x ∈ V .e(x) = C iff

∀q1, ..., qn ∈ Q s.t. ∃e1, ..., en, ec, e′1, ..., e′n, e′q with

〈q0, e0〉 → 〈q1, e1〉 → · · · → 〈qn, en〉 → 〈q, eq〉 &

〈q0, e
′
0〉 → 〈q1, e′1〉 → · · · → 〈qn, e′n〉 → 〈q, e′q〉, then

eq(x) = e′q(x).

Example 3. Consider the program in Example 1, let e be the constant propagation envi-
ronment at T1, then we have e(x) = C, but e(y) = e(z) = ∗ because if we change initial
value of z, the value of y and z at each iteration will also change.

Definition 7. We define the constant propagation function cpInt : V × Com × AEnv →
AEnv. Let x ∈ V , c ∈ Com, e ∈ AEnv, we have:

cpInt(x, x := exp, e) = C if ∀y ∈ varRef(expr).e(y) = C,

cpInt(x, x := exp, e) = ∗ if ∃y ∈ varRef(expr).e(y) = ∗,
cpInt(x, c, e) = e(x), otherwise.

Let CP = 〈AEnv,v,AInt〉 be the abstract interpretation of the program, where AInt :

Q×
−−−→
AEnv→ AEnv. Let q ∈ Q, cont ∈

−−−→
AEnv, we have:

AInt(q0, cont) = λx ∈ V .∗, and

AInt(q, cont) =

⊔
p ∈ pred(q)
e = cont(p)

λx ∈ V .cpInt(x, L(p), e) if q 6≡ q0.

From the definition of AInt, we have the lemma:

Lemma 2. Let CPCont be the fixed point of the recursive function F :
−−−→
AEnv→

−−−→
AEnv with

F(cont) = λq ∈ Q.AInt(q, cont)

Then for any location q ∈ Q, x ∈ V, we have CPCont(q)(x) = C iff for any path that
reaches q, the value of x is a constant.

12

Chapter 3

X86 Assembly - Syntax and
semantics

X86 assembly programs have some remarkable differences, comparing to other programs:

– Instructions (or commands) are a part of the environment, and will be loaded dur-
ing computation. Such instructions can also change the environment, which will
affect the next instruction to be loaded. The initial environment will contain the
information of the first instruction to be executed.

– We have the mechanism to handle unwanted behaviors, i.e. parsing error, un-allowed
operations, ... through exception handling, which will change the normal control
flow and may be used to cheat the analyzer.

– There is a special segment in the memory that is implemented as a stack (which
supports push and pop operations). Calls will store the address of the return point
in the stack. One remarkable thing is that, in general, we can freely modify the
stack content as normal memory locations.

3.1 Syntactic sets

Definition 8. Let Loc ⊆ N be the set of instruction locations, Mem ⊆ N the set of
memory locations, with m ∈ Mem indicates the memory of one byte starting at ad-
dress m, and Regs, Flags the sets of general purpose and flag registers. We denote
V = Regs ∪ Flags ∪ Mem to be the set of program variables, and Expr = Aexp ∪ Bexp
the set of arithmetic and boolean expressions defined based on V.

During execution, values are described as a bit (for boolean value) or a sequence of bits.
Each instruction defines the number of bits it uses, which need to have the same type
with all of its arguments. For example, movw ax, [0x4010030] will move the value of 2-
byte register ax to memory locations [0x403000] and [0x403001], while movl eax, [0x403000]
modifies 4 bytes of memory. Given that the addresses are valid in data segment, consider
the example:

13

movl eax, 0 ; eax is initialized into (0x) 00 00 00 00
movl [0x403000], eax ; memory image starting from [0x4010030]: (0x) 00 00 00 00
movb al, −128 ; al: (0x) 80, eax now becomes (0x) 00 00 00 80
movb [0x403002], al ; memdump from [0x4010030]: (0x) 00 00 80 00
movl eax, [0x403000] ; eax now has the value (0x) 00 80 00 00 = +8388608

; (due to LSB storage mechanism of x86 machines).

Definition 9. Let n ∈ N, the stack is defined as Stack = ⊥ | n : Stack with each stack
entry indicates a stack element of 16-bit size (smallest size of elements in stack). Let
S1, S2 ∈ Stack, we have S1 v S2 iff

(S1 ≡ ⊥) or
(
S1 ≡ n : S ′1 & S2 ≡ m : S ′2 & n v m & S ′1 v S ′2

)
.

Let Inst = AInst ∪ CInst be the set of instructions, with each instruction I ∈ Inst containing
the information of:

– Instruction name, its size in memory (2 bytes, 3 bytes, ...),

– Executing condition (mostly for control instructions),

– Size of arguments (8-bit, 16-bit, or 32-bit), and

– Number of arguments, argument information.

There are two kinds of instructions: data (AInst) and control instructions (CInst). The
main different is how the system identify the next instruction afterward. After a data
instruction, we go to the successive instruction in the memory, while after a control
instruction, the location of next instruction may depend on current context. Control
instructions consist of jumps and calls (jump to a known-address of an API is considered
a call). There are two kinds of calls: system interrupts and API calls:

– System interrupts occur while system detects an invalid operation (decoding with
invalid opcode, priviledge violations, pagefault, hardware interrupts, ...), or a
programmed exception (via INT instruction and its relative, mostly involving DOS
API). This is outdated, and in modern systems, we tend to use system API instead.
However, some of them may still be used.

– API calls can be done by jumping directly to a known address of an API or via
function symbols that are declared in the import table. System will calculate the
target address of the callee, push the return address (address of successive instruc-
tion) to stack and jump to the target address. The callee may or may not return
to the caller (depending on which API is in charge), but in such case, the return
address will be popped out and control is passed to the instruction at this address,
together with current environment.

Our target programs are those which are correctly implemented, and unexpected excep-
tions do not occur. Furthermore, system API calls will be executed correctly as described
in reference (whether it returns, and how the environment is modified during execution),
and although in general, stack is a modifiable segment in the memory, we assume that it
can only be accessed via stack related instructions, i.e. push, pop, enter, leave and their
relatives.

14

3.2 Semantics

Definition 10. Let Env = [Regs → Z]× [Flags → Bool]× Stack× [Mem → Z] be the set
of environments. Assume we are given the decoding and auxiliary functions:

– instAt : Env × Loc→ Inst (decoding function),

– sizeOf : Inst→ N returns the instruction size,

– cond : CInst→ Bexp returns the condition, and

– dest : CInst→ Aexp returns the destination of a control instruction.

The semantic function J.K defines instruction execution and expression evaluation:

J.K ⊆ (Inst× Env→ Env) ∪ (Aexp× Env→ Z) ∪ (Bexp× Env→ Bool).

Let State = Loc× Inst× Env be the set of states. Given initial state (`0, I0, σ0), the state
transition relation → is defined as follows:

I ∈ AInst σ′ = JI, σK `′ = `+ sizeof(I) I ′ = instAt(σ′, `′)
(`, I, σ)→ (`′, I ′, σ′)

I ∈ CInst Jcond(I), σK = true σ′ = JI, σK `′ = Jdest(I), σ′K I ′ = instAt(σ′, `′)
(`, I, σ)→ (`′, I ′, σ′)

I ∈ CInst Jcond(I), σK = false σ′ = JI, σK `′ = `+ sizeof(I) I ′ = instAt(σ′, `′)
(`, I, σ)→ (`′, I ′, σ′)

.

The CFG of a program is the graph representation of all paths that may occur during
program execution (i.e. state transitions). We have Graph = Node × E, with Node =
Loc× Inst and E ⊆ Node× Node. Starting node is (`0, I0). We have the property that for
any execution sequence

(`0, I0, σ0)→ (`1, I1, σ1)→ · · · → (`n, In, σn), n ∈ N

there exists a corresponding path in the graph: (`0, I0)→ (`1, I1)→ · · · → (`n, In).

Given the binary program, BE-PUM tries to generate the CFG on-the-fly using concolic
testing. It tries to generate test cases to cover all possible paths and uses a simulator to
check for viability. The method involves loop unrolling and exhausting control destination
searching. However, one problem is that in general, the initial environment is not fixed,
and in some specific cases, BE-PUM will be stuck in an infinite loop of finding an instance
to cover the new paths. We hope that using constant propagation, we can reduce such
problems.

15

Chapter 4

BE-PUM

4.1 CFG generation

Due to the nature of X86 assemblies, the CFG of an assembly program can only be
built on-the-fly, and we have to execute the program in some way. Symbolic execution is
a traditional technique to symbolically execute a program, which maintains a symbolic
state (`, ρ) where ` is a program location and ρ is the path formula of the path from
program entry point to `. A path formula ρ describes the precondition of the execution
path to `, starting from the precondition at the program entry. If ρ is satisfiable (often
checked by SAT/SMT solvers), the path is feasible. There are two typical methodologies:

– Static symbolic execution (SSE), in which the feasibility of an execution path
is checked by satisfiability of ρ.

– Dynamic symbolic execution (DSE), in which the feasibility is checked by
testing with a satisfiable instance of ρ (concolic testing). For detailed testing (e.g.
stepwise execution, trace analysis), it requires an emulator.

A path formula often describes a restricted view of a program. For instance, system
status, kernel procedures and memory offsets are often omitted. Furthermore, sometimes
formulas are restricted to decidable logic (e.g. Presburger arithmetic), a path formula
would be an approximation. In such cases, DSE gives more precise results.

In BE-PUM, CFG generation proceeds with symbolic execution, and is a saturation
procedure on configurations of the form 〈P,∆, ψ〉 described in definition 11.

Definition 11. Let

Conf = 2Node × 2E × (Node× SymEnv × Pred)

be the set of configurations, with SymEnv is the set of symbolic environments and Pred is
the set of path formulas. During symbolic execution, a configuration 〈N,E, 〈(`, I), e, ρ〉〉
holds the value of the current graph and the symbolic state.

Starting from initial configuration 〈{(`0, I0)}, ∅, 〈(`0, I0), e0, true〉〉, the CFG generation
process proceeds with the rule 〈N,E, 〈(`, I), e, ρ〉〉 ` 〈N ′, E ′, 〈(`′, I ′), e, ρ′〉〉, if there is a
transition (`, I, e)→ (`′, I ′, e′) and

16

Stub of API

Single-step Symbolic Execution

InstAt(env, l) Feasibility check
Jakstab 0.8.3 SMT Z3 4.3

New region or
new transition found?

Update model

O O O O

Frontiers

Binary Emulator
(Controlled sandbox)

Return

(post-condition)

System call

(pre-condition)

Java API

(Output)

Data Instructions

(AInst)

YES

NO

Figure 4.1: The BE-PUM architecture

– N ′ = N ∪ {(`′, I ′)},
– E ′ = E ∪ {(`, I)→ (`′, I ′)},
– ρ′ = post(ρ)∧SideCond, with post(ρ) is the post condition at (`, I) w.r.t precondition
ρ, and SideCond is the side condition appears in the transition.

The CFG generation will continue until the graph being stable. Since this process should
be finitely bounded, complete CFG generation requires methods such as loop invariant
generation. Currently BE-PUM simply unrolls the loops and puts the bound on the
maximum number of times of unrolling; hence the result may be an under-approximation.

4.2 BE-PUM architecture

BE-PUM implements on-the-fly model generation based on symbolic execution. It applies
Jakstab 0.8.3 as a single-step disassembler, and SMT Z3 4.3 as the backend engine to check
the feasibility of execution paths. Figure 4.1 shows the architecture of BE-PUM, which
consists of three components: (single-step) symbolic execution, binary emulation, and
pushdown model. The symbolic execution picks up one from the frontiers (symbolic states
at the ends of explored execution paths) in depth-first manner, and it tries to extend one
step. If the instruction is a data instruction (i.e., only update the environment and the
next location is statically decided), it will simply disassemble the next instruction. If the
instruction is a control instruction (e.g., indirect jumps), concolic testing (at the binary

17

emulator) is applied to decide the next location. In any case, either a new symbolic state
or a new transition is found, they are stored in the model and a symbolic state is added
to the frontiers. This procedure continues until either the exploration has converged, or
reaching to unknown instructions, system calls, or out-of-bound addresses.

BE-PUM also implements stubs for (part of) Win32 APIs. Each system call is treated
as a single instruction such that (i) the update of path formulas and environments follow
to the technical specification at Microsoft Developer Network.1; and (ii) the return value
is obtained by executing Java API. Note that most of major APIs (though not all APIs)
are covered by Java API. BE-PUM has successfully covered the most frequent 80 APIs in
the VX Heaven database.

Remark 3. When BE-PUM starts to generate a model of binary code, the stack S is
initially pushed (i) the address of the file name of the code; (ii) the address of the system
exception handler; and (iii) the return address, which is randomly selected from the
memory image of kernel32. The former two obey to the standard manner of Win32,
and the last item bases on the assumption that a code is often started by a call from
somewhere in kernel32. This frequently holds and is often used by malware, e.g., Aztec

Remark 4. Initially, the system flags are randomly set for flag-dependent x86 instructions
like cmp and cjump. This holds an under-approximation, since Win32 will generate any
Boolean combination of system flags.

4.3 Exhaustive checking for indirect destination

The destination of a control instruction may de-
pend on the initial environment, and there are
many locations corresponding to many difference
situations, BE-PUM tries to cover as much as
possible.
Typical example is the assembly version of
switch-case. In the sample program, we assume
that instruction sizes are fixed to be 1 byte. The
first four instructions do a check on initial value
of eax and call the API ExitProcess to terminate
the program if it is out of bound. Then depend-
ing on the value to be 0, 1 or 2, the jump at line
7 will jump to the instruction at line 8, 9, or 10,
which may have difference behaviors.

Sample switch-case:

1 cmpl eax, 0
2 jl EXIT
3 cmpl eax, 2
4 jg EXIT

5 movl ebx, OFFSET ADDR

6 addl ebx, eax
7 jmp ebx
ADDR:

8 jmp Case 0

9 jmp Case 1

10 jmp Case 2

EXIT:

11 call ExitProcess

Given ρ the path formula, the SMT solver will result a SAT instance (assignments
on symbolic variables, which is the values of variables of the initial environment), and
hence the initial environment, that satisfies ρ. Assume we are given the solving function

1http://msdn.microsoft.com/library/

18

solve : Pred → (Env ∪ {⊥}) that returns ⊥ if ρ is UNSAT. We will follow algorithm 1
to find all possible destinations of a control instruction.

Algorithm 1: Exhaustive destination search

Data: 〈I, ρ〉: current symbolic state, I ∈ CInst
Result: Set S of SAT instances that satisfy ρ

1 S := ∅;
2 while true do
3 e := solve(ρ);
4 if e = ⊥ then
5 break;
6 else
7 S := S ∪ {e};
8 ` = Jdest(I), eK;
9 ρ := ρ ∧ (dest(c) 6= `);

10 end

11 end
12 return S;

Remark 5. In the algorithm, the location of the next instruction is identified based on the
symbolic environment. Each SAT instance corresponds to one case of jump destinations.
However the destination resulted after dynamically running with such SAT instance may
be different (an exception occurred and control transferred to the exception handler, for
instance). Currently we assume that such problems do not occur.

4.4 Related works

There are two main targets of binary code analysis. The first one is System software, which
is compiled code but its source is inaccessible, due to legacy software and/or commercial
protection. It is often large, but relatively structured from the compiled nature. The
second one is Malware, which is distributed in binary only. It is often small, but with
tricky code for obfuscation. For the former, a main obstruction is scalability. IDA Pro 2

is the most popular disassembler, combining recursive disassembly and linear sweep.
There are various model generation tools for binary executable. Detection of desti-

nations of indirect jumps can be done in either static or dynamic method. BE-PUM
stands between, using both methods. For instance, CodeSurfer/x86 [1], McVeto [9], and
JakStab [8] [7] adopt a static approach, while Syman [5] chooses a dynamic one. Static
methods are abstract interpretation (static analysis) for an over approximation, and static
symbolic execution to check feasibility of an execution path for an under-approximation.
JakStab and McVeto apply CEGAR [3] to refine the over approximations. McVeto also
uses static symbolic execution to check the path feasibility (named a concrete trace).

2https://www.hex-rays.com/products/ida/

19

Dynamic methods are various testing, e.g., random testing, dynamic symbolic execution
(concolic testing). Note that

– For deciding destinations, it requires stepwise execution. Thus, dynamic methods
require binary emulators.

– For symbolic execution, states of a model require certain abstraction on memory
images. Otherwise path conditions relate every system detail.

Syman tries to emulate the full Windows OS. Such detailed information makes symbolic
execution complex and models easily explode even for small binary code. BE-PUM and
McVeto extract only control structures (and detailed information will be recovered by
model checking), and apply pushdown models, which further reduce complexity of models.

For handling self-modification, on-the-fly model generation and stepwise disassembly
are required [2]. JakStab, McVeto, Syman, and BE-PUM do them.

As summary, BE-PUM is the most similar to McVeto. However, McVeto finds can-
didates of the destinations by static analysis (which are possibly infinitely many), and
chooses one and checks the satisfiable condition of the path at the destination to conclude
whether it is reachable (concrete trace). In the meantime, BE-PUM solves the path condi-
tion at the source of an indirect jump, and applies concolic testing (over binary emulator)
to decide (one of) the destination. Unfortunately, we could not find access to the McVeto
implementation, we do not compare with experiments. However, targeting malware, BE-
PUM handles indirect jump, instruction overlapping and self-modifying, as well as some
stub APIs often used by malware, especially for SEH techniques. This is not surprising
since dynamic methods are observed to be more effective on malware analysis [4].

It is also notably remarkable that even though there are various works aiming at pro-
ducing model from binary code, BE-PUM is solely focusing on dealing with malware
obfuscation. Thus, BE-PUM cares more on handling indirect jumps and self-modification
and less on scalability, since most of malware are quite small (often less than 1K loc).
Finally, BE-PUM targets on malware among binary codes (Syman as well), not system
software. Thus, BE-PUM cares more on handling indirect jumps and self-modification
and less on scalability, since most of malware are quite small (often less than 1K loc).

20

Chapter 5

Constant Propagation on BE-PUM

5.1 Problems

Consider the following program:

0x401000: cmpl ecx, 0
0x401003: jle 0x401008

0x401005: decl ecx
0x401006: jmp 0x401000

0x401008: call ExitProcess

The program starts from the instruction at 0x401000, and ExitProcess is a system API
that terminates the program and passes the control back to the operating system. Here
we implicitly use ecx as an input parameter. Before it executes, the system will move the
input value to ecx and jump to the start instruction. Depending on such value, call n, we
will go through the loop n times (for simplicity, we only decrease ecx and do nothing else
within the loop). We have a conditional jump at location 0x401003, where the location of
the next instruction may be 0x401005 or 0x401008, depending on the current value of ecx.
For each path, BE-PUM will check for satisfiability of the path condition. If it is SAT,
the path is viable and BE-PUM will continue the analyzing process 1. The above program
has one problem that the number of times of loop unrolling is not explicitly bounded in
the code. In general, the value of ecx ranges between −231 and 231 − 1. BE-PUM will
blindly follow the loop without finding any new instruction.

By applying constant propagation analysis on the partial CFG, we know that the con-
dition of the instruction at 0x401003 is not a constant. Our approach is that if a jump
revisits a node that was explored in the graph, we will continue checking the node only if
the condition is a constant. This process is similar to loop unrolling, but we only unroll
if there is a guarantee that the normal execution will also follow the same path, and since
we have assumed that input programs are terminating, the unrolling process will also
terminate.

1BE-PUM v2 uses embedded emulator, and next address is calculated from the SAT instance

21

5.2 Constant propagation for X86 assemblies

We will extend the analysis in section 2.3 to apply to BE-PUM.

Definition 12. The set of abstract values AVal consists of three elements with the order:
⊥ v C v ∗. Abstract environment AEnv is the cpo:

AEnv = [Regs→ AVal]× [Flags→ AVal]× AStack× [Mem→ AVal], where

AStack = AVal : AStack | ⊥.
Let S1, S2 ∈ AStack, we have the relation

S1 v S2 iff S1 = ⊥ or

(S1 = n | S ′1) & (S2 = m | S ′2) & n v m & S ′1 v S ′2.

For each instruction, we define the functions need and mod that returns the set of
variables or stack operations that are referenced or modified during executions:

need,mod : Inst→ 2V ∪ StackOps, with StackOps = {push, pop},

and envMod : Inst× AEnv× 2V ∪ StackOps × AVal→ AEnv results the modified environment
w.r.t each operation:

envMod(I, e, ∅, v) = e,

envMod(I, e, push ∪ S, v) = envMod(I, e[(v | e.stack)/e.stack], S, v),

envMod(I, e, pop ∪ S, v) = envMod(I, e, S, v) if e.stack = ⊥ ,

envMod(I, e, pop ∪ S, v) = envMod(I, e[S ′/e.stack], S, v) if e.stack = v′ | S ′ ,
envMod(I, e, {x} ∪ S, v) = envMod(I, e[v/x], S, v).

Abstract interpretation for each instruction aInt : Inst× AEnv→ AEnv is defined as:

aInt(I, e) = envMod(I, e,mod(I), v), where v = t{e(x) | x ∈ need(I)}.

We can prove that aInt is continuous.
We define the environment vector that maps each node in the partial graph with its

abstract environment. Let −→e : Node → AEnv, n, n′ ∈ Node, we define the recursive
function on the partial graph:

Definition 13. Let F : [Node→ AEnv]→ [Node→ AEnv], with

F(−→e)(n) =
⊔

(n′,n) ∈ E

aInt(n′,−→e (n′)).

Then F is continuous, and fix(F) =
⊔

n∈NFn(−→e0) where −→e0 is the initial environment
mapping.

We will calculate fix(F) w.r.t the partial graph when a new edge is added. During
execution, if a conditional jump goes to the node that was already explored, instead of
blindly unrolling, we only do that when the condition of the indirect jump is a contant
w.r.t fix(F). Since we have assumed that input programs are terminating and there are
no infinite execution paths, the CFG generation will also terminate.

22

5.3 Model restriction

Because of the complexity of X86 assemblies and the strength of analysis, currently we
have some restrictions:

5.3.1 Memory operands

In X86 instructions, memory location can be accessed indirectly via offsets. Consider the
piece of code that move the value of ecx to 4 bytes memory starting from 0x0454DC:

movl eax, 0x4054DC
movl (eax), ecx

The second instruction cannot be correctly supported only with the information obtained
by the abstract environment. An alternative way is to store the concrete value during
BE-PUM execution, but there are still problems with loops and symbolic values. Since
we don’t have any concrete idea on the solution, currently such kind of operands is not
supported.

5.3.2 The stack

The stack is handled by two registers: esp, the current stack pointer, and ebp, the base
pointer of the current stack frame. There is a calling convention that when a function is
called, typically space is reserved on the stack for local variables. This space is usually
referenced via ebp (all local variables and function parameters are a known constant offset
from this register for the duration of the function call.) esp, on the other hand, will change
during the function call as other functions are called, or as temporary stack space is used
for partial operation results. For instance, before a function call there may have some
instructions like this:

push ebp
movl ebp, esp
movl esp, 20

The code will preserve 20-byte space for local variables on the stack. Such variables later
can be referenced via offsets to ebp: −4(ebp),−16(ebp), . . . In general, the stack is a part
of the memory, and we can freely modify the value of ebp and esp registers, hence modify
the stack area. For instance, instead of a ”push eax” instruction, we can do something
like

subl esp, 4
movl (esp), eax

or write directly into the memory location of esp. Due to system complexity, we will
regard the stack as an independent area, and can only be modified directly via stack
operations, i.e. push, pop, call and ret. More specifically, indirect access to stack is not
supported.

23

5.3.3 Self loop instructions

Example 4. Consider the example that copies myStr into myStr2 :

section .code
movl esi, myStr
movl edi, myStr2
cld
movl ecx, 4
rep movsw ; mystr2 is now AaBbCca\0

section .bss ; uninitialized data
myStr2: resb 8

section .data
myStr db ”AaBbCca”, 0x0

The instruction rep movsw will repeat the move operation until ecx is zero. Since we
don’t know the concrete value of ecx, the impact to the memory cannot be correctly
handled, currently we will skip such instructions.

The above restrictions come from the limitation of the analysis: the defined abstract
domain is too coarse to handle all operations. Since our aim is that constant propagation
is implemented as a module to BE-PUM and will not affect the performance heavily,
meanwhile we will follow such configuration.

5.4 Interaction with BE-PUM

As stated in section 5.2, we will calculate the constant propagation environment when
there is a new edge added to the graph. The initial graph contains the start node with
the initial environment e0.

Remark 6. In the implementation, e0 will be defined to follow BE-PUM convention:

e0(x) = C if x ∈ {edx, esi, edi},
e0(N) = C if N is an address within data section of the binary program,
e0(x) = ∗ otherwise.

When a new edge is added to the graph 〈Node,E〉, we will re-calculate the abstract
environment w.r.t the new one 〈Node′,E′〉. Let F and F ′ be the recursive functions w.r.t
the old and the new graph, respectively, we have the lemma:

Lemma 3. Let −→e and
−→
e′ be the fixpoints of F and F ′, respectively:

−→e = fix(F) =
⊔
n∈N

Fn(−→e0), and

−→
e′ = fix(F ′) =

⊔
n∈N

F ′n(−→e0),

24

then
−→
e′ can be calculated via −→e :

−→
e′ =

⊔
n∈N

F ′n(−→e).

Proof. Let X =
⊔

n∈NF ′n(−→e). We have
−→
e′ v X since F and F ′ are monotonic. The

reverse direction can be proved starting from the observation that −→e v
−→
e′ (the partial

graph always becomes bigger during construction: Node ⊆ Node′ and E ⊆ E′).

5.5 Termination

The fixed point operation defined in definition 13 does not terminate even we have assumed
that the input programs eventually terminate. Consider the example that within the loop,
it pushes an element into the stack without popping out:

start: movl ecx, 3 ; for simplicity we initialize the loop counter
loop: cmpl ecx, 0 ; with a fixed constant

je EXIT

decl ecx
push 0 ; put a constant value to the stack
jmp loop

EXIT: call ExitProcess

The recursive function never terminates as it always increases the stack after each itera-
tion. To ensure termination, in definition 12 we have to modify the stack configuration:

Definition 14. (Refined configuration)
The abstract stack AStack is defined to be

AStack = AVal : AStack | ω.

Let S1, S2 ∈ AStack, we have the relation

S1 v S2 iff S2 = ω or

(S1 = n | S ′1) & (S2 = m | S ′2) & n v m & S ′1 v S ′2.

The function envMod will be modified in the way that popping from the ω stack will results
a ∗ value. Let e, e′ ∈ AEnv, if they differ only from the stack element: e.stack @ e′.stack
or vice versa, then

e t e′ = e[ω/e.stack].

Remark 7. Note that the refinement will result an over-approximation and need further
refinement. In the implementation, we only apply the join operator in definition 14 to
reset the stack when other elements in the environment became stable.

25

Chapter 6

Experimental result

The experiments are performed on Windows 7 machine with Intel Core i3-2359M CPU
@2.30 GHz and 4GB memory, running Java 1.8.0 31. We compare between three versions:

1. BE-PUM with loop unrolling (i.e. we continue exploring the path even when it goes
to an already explored location)

2. BE-PUM where we only unroll if the condition of a conditional jump is a constant.
The constant propagation environment will be calculated when a new edge is added
to the partial graph.

3. BE-PUM where loop unrolling is replaced by convergence check: the path is skipped
if it goes to an already explored location.

on 1000 real-world malwares of 733 families1 from the database of VX Heaven. Manual
testing on small samples will be done using OllyDBG v1.10.

6.1 Assumptions

Besides the restrictions described in section 5.3, we have some more assumptions:

1. Since there are no available verifiers for the correctness of the generated models,
in the mean time we have to assume that the actual runs will follow what were
described in the documents2, and the information resulted from the runs of OllyDBG
is correct.

2. We do not cover system exception handlers. For such assumption, after a data
instruction I ∈ AInst, the control is always passed to the successive instruction and
except being described in mod(I), variables will never be changed.

3. The inputs of constant propagation are the on-the-fly CFGs of BE-PUM, our claims
will be applied for such partial CFGs.

1Each family originates from a single source base and exhibits a set of consistent behaviors
2Intel(R) 64 and IA-32 Architectures Software Developer Manuals

26

6.2 Halting condition

BE-PUM will stop the path with an unknown instruction or API. As it tries to follow all
possible paths, to prevent infinite loop unrolling we will stop the path when a location is
visited more than 1000 times, and the time-out is set to be 100s. There is a remark that
we used the same configuration for all the runs.

Remark 8. Besides the restrictions mentioned in previous sections, we have some remarks
on the implementation:

– Currently our implementation do not support API calls.

– We only unroll the loop when the jump condition (if available) is a constant. For
other cases (⊥ or *), the path will be skipped.

6.3 Experimental results

As described in section 6.2, we will compare the three versions:

– BP: BE-PUM with normal loop unrolling.

– CP: BE-PUM which only unrolls if the condition of a conditional jump is a constant

– CC: Convergence check, a path is skipped if it revisits a node.

Doing a run on 1000 chosen samples on both versions of BE-PUM, we have:

BP

CP

CC

271 time-outs
429 runs where CP and BP

result the same graph 295 remaining runs

93 58 73 115

1. BE-PUM has 271 time-out samples:

– On the same set, CP has 93 time-outs and CC has 16 time-outs.

– On 178 samples that both CP and CC finish, there are 58 cases that CP has
better result (the CFG) than CC.

27

2. There are 4 cases that CP result time-out while both BP and CC finish (and they
finish with the same graph).

3. We have 429 runs where BP and CP result the same graph. The number for BP and
CC is 356.

4. On remaining samples, there are 115 cases that CP has better results than CC.

Since CP is a better choice than CC, there is no surprise that CP always results the better
graph if it terminates (907/1000 samples). Comparing CP and BP, there are 299 cases
that BP finishes with better results than CP. This is expected since CP results an under-
approximation of the CFG. We only unroll the loop if there is a guarantee that the path is
taken for any initial environment. There have the cases that the skipped paths eventually
go to new locations. Some malwares start with the initialization of the variables:

xor eax, eax

follows by a conditional jump. Our configuration on the abstract domain fails for such
kind of problems. For the concrete answers, refinements such as CEGAR [3] can be used
to reduce the abstraction.

We will need further analysis such as loop invariant for this problem, but it is outside
of the thesis, and we regard it as future work.

One more observation is that CP requires a large amount of time for big size graph.
This is expected since we do the fixed-point operation multiple times. Better refinement
can be done to reduce the time, but currently we will not focus on such problems.

Remark 9. There are cases that CP results time-out. This is because we have set the
time-out limit for each run. Most of the cases involve running the fixed point operations
multiple times with the big-size graph. Running CP version again without time limit on
such samples eventually finishes.

In addition, since BE-PUM and Jakstab only cover a subset of x86 assemblies, there
are problems such as parsing error (missing arguments), unknown registers (bp, sp), . . . ,
miscalculating the next address, ... BE-PUM treats those cases as unexpected operations
and stops the path.

28

Chapter 7

Summary and Future works

We have designed a constant propagation analysis that can be applied to X86 assembly
programs, and can be done on-the-fly together with BE-PUM execution. When a path
goes to an already visited location, it will only continue if the jump condition is a constant.
This process is similar to loop unrolling, but we only unroll if there is a guarantee that
the normal execution will also follow the same path, and since we have assumed that
input programs are terminating, the unrolling process will also terminate. Experiments
are done to compare the three choices:

1. (BP): BE-PUM with normal unrolling (i.e. we continue exploring the path even
when it goes to an already explored location)

2. (CP): BE-PUM where we only unroll if the condition of a jump is a constant.

3. BE-PUM where loop unrolling is replaced by convergence check.

on 1000 real-world malwares. Since using constant propagation to unroll the loop is
a better choice than simply skipping it, CP always results the better CFG. Comparing
BE-PUM with and without constant propagation analysis, there are 30% of the cases
that BE-PUM finishes with better results. This is expected since CP results an under-
approximation of the CFG. We only unroll the loop if there is a guarantee that the path
is taken for any initial environment.

Future works

One observation is that in our sample set, there are not much conditional branches.
Due to time limit, we have not checked for this problem and regard it as future work.
Another problem is the stack. Although we have restricted to using only push and pop
operations, there are cases that constant propagation does not terminate (section 5.5). In
the meantime we skip such problem by using the ω stack, but it needs further analysis
in the future. Furthermore, our main target is the completeness of the CFG. Although
CP eventually finishes, its result is an under-approximation of the binary program: there
have the cases that the skipped paths eventually go to new locations. To generate the
complete CFG, we will need further analysis such as loop invariant, refinements, . . .

29

Bibliography

[1] Gogul Balakrishnan, Radu Gruian, Thomas W. Reps, and Tim Teitelbaum.
Codesurfer/x86-a platform for analyzing x86 executables. In Compiler Construc-
tion, 14th International Conference, CC 2005, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2005, Edinburgh, UK, April
4-8, 2005, Proceedings, pages 250–254, 2005.

[2] Guillaume Bonfante, Jean-Yves Marion, and Daniel Reynaud-Plantey. A computabil-
ity perspective on self-modifying programs. In Seventh IEEE International Confer-
ence on Software Engineering and Formal Methods, SEFM 2009, Hanoi, Vietnam,
23-27 November 2009, pages 231–239, 2009.

[3] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement. In Computer Aided Verification, 12th
International Conference, CAV 2000, Chicago, IL, USA, July 15-19, 2000, Proceed-
ings, pages 154–169, 2000.

[4] Andreas Holzer, Johannes Kinder, and Helmut Veith. Using verification technology to
specify and detect malware. In Computer Aided Systems Theory - EUROCAST 2007,
11th International Conference on Computer Aided Systems Theory, Las Palmas de
Gran Canaria, Spain, February 12-16, 2007, Revised Selected Papers, pages 497–504,
2007.

[5] Tomonori Izumida, Kokichi Futatsugi, and Akira Mori. A generic binary analysis
method for malware. In Advances in Information and Computer Security - 5th Inter-
national Workshop on Security, IWSEC 2010, Kobe, Japan, November 22-24, 2010.
Proceedings, pages 199–216, 2010.

[6] Johannes Kinder, Stefan Katzenbeisser, Christian Schallhart, and Helmut Veith. De-
tecting malicious code by model checking. In Detection of Intrusions and Malware,
and Vulnerability Assessment, Second International Conference, DIMVA 2005, Vi-
enna, Austria, July 7-8, 2005, Proceedings, pages 174–187, 2005.

[7] Johannes Kinder and Helmut Veith. Jakstab: A static analysis platform for bina-
ries. In Computer Aided Verification, 20th International Conference, CAV 2008,
Princeton, NJ, USA, July 7-14, 2008, Proceedings, pages 423–427, 2008.

30

[8] Johannes Kinder, Florian Zuleger, and Helmut Veith. An abstract interpretation-
based framework for control flow reconstruction from binaries. In Verification, Model
Checking, and Abstract Interpretation, 10th International Conference, VMCAI 2009,
Savannah, GA, USA, January 18-20, 2009. Proceedings, pages 214–228, 2009.

[9] Aditya V. Thakur, Junghee Lim, Akash Lal, Amanda Burton, Evan Driscoll, Matt
Elder, Tycho Andersen, and Thomas W. Reps. Directed proof generation for machine
code. In Computer Aided Verification, 22nd International Conference, CAV 2010,
Edinburgh, UK, July 15-19, 2010. Proceedings, pages 288–305, 2010.

[10] Glynn Winskel. The formal semantics of programming languages - an introduction.
Foundation of computing series. MIT Press, 1993.

31

