
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
The independent set reconfiguration problem on

some restricted graphs

Author(s) HOANG, Duc Anh

Citation

Issue Date 2015-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/12643

Rights

Description Supervisor:Ryuhei Uehara, 情報科学研究科, 修士

The independent set reconfiguration problem
on some restricted graphs

By HOANG, Duc Anh

A thesis submitted to
School of Information Science,

Japan Advanced Institute of Science and Technology,
in partial fulfillment of the requirements

for the degree of
Master of Information Science

Graduate Program in Information Science

Written under the direction of
Professor Ryuhei Uehara

March, 2015

mailto:hoanganhduc@jaist.ac.jp

The independent set reconfiguration problem
on some restricted graphs

By HOANG, Duc Anh (1310064)

A thesis submitted to
School of Information Science,

Japan Advanced Institute of Science and Technology,
in partial fulfillment of the requirements

for the degree of
Master of Information Science

Graduate Program in Information Science

Written under the direction of
Professor Ryuhei Uehara

and approved by
Professor Kunihiko Hiraishi

Professor Atsuko Miyaji

February, 2015 (Submitted)

Copyright c© 2015 by HOANG, Duc Anh

mailto:hoanganhduc@jaist.ac.jp
mailto:hoanganhduc@jaist.ac.jp

Abstract

Title: The independent set reconfiguration problem on some restricted graphs.
Author: HOANG, Duc Anh.
Student number: 1310064.
School: School of Information Science, JAIST.
Date of submission: February 2015.
Key words: reconfiguration problem, independent set, token sliding, graph.

Recently, reconfiguration problems attract the attention in the field of theoretical com-
puter science. The problem arises when we wish to find a step-by-step transformation
between two feasible solutions of a problem such that all intermediate results are also
feasible and each step abides by a fixed reconfiguration rule. A well-known exam-
ple is that given two specified satisfiable assignments (assignments which return the
true value) A and B to a Boolean formula, one might ask whether A can be trans-
formed into B by changing the assignment of one variable at a time such that each
intermediate assignment is also satisfiable. Readers may also remember Rubik’s cube
and its relatives as examples of reconfiguration puzzles. This kind of reconfiguration
problems has been studied extensively for several well-known problems, including
the so-called independent set reconfiguration problem (ISReconf).

Recall that an independent set in a graph G is a set of pairwise non-adjacent vertices.
Given a graph G, and two independent sets Ib and Ir of G, imagine that a token (coin)
is put at each vertex of Ib, the ISReconf problem asks whether we can transform Ib
to Ir via a sequence of independent sets of G, each of which results from the previous
one by moving a token under some given reconfiguration rules, namely token sliding
(TS), token jumping (TJ), and token addition and removal (TAR).

• Token Sliding (TS rule): A single token can be slid only along an edge of a graph.
The ISReconf problem under TS rule is also known as the sliding token prob-
lem.

• Token Jumping (TJ rule): A single token can “jump” to any vertex (including
non-adjacent one).

• Token Addition and Removal (TAR rule): We can either add or remove a single
token at a time if it results in an independent set of cardinality at least a given
threshold.

Copyright c© 2015 by HOANG, Duc Anh

mailto:hoanganhduc@jaist.ac.jp

The ISReconf problem is PSPACE-complete under any of the three reconfiguration
rules for general graphs, for planar graphs, for perfect graphs, and even for bounded
bandwidth graphs.

The ISReconf problem under TS rule, in which tokens may only be moved to
adjacent vertices, is called the sliding token problem and is of particular theoretical
interest. Given two independent sets Ib and Ir of a graph G = (V, E) such that
|Ib| = |Ir|, and imagine that a token (coin) is placed on each vertex in Ib, the sliding

token problem asks whether there exists a sequence 〈I1, I2, . . . , I`〉 of independent
sets of G such that:

(a) I1 = Ib, I` = Ir, and |Ii| = |Ib| = |Ir| for all i, 1 ≤ i ≤ `; and

(b) for each i, 2 ≤ i ≤ `, there is an edge {u, v} in G such that Ii−1 \ Ii = {u} and
Ii \ Ii−1 = {v}, that is, Ii can be obtained from Ii−1 by sliding exactly one token
on a vertex u ∈ Ii−1 to its adjacent vertex v along {u, v} ∈ E.

Such a sequence is called a reconfiguration sequence between Ib and Ir. In computa-
tional complexity theory, several PSPACE-hardness results have been proved using
reduction from the sliding token problem. sliding token is known to be PSPACE-
complete even for planar graphs, and also for bounded treewidth graphs.

In this thesis, we mainly focus on the sliding token problem (i.e. ISReconf under
TS rule) restricted to trees. In 2012, Kamiński et al. gave a linear-time algorithm for
solving ISReconf for even-hole-free graphs (which include trees) under TJ and TAR
rules. Indeed, the answer is always yes under the two rules when restricted to even-
hole-free graphs (as long as two given independent sets have the same cardinality
for the TJ rule.) Furthermore, tokens never make detours in even-hole-free graphs
under the TJ and TAR rules. On the other hand, under TS rule, tokens are required
to make detours even in trees. In addition, there are no-instances for trees under
TS rule. These are the reasons why the problem for trees under TS rule is much
more complicated and was still open, despite the intensive algorithmic research on
ISReconf. In this thesis, we show that sliding token for trees can be solved in
linear time. This result was also presented at the 25th International Symposium on
Algorithms and Computation (ISAAC 2014, Jeonju, Korea).

Copyright c© 2015 by HOANG, Duc Anh

mailto:hoanganhduc@jaist.ac.jp

Contents

Declaration 2

Acknowledgement 3

List of Figures 4

1 Introduction 5

2 Preliminaries 9

3 Sliding Tokens on Trees 11

Conclusion 21

Bibliography 22

1

Declaration

Hereby I declare, that this paper is my original authorial work, which I have worked
out by my own. To the best of my knowledge, all sources, references and literature
used or excerpted during the presentation of this work are properly cited and listed
in complete reference to the due source. For the purpose of easy understanding, some
small parts of this thesis are quoted with proper citations.

HOANG, Duc Anh.
March 2015.

JAIST, Japan.

2

mailto:hoanganhduc@jaist.ac.jp

Acknowledgement

Foremost, I would like to express my sincere gratitude to my supervisor Professor
Ryuhei Uehara of Japan Advanced Institute of Science and Technology (JAIST) for the
continuous support of my master’s degree study and research, for his patience, mo-
tivation, enthusiasm, and immense knowledge. Professor Uehara has supported me
not only by providing a research assistantship, but also academically and emotionally
through the rough road to finish this thesis.

Besides my supervisor, I would like to thank the rest of my thesis committee: Pro-
fessor Kunihiko Hiraishi (JAIST), and Professor Atsuko Miyaji (JAIST), for their en-
couragement, insightful feedbacks, and hard questions.

Also, I would like to thank Professor Yota Otachi (JAIST) and Eli Fox-Epstein
(Brown University, USA) for their useful comments and discussion during the time of
developing the ideas of this thesis.

Especially, I would like to express my sincerest thanks and appreciation to Professor
Tetsuo Asano (JAIST) for his support and guidance not only in my research but also
in my personal life in Japan.

To the staff and students at Asano and Uehara laboratories, I am grateful for the
chance to study in Japan and be a part of the lab. Thank you for welcoming me as
a friend and helping to improve my basic knowledge about algorithms and graph
theory.

Additionally, I would like to thank the Japan Advanced Institute of Science and
Technology (JAIST) for providing me the financial support and good environment for
my study.

Lastly, I would like to thank my family for all their love, support, understanding
and encouragement.

HOANG, Duc Anh.
March 2015.

JAIST, Japan.

3

mailto:hoanganhduc@jaist.ac.jp

List of Figures

1.1 Transform Ib = I1 to Ir = I5 using TS rule. The tokens are marked by
large black circles. 7

1.2 A yes-instance for ISReconf under the TJ rule, which is a no-instance
for the sliding token problem. 7

2.1 Subtree Tu
v in the whole tree T. 9

2.2 A degree-1 vertex v of a tree T which is safe. 10

3.1 An independent set I of a tree T, where t1, t2, t3, t4 are (T, I)-rigid tokens
and t5, t6, t7 are (T, I)-movable tokens. For the subtree T′, tokens t6, t7
are (T′, I ∩ T′)-rigid. 12

3.2 (a) A (T, I)-rigid token on u, and (b) a (T, I)-movable token on u. 12
3.3 Illustration for Lemma 3.7. 16
3.4 Illustration for Lemma 3.8. 17
3.5 Illustration for Lemma 3.9. 19
3.6 no-instance for an interval graph such that all tokens are movable. . . . 21

4

Chapter 1

Introduction

In real-world situations, there may exist many feasible solutions which can be used
to solve a single problem. Usually, for saving time, money, etc., it is required that one
need to find a way to transform (reconfigure) one solution to another. This gives rise to
the study of a collection of combinatorial problems which is known as reconfiguration
problems. In this chapter, we will present a brief introduction to reconfiguration problems
and some of its variants, especially the independent set reconfiguration problem. We also
describe shortly the main result of this thesis [8], which was presented at the 25th

International Symposium on Algorithms and Computation (ISAAC 2014).
Reconfiguration problems are the set of problems in which we are given a set of fea-

sible solutions of a problem, together with some reconfiguration rule(s). The ques-
tion is, using a reconfiguration rule, can we find a step-by-step transformation which
transform one solution to another? A well-known example is that given two speci-
fied satisfiable assignments (assignments which return the true value) A and B to a
Boolean formula, one might ask whether A can be transformed into B by changing
the assignment of one variable at a time such that each intermediate assignment is
also satisfiable. Readers may also remember Rubik’s cube and its relatives as exam-
ples of reconfiguration puzzles. Recently, many kind of reconfiguration problems have
been studied extensively for several well-known problems, including independent

set [1, 3, 5, 7, 11, 12, 14, 16, 17, 19, 20, 23], satisfiability [10, 18], set cover, clique,
matching [14], vertex-colouring [2, 4, 6, 23], list edge-colouring [13, 15], etc. A
recent survey by van den Heuvel [21] gave a very good introduction to this research
area.

Among many variants of reconfiguration problems, the independent set reconfiguration
problem (ISReconf) is of particular theoretical interest. Recall that an independent set
in a graph G is a set of pairwise non-adjacent vertices. Given a graph G and two
independent sets Ib, Ir, the ISReconf problem asks if one can transform Ib to Ir us-
ing a given reconfiguration rule such that all intermediate sets are also independent.
Intuitively, imagine that a token (coin) is placed at each vertex of Ib. We want to
know if there is a way to transform the set of tokens using a given rule so that after
transforming, each vertex of Ir contains a token and all intermediate sets of tokens

5

are independent. 1 The following reconfiguration rules are mainly studied:

• Token Sliding (TS rule) [4, 5, 7, 11, 12, 17, 23]: A single token can be slid only
along an edge of a graph. The ISReconf problem under TS rule is also known
as the sliding token problem.

• Token Jumping (TJ rule) [5, 16, 17, 23]: A single token can “jump” to any vertex
(including non-adjacent one).

• Token Addition and Removal (TAR rule) [1, 3, 14, 17, 19, 20, 23]: We can either
add or remove a single token at a time if it results in an independent set of
cardinality at least a given threshold.

As the (ordinary) independent set problem plays an important role in computa-
tional complexity theory, the ISReconf problem is also one of the most well-studied
reconfiguration problems. ISReconf is PSPACE-complete under any of the three re-
configuration rules for general graphs [14], for planar graphs [4, 11, 12], for perfect
graphs [17], and even for bounded bandwidth graphs [23]. Recall that a decision
problem (a problem which has as answer either yes or no) is in PSPACE, or can be
solved in polynomial space, if there exists an algorithm that solves the problem using
an amount of memory that is polynomial in the size of the input, and the complete
problems are the “most difficult” problems in their complexity class.

In computational complexity theory, sliding token problem, or ISReconf problem
under TS rule, plays an important role since several PSPACE-hardness results have
been proved using reduction from it. Suppose that we are given two independent sets
Ib and Ir of a graph G = (V, E) such that |Ib| = |Ir|, and imagine that a token (coin)
is placed on each vertex in Ib. The sliding token problem asks whether there exists
a sequence 〈I1, I2, . . . , I`〉 of independent sets of G such that:

(a) I1 = Ib, I` = Ir, and |Ii| = |Ib| = |Ir| for all i, 1 ≤ i ≤ `; and

(b) for each i, 2 ≤ i ≤ `, there is an edge {u, v} in G such that Ii−1 \ Ii = {u} and
Ii \ Ii−1 = {v}, that is, Ii can be obtained from Ii−1 by sliding exactly one token
on a vertex u ∈ Ii−1 to its adjacent vertex v along {u, v} ∈ E.

Such a sequence is called a reconfiguration sequence between Ib and Ir. Without loss
of generality, one can assume that G is simple and connected. Note that the tokens
are unlabelled, while the vertices in a graph are labelled. We sometimes omit to say
the vertex on which a token is placed, and simply say a token in an independent
set I. The PSPACE-hardness implies that an instance of sliding token may require
an exponential number of token-slides even in a minimum-length reconfiguration
sequence. In such a case, tokens should make “detours” to avoid violating to be
independent. Figure 1.1 illustrates the reconfiguration sequence which transforms
Ib = I1 into Ir = I5 using TS rule where the token on vertex w has to make detour to
ensure that all intermediate sets I2, I3, I4 are independent.

1By saying “an intermediate set of tokens is independent”, we actually mean that “the set of vertices
where tokens are placed is independent”.

6

(a) I
b
 = I1 (b) I2 (c) I3 (d) I4 (e) I

r
 = I5

w wwww

Figure 1.1: Transform Ib = I1 to Ir = I5 using TS rule. The tokens are marked by large
black circles.

In this thesis, we show that sliding token problem for trees can be solved in linear
time. Recently, Kamiński et al. [17] gave a linear-time algorithm to solve sliding

token problem for cographs (also known as P4-free graphs). They also showed that
for any yes-instance on cographs, there exists a reconfiguration sequence from Ib to
Ir such that no token makes detour. Bonsma et al. [5] proved that sliding token can
be solved in polynomial time for claw-free graphs. Note that neither cographs nor
claw-free graphs contain trees as a subclass. Also, Kamiński et al. [17] gave a linear-
time algorithm for solving ISReconf for even-hole-free graphs (which include trees)
under TJ and TAR rules. Indeed, the answer is always yes under the two rules when
restricted to even-hole-free graphs (as long as two given independent sets have the
same cardinality for the TJ rule.) Furthermore, tokens never make detours in even-
hole-free graphs under the TJ and TAR rules. On the other hand, under the TS rule,
tokens are required to make detours even in trees (See Figure 1.1). In addition, there
are no-instances for trees under TS rule (See Figure 1.2). These make the problem
much more complicated, and we think they are the main reasons why sliding token

for trees was open.

I
b

I
r

Figure 1.2: A yes-instance for ISReconf under the TJ rule, which is a no-instance for
the sliding token problem.

In the next chapters, we are going to present the followings:

• Chapter 2: Preliminaries: In this chapter, we introduce some concepts and
notation which will be used to present our algorithm.

• Chapter 3: Sliding Tokens on Trees: In this chapter, we present a polynomial-
time algorithm for solving sliding token problem for trees [8]. We also show
that its running time can be improved to linear-time [7], which implies that the
ISReconf problem for trees can be solved in linear time under any of three
reconfiguration rules.

In the remainder of this chapter, we briefly explain our idea for solving sliding

token for trees. Let T be a tree and let I be an independent set of T. Imagine that a
token is placed at each vertex of I. Intuitively, we say that a token in vertex v is “rigid”

7

if it cannot be slid at all. More precisely, v ∈ I′ for any independent set I′ which can
be reconfigured from I. Our algorithm is based on the following claims:

1. Given an independent set I of T, one can find all rigid tokens of I in linear
time. If two sets Ib and Ir have different placements of rigid tokens, then it is a
no-instance.

2. Otherwise, we obtain a forest by deleting all rigid tokens and its neighbors. If
for each tree in this forest, the number of tokens in Ib and Ir are the same, then
it is a yes-instance. Otherwise, it is a no-instance.

8

Chapter 2

Preliminaries

In this chapter, we introduce some basic definitions and notation. The contents of
this chapter are referenced from the original paper [8]. For more details on graph
concepts, refer to some textbooks such as West [22], Diestel [9], etc.

For sliding token problem, we can assume without loss of generality that graphs
are simple and connected. We now define some commonly used graph notation.

Notation 2.1. Let G be a graph with vertex set V(G) and edge set E(G).
For a vertex v ∈ V(G), let N(G, v) = {w ∈ V(G) | {v, w} ∈ E(G)} and N[G, v] =

N(G, v) ∪ {v}.
Similarly, for an arbitrary subset S ⊆ V(G), we write N[G, S] =

⋃
v∈S N[G, v].

For a subgraph G′ of G, denote by G \ G′ the subgraph of G induced by V(G) \
V(G′).

Notation 2.2. Let T be a tree.
Denote by dist(v, w) the length of the unique (shortest) path between v and w in T.

We call it the distance between v and w. The path between v and w is simply called
the vw-path.

For two vertices u and v of a tree T, let Tu
v be the subtree of T obtained by regarding

u as the root of T and then taking the subtree rooted at v which consists of v and all
descendants of v. (See Figure 2.1) It should be noted that u is not contained in the
subtree Tu

v .
u

v

T
u
v

Figure 2.1: Subtree Tu
v in the whole tree T.

We define some concepts and notation which will be used for solving sliding to-
ken problem for trees.

Notation 2.3. Let I and I′ be two independent sets of a graph G such that |I| = |I′|.
If there exists exactly one edge {u, v} in G such that I \ I′ = {u} and I′ \ I = {v},

9

then we say that I′ can be obtained from I by sliding the token on u ∈ I to its adjacent

vertex v along the edge {u, v}, and denote it by I↔ I′, or sometimes by I G↔ I′. Note
that “sliding a token” can be reversed, i.e. I↔ I′ if and only if I′ ↔ I.

Definition 2.1. A reconfiguration sequence between two independent sets I1 and I`
of G is a sequence 〈I1, I2, . . . , I`〉 of independent sets of G such that Ii−1 ↔ Ii for
i = 2, 3, . . . , `. We sometimes write I ∈ S if an independent set I of G appears in

the reconfiguration sequence S . We write I1
G
! I` if there exists a reconfiguration

sequence S between I1 and I` such that all independent sets I ∈ S satisfy I ⊆ V(G).
Sometimes, to emphasize the existence of a reconfiguration sequence, we also write

I1
G
!
S

I`. Moreover, a reconfiguration sequence is reversible, i.e. I1
G
! I` if and only

if I`
G
! I1. 1 The length of a reconfiguration sequence S is defined as the number

of independent sets contained in S . For example, the length of the reconfiguration
sequence in Figure 1.1 is 5.

Definition 2.2. We say that a degree-1 vertex v of T is safe if its unique neighbor u has
at most one neighbor w of degree more than one. (See Figure 2.2.) Note that any tree
has at least one safe degree-1 vertex.

v

u

w

Figure 2.2: A degree-1 vertex v of a tree T which is safe.

1This is clear because I G↔ I′ if and only if I′ G↔ I.

10

Chapter 3

Sliding Tokens on Trees

In this chapter, we present the main result of this thesis. We present our polynomial-
time algorithm for solving sliding token problem for trees [8]. We also show that
our algorithm can be improved to execute in linear time [7]. Given two independent

sets Ib and Ir of a graph G, the sliding token problem asks whether Ib
G
! Ir or not.

We may assume without loss of generality that |Ib| = |Ir|; otherwise the answer is
clearly no. Note that sliding token is a decision problem asking for the existence
of a reconfiguration sequence between Ib and Ir, and hence it does not ask an ac-
tual reconfiguration sequence. We always denote by Ib and Ir the initial and target
independent sets of G, respectively.

Theorem 3.1. The sliding token problem can be solved in polynomial time for trees.

To prove this theorem, we simply describe an algorithm which solves the sliding

token problem for tree in polynomial time. The concept of “rigid tokens” is the key
concept for our algorithm.

Definition 3.1. Let T be a tree and let I is an independent set of T. A token v ∈ I is

(T, I)-rigid if v ∈ I′ for any independent set I′ of T such that I T
! I′. If v ∈ I is not

(T, I)-rigid, then it is (T, I)-movable, in other words, there exists an independent set I′

such that I T
! I′ but v /∈ I′.

The concept of rigid/movable tokens can be extended to subtrees of T. Let T′ be
a subtree of T. Let I ∩ T′ denote the set I ∩ V(T′). A token v ∈ I ∩ T′ is (T′, I ∩ T′)-

rigid if v ∈ J for any independent set J of T′ such that I ∩ T′ T′
! J. Note that, since

independent sets are restricted only to the subtree T′, we cannot use any vertex (and
hence any edge) in T \ T′ during the reconfiguration. Furthermore, the vertex-subset
J ∪
(
I ∩ (T \ T′)

)
does not necessarily form an independent set of the whole tree T.

For example, in Figure 3.1, the tokens t1, t2, t3, t4 are (T, I)-rigid, while the tokens
t5, t6, t7 are (T, I)-movable. On the other hand, tokens t6 and t7 are (T′, I ∩ T′)-rigid
even though they are (T, I)-movable in the whole tree T.

11

t
1

t
2

t
5

t
6

t
3

t
4

t
7

T

Figure 3.1: An independent set I of a tree T, where t1, t2, t3, t4 are (T, I)-rigid tokens
and t5, t6, t7 are (T, I)-movable tokens. For the subtree T′, tokens t6, t7 are (T′, I ∩ T′)-
rigid.

Note that, even though t6 and t7 cannot be slid to any neighbor in I, we can slide
them after sliding t5 downward. Rigid tokens have the following important recursive
characterization.

Lemma 3.1. Let I be an independent set of a tree T, and let u be a vertex in I.

(a) Suppose that |V(T)| = |{u}| = 1. Then, the token on u is (T, I)-rigid.

(b) Suppose that |V(T)| ≥ 2. Then, a token on u is (T, I)-rigid if and only if, for all
neighbors v ∈ N(T, u), there exists a vertex w ∈ I ∩ N(Tu

v , v) such that the token on
w is (Tv

w, I ∩ Tv
w)-rigid.

Proof. Part (a) is trivial by definition of rigid tokens. Assume that |V(T)| ≥ 2, we
show part (b).

We first show the if-part of (b). Suppose that

∀v ∈ N(T, u) ∃w ∈ I ∩ N(Tu
v , v) s.t the token on w is (Tv

w, I ∩ Tv
w)-rigid. (3.1)

We want to show that the token t on u is (T, I)-rigid. Suppose for a contradiction
that t is (T, I)-movable, which means that t can be slid to a vertex v ∈ N(T, u). By
assumption 3.1, in order to slide t to v, we first need to slide the token t′ on w to one of
its neighbors other than v. But this contradicts the assumption that t′ is (Tv

w, I ∩ Tv
w)-

rigid. Hence, u is (T, I)-rigid.
u

v

w

T
v
w

T
u
v

u
v

w

T
v
w

(a) (b)
Figure 3.2: (a) A (T, I)-rigid token on u, and (b) a (T, I)-movable token on u.

Next, we show the only-if-part of (b). Suppose that u is (T, I)-rigid, we want to
show that for all neighbors v ∈ N(T, u), there exists a vertex w ∈ I ∩ N(Tu

v , v) such
that the token on w is (Tv

w, I∩ Tv
w)-rigid. We will prove the contrapositive that if either

∃v ∈ N(T, u) I ∩ N(Tu
v , v) = ∅ (3.2)

or

∃v ∈ N(T, u) ∀w ∈ I ∩ N(Tu
v , v) the token on w is (Tv

w, I ∩ Tv
w)-movable. (3.3)

12

then u is (T, I)-movable. Assumption (3.2) is trivial since u can be directly slid to
v. We now consider assumption (3.3). For each w ∈ I ∩ N(Tu

v , v), there exists a

reconfiguration sequence Sw such that I ∩ Tv
w

Tv
w!
Sw

J where J ⊆ V(Tv
w) is independent

and w /∈ J. Since v /∈ I is the only vertex not in V(Tv
w) and adjacent to a vertex in

V(Tv
w), for any independent set J′ ∈ Sw, J′ ∪ (I \ V(Tv

w)) is independent. In other
words, the reconfiguration sequence Sw on Tv

w can be extended to the whole tree T,
which implies that, for each w, the token on w is (T, I)-movable and can be slid to one
of w’s neighbors other than v. Hence, the token on u can finally be slid to v, which
means that u is (T, I)-movable.

Lemma 3.1 implies that we can check whether one token in an independent set I of
a tree T is (T, I)-rigid or not in linear time.

Lemma 3.2. Given a tree T with n vertices, an independent set I of T, and a vertex u ∈ I, it
can be decided in O(n) time whether the token on u is (T, I)-rigid.

Proof. We regard T as a rooted tree with the root u, and compute a {0, 1}-parity φ(v)
for each vertex v ∈ V(T) from the leaves of T to the root u, as follows.

• For each leaf v of T, we set φ(v) = 1 if v ∈ I, otherwise φ(v) = 0.

• For each internal vertex v of T such that v 6∈ I, we set φ(v) = 1 if there exists a
child w of v such that w ∈ I and φ(w) = 1; otherwise φ(v) = 0.

• For each internal vertex v of T such that v ∈ I, we set φ(v) = 1 if φ(w) = 1 hold
for all children w of v; otherwise φ(v) = 0. (Note that w 6∈ I for all children w of
v since v ∈ I.)

By Lemma 3.1 the token on u is (T, I)-rigid if and only if φ(u) = 1. Clearly, the
parity φ(u) for the root u can be computed in O(n) time.

For an independent set I of T, let R(I) be the set of all vertices in I on which (T, I)-

rigid tokens are placed. The following algorithm determines whether Ib
T
! Ir or

not.

Algorithm 1 Algorithm for solving the sliding token problem on trees.
Input: Two independent sets Ib and Ir of a tree T with n vertices.

Output: Return yes if Ib
T
! Ir; otherwise return no.

1: Compute R(Ib) and R(Ir) using Lemma 3.2. If R(Ib) 6= R(Ir), then return no;
otherwise go to Step 2.

2: Delete the vertices in N[T, R(Ib)] = N[T, R(Ir)] from T, and obtain a forest
F consisting of q trees T1, T2, . . . , Tq. If

∣∣Ib ∩ Tj
∣∣ =

∣∣Ir ∩ Tj
∣∣ holds for every

j ∈ {1, 2, . . . , q}, then return yes; otherwise return no.

13

By Lemma 3.2 we can determine whether one token in an independent set I of T is
(T, I)-rigid or not in O(n) time, and hence Step 1 can be done in time O(n)× (|Ib|+
|Ir|) = O(n2). Clearly, Step 2 can be done in O(n) time. Therefore, Algorithm 1 runs
in O(n2) time in total.

We next prove the correctness of Algorithm 1. The following lemma is useful for
our proofs later.

Lemma 3.3. Let I be an independent set of a tree T such that all tokens are (T, I)-movable,
and let v be a vertex such that v 6∈ I. Then, there exists at most one neighbor w ∈ I∩N(T, v)
such that the token on w is (Tv

w, I ∩ Tv
w)-rigid.

Proof. Suppose that there are two neighbors w, w′ ∈ I ∩ N(T, v) such that the tokens
on both w and w′ are respectively (Tv

w, I ∩ Tv
w)-rigid and (Tv

w′ , I ∩ Tv
w′)-rigid. We claim

that the token t on w is (T, I)-rigid.
Suppose that t is (T, I)-movable. Since t is (Tv

w, I ∩ Tv
w)-rigid, the only way to move

t is sliding it to v. But, to slide t to v, we need to slide the token t′ on w′ to a vertex of
Tv

w′ . This contradicts our assumption that w′ is (Tv
w′ , I ∩ Tv

w′)-rigid.

We show the correctness of Step 1.

Lemma 3.4. Suppose that R(Ib) 6= R(Ir) for two given independent sets Ib and Ir of a tree
T. Then, it is a no-instance.

Proof. We prove this lemma by contrapositive. Recall that if the token on v ∈ I is

(T, I)-rigid then v ∈ I′ for any I′ such that I T
! I′. It follows that if Ib

T
! Ir then

R(Ib) = R(Ir).

We then show the correctness of Step 2. First of all, we show that deleting the
vertices with rigid tokens together with their neighbors does not affect the reconfig-
urability.

Lemma 3.5. Suppose that R(Ib) = R(Ir) for two given independent sets Ib and Ir of a tree
T, and let F be the forest obtained by deleting the vertices in N[T, R(Ib)] = N[T, R(Ir)] from

T. Then, Ib
T
! Ir if and only if Ib ∩ F F

! Ir ∩ F. Furthermore, all tokens in Ib ∩ F are
(F, Ib ∩ F)-movable, and all tokens in Ir ∩ F are (F, Ir ∩ F)-movable.

Proof. Before proving the above lemma, observe that since F is obtained by deleting
the vertices in N[T, R(Ib)] = N[T, R(Ir)] from T, we have Ib ∩ F = Ib \ R(Ib) and
Ir ∩ F = Ir \ R(Ir).

We first show the only-if-part of this lemma. Suppose that there exists a reconfig-

uration sequence S = 〈I1, I2, . . . , I`〉 (I1 = Ib, I` = Ir) such that Ib
T
!
S

Ir. We want

to show that there exists a reconfiguration sequence S ′ such that Ib ∩ F F
!
S ′

Ir ∩ F.

Indeed S ′ = 〈I1 ∩ F, I2 ∩ F, . . . , I` ∩ F〉. To see this, note that:

• For each i (1 ≤ i ≤ `), Ii ∈ S is independent, then Ii ∩ F ∈ S ′ is also independent.

14

• For two consecutive independent sets Ii−1 and Ii in S , let Ii−1 \ Ii = {u} and

Ii \ Ii−1 = {v}, i.e. Ii−1
T↔ Ii. Since u /∈ Ii and v /∈ Ii−1, neither u nor v are in

R(Ib) = R(Ir). Therefore, u, v ∈ V(F), and hence {u, v} ∈ E(F). It follows that

Ii−1 ∩ F F↔ Ii ∩ F.

In other words, S can be “restricted” to a reconfiguration sequence on F.
Next, we show the if-part of this lemma. Suppose that there exists a reconfiguration

sequence S ′ = 〈J1, J2, . . . , Jk〉 (J1 = Ib ∩ F, Jk = Ir ∩ F) such that Ib ∩ F F
!
S ′

Ir ∩ F.

We want to show that there exists a reconfiguration sequence S such that Ib
T
!
S

Ir.

Indeed, S = 〈J1 ∪ R(Ib), J2 ∪ R(Ib), . . . , Jk ∪ R(Ib)〉. To see this, note that:

• Since F is obtained by deleting the vertices in N[T, R(Ib)] = N[T, R(Ir)] from
T, for every j (1 ≤ j ≤ k), Jj ∪ R(Ib) is independent. Moreover, J1 ∪ R(Ib) =
(Ib ∩ F) ∪ R(Ib) = (Ib \ R(Ib)) ∪ R(Ib) = Ib. Similarly, Jk ∪ R(Ib) = Ir.

• Since F is a subgraph of T, and note that rigid tokens can not be slid at all, it

follows that if Jj−1
F↔ Jj then Jj−1 ∪ R(Ib)

T↔ Jj ∪ R(Ib).

In other words, S ′ can be “extended” to a reconfiguration sequence on T.
We finally show that all tokens in Ib ∩ F are (F, Ib ∩ F)-movable. A similar argument

can be applied for Ir ∩ F. Note that each token t on a vertex v in Ib ∩ F is (T, Ib)-
movable; otherwise t ∈ R(Ib). Hence, there exists an independent set I′ of T such

that Ib
T
! I′ and v /∈ I′. As we have shown before, Ib ∩ F F

! I′ ∩ F. Therefore, t is
(F, Ib ∩ F)-movable.

Suppose that R(Ib) = R(Ir) for two given independent sets Ib and Ir of a tree T.
Let F be the forest consisting of q trees T1, T2, . . . , Tq, which is obtained from T by
deleting the vertices in N[T, R(Ib)] = N[T, R(Ir)]. Since we can slide a token only

along an edge of F, we clearly have Ib ∩ F F
! Ir ∩ F if and only if Ib ∩ Tj

Tj
! Ir ∩ Tj for

all j ∈ {1, 2, . . . , q}. Furthermore, Lemma 3.5 implies that, for each j ∈ {1, 2, . . . , q}, all
tokens in Ib ∩ Tj are (Tj, Ib ∩ Tj)-movable; similarly, all tokens in Ir ∩ Tj are (Tj, Ir ∩ Tj)-
movable.

We now complete our proof of the correctness of Step 2 by showing that if there

are no rigid tokens then Ib
T
! Ir if and only if |Ib| = |Ir|.

Lemma 3.6. Let Ib and Ir be two independent sets of a tree T such that all tokens in Ib

and Ir are (T, Ib)-movable and (T, Ir)-movable, respectively. Then, Ib
T
! Ir if and only if

|Ib| = |Ir|.

Before proving this lemma, we give some useful properties of a safe degree-1 vertex
(see Definition 2.2). We claim that if v is a safe degree-1 vertex, then one of the closest
tokens from v can be slid to v. Obviously, if a token is placed on v (i.e. v ∈ I) then no
extra sliding is needed.

15

Lemma 3.7. Let I be an independent set of a tree T such that all tokens in I are (T, I)-movable,
and let v /∈ I be a safe degree-1 vertex of T. Then, there exists an independent set I′ such that

I′ \ I = {v} and I T
! I′. 1

Proof. Let M = {w ∈ I | dist(v, w) = minx∈I dist(v, x)}. Let w be an arbitrary vertex
in M, and let P = (p0 = v, p1, . . . , p` = w) be the unique path between v and w in T.
(See Figure 3.3.)

M

w

wv p
1

p
l-1

Figure 3.3: Illustration for Lemma 3.7.

If ` = 1 and hence p1 ∈ I, then we can simply slide the token on p1 to v.
We now consider the case ` ≥ 2. Since the token on w is closest to v, no token

can be placed on the vertices p0, . . . , p`−1 and the neighbors of p0, . . . , p`−2. Let M′ =
M ∩ N(T, p`−1). Since p`−1 6∈ I, by Lemma 3.3 there is at most one vertex w′ ∈ M′

such that the token on w′ is (Tp`−1
w′ , I ∩ Tp`−1

w′)-rigid. We choose such a vertex w′ if
exists, otherwise choose an arbitrary vertex in M′ and regard it as w′.

Before sliding the token on w′ to v, we need to slide all tokens on the vertices w′′ in
M′ \ {w′} first. Since all tokens on the vertices w′′ in M′ \ {w′} are (Tp`−1

w′′ , I ∩ Tp`−1
w′′)-

movable, we can slide the tokens on w′′ to some vertices in Tp`−1
w′′ . Now, we can slide

the token on w′ to v along the path P. Finally, we reverse all the steps of sliding tokens
on the vertices w′′ above in order to get all tokens except the one in w′ back to their
original positions. In this way, we obtain an independent set I′ such that I′ \ I = {v}
and I T

! I′.

We then prove that deleting a safe degree-1 vertex with a token does not affect the
movability of the other tokens.

Lemma 3.8. Let v be a safe degree-1 vertex of a tree T, and let T̄ be the subtree of T obtained by
deleting v, its unique neighbor u, and the resulting isolated vertices. Let I be an independent
set of T such that v ∈ I and all tokens are (T, I)-movable. Then, all tokens in I \ {v} are
(T̄, I \ {v})-movable.

Proof (quoted from [8]). Since Tu
v consists of a single vertex v, the token on v is (Tu

v , I ∩
Tu

v)-rigid. Therefore, no token is placed on degree-1 neighbors of u other than v (see

1For any v′ ∈ I′, v′ 6= v, we have v′ ∈ I

16

Figure 3.4), because otherwise it contradicts to Lemma 3.3; recall that all tokens in I
are assumed to be (T, I)-movable.

Let Ī = I \ {v}. Suppose for a contradiction that there exists a token in Ī which is
(T̄, Ī)-rigid. Let wp ∈ Ī be such a vertex closest to v, and let z be the vertex on the
vwp-path right before wp.

z T
v u w1

w2

wp

wp-1

no token

Tv u = z wp

no token

(b)(a)

T u
wp

T z
wp-1

T z
wp

T z
w2

T z
w1

Figure 3.4: Illustration for Lemma 3.8.

Case (1): z = u. (See Figure 3.4(a).)
Recall that the token on v is (T, I)-movable, but is (Tu

v , I ∩ Tu
v)-rigid. Therefore, by

Lemma 3.3 the token on wp must be (Tu
wp , I∩ Tu

wp)-movable. However, this contradicts
the assumption that wp is (T̄, Ī)-rigid, because T̄ = Tu

wp and Ī = I ∩ Tu
wp in this case.

Case (2): z 6= u. (See Figure 3.4(b).)
Let w1 be the neighbor of z on the vwp-path other than wp.

Let N(T, z) = {w1, w2, . . . , wp}. We note that the subtree Tz
w1

contains the deleted star
T \ T̄ centered at u, because only the neighbor w1 of z is on the vz-path.

We first note that the token tp on wp is (T̄z
wp , Ī ∩ T̄z

wp)-rigid, because otherwise tp

can be slid to some vertex in T̄z
wp and hence it is (T̄, Ī)-movable. Since T̄z

wp = Tz
wp and

Ī ∩ T̄z
wp = I ∩ Tz

wp , the token tp is also (Tz
wp , I ∩ Tz

wp)-rigid.
For each j ∈ {2, 3, . . . , p − 1} with wj ∈ I, since tp is (Tz

wp , I ∩ Tz
wp)-rigid, by

Lemma 3.3 each token tj on wj is (Tz
wj

, I ∩ Tz
wj
)-movable. Then, since Tz

wj
= T̄z

wj
and

I ∩ Tz
wj

= Ī ∩ T̄z
wj

, the token tj is (T̄z
wj

, Ī ∩ T̄z
wj
)-movable. Therefore, if w1 6∈ Ī or the

token t1 on w1 is (T̄z
w1

, Ī ∩ T̄z
w1
)-movable, then we can slide tp from wp to z after slid-

ing each token tj in Ī ∩ {w1, w2, . . . , wp−1} to some vertex of the subtree T̄z
wj

. This
contradicts the assumption that tp is (T̄, Ī)-rigid.

Therefore, we have w1 ∈ Ī and a token t1 on w1 is (T̄z
w1

, Ī ∩ T̄z
w1
)-rigid. However,

since tp is (T̄z
wp , Ī ∩ T̄z

wp)-rigid, this implies that t1 is (T̄, Ī)-rigid. Since w1 is on the
vwp-path in T, this contradicts the assumption that tp is the (T̄, Ī)-rigid token closest
to v.

We are now ready to show the proof of Lemma 3.6.

17

Proof of Lemma 3.6. The only-if-part of this lemma is trivial. We now prove the if-part
of this lemma.

Suppose that |Ib| = |Ir|. We claim that there is an independent set I∗ such that

Ib
T
! I∗ and Ir

T
! I∗. Since a reconfiguration sequence is reversible, Ib

T
! I∗

and Ir
T
! I∗ imply that Ib

T
! Ir. The following algorithm constructs such a set I∗

described above.

Algorithm 2 Algorithm for constructing I∗

Input: Two independent sets Ib and Ir of T; |Ib| = |Ir|.
Output: An independent set I∗ such that Ib

T
! I∗ and Ir

T
! I∗.

1: I∗ = ∅.
2: while |Ib| = |Ir| 6= 0 do
3: Let v be a safe degree-1 vertex of T.
4: I∗ ← I∗ ∪ {v}.
5: If v ∈ Ib, let I′b = Ib; otherwise let I′b be such that I′b \ Ib = {v} and Ib

T
! I′b.

6: If v ∈ Ir, let I′r = Ir; otherwise let I′r be such that I′r \ Ir = {v} and Ir
T
! I′r.

7: Ib ← I′b \ {v}; Ir ← I′r \ {v}.
8: Let T′ be the tree obtained by deleting v, its unique neighbor u, and the result-

ing isolated vertices.
9: T ← T′.

10: end while
11: Return I∗.

The correctness of lines 5 and 6 are followed from Lemma 3.7. Lemma 3.8 claims
the correctness of lines 7, 8 and 9, which means that deleting a safe degree-1 vertex
with a token does not affect the movability of the other tokens. Line 7 indicates that
Algorithm 2 will finally stop. It is clear that in each loop of Algorithm 2, what we do
is showing that a token from Ib (and Ir) can be slid to a vertex v ∈ I∗. Also, lines 4, 8
and 9 indicate that I∗ is indeed independent. In line 9, we replace T by the subtree
T′; so we need to ensure that a reconfiguration sequence in T′ can be extended to
a reconfiguration sequence in T. Indeed, this follows from the fact that the unique
neigbor u of v are not in V(T′) and u /∈ I′b ∪ I′r.

Put everything together, the correctness of Algorithm 2 is now clear.

We have shown that sliding token problem can be solved in polynomial time.
In Algorithm 1, Step 1 is the only step that takes O(n2) time. Indeed, Step 1 can
be improved to execute in linear time. To clarify this statement, we first give the
following property of rigid tokens on a tree, which says that deleting movable tokens
does not affect the rigidity of the other tokens.

Lemma 3.9. Let I be an independent set of a tree T. Assume that the token on a vertex x ∈ I
is (T, I)-movable. Then, for every vertex u ∈ I \ {x}, the token on u is (T, I)-rigid if and
only if it is (T, I \ {x})-rigid.

18

Proof (quoted from [7]). The if-part is trivially true, because we cannot make a rigid
token movable by adding another token. We thus show the only-if-part by contradic-
tion.

Let I′ = I \ {x}. Suppose that u ∈ I is the closest vertex to x such that its token
is (T, I)-rigid but (T, I′)-movable. We assume that x is contained in a subtree Tu

v for
a neighbor v of u. (See Figure 3.5.) Note that x 6= v since x, u ∈ I. Since the token
tu on u is (T, I)-rigid, by Lemma 3.1 the vertex v ∈ N(T, u) has at least one neighbor
w ∈ I ∩ N(Tu

v , v) such that the token tw on w is (Tv
w, I ∩ Tv

w)-rigid. Indeed, tw is (T, I)-
rigid, because tu is assumed to be (T, I)-rigid. Thus, we know that x 6= w since the
token tx on x is (T, I)-movable.

T
u
v

u

v

w

x

T
v
w

(b)

T
u
v

u

v

w
w

x
T
v
w

(a)

Figure 3.5: Illustration for Lemma 3.9.

First, consider the case where x is contained in a subtree Tv
w′ for some neighbor w′

of v other than w. (See Figure 3.5(a).) Then, I′ ∩ Tv
w = I ∩ Tv

w. Since tw is (Tv
w, I ∩ Tv

w)-
rigid, it is also (Tv

w, I′ ∩ Tv
w)-rigid. Therefore, by Lemma 3.1 the token tu is (T, I′)-rigid.

This contradicts the assumption that tu is (T, I′)-movable.
We thus consider the case where x ∈ V(Tv

w) \ {w}. (See Figure 3.5(b).) Recall that I′

is obtained by deleting only x from I. Then, since tu is (T, I)-rigid but (T, I′)-movable,
it must be slid from u to v. However, before executing this token-slide, we have to
slide tw to some vertex in N(Tv

w, w). Thus, tw is (Tv
w, I′ ∩ Tv

w)-movable, and hence it is
also (T, I′)-movable. Since tw is (T, I)-rigid and w is strictly closer to x ∈ V(Tv

w) than
u, this contradicts the assumption that u is the closest vertex to x such that its token
is (T, I)-rigid but (T, I′)-movable.

Then, the following lemma proves that Step 1 can be executed in O(n) time, which
then implies that sliding token for trees can be solved in linear time.

Lemma 3.10. For an independent set I of a tree T with n vertices, R(I) can be computed in
O(n) time.

Proof (quoted from [7]). Lemma 3.9 implies that the set R(I) of all (T, I)-rigid tokens in
I can be found by removing all (T, I)-movable tokens in I. Observe that, if I contains
(T, I)-movable tokens, then at least one of them can be immediately slid to one of its
neighbors. That is, there is a token on u ∈ I which has a neighbor w ∈ N(T, u) such
that N(T, w) ∩ I = {u}. Then, the following algorithm efficiently finds and removes
such tokens iteratively.

Step A. Define and compute degI(w) = |N(T, w) ∩ I| for all vertices w ∈ V(T).

19

Step B. Define and compute M = {u ∈ I | ∃w ∈ N(T, u) such that degI(w) = 1}.
Step C. Repeat the following steps (i)–(iii) until M = ∅.

(i) Select an arbitrary vertex u ∈ M, and remove it from M and I.
(ii) Update degI(w) := degI(w)− 1 for each neighbor w ∈ N(T, u).

(iii) If degI(w) becomes one by the update (ii) above, then add the vertex
u′ ∈ N(T, w) ∩ I into M.

Step D. Output I as the set R(I).

Clearly, Steps A, B and D can be done in O(n) time. We now show that Step C
takes only O(n) time. Each vertex in I can be selected at most once as u at Step C-(i).
For the selected vertex u, Step C-(ii) takes O(degT(u)) time for updating degI(w) of
its neighbors w ∈ N(T, u). Each vertex in V(T) \ I can be selected at most once as
w at Step C-(iii). For the selected vertex w, Step C-(iii) takes O(degT(w)) time for

finding u′ ∈ N(T, w) ∩ I. Therefore, Step C takes O
(

∑v∈V(T) degT(v)
)
= O(n) time

in total.

In summary, the following theorem is the main result of this chapter.

Theorem 3.2. The sliding token problem can be solved in polynomial time for trees.

20

Conclusion

In this thesis, we have shown that sliding token problem for trees can be solved in
linear time [7] using a simple but non-trivial characterization of rigid tokens (Lemma 3.1).
Indeed, we first presented our original quadratic-time algorithm (Theorem 3.1), and
then showed our improvement to make it run in linear time (Lemmas 3.9 and 3.10).
The author of this thesis is mainly contributed in proving Theorem 3.1 and the cor-
rectness of Algorithm 1.

The complexity status of sliding token remains open for chordal graphs and in-
terval graphs. It is noted that these graphs have no-instance such that all tokens are
movable. (See Figure 3.6 for example.)

IrIb

Figure 3.6: no-instance for an interval graph such that all tokens are movable.

Interestingly, there is a subclass of chordal graphs called block graphs (also known
as completed Husimi trees) which has a very similar structure to trees. Let G = (V, E)
be a graph. G is connected if any pair of vertices in G are joined by at least one path;
otherwise, we say that G is disconnected. A vertex v of G is called a cut vertex if G \ {v}
is disconnected; otherwise, we say that v is a non-cut vertex. G is called a clique if for
any u, v ∈ V(G), {u, v} ∈ E(G). If |V(G)| = n, we denote it by Kn and say that it is a
clique of size n. A block of G is a maximal connected subgraph (i.e. a subgraph with as
many edges as possible) with no cut vertex. G is called a block graph if G is connected
and every block of G is a clique. Let I be an independent set of a block graph G.
Imagine that a token is placed at each vertex of I. Intuitively, we say that a token t
is (G, I)-confined if there exists a block B of G such that t can not be slid to a vertex
“outside” of B. In the near future, it is hoped that we can characterize this concept
formally. This characterization might be the key point for solving sliding token

problem for block graphs, which takes us one-step closer to clarify the complexity
status of the problem on some bigger graph classes, such as chordal graphs.

21

Bibliography

[1] M. Bonamy and N. Bousquet. Reconfiguring Independent Sets in Cographs.
arXiv preprints, arXiv:1406.1433, 2014.

[2] M. Bonamy, M. Johnson, I. Lignos, V. Patel, and D. Paulusma. Reconfiguration
graphs for vertex colourings of chordal and chordal bipartite graphs. Journal of
Combinatorial Optimization, 27(1):132–143, 2014.

[3] P. Bonsma. Independent Set Reconfiguration in Cographs. In D. Kratsch and
I. Todinca, editors, Graph-Theoretic Concepts in Computer Science - WG 2014, vol-
ume 8747 of Lecture Notes in Computer Science, pages 105–116. Springer Interna-
tional Publishing, 2014.

[4] P. Bonsma and L. Cereceda. Finding Paths between graph colourings: PSPACE-
completeness and superpolynomial distances. Theoretical Computer Science, 410
(50):5215–5226, 2009.

[5] P. Bonsma, M. Kamiski, and M. Wrochna. Reconfiguring Independent Sets in
Claw-Free Graphs. In R. Ravi and I. Grtz, editors, Algorithm Theory - SWAT
2014, volume 8503 of Lecture Notes in Computer Science, pages 86–97. Springer
International Publishing, 2014.

[6] L. Cereceda, J. van den Heuvel, and M. Johnson. Finding Paths Between 3-
colorings. J. Graph Theory, 67(1):69–82, 2011.

[7] E. D. Demaine, M. L. Demaine, E. Fox-Epstein, D. A. Hoang, T. Ito, H. Ono,
Y. Otachi, R. Uehara, and T. Yamada. Linear-Time Algorithm for Sliding Tokens
on Trees. arXiv preprints, arXiv:1406.6576, 2014.

[8] E. D. Demaine, M. L. Demaine, E. Fox-Epstein, D. A. Hoang, T. Ito, H. Ono,
Y. Otachi, R. Uehara, and T. Yamada. Polynomial-Time Algorithm for Sliding
Tokens on Trees. In H.-K. Ahn and C.-S. Shin, editors, Algorithms and Computation
- ISAAC 2014, volume 8889 of Lecture Notes in Computer Science, pages 389–400.
Springer International Publishing, 2014.

[9] R. Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics. Springer,
4th edition, 2010.

22

http://arxiv.org/abs/1406.1433
http://link.springer.com/article/10.1007%2Fs10878-012-9490-y
http://link.springer.com/article/10.1007%2Fs10878-012-9490-y
http://link.springer.com/chapter/10.1007%2F978-3-319-12340-0_9
http://www.sciencedirect.com/science/article/pii/S0304397509006069
http://www.sciencedirect.com/science/article/pii/S0304397509006069
http://link.springer.com/chapter/10.1007%2F978-3-319-08404-6_8
http://link.springer.com/chapter/10.1007%2F978-3-319-08404-6_8
http://onlinelibrary.wiley.com/doi/10.1002/jgt.20514/abstract
http://onlinelibrary.wiley.com/doi/10.1002/jgt.20514/abstract
http://arxiv.org/abs/1406.6576
http://arxiv.org/abs/1406.6576
http://link.springer.com/chapter/10.1007%2F978-3-319-13075-0_31
http://link.springer.com/chapter/10.1007%2F978-3-319-13075-0_31
http://diestel-graph-theory.com/

[10] P. Gopalan, P. Kolaitis, E. Maneva, and C. Papadimitriou. The Connectivity of
Boolean Satisfiability: Computational and Structural Dichotomies. In M. Bugliesi,
B. Preneel, V. Sassone, and I. Wegener, editors, Automata, Languages and Program-
ming - ICALP 2006, volume 4051 of Lecture Notes in Computer Science, pages 346–
357. Springer Berlin Heidelberg, 2006.

[11] R. A. Hearn and E. D. Demaine. PSPACE-completeness of Sliding-block Puzzles
and Other Problems Through the Nondeterministic Constraint Logic Model of
Computation. Theoretical Computer Science, 343(1-2):72–96, 2005.

[12] R. A. Hearn and E. D. Demaine. Games, Puzzles, and Computation. AK Peters
Series. Taylor & Francis, 2009.

[13] T. Ito, M. Kamiński, and E. Demaine. Reconfiguration of List Edge-Colorings in a
Graph. In F. Dehne, M. Gavrilova, J.-R. Sack, and C. Tóth, editors, Algorithms and
Data Structures - WADS 2009, volume 5664 of Lecture Notes in Computer Science,
pages 375–386. Springer Berlin Heidelberg, 2009.

[14] T. Ito, E. D. Demaine, N. J. Harvey, C. H. Papadimitriou, M. Sideri, R. Uehara,
and Y. Uno. On the complexity of reconfiguration problems. Theoretical Computer
Science, 412(12-14):1054–1065, 2011.

[15] T. Ito, K. Kawamura, and X. Zhou. An Improved Sufficient Condition for Recon-
figuration of List Edge-Colorings in a Tree. In M. Ogihara and J. Tarui, editors,
Theory and Applications of Models of Computation - TAMC 2011, volume 6648 of
Lecture Notes in Computer Science, pages 94–105. Springer Berlin Heidelberg, 2011.

[16] T. Ito, M. Kamiński, H. Ono, A. Suzuki, R. Uehara, and K. Yamanaka. On the Pa-
rameterized Complexity for Token Jumping on Graphs. In T. Gopal, M. Agrawal,
A. Li, and S. Cooper, editors, Theory and Applications of Models of Computation -
TAMC 2014, volume 8402 of Lecture Notes in Computer Science, pages 341–351.
Springer International Publishing, 2014.

[17] M. Kamiński, P. Medvedev, and M. Milanic̆. Complexity of independent set
reconfigurability problems. Theoretical Computer Science, 439(0):9–15, 2012.

[18] K. Makino, S. Tamaki, and M. Yamamoto. An exact algorithm for the Boolean
connectivity problem for k-CNF. Theoretical Computer Science, 412(35):4613–4618,
2011.

[19] A. Mouawad, N. Nishimura, V. Raman, N. Simjour, and A. Suzuki. On the Pa-
rameterized Complexity of Reconfiguration Problems. In G. Gutin and S. Szeider,
editors, Parameterized and Exact Computation - IPEC 2013, volume 8246 of Lecture
Notes in Computer Science, pages 281–294. Springer International Publishing, 2013.

[20] A. Mouawad, N. Nishimura, V. Raman, and M. Wrochna. Reconfiguration over
Tree Decompositions. In M. Cygan and P. Heggernes, editors, Parameterized and

23

http://link.springer.com/chapter/10.1007%2F11786986_31
http://link.springer.com/chapter/10.1007%2F11786986_31
http://www.sciencedirect.com/science/article/pii/S0304397505003105
http://www.sciencedirect.com/science/article/pii/S0304397505003105
http://www.sciencedirect.com/science/article/pii/S0304397505003105
http://www.crcpress.com/product/isbn/9781568813226
http://link.springer.com/chapter/10.1007%2F978-3-642-03367-4_33
http://link.springer.com/chapter/10.1007%2F978-3-642-03367-4_33
http://www.sciencedirect.com/science/article/pii/S0304397510006961
http://link.springer.com/chapter/10.1007%2F978-3-642-20877-5_10
http://link.springer.com/chapter/10.1007%2F978-3-642-20877-5_10
http://link.springer.com/chapter/10.1007%2F978-3-319-06089-7_24
http://link.springer.com/chapter/10.1007%2F978-3-319-06089-7_24
http://www.sciencedirect.com/science/article/pii/S0304397512002241
http://www.sciencedirect.com/science/article/pii/S0304397512002241
http://www.sciencedirect.com/science/article/pii/S0304397511003501
http://www.sciencedirect.com/science/article/pii/S0304397511003501
http://link.springer.com/chapter/10.1007%2F978-3-319-03898-8_24
http://link.springer.com/chapter/10.1007%2F978-3-319-03898-8_24
http://link.springer.com/chapter/10.1007%2F978-3-319-13524-3_21
http://link.springer.com/chapter/10.1007%2F978-3-319-13524-3_21

Exact Computation - IPEC 2014, volume 8894 of Lecture Notes in Computer Science,
pages 246–257. Springer International Publishing, 2014.

[21] J. van den Heuvel. The complexity of change. In S. R. Blackburn, S. Gerke, and
M. Wildon, editors, Surveys in Combinatorics 2013, pages 127–160. Cambridge
University Press, 2013.

[22] D. B. West. Introduction to Graph Theory. Featured Titles for Graph Theory Series.
Prentice Hall, 2th edition, 2001.

[23] M. Wrochna. Reconfiguration in bounded bandwidth and treedepth. arXiv
preprints, arXiv:1405.0847, 2014.

24

http://arxiv.org/abs/1312.2816
http://www.cambridge.org/us/academic/subjects/mathematics/discrete-mathematics-information-theory-and-coding/surveys-combinatorics-2013
http://www.math.illinois.edu/~dwest/igt/
http://arxiv.org/abs/1405.0847

	Declaration
	Acknowledgement
	List of Figures
	Introduction
	Preliminaries
	Sliding Tokens on Trees
	Conclusion
	Bibliography

