
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title

An Investigation of the Chandy-Lamport

Distributed Snapshot Algorithm and its Model

Checking [課題研究報告書]

Author(s) Zhang, Wenjie

Citation

Issue Date 2015-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/12646

Rights

Description
Prof. Kazuhiro Ogata, School of Information

Science, Master

An Investigation of the Chandy-Lamport Distributed
Snapshot Algorithm and its Model Checking

Wenjie Zhang (1310043)

School of Information Science,
Japan Advanced Institute of Science and Technology

February 12, 2015

Keywords: distributed snapshot, distributed system, state machine,
model checking, reachability property.

Concurrent and distributed systems have attained remarkable achieve-
ments in the past decades and are being widely used in our real life.
Telecommunication networks such as wireless sensor networks, network
applications such as world wide web and banking systems, real-time pro-
cess control systems such as aircraft control systems and industrial control
systems, and cloud computing systems are all distributed systems. Since
the design of such distributed systems is generally complex, with a high
possibility that subtle errors will cause erroneous behavior, such systems
may crash, and we need to recover them if that is the case.

Many problems in distributed systems such as stable property detection
and checkpointing can be cast in terms of the problem of detecting global
states. A stable property is one that persists: once a stable property
becomes true it remains true thereafter. Examples of stable properties are
“computation has terminated,” “the system is deadlocked” and “all tokens
in a token ring have disappeared.”

The global state of a distributed system consists of the states of every
process and every channel in the system, where the state of a process
is characterized by the state of its local memory and depends upon the
context, and the state of a channel is characterized by the sequence of

Copyright c© 2015 by Wenjie Zhang

1

messages “in-transit”, those that have been sent on that channel, but not
yet received by its destination process.

For a global state to be meaningful, the states of all the components of
the underlying distributed system (UDS) must be recorded at exactly
the same instant. This will be possible if the local clocks at processes were
perfectly synchronized or there was a global system clock that could be
instantaneously read by the processes. However, given the fact that dis-
tributed systems are asynchronous and processes in the system do not share
common clocks or memory, each process cannot record its local state at
exactly the same time, namely that such global states can never be instan-
taneously done, and it leaves open the possibility of inconsistent global
states. Moreover, the variability in message delays could lead to these
separate processes constructing different global states for the same compu-
tation. In a word, due to the asynchrony of distributed systems, the lack
of globally shared memory, global clock and unpredictable message delays
make recording such consistent global states non-trivial. The global states
we obtained may be inconsistent if we record the state of each component
(process or channel) in the system whenever we want.

However, it turns out that even if the state of all the components in
a UDS has not been recorded at the same instant, such a state will be
meaningful provided every message that is recorded as received is also
recorded as sent. Basic idea is that an effect should not be present without
its cause. A message cannot be received if it was not sent; that is, the
state should not violate causality. Such states are called consistent global
states and are meaningful global states. Inconsistent global states are not
meaningful in sense that a UDS can never be in an inconsistent global
state.

Therefore, it is necessary to apply some algorithms when we want to
obtain consistent global states of a distributed system. One of those algo-
rithms is known as the Chandy-Lamport Distributed Snapshot Algorithm
(CLDSA), which was proposed by Chandy and Lamport in 1985.

The CLDSA can be used to determine consistent global states of a dis-
tributed system during its computation. Since it is very important and
also non-trivial, it deserves to be formally specified and verified with re-
spect to (w.r.t.) some significant properties. Let s1 (called the start state)

2

be the state when the CLDSA starts (a distributed snapshot starts being
taken), s∗ be the snapshot, and s2 (called the finish state) be the state
when the CLDSA terminates (the snapshot completes being taken). The
CLDSA should enjoy the property that s∗ is always reachable from s1 and
s2 is always reachable from s∗. The property is called the Distributed Snap-
shot Reachability (DSR) property, which guarantees the CLDSA takes
consistent global states of a distributed system.

To formally verify the DSR property, model checking, which is an au-
tomatic verification technique for finite-state concurrent systems, can be
used. It has been practically used in hardware industry, while many studies
have been actively conducted on model checking so that model checking
can be effectively and practically used for software.

The process of model checking comprises three main tasks: modeling,
specification and verification.

Modeling is to convert a system that is to be reasoned about into a
formalism accepted by a model checking tool. State machine can be used
to model distributed systems. It consists of a set of states and a set of state
transitions (i.e., a binary relation over the states). In such a model, the
system is in one of the possible states, and the transition relation describes
how the system moves from one state to another.

Specification is to state the properties that the system must satisfy before
verification. These are written in a specification language, usually defined
in a logic-based formalism. Completeness is one of the important issues in
specification. Model checking provides means for checking that a model of
the system satisfies a given specification, but it is impossible to determine
whether the given specification covers all the properties that the system
should satisfy.

Verification is to check the validity of the properties that have been stated
previously. Ideally it is completely automatic. However, in practice it often
involves human assistance such as the analysis of the verification results.
In case of a negative result, the user is often provided with an error trace.
This can be used as a counterexample for the checked property and can
help the designer in tracking down where the error occurred.

Model checking refers to the following problem: Given a model of a
system, exhaustively and automatically check whether this model meets

3

a given specification. The main challenge in model checking is dealing
with the state explosion problem caused by the fact that the state machine
represents the state space of the system under investigation, and thus it is
of size exponential in the size of the system description. Therefore, even for
systems of relatively modest size, it is often impossible to compute their
state machines.

There have been several major advances in addressing the state explosion
problem. One of the first major advances was symbolic model checking with
binary decision diagrams (BDDs). In this approach, a set of states is rep-
resented by a BDD instead of by listing each state individually. The BDD
representation is often exponentially smaller in practice. Model checking
with BDDs is performed using a fixed point algorithm. Another major ad-
vance is the partial order reduction, which exploits independence of actions
in a system with asynchronous composition of processes. A third major
advance is counterexample-guided abstraction refinement, which adaptively
tries to find an appropriate level refinement, precise enough to verify the
property of interest yet not burdened with irrelevant detail that slows down
verification. Finally, bounded model checking exploits fast Boolean satisfi-
ability (SAT) solvers to search for counterexamples of bounded length.

Maude, an algebraic specification language originated from OBJ family,
is based on rewriting logic that includes as a sub-logic membership equa-
tional logic (an extension of order-sorted equational logic). Maude supports
rewriting modulo equational theories such as associativity (assoc), com-
mutativity (comm), and identity (id). Basic units of Maude specifications
are modules such as BOOL and NAT used for boolean values and natural
numbers. State machines (or transition systems) are specified in rewriting
logic, and their specifications are called system specifications. Data used in
state machines are specified in membership equational logic. States of state
machines are expressed as tuples and associative-commutative collections
(called soups), and state transitions are described in rewrite rules.

The CLDSA is a non-trivial distributed algorithm that deserves to be
formally specified and verified w.r.t. the DSR property.

As far as we have investigated, to formalize the DSR property, we have
to consider two kinds of states, (1) the states of a UDS , and (2) the states
of the UDS superimposed by the CLDSA . In existing temporal logics

4

such as LTL and CTL, only one kind of states are considered when they
are used to formalize system properties. Thus, it is not straightforward to
express the DSR property in LTL and CTL.

Moreover, there is an existing study in which a distributed system super-
imposed by the CLDSA has been formally specified in Maude and model
checked w.r.t. the DSR property with the Maude search command. We do
not, however, think that the existing study provides the sufficiently good
foundation backing up that the CLDSA is surely model checked w.r.t. the
DSR property, because the authors did not discuss whether the property
is faithfully expressed or not. And then the DSR property encoded in
the Maude search command are neither readable nor comprehensible. To
make it executable in Maude, moreover, the system superimposed by the
CLDSA has been specified in a very concrete way, in which the state of
each process only depends on the tokens owned by the process itself. We
do think that it is necessary to make sure that the property is faithfully
expressed to claim that the property is model checked for the CLDSA .

This research aims to investigate the CLDSA , its formal specification
in Maude and its model checking with the Maude search command, and to
conduct some model checking experiments with several different underlying
distributed systems. Moreover, to complement the existing study, we have
considered how to surely model check the DSR property. To this end, we
have already found a way to faithfully express the DSR property. Our way
to express the property relies on two state machines, although the two state
machines are closely related. And the property used in the existing study
relies on only one state machine. Our way to express the DSR property
has been affected by the Chandy-Misra’s.

5

