JAIST Repository

https://dspace.jaist.ac.jp/

the Chandy-Lamp

Al gofyithm and i

An I nvestigation of
Title Distributed Snapshot
Checking [QOOOODODOO)
Author(s) Zhang, Wenjie
Citation
Issue Date 2015-03
Type Thesis or Dissertation

Text version

aut hor

net/ 101019/ 12646

URL http:/7/7hdl . handl e.
Rights
_r Prof. Kazuhiro Ogat a,
Description .
Sci ence, Master

Schpol of I nf

AIST

JAPAN
ADVANCED INSTITUTE OF
. SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

An Investigation of the Chandy-Lamport Distributed
Snapshot Algorithm and its Model Checking

By Wenjie Zhang

A project paper submitted to
School of Information Science,
Japan Advanced Institute of Science and Technology,
in partial fulfillment of the requirements
for the degree of
Master of Information Science
Graduate Program in Information Science

Written under the direction of
Professor Kazuhiro Ogata

March, 2015

An Investigation of the Chandy-Lamport Distributed
Snapshot Algorithm and its Model Checking

By Wenjie Zhang (1310043)

A project paper submitted to
School of Information Science,
Japan Advanced Institute of Science and Technology,
in partial fulfillment of the requirements
for the degree of
Master of Information Science
Graduate Program in Information Science

Written under the direction of
Professor Kazuhiro Ogata

and approved by
Professor Kazuhiro Ogata
Professor Kunihiko Hiraishi
Associate Professor Toshiaki Aoki

February, 2015 (Submitted)

Copyright (© 2015 by Wenjie Zhang

Abstract

Concurrent and distributed systems have attained remarkable achievements in the past
decades and are being widely used in our real life. Many problems in distributed systems
such as stable property detection and checkpointing can be cast in terms of the problem
of detecting global states. The global state of a distributed system consists of the states of
every process and every channel in the system, where the state of a process is characterized
by the state of its local memory and depends upon the context, and the state of a channel
is characterized by the sequence of messages “in-transit”, those that have been sent on
that channel, but not yet received by its destination process. Due to the asynchrony of
distributed systems, the lack of globally shared memory, global clock and unpredictable
message delays in a distributed system make recording such consistent global states non-
trivial. Chandy and Lamport have proposed a distributed snapshot algorithm by which
a process in a distributed system can determine a consistent global state of the system
during its computation.

Since the design of distributed systems is generally complex, with a high possibility that
subtle errors will cause erroneous behavior, and also the Chandy-Lamport Distributed
Snapshot Algorithm (CLDSA) is a non-trivial distributed algorithm, it deserves to be
formally specified and verified with respect to (w.r.t.) some significant properties. Let s;
be the state when the CLDSA starts, s, be the snapshot, and s, be the state when the
CLDSA terminates. The CLDSA should enjoy the property that s, is always reachable
from s; and s, is always reachable from s,. The property is called the Distributed Snapshot
Reachability (DSR) property.

To formally verify the DSR property, model checking, which is an automatic verifica-
tion technique for finite-state concurrent systems, can be used. It refers to the following
problem: Given a model of a system, exhaustively and automatically check whether this
model meets a given specification. The main challenge in model checking is dealing with
the state explosion problem.

This research aims to investigate the CLDSA | its formal specification in Maude and its
model checking with the Maude search command, and to conduct some model checking ex-
periments with several different underlying distributed systems. However, we do not think
that the existing study, in which a distributed system superimposed by the CLDS A has
been formally specified in Maude and model checked w.r.t. the DSR property with the
Maude search command, provides the sufficiently good foundation backing up that the
CLDS A is surely model checked w.r.t. the DSR property, and then the DSR property
encoded in the Maude search command are neither readable nor comprehensible. To
make it executable in Maude, moreover, the system superimposed by the CLDSA has
been specified in a very concrete way, in which the state of each process only depends on
the tokens owned by the process itself.

To complement the existing study, we describe how to express the DSR property in a
more abstract way in this report. Our way to express the DSR property has been affected
by the Chandy-Misra’s.

Contents

Introduction

1.1 Overview oL e
1.2 Scope of this Work
1.3 Contributions
1.4 Organization of the Report

Technical Background

2.1 An Underlying Distributed System (UDS)
2.1.1 Definition
2.1.2 Model of aUDS
2.1.3 Global States of aUUDS

2.2 State Machine

2.3 Model Checking
2.3.1 Prosand Cons
2.3.2 State Explosion Problem

2.4 Maude Specification Language L.
2.4.1 Specifying in Maudeo o0
2.4.2 The Search Command

The Chandy-Lamport Distributed Snapshot Algorithm (CLDSA)

3.1 Motivation of the CLDSA
3.1.1 Scenarios of Inconsistent Global States

3.2 Outline of the CLDSA

3.3 Termination of the CLDSA

3.4 The Distributed Snapshot Reachability (DSR) Property

A Study on How to Specify and Model Check the CLDSA in Maude
4.1 System Specification of the CLDSA
4.1.1 State Expression for a UDS Superimposed by the CLDS A
4.1.2 State Transitions for a UDS Superimposed by the CLDSA)
4.2 Model Checking of the DSR Property
4.2.1 Conducting Some Experiments for the DSR Property

5 A Consideration on How to Model Check the DSR Property 48

5.1 Motivation of the Consideration 48
5.2 Modeling a UDS as a State Machine 49
5.2.1 State Expression for adDS 49

5.2.2 State Transitions for adDS 50

5.3 Modeling a UDS Superimposed by the CLDSA as a State Machine 51
5.3.1 State Expression for a UDS Superimposed by the CLDSA 51

5.3.2 State Transitions for a UDS Superimposed by the CLDSA 53

5.3.3 The Function CL 59

54 A Way to Express the DSR Property 61

6 Conclusions 62
6.1 Contributions 62
6.2 Future Work 62
Appendix A Specification of the CLDSA in Maude 64
Appendix B Verification of the DSR Property 86

Bibliography 101

i

Acknowledgements

First and foremost, I would like to express my special appreciation and thanks to my
supervisor, Professor Kazuhiro Ogata, for his kindly guidance, encouragement, and un-
limited support throughout the duration of my master research. Without his support,
this research could not have been completed. His advice on both my research and my
career are definitely priceless, which will influence the rest of my life.

I would also like to thank my committee members, Professor Kunihiko Hiraishi, and
Associate Professor Toshiaki Aoki for serving as my committee members, and also for
giving me lots of precious comments and suggestions.

I would like to especially thank Min Zhang for his advice on my research, and also
for his recommend to Ogata lab. The quality of this research was significantly improved
according to his advice.

Last but not least, a special thanks to my family for their support and encouragement
throughout my study and my life, and thanks to all of my friends who have supported
and helped me.

Chapter 1

Introduction

1.1 Overview

Concurrent and distributed systems have attained remarkable achievements in the past
decades and are being widely used in our real life. Telecommunication networks such
as wireless sensor networks, network applications such as world wide web and banking
systems, real-time process control systems such as aircraft control systems and industrial
control systems, and cloud computing systems are all distributed systems. Since the design
of such distributed systems is generally complex, with a high possibility that subtle errors
will cause erroneous behavior, such systems may crash, and we need to recover them if
that is the case.

Many problems in distributed systems such as stable property detection and check-
pointing can be cast in terms of the problem of detecting global states. A stable property
is one that persists: once a stable property becomes true it remains true thereafter. Ex-
amples of stable properties are “computation has terminated,” “the system is deadlocked”
and “all tokens in a token ring have disappeared.”

The global state of a distributed system consists of the states of every process and every
channel in the system, where the state of a process is characterized by the state of its
local memory and depends upon the context, and the state of a channel is characterized
by the sequence of messages “in-transit”, those that have been sent on that channel, but
not yet received by its destination process.

For a global state to be meaningful, the states of all the components of the underlying
distributed system (UDS) must be recorded at exactly the same instant. This will
be possible if the local clocks at processes were perfectly synchronized or there was a
global system clock that could be instantaneously read by the processes. However, given
the fact that distributed systems are asynchronous and processes in the system do not
share common clocks or memory, each process cannot record its local state at exactly
the same time, namely that such global states can never be instantaneously done, and
it leaves open the possibility of inconsistent global states. Moreover, the variability in
message delays could lead to these separate processes constructing different global states
for the same computation. In a word, due to the asynchrony of distributed systems,

the lack of globally shared memory, global clock and unpredictable message delays make
recording such consistent global states non-trivial. The global states we obtained may be
inconsistent if we record the state of each component (process or channel) in the system
whenever we want.

However, it turns out that even if the state of all the components in a UDS has not
been recorded at the same instant, such a state will be meaningful provided every message
that is recorded as received is also recorded as sent. Basic idea is that an effect should
not be present without its cause. A message cannot be received if it was not sent; that is,
the state should not violate causality. Such states are called consistent global states and
are meaningful global states. Inconsistent global states are not meaningful in sense that
a UDS can never be in an inconsistent global state.

Therefore, it is necessary to apply some algorithms when we want to obtain consistent
global states of a distributed system. One of those algorithms is known as the Chandy-
Lamport Distributed Snapshot Algorithm (CLDSA) [CL85|, which was proposed by
Chandy and Lamport in 1985.

The CLDSA can be used to determine consistent global states of a distributed system
during its computation. Since it is very important and also non-trivial, it deserves to be
formally specified and verified with respect to (w.r.t.) some significant properties. Let
s1 (called the start state) be the state when the CLDSA starts (a distributed snapshot
starts being taken), s, be the snapshot, and s, (called the finish state) be the state
when the CLDS A terminates (the snapshot completes being taken). The CLDSA should
enjoy the property that s, is always reachable from s; and s, is always reachable from s,.
The property is called the Distributed Snapshot Reachability (DSR) property, which
guarantees the CLDS A takes consistent global states of a distributed system.

To formally verify the DSR property, model checking, which is an automatic verifica-
tion technique for finite-state concurrent systems, can be used. It has been practically
used in hardware industry, while many studies have been actively conducted on model
checking so that model checking can be effectively and practically used for software.

The process of model checking comprises three main tasks: modeling, specification and
verification.

Modeling is to convert a system that is to be reasoned about into a formalism accepted
by a model checking tool. State machine can be used to model distributed systems. It
consists of a set of states and a set of state transitions (i.e., a binary relation over the
states). In such a model, the system is in one of the possible states, and the transition
relation describes how the system moves from one state to another.

Specification is to state the properties that the system must satisfy before verification.
These are written in a specification language, usually defined in a logic-based formalism.
Completeness is one of the important issues in specification. Model checking provides
means for checking that a model of the system satisfies a given specification, but it is
impossible to determine whether the given specification covers all the properties that the
system should satisfy.

Verification is to check the validity of the properties that have been stated previously.
Ideally it is completely automatic. However, in practice it often involves human assistance

such as the analysis of the verification results. In case of a negative result, the user is
often provided with an error trace. This can be used as a counterexample for the checked
property and can help the designer in tracking down where the error occurred.

Model checking refers to the following problem: Given a model of a system, exhaus-
tively and automatically check whether this model meets a given specification. The main
challenge in model checking is dealing with the state explosion problem caused by the
fact that the state machine represents the state space of the system under investigation,
and thus it is of size exponential in the size of the system description. Therefore, even for
systems of relatively modest size, it is often impossible to compute their state machines.

There have been several major advances in addressing the state explosion problem. One
of the first major advances was symbolic model checking with binary decision diagrams
(BDDs). In this approach, a set of states is represented by a BDD instead of by listing
each state individually. The BDD representation is often exponentially smaller in practice.
Model checking with BDDs is performed using a fized point algorithm. Another major
advance is the partial order reduction, which exploits independence of actions in a system
with asynchronous composition of processes. A third major advance is counterexample-
guided abstraction refinement, which adaptively tries to find an appropriate level refine-
ment, precise enough to verify the property of interest yet not burdened with irrelevant
detail that slows down verification. Finally, bounded model checking exploits fast Boolean
satisfiability (SAT) solvers to search for counterexamples of bounded length.

Maude [CDE"07], an algebraic specification language originated from OBJ family, is
based on rewriting logic that includes as a sub-logic membership equational logic (an
extension of order-sorted equational logic). Maude supports rewriting modulo equational
theories such as associativity (assoc), commutativity (comm), and identity (id). Basic
units of Maude specifications are modules such as BOOL and NAT used for boolean values
and natural numbers. State machines (or transition systems) are specified in rewriting
logic, and their specifications are called system specifications. Data used in state machines
are specified in membership equational logic. States of state machines are expressed as
tuples and associative-commutative collections (called soups), and state transitions are
described in rewrite rules.

The CLDS A is a non-trivial distributed algorithm that deserves to be formally specified
and verified w.r.t. the DSR property.

As far as we have investigated, to formalize the DSR property, we have to consider two
kinds of states, (1) the states of a UDS , and (2) the states of the UDS superimposed
by the CLDSA . In existing temporal logics such as LTL and CTL, only one kind of
states are considered when they are used to formalize system properties. Thus, it is not
straightforward to express the DSR property in LTL and CTL.

Moreover, there is an existing study [OH12| in which a distributed system superim-
posed by the CLDS A has been formally specified in Maude and model checked w.r.t. the
DSR property with the Maude search command. We do not, however, think that the
existing study provides the sufficiently good foundation backing up that the CLDSA is
surely model checked w.r.t. the DSR property, because the authors did not discuss
whether the property is faithfully expressed or not. And then the DSR property en-

coded in the Maude search command are neither readable nor comprehensible. To make
it executable in Maude, moreover, the system superimposed by the CLDSA has been
specified in a very concrete way, in which the state of each process only depends on the
tokens owned by the process itself. We do think that it is necessary to make sure that
the property is faithfully expressed to claim that the property is model checked for the
CLDSA .

This research aims to investigate the CLDS A | its formal specification in Maude and its
model checking with the Maude search command, and to conduct some model checking
experiments with several different underlying distributed systems. Moreover, to com-
plement the existing study [OH12], we have considered how to surely model check the
DSR property. To this end, we have already found a way to faithfully express the
DSR property. Our way to express the property relies on two state machines, although
the two state machines are closely related. And the property used in the existing study

relies on only one state machine. Our way to express the DSR property has been affected
by the Chandy-Misra’s [CM88].

1.2 Scope of this Work

Concurrent and distributed systems are no longer rare, but are widely used in applications
from television sets to train signaling and workflow systems. The order in which events
occur in the execution of such systems is unpredictable and only restricted by synchro-
nization of individual processes. As a result, the design of distributed systems is generally
complex, with a high probability that subtle errors will cause erroneous behavior. With-
out formally verifying the properties the system should enjoy, it is particularly difficult
for the developers of such systems to be confident about the correctness of their designs.

Many problems in distributed systems such as stable property detection and check-
pointing can be cast in terms of the problem of detecting global states. The CLDSA can
be used to determine consistent global states of a distributed system during its computa-
tion. Since it is very important and also non-trivial, it deserves to be formally specified
and verified with respect to the DSR property.

Our main goal is to investigate the CLDSA | its formal specification in Maude and its
model checking with the Maude search command, and to conduct some model checking
experiments with several different UDSs. However, we do not think that the existing
study [OH12], in which a UDS superimposed by the CLDSA has been formally specified
in Maude and model checked w.r.t. the DSR property with the Maude search command,
provides the sufficiently good foundation backing up that the CLDSA is surely model
checked w.r.t. the DSR property, and then the property encoded in the Maude search
command are neither readable nor comprehensible. To make it executable in Maude,
moreover, the UDS superimposed by the CLDSA has been specified in a very concrete
way, in which the state of each process only depends on the tokens owned by the process.

To complement the existing study [OH12|, we describe how to express the DSR property
in a more abstract way in this report. Our way to express the DSR property has been
affected by the Chandy-Misra’s [CM88].

1.3 Contributions

What we have done are the following.

Existing Studies:
— Learnt some basic technical knowledge such as distributed systems, state ma-
chine, model checking and Maude specification language;
— Learnt the CLDS A and the DSR property;

— Learnt an existing study [OH12], in which a #4DS superimposed by the CLDS A
has been formally specified in Maude and model checked w.r.t. the DSR property
with the Maude search command.

Original Works:
— Realized the expression of the DSR property in the existing study [OH12] does
not respect the property (written in English) in the original paper [CL85];
— Given the definition of the function CL;
— Found a way [Z0Z15] to faithfully express the DSR property.

1.4 Organization of the Report

The remainder of this report is organized as follows:

Chapter 2 introduces some technical background such as UDS , state machine,
model checking and Maude specification language.

Chapter 3 presents the CLDSA and the DSR property.

Chapter 4 explains an existing study [OH12], in which a distributed system super-
imposed by the CLDSA has been formally specified in Maude and model checked
w.r.t. the DSR property with the Maude search command. And some model check-
ing experiments will be conducted.

Chapter 5 shows a consideration on how to model check the DSR property, which
includes how to model a UDS and the UDS superimposed by the CLDSA as a
state machine respectively, the definition of the function CL, and a way to express
the DSR property.

Chapter 6 concludes this report and discusses possible issues of future work.
Appendix A gives the specification of the CLDS A in Maude.

Appendix B shows the verification of the DSR property by conducting some
model checking experiments with several different U DSs.

Chapter 2

Technical Background

2.1

An Underlying Distributed System (UDS)

2.1.1 Definition

A distributed system is a collection of independent entities that cooperate to solve a
problem that cannot be individually solved. It can be characterized as a collection of
mostly autonomous processors communicating over a communication network and having
the following features [KS08]:

No common physical clock This is an important assumption because it intro-
duces the terminology “distribution” in the system and gives rise to the inherent
asynchrony among the processes.

No shared memory This is a key feature that requires the processors in the sys-
tem to communicate with each other by message-passing. And this feature implies
the absence of the common physical clock.

Geographical seperation The geographically wider apart that the processors
are, the more representative is the system of a distributed system.

Autonomy and heterogeneity The processors are “loosely coupled” in that
they have different speeds and each can be running a different operating system.
They are usually not part of a dedicated system, but cooperate with one another
by offering services or solving a problem jointly.

Consider two processes P and @ in a network of processes. If P computes f(z) = z?
for a given set of values of z, and () multiplies a set of numbers by 7, then we hesitate to
call it a distributed system, since there is no interaction between P and (). However, if
P and () cooperate with one another to compute the areas of a set of circles of radius =z,
then the system of processes (P and @) is an example of a meaningful distributed system
[Gho06].

2.1.2 Model of a UDS

As described in [CL85], a UDS consists of a finite set of processes and a finite set of chan-
nels, which can be described by a labeled, directed graph in which the vertices represent
the processes and the directed edges represent the channels. Figure 2.1 is an example. It
shows a distributed system that consists of three processes (p, q, and r) and four channels
(c1, €2, ¢3 and c4), in which there are two channels (c1 and ¢2) from process p to process
q.

In addition, channels are assumed to have infinite buffers, to be error-free and FIFO
(messages are delivered in the order sent). The infinite buffer assumption is made for
ease of exposition: bounded buffers may be assumed provided there exists a proof that no
process attempts to add a message to a full buffer. The delay experienced by a message

C ”

c4 c3

O,

Figure 2.1 A distributed system with processes p, q, r
and channels cl, ¢2, ¢3 and c4

2.1.3 Global States of a UDS

The global state of a UDS consists of the states of every process and every channel in the
system, where the state of a process is characterized by the state of its local memory and
depends upon the context, and the state of a channel is characterized by the sequence of
messages “in-transit”, those that have been sent on that channel, but not yet received by
its destination process.

For a global state to be meaningful, the states of all the components of the UDS must
be recorded at exactly the same instant. This will be possible if the local clocks at
processes were perfectly synchronized or there was a global system clock that could be
instantaneously read by the processes. However, given the fact that distributed systems
are asynchronous and processes in the system do not share common clocks or memory,
each process cannot record its local state at exactly the same time, namely that such
global states can never be instantaneously done, and it leaves open the possibility of
inconsistent global states. Moreover, the variability in message delays could lead to these
separate processes constructing different global states for the same computation. In a
word, the global states we obtained may be inconsistent if we record the state of each
component (process or channel) in the system whenever we want.

However, it turns out that even if the state of all the components in a U4DS has not
been recorded at the same instant, such a state will be meaningful provided every message

that is recorded as received is also recorded as sent. Basic idea is that an effect should
not be present without its cause. A message cannot be received if it was not sent; that is,
the state should not violate causality. Such states are called consistent global states and
are meaningful global states. Inconsistent global states are not meaningful in sense that
a UDS can never be in an inconsistent global state.

As we all know, many problems in distributed systems such as stable property detection
and checkpointing can be cast in terms of the problem of detecting global states. Now,
the challenge here is how to obtain consistent global states of a UDS . Many snapshot
algorithms can be used to determine consistent global states of a UDS during its compu-
tation. One of them is known as the CLDSA [CL85|, which was proposed by Chandy and
Lamport in 1985. In this report, we will focus on this algorithm, which will be described
in detail in the Chapter 3.

2.2 State Machine

State machine can be used to model distributed systems. It consists of a set of states
and a set of state transitions (i.e., a binary relation over the states). In such a model,
the system is in one of the possible states, and the transition relation describes how the
system moves from one state to another. The definition is the following.

Definition 1 (State Machine) A state machine M = (S, I, T) consisting of
1. a set of states S;

2. a set of initial states I C S;

3. a binary relation T C S x S.

For each s,s' € S, if (s,s') € T, it denotes that there is a transition from s to s'. &

s a successor state of s.

Definition 2 (Path) A path m in M = (S,I,T) from a state sq is an infinite sequence
of states m = (sg, 81, 89, ...), where Vi > 0, (s;,5,41) € T. We say that m £ (sg, 51, 52, . ..)
is rooted at state sg.

Definition 3 (7’s i-th state) m; denotes 7’s i-th state (i.e., s;).

Definition 4 (7’s i-th suffiz) 7 denotes 7’s i-th suffix (i.e., (i, Sit1, Sita,---)).
Definition 5 (Set of all Paths) 11 denotes the set of all paths w.r.t. M.
Definition 6 (Computation) A computation is a path starting with an initial state.

Equational theories and rewrite theories are two main algebraic-based approaches to
formalizing state machines [GL05, Mes96]. They are used to verify or falsify computer
systems’ properties in different techniques, e.g., the former are used for theorem proving
[HH82, GLO05], and the latter for (bounded) model checking [CDE*T07, BM11]. In this

report, we focus on the latter one.

2.3 Model Checking

Model Checking is an automatic verification technique for finite state concurrent systems.
It has been successfully used to verify system designs and properties in a variety of appli-
cation domains, ranging from hardware and software systems to biological systems. For
extensive overviews of model checking, please refer to [CGP99, CS01].

A model checker requires a model provided in some formal description language and
a semantic property that such model is expected to satisfy. The model checker then
automatically checks the validity of the specified property in the model semantics. If
the property is found to not hold, a counterexample is generated which shows how the
property can be falsified.

The automatic generation of counterexamples is one of model checking’s powerful fea-
tures for system fault detection. Counterexamples are meant to help engineers in the
tasks of identifying the cause of a property violation and correcting the model. However,
these tasks are far from trivial with little automated support. Even in relatively small
models such tasks can be very complex since (i) counterexamples are expressed in terms
of the model semantics rather than the modeling language, (ii) counterexamples show
the symptom and not the cause of the violation and (iii) manual modifications to the
model may fail to resolve the problem and even introduce violations to other desirable
properties.

Model checking has several important advantages over mechanical theorem provers or
proof checkers for verification of circuits and protocols. The most important is that the
procedure is completely automatic. Typically, the user provides a high level representation
of the model and the specification to be checked. The model checking algorithm will
either terminate with the answer true, indicating that the model satisfies the specification,
or give a counterexample execution that shows why the formula is not satisfied. The
counterexamples are particularly important in finding subtle errors in complex transition
systems. The procedure is also quite fast and often produces an answer in a matter of
minutes. Since partial specifications can be checked, it is unnecessary to specify the circuit
completely before useful information about its correctness can be obtained. Finally, the
logics used for specifications can directly express many of the properties that are needed
for reasoning about concurrent systems.

The process of model checking comprises three main tasks: modeling, specification and
verification [CGP99.

e Modeling is to convert a system that is to be reasoned about into a formalism
accepted by a model checking tool.

e Specification is to state the properties that the system must satisfy before verifica-
tion. These are written in a specification language, usually defined in a logic-based
formalism.

Completeness is one of the important issues in specification. Model checking pro-
vides means for checking that a model of the system satisfies a given specification,

but it is impossible to determine whether the given specification covers all the prop-
erties that the system should satisfy.

e Verification is to check the validity of the properties that have been stated pre-
viously. Ideally it is completely automatic. However, in practice it often involves
human assistance such as the analysis of the verification results. In case of a neg-
ative result, the user is often provided with an error trace. This can be used as
a counterexample for the checked property and can help the designer in tracking
down where the error occurred.

The model checking problem involves the construction of an abstract model M, in the
form of variations on finite state automata, and the construction of specification formulas
¢, in the form of variations on temporal logic [BBF10]. The model checking verification
problem involves establishing that the model semantically entails the specification M = ¢.
Then we can define the model checking problem [CKNZ12] as follows.

Definition 7 (Model Checking Problem) Let M be a state-transition graph and let
¢ be a temporal logic formula. The model checking problem is to find all the states s € S
such that M, s = ¢.

The verification algorithm used in the model checking involves exploring the set of
reachable states of the model to ensure that the formula ¢ holds. If ¢ is an invariant
assertion, the model checking approach explores the entire state space to ensure that the
formula holds in all states. In order to guarantee termination, such approach requires
that the set of reachable states to be finite. Furthermore, verification by model checking
has gained popularity in industry because the verification procedure can be fully auto-
mated and counterexamples are automatically generated if the property being verified
does not hold. Since model checkers rely on exhaustive state space enumeration to estab-
lish whether a property holds or does not hold, it can put immediate limits on the state
space problem that can be explored. This problem, known as the state explosion problem
[CGJT01], is an often cited drawback of verification by model checking.

2.3.1 Pros and Cons

Model checking is a very powerful framework for verifying specifications of finite-state
systems. One of the main advantages of model checking is that it is fully automated.
No expert is required in order to check whether a given finite-state model conforms to a
given set of system specifications. Model checking also works with partial specifications,
which are often troublesome for techniques based on theorem proving. When a property
specification does not hold, a model checker can provide a counterexample (an initial state
and a set of transitions) that reflects an actual execution leading to an error state. This
is the reason why tools based on model checking are very popular for debugging.

One aspect that can be viewed as negative is that model checkers do not provide
correctness proofs. Another negative aspect is that model-checking techniques can be
directly applied only to finite-state systems. An infinite-state system can by abstracted

10

into a finite model; however, this leads to a loss of precision. Perhaps the most important
issue in model checking is the state explosion problem. It is apparent from the complexity
of the CTL model checking algorithm that its practical usefulness critically depends on
the size of the state space. Basically, if number of states grows too large, so does the
complexity of the verification procedure, possibly making the technique unusable. In the
next Section we focus on the state explosion problem and on several possible methods to
combat it.

2.3.2 State Explosion Problem

The main practical problem in model checking is the so-called state explosion problem
caused by the fact that the state machine represents the state space of the system under
investigation, and thus it is of size exponential in the size of the system description.
Therefore, even for systems of relatively modest size, it is often impossible to compute
their state machines.

The number of states of a model can be enormous. For example, consider a system
composed by n processes, each having m states. Then, the asynchronous composition of
these processes may have m”" states. Similarly, in a n-bit counter, the number of states
of the counter is exponential in the number of bits, i.e., 2". In model checking we refer
to this problem as the state explosion problem. All model checkers suffer from it. Using
arguments from complexity theory, it can be shown that, in the worst case, this problem
is inevitable. However, researchers have developed many techniques that address the
state explosion problem. These techniques are frequently used in industrial applications
of model checking. In this section, we will concentrate on key advances that make model
checking a practical technique in both research and industry.

There have been several major advances in addressing the state explosion problem. One
of the first major advances was symbolic model checking with binary decision diagrams
(BDDs). In this approach, a set of states is represented by a BDD instead of by listing
each state individually. The BDD representation is often exponentially smaller in practice.
Model checking with BDDs is performed using a fized point algorithm. Another major
advance is the partial order reduction, which exploits independence of actions in a system
with asynchronous composition of processes. A third major advance is counterexample-
guided abstraction refinement, which adaptively tries to find an appropriate level refine-
ment, precise enough to verify the property of interest yet not burdened with irrelevant
detail that slows down verification. Finally, bounded model checking exploits fast Boolean
satisfiability (SAT) solvers to search for counterexamples of bounded length.

11

2.4 Maude Specification Language

Maude [CDET07], an algebraic specification language originated from OBJ family, is
based on rewriting logic that includes as a sub-logic membership equational logic (an
extension of order-sorted equational logic). Maude supports rewriting modulo equational
theories such as associativity (assoc), commutativity (comm), and identity (id). Basic
units of Maude specifications are modules such as BOOL and NAT used for boolean values
and natural numbers. Rewrite theory described in [OH12] is as follows:

State machines (or transition systems) are specified in rewriting logic, and their spec-
ifications are called system specifications. Data used in state machines are specified
in membership equational logic. States of state machines are expressed as tuples and
associative-commutative collections (called soups), and state transitions are described in
rewrite rules.

In Maude, functional modules are equational theories in membership equational logic
satisfying some additional requirements. Computation in a functional module is accom-
plished by using the equations as rewrite rules until a canonical form is found.

A functional module is declared with keywords fmod ... endfm and contains a set of
declarations consisting of:

e importations of previously defined modules (e.g. protecting, including)

declarations of sorts (sort s . or sorts s s’ .)

declarations of subsort (subsort s < s’ .)

declarations of function symbols (op f:s1...8, => s .)

declarations of variables (vars v v' : s .)

unconditional equations (eq t =t .), and
e conditional equations (ceq t =t' if cond .)
For example, we declare a functional module of natural number NAT as follows:

fmod NAT is
protecting BOOL .
sorts Zero NzNat Nat
subsort Zero NzNat < Nat .
op 0 : => Zero [ctor]
op s_ : Nat -> NzNat [ctor]
endfm

where 0 is a constant for zero in natural number, and s_ means the successor of the input
value Nat. For instance, s 0 means the successor of 0, namely “1” in natural number.
And s s s 0 returns natural number “3” analogically.

12

Some built-in modules are also provided in Maude such as BOOL and NAT for boolean
values and natural numbers. The boolean values are denoted as true and false, and
natural numbers as 0, 1, 2, ...as usual. The corresponding sorts are Bool and Nat.
Precisely, there are three sorts for natural numbers Zero, NzNat, and Nat that are for
zero, non-zero natural numbers, and natural numbers that may be zero or non-zero. Sort
Nat is the super-sort of Zero and NzNat, namely that sort Zero and NzNat are sub-sort
of sort Nat.

Besides functional modules, Maude also has functional theories, which can be declared
with keywords fth ... endfth. It can also do the same thing as what functional modules
do such as declaring sorts, operators, and variables, and can import other theories or
modules. Theories have a loose semantics, in the sense that any algebra satisfying the
equations and membership axioms in the theory is an acceptable model.

However, there is a full Maude which is the extension of Maude. The syntax of full
Maude is similar to the one of Maude but some are different. For example, the parenthesis
are needed to cover functional modules or functional theories, i.e., (fmod ... endfm) or
(fth ... endfth).

2.4.1 Specifying in Maude

Now let us consider a simple system as an example. The system consists of two processes
p and ¢ and one channel ¢ which is an unbounded queue (namely FIFO channel with
infinite buffer) from p to ¢. Each process has a set of natural numbers, which is regarded
as the state of the process.

()

Figure 2.2 A simple system with processes p, q and channel ¢

Initially, the set of p is {0, 1, 2}, the set of ¢ is empty, and the channel is also empty.
p arbitrarily chooses and deletes one natural number z from its set, and puts z into the
channel, which is referred to as p’s action. If the channel is not empty and ¢’s set does
not contain 0, g gets the top y from the channel and adds y to its set, which is referred to
as ¢’s action. Let us specify this system, precisely a state machine modeling this system,
in Maude.

A set of natural numbers is expressed as a soup of natural numbers. The corresponding
sort is NSoup that is declared as a super-sort of Nat, which means that a natural number
itself is also the singleton. The empty set is denoted as noNat, and the soup of n natural
numbers xy, T9, ..., T, as T T3 ...Tr, whose constructor is called the juxtaposition
operator or the empty syntax. noNat is declared as an identity of the constructor.

13

Let N, N1 and N2 be Maude variables of sort Nat, NS be a Maude variable of sort NSoup,
C be a Maude variable of sort Chan in the rest of this section. The corresponding module
is described as follows:

fmod NSOUP is
pr NAT .
pr BOOL .
sort NSoup .
subsort Nat < NSoup .

op noNat : -> NSoup [ctor]
op __ : Nat Nat -> NSoup [ctor assoc comm id: noNat]
op _in_ : Nat NSoup -> Bool .

var N : Nat .
vars NS : NSoup .

eq N in N NS = true .
eq N in NS = false [owise]
endfm

where in takes a natural number N and a soup of natural numbers NS, and returns the
boolean value true if N is in the soup NS, and false otherwise.

The empty channel is denoted as empChan, and the non-empty channel that consists of
n natural numbers xq, xs, ..., T, as o1 | 3 | - -+ | 2, | empChan. The corresponding sort
is Chan. And the module can be described as follows:

fmod CHAN is
pr NSOUP .
sorts EmpChan NeChan Chan .
subsorts EmpChan NeChan < Chan .

op empChan : -> EmpChan [ctor]
op _I_ : Nat Chan -> NeChan [ctor]
op put : Chan Nat -> NeChan .

vars N1 N2 : Nat .
var C : Chan .

eq put(empChan,N2) = N2 | empChan .
eq put(N1 | C,N2) = N1 | put(C,N2)
endfm

where put takes a channel C and a natural number N and returns the channel obtained
by putting N into C at the end.

14

We can use name-value pairs (called observable components) to express the states of
processes and channels, where name may have parameters.

For process state, we use parameter Pid to identify which process we are referring
to. States of processes p and ¢ are expressed as p-state[p] : ns, p-statel[q] : ms,
respectively, where ns and ms are soups of natural numbers. For channel state, we use pa-
rameter Cid to identify which channel we are referring to. State of channel ¢ is expressed as
c-state[c] : qgn, where gn is a channel (queue) of natural numbers. p-state[p] : ns
p-statel[q] : ms, and c-state[c] : qn are called observable components, and the cor-
responding sort is 0Com.

fmod ID is
sorts Pid Cid Id .
subsorts Pid Cid < Id .

ops p q : —> Pid [ctor]
op ¢ : —> Cid [ctor]
endfm

fmod OCOM is
pr ID .
pr CHAN .
sort OCom .

op p-state[_]:_ : Pid NSoup -> 0Com [ctor]
op c-state[_]:_ : Cid Chan -> OCom [ctor]
endfm

A state of the system is expressed as a soup (called a configuration) of those observable
components, which is expressed as (p—state[p] : ns)(p-statelq] : ms)(c-statelc] : qgn).
The corresponding sort is Config that is a super-sort of 0Com.

fmod CONFIG is
pr OCOM .
sort Config .
subsort 0Com < Config .

op empConfig : -> Config [ctor]
op __ : Config Config -> Config [ctor assoc comm id: empConfig]
endfm

Let ic be the initial configuration, as we have mentioned at the beginning, initially,
the set of p is {0, 1, 2}, the set of ¢ is empty, and the channel is also empty. So we can
describe the initial state (configuration) of the system as the following:

(p-statel[p] : (0 1 2)) (p-statelq] : noNat) ((c-statelc] : empChan)).

15

In this system, there are two actions snd and rec. p arbitrarily chooses and deletes
one natural number x from its set, and puts = into the channel, which is referred to as
p’s action snd. If the channel is not empty and ¢’s set does not contain 0, ¢ gets the top
y from the channel and adds y to its set, which is referred to as ¢’s action rec.

p’s action is described in the following rewrite rule:

rl [snd]
(p-state[p] : (N NS)) (c-statel[c] : C)
=>
(p-statelp] : NS) (c-statelc] : put(C, N))

where snd is the label of the rewrite rule, and put takes a channel C and a natural number
N and returns the channel obtained by putting N into C at the end. If a given term contains
an instance of (p-state[p] : (N NS)) (c-statelc] : C),the instance is replaced with
the corresponding instance of (p-statel[p] : NS) (c-statelc] : put(C, N)).

q’s action is described in the following rewrite rule:

crl [rec]
(c-statelc] : (N | C)) (p-statelq] : NS)
=>
(c-state[c] : C) (p-statel[q] : (N NS))
if not(0 in NS)

This rewrite rule is conditional. The condition not(0 in NS) means that 0 ¢ NS. The
rule can be applied if the condition holds.

2.4.2 The Search Command

The Maude system is equipped with model checking facilities: the search command and
the LTL model checker. In my research, the model checking invariants through search is
used.

Given a state s, a state pattern p and an optional condition ¢, the search command
searches the reachable state space from s in a breadth-first manner for all states that
match p such that ¢ holds. The syntax of search command is as follows:

search in M : s =* p such that c .

where M is a module in which the specification of the state machine concerned is described
or available. A rewrite expression ¢ = t' can be used in the optional condition ¢. This
checks if t' is reachable from ¢ by zero or more rewrite steps with rewrite rules. This is
the essence of model checking the DSR property, which will be described in the Chapter
3.

The following search finds all states (configurations) such that they are reachable from
ic and the ¢’s set contains only 2:

search in EXPERIMENT : ic =>* (p-statel[q] : 2) CF .

16

where EXPERIMENT is the module in which the specification of the system we have been
discussing is available. The search finds 5 solutions as follows:

Solution 1 (state 12)
states: 13 rewrites: 37 in Oms cpu (2ms real) (89805 rewrites/second)
CF --> (p-state[p]l: 0 1) c-statelc]: empChan

Solution 2 (state 22)
states: 23 rewrites: 85 in Oms cpu (2ms real) (141196 rewrites/second)
CF --> (p-state[p]l: 1) c-statelc]: 0 | empChan

Solution 3 (state 24)
states: 25 rewrites: 93 in Oms cpu (2ms real) (142857 rewrites/second)
CF --> (p-state[p]: 0) c-state[c]: 1 | empChan

Solution 4 (state 31)
states: 32 rewrites: 143 in Oms cpu (3ms real) (175030 rewrites/second)
CF --> (p-state[p]: noNat) c-statelc]: O | 1 | empChan

Solution 5 (state 33)
states: 34 rewrites: 154 in Oms cpu (3ms real) (176000 rewrites/second)
CF --> (p-statel[p]: noNat) c-statelc]: 1 | O | empChan

No more solutions.
states: 38 rewrites: 199 in 1ms cpu (3ms real) (193016 rewrites/second)

The following search finds all states (configurations) such that they are reachable from
ic, the ¢’s set contains only 2, and (p-statel[p] : noNat) (c-statel[c] : empChan)
(p-statel[q] : (0 1 2)) is reachable from them:

search in EXPERIMENT : ic =>* (p-statel[q] : 2) CF
such that (p-statelq] : 2) CF
=>
(p-state[p] : noNat) (c-statel[c] : empChan) (p-statelq] : (0 1 2))

The search finds 3 solutions as follows:

Solution 1 (state 12)
states: 13 rewrites: 74 in Oms cpu (Oms real) (232704 rewrites/second)
CF --> (p-state[p]l: 0 1) c-state[c]: empChan

Solution 2 (state 24)

states: 25 rewrites: 163 in Oms cpu (Oms real) (238653 rewrites/second)
CF --> (p-state[p]: 0) c-state[c]: 1 | empChan

17

Solution 3 (state 33)
states: 34 rewrites: 239 in Oms cpu (Oms real) (244126 rewrites/second)
CF --> (p-state[p]l: noNat) c-statelc]: 1 | O | empChan

No more solutions.
states: 38 rewrites: 284 in 1ms cpu (ims real) (243150 rewrites/second)

Note that although the reachable state space from ic is bounded, the whole state space
is unbounded. The search command can be given as options the maximum number of
solutions and the maximum depth of search. If the maximum number n of solutions is
given, the search terminates when it finds n solutions. Therefore, even if the reachable
state space from a given state is unbounded, the search command can be used and may
terminate. If the maximum depth d of search is given, only the bounded reachable state
space from a given state up to depth d is searched. Hence, the search command can be
used as a bounded model checker. These options are not used in this report.

18

Chapter 3

The Chandy-Lamport Distributed
Snapshot Algorithm (CLDSA)

3.1 Motivation of the CLDS A

As described before, many problems in distributed systems such as stable property de-
tection and checkpointing can be cast in terms of the problem of detecting global states.
The global state of a distributed system consists of the states of every process and every
channel in the system, where the state of a process is characterized by the state of its
local memory and depends upon the context, and the state of a channel is characterized
by the sequence of messages “in-transit”, those that have been sent on that channel, but
not yet received by its destination process.

Given the fact that distributed systems are asynchronous and processes in the system
do not share common clocks or memory, each process cannot record its local state at
exactly the same time, namely that such global states can never be instantaneously done,
and it leaves open the possibility of inconsistent global states. Moreover, the variability in
message delays could lead to these separate processes constructing different global states
for the same computation. It is not straightforward to obtain consistent global states of a
UDS |, namely that what we obtained may be inconsistent. Therefore, it is necessary to
apply some algorithms when we want to obtain consistent global states of a /DS . One
of those algorithms is known as the CLDS.A [CL85], which was proposed by Chandy and
Lamport in 1985. It can be used to determine consistent global states of a distributed
system during its computation.

The CLDS A plays the role of a group of photographers observing a panoramic, dynamic
scene, such as a sky filled with migrating birds — a scene so vast that it cannot be captured
by a single photograph. The photographers must take several snapshots and piece the
snapshots together to form a picture of the overall scene. The snapshots cannot all be
taken at precisely the same instant because of synchronization problems. Furthermore,
the photographers should not disturb the process that is being photographed; for instance,
they cannot get all the birds in the heavens to remain motionless while the photographs
are taken. Yet, the composite picture should be meaningful. The problem before us is to

19

define “meaningful” and then to determine how the photographs should be taken.

Example 1 We now consider the following system described in Figure 3.1 as an example
to motivate the steps of the algorithm.

The system contains one token (represented by the pentastar) that is passed from one
process to another, and hence we call this system the “single-token conservation” system.
Each process has two states, sqg and s;, where sq is the state in which the process does
not possess the token and s; is the state in which it does. The initial state of P is s; and
of Q is sp. Fach process has two events: (1) a transition from s; to so with the sending
of the token, and (2) a transition from sy to s; with the receipt of the token.

C1

Cc2

Figure 3.1 The single-token conservation system

In the example we shall assume that we can record the state of a channel instanta-
neously. Let Cl and C2 be the channel from P to Q and the channel from Q to P,
respectively. The purpose of the example is to gain an intuitive understanding of the
relationship between the instant at which the states of channels C1 and C2 are to be
recorded and the instants at which the states of processes P and Q are to be recorded.

3.1.1 Scenarios of Inconsistent Global States

The global state of a distributed system consists of the sate of every process and the state
of every channel in the system. Due to the asynchrony of distributed systems, the lack of
globally shared memory, global clock and unpredictable message delays make recording
such consistent global states non-trivial. What we obtained may be inconsistent.

We assume that the states of processes and channels can be recorded whenever we want.
Now let us see two scenarios of inconsistent global states.

Scenario 1

e Step 1: We record the states of P and C2. It shows that one token in P and empty
in C2.

Cc1

Cc2

Figure 3.2 Recording the states of P and C2

20

e Step 2: P sends the token to Q by putting the token into C1.

+* c1

c2

Figure 3.3 Sending the token (by putting it into C1)

e Step 3: We record the states of Q and C1 after sending the token. It shows that
empty in Q and one token in C1.

* c1

c2

Figure 3.4 Recording the states of Q and C1

e Step 4: We can obtain the global state of the system by combining the states we
recorded. And it show one token in P, one token in C1, and empty in others.

But we know, only one token should be in the system. Namely, we got an inconsistent
global state.

Scenario 2

e Step 1: We record the states of Q and C1. It shows that empty in Q and empty in
Cl1.

e Step 2: P sends the token to Q by putting the token into C1.

e Step 3: We record the states of P and C2 after sending the token. It shows that
empty in P and empty in C2.

e Step 4: We can obtain the global state of the system by combining the states we
recorded. And it show no token in the system.

But we know, one token should be in the system. Namely, we got another inconsistent
global state.

21

3.2 Outline of the CLDSA

When a snapshot is taken, each process in the system records its own local state, and the
states of all its incoming channels. Since there is no globally shared memory or clock in
a UDS | processes can only communicate with each other through messages passed on
channels that connect them. That leads to getting an inconsistent global state, namely
that the snapshot may not be reachable from the state when the snapshot has started
being taken.

The CLDS A uses a control message, called a marker whose role in a FIFO channel is to
separate messages in the channels. The CLDS A can be initiated by any process, identified
as the initiator. The initiator spontaneously records its state and starts executing the
CLDSA . Moreover, the CLDS A superimposes the underlying computation, i.e., it runs
concurrently with, but does not alter, the underlying computation. The CLDS A requires
processes to record their states, send markers and record some messages received, but
does not interfere with the underlying computation.

The CLDS A cannot ensure that the states of all processes and all channels are recorded
at exactly the same time. However, the CLDSA does ensure that the recorded process
and channel states form a meaningful (consistent) global system state. The outline of the
CLDSA in the form of rules is presented as the following.

Marker Sending Rule for a Process p
e p records its state;
e For each outgoing channel C' on which a marker has not been sent, p sends one

marker along C' before p sends further messages along C.

Marker Receiving Rule for a Process ¢
On receiving a marker along a channel C":

if ¢ has not recorded its state then
e ¢ records its state;
e g records the state of C' as the empty sequence.

else

e g records the state of C as the sequence of messages received along C' after ¢’s state
was recorded and before ¢ received the marker along C'.

The CLDSA can be initiated by one or more processes in a distributed system by
executing the “Marker Sending Rule”, by which each of them records its local state
spontaneously without receiving markers from other processes and sends one marker along
each of its outgoing channels. A process executes the “Marker Receiving Rule” on receiving
a marker. If the process has not yet recorded its local state, then it records its local state,

22

records the state of the channel on which the marker is received as the empty sequence,
and sends one marker along each of its outgoing channels. Otherwise, it records the state
of the channel as the sequence of messages received along the channel after its state was
recorded and before it received the marker along the channel.

The CLDS A terminates in finite time after each process in the system has received a
marker along all of its incoming channels. All the local snapshots get disseminated to all
other processes, allowing all processes to determine the recorded consistent global state.

3.3 Termination of the CLDS A

The “Marker Sending Rule” and the “Marker Receiving Rule” guarantee that if a marker
is received along every channel, then each process will record its state and the states of
all incoming channels. To ensure that the CLDS A terminates in finite time, each process
must ensure that (L1) no marker remains forever in an incident input channel and (L2)
it records its state within finite time of initiation of the algorithm.

The CLDS A can be initiated by one or more processes, each of which records its state
spontaneously, without receiving markers from other processes. If process p records its
state and there is a channel from p to a process ¢, then ¢ will record its state in finite
time because p will send a marker along the channel and ¢ will receive the marker in finite
time (L1). Hence if p records its state and there is a path (in the graph representing
the system) from p to a process ¢, then g will record its state in finite time because, by
induction, every process along the path will record its state in finite time. Termination
in finite time is ensured if for every process ¢:

e Process ¢ spontaneously records its state, or
e There is a path from a process p, which spontaneously records its state, to q.

In particular, if the graph is strongly connected and at least one process spontaneously
records its state, then all processes will record their states in finite time (provided L1 is
ensured).

The CLDSA described so far allows each process to record its state and the states
of incoming channels. The recorded process and channel states must be collected and
assembled to form the recorded global state (snapshot state). We shall not describe
algorithms for collecting the recorded information because such algorithms have been
described elsewhere [DS80, MC82]. A simple algorithm for collecting information in a
system whose topology is strongly connected is for each process to send the information
it records along all outgoing channels, and for each process receiving information for the
first time to copy it and propagate it along all of its outgoing channels. All the recorded
information will then get to all the processes in finite time, allowing all processes to
determine the recorded global state.

23

3.4 The Distributed Snapshot Reachability (DSR)
Property

Let s1, s, and s, be the global state when the CLDS A starts, the snapshot, and the global
state when the CLDSA terminates, respectively. Although the snapshot s, may not be
identical to any of the global states that occurs in the computation between s; and s,,
the desired properties the CLDS A should satisfy are the following DSR property:

1. s, is always reachable from s; (RP1), and

2. sy is always reachable from s, (RP2).

Actual exec. states

Start State (s:) @) @ Finish state (s;)

\ /’
Possible &ec.\states /

N
@

Snapshot (s.)

Figure 3.5 The Distributed Snapshot Reachability (DSR) Property

24

Chapter 4

A Study on How to Specity and
Model Check the CLDS A in Maude

Many model checkers such as symbolic model checkers, explicit-state model checkers
and SAT/SMT-based bounded model checkers have been proposed [CCGT02, Hol04,
dMOR™04]. Accordingly, many case studies have been conducted by applying them to
mechanical analysis of systems including distributed systems, protocols and algorithms
[TS11, AP10, OF07a].

To the best of our knowledge, however, there are few case studies except for [OH12]
in which the Chandy-Lamport Distributed Snapshot Algorithm (CLDSA) [CL85] is
mechanically analyzed with model checkers. As we all know, many problems in distributed
systems such as stable property detection and checkpointing can be cast in terms of the
problem of detecting global states. The CLDSA , which was proposed by Chandy and
Lamport in 1985, can be used to determine consistent global states of a distributed system
during its computation. Since it is very important and also non-trivial, it deserves to be
formally specified and verified with respect to (w.r.t.) some significant properties.

Let s; (called the start state) be the state when the CLDSA starts (a distributed snap-
shot starts being taken), s, be the snapshot, and s (called the finish state) be the state
when the CLDSA terminates (the snapshot completes being taken). The CLDSA should
enjoy the property that s, is always reachable from s; and ss is always reachable from s,.
The property is called the Distributed Snapshot Reachability (DSR) property, which
guarantees the CLDS A takes consistent global states of a distributed system.

As far as we have investigated, to formalize the DSR property, we have to consider two
kinds of states, (1) the states of a UDS , and (2) the states of the UDS superimposed
by the CLDSA . In existing temporal logics such as LTL and CTL, only one kind of
states are considered when they are used to formalize system properties. Thus, it is not
straightforward to express the DSR property in LTL and CTL.

There is an existing study [OH12] in which a distributed system superimposed by the
CLDS A has been formally specified in Maude and model checked w.r.t. the DSR property
with the Maude search command, which demonstrates the power of the command, namely
that more general invariant properties can be checked by the command than standard LTL
and CTL model checkers. The case study also demonstrates the importance of case anal-

25

ysis in specification, which often needs to be conducted for interactive theorem proving.
It is also worth noting that the formal specification of the CLDSA in Maude depends on
neither the number of processes nor the number of channels in the distributed system,
although we need to fix them to conduct model checking.

Learning the existing formal specification and verification of a UDS superimposed by
the CLDS A in Maude is a good way to understand the CLDSA more completely and
deeply.

In this chapter, I will give an explanation on the existing study [OH12], including how
to specify distributed systems superimposed by the algorithm in Maude and how to model
check the DSR property with the Maude search command. Moreover, I will also conduct
some more experiments to model check the DSR property for the CLDSA .

4.1 System Specification of the CLDS A

In the existing study, the authors described their way of modeling (formalizing) the
CLDSA . What is modeled (formalized) is actually YDSs on which the CLDS A is super-
imposed. In other words, two parts have been considered in the system specification, one
is the UDS part, and the other one is the CLDS A part. In the UDS part, the processes
in the system typically have three kinds of events (local, send and receive). And in the
CLDSA part, the behaviors of the algorithm are reflected.

For the local event, the processes change their states without sending or receiving
tokens; for the send event, the process send tokens owned by themselves to another
processes by putting the tokens into their outgoing channels, and change their states
accordingly; for the receive event, the process receive tokens from another processes by
getting the tokens from their incoming channels, and change their states accordingly.
Note that the processes in the system may not have any incoming channels or outgoing
channels.

As we have described, a UDS consists of one or more processes that are connected
with directed channels that are unbounded queues. To cover all possible situations, a
system may consists of one process only, and some processes have no outgoing channels,
no incoming channels, or neither of them, although such a system may not be regarded
as a distributed system, or may be regarded as multiple distributed systems. Processes
exchange non-marker messages that are called tokens and may consume them. They sup-
pose that the state of each process only depends on the set of tokens owned by the process,
and also suppose that at most one distributed snapshot is taken in each computation of a
distributed system, and there is no self-channel, namely a channel from a process to the
same process.

26

4.1.1 State Expression for a YDS Superimposed by the CLDS A
Basic Data Used

Processes (or process identifiers) are denoted as p(0), p(1), ..., and the sort is Pid. The
corresponding module is described as follows:
fmod PID is

pr NAT .

sort Pid .

op p : Nat -> Pid [ctor]
endfm
where Nat is for natural numbers such as 0, 1, 2, ... to identify which process we are
referring to.

Tokens are denoted as t(0), (1), ..., and the sort is Token. A marker is denoted as

marker, and the sort is Marker. Sort Msg is declared as a super-sort of Token and Marker.
The corresponding modules are described as follows:

fmod TOKEN is

pr NAT .

sort Token .

op t : Nat -> Token [ctor]
endfm

fmod MARKER is

sort Marker .

op marker : -> Marker [ctor]
endfm

fmod MESSAGE is

pr TOKEN .

pr MARKER .

sort Msg .

subsorts Token Marker < Msg .
endfm

Sorts EmpChan, NeChan, and Chan are for the empty channel, non-empty channels, and
channels that may be empty or non-empty, respectively. The empty channel is denoted as
empChan. A non-empty channel that consists of n messages in the order of mg, my, ...,
my—1 is denoted as mg | my | ... | m,_1 | empChan. A function put takes a channel ¢ and
a message m (namely a token or a marker), and returns the channel obtained by putting
m into ¢ at the end (channels are assumed to be FIFO). The corresponding module is
described as follows:

fmod CHANNEL is

27

pr MESSAGE .

sorts EmpChan NeChan Chan .
subsorts EmpChan NeChan < Chan .
op empChan : -> EmpChan [ctor]

op _l_ : Msg Chan -> NeChan [ctor]
op put : Chan Msg -> NeChan .

vars M1 M2 : Msg .
var C : Chan .

eq put(empChan,M2) = M2 | empChan .
eq put(M1 | C,M2) = M1 | put(C,M2)
endfm

Since the state of a process only depends on the set of tokens owned by the process itself,
the state can be expressed as the soup of tokens. The sort for soups of tokens is PState
that is also declared as a super-sort of sort Token. The empty soup is denoted as noToken.
The soup of n tokens ¢(0), t(1), ..., t(n — 1) is denoted as ¢(0) #(1) ... t(n —1). Note
that noToken is declared as an identity of the constructor (the juxtaposition operator) of
soups of tokens. The corresponding module is described as follows:

fmod PROCESS-STATE is
pr BOOL .
pr TOKEN .
sort PState .
subsort Token < PState .
op noToken : -> PState [ctor]
op __ : PState PState -> PState [ctor assoc comm id: noToken]

var T : Token .
eq TT=T.
endfm

Each process has three kinds of progresses as follows:

1. has not yet started the CLDSA ,

2. has already started but not yet completed the CLDSA |, or
3. has already completed the CLDSA .

Those situations are denoted as notYet, started and completed, respectively. The
corresponding sort is Prog, and the module is described as follows:

fmod PROGRESS is

sort Prog .
ops notYet started completed : -> Prog [ctor]
endfm

28

Observable Components and (Meta) Configurations

The state of UDS consists of the state of each process and the state of each channel in
the system. The state ps of a process p is denoted as p-state(p| : ps, and the state cs of
a channel from a process p to a process ¢ is denoted as c-state[p, ¢, n] : ¢s, where n is a
natural number. Since there may be more than one channel from process p to process ¢,
n is used to identify one of them. “p-state[p]: ps” and “c-statelp, ¢, n] : ¢s” are called
observable components. The corresponding sort is 0Com, and the module is described as
follows:

fmod OBSERVABLE-COMPONENT is
pr PID .
pr CHANNEL .
pr PROCESS-STATE .
pr PROGRESS .
sort OCom .

op (p-state[_] :_) : Pid PState -> 0Com [ctor]
op (c-statel[_,_,_] :_) : Pid Pid Nat Chan -> 0Com [ctor]

op (cnt :_) : Nat -> 0Com [ctor]
op (#ms[_] :_) : Pid Nat -> OCom [ctor]
op (done[_,_,_] :_) : Pid Pid Nat Bool -> 0Com [ctor]
op (prog[_] :_) : Pid Prog -> OCom [ctor]
op (consume :_) : Bool -> 0Com [ctor]
endfm

In addition to p-state and c-state observable components, we also need to add the
following observable components in the above module 0BSERVABLE-COMPONENT for control
information to specify the behaviors of the CLDSA :

— (cnt : n): n is the number of processes that have not yet completed the CLDSA .
When n becomes 0, a distributed snapshot has been taken.

— (prog[p] : pg): pg is the progress of a process p, indicating that the process has not
yet started, has started, or completed the CLDSA . notYet, started, or completed
can be used to represent them respectively.

— (#ms[p] : n): n is the number of incoming channels to a process p from which
markers have not yet been received. When n becomes 0, p has received markers
from all of its incoming channels, implying that p completes the CLDSA if p has
one or more incoming channels. Note that p may not have any incoming channels
and then n may be 0 even in initial states.

— (done[p, ¢, n] : b): b is either true or false. If b is true, a process ¢ has received a
marker from the incoming channel identified by n from a process p to ¢. Otherwise,
¢ has not.

29

— (consume : b): b is either true or false. If b is true, tokens may be consumed.
Otherwise, tokens are not.

The control information is expressed as control(...) that is also a meta configuration
component, where . .. is a soup of cnt, prog, #ms, done and consume observable compo-
nents. When the content in each prog component is completed, a snapshot of the whole
system has been taken. To make the system specification less complicated, the component
cnt is used, although it seems to be redundant.

Example 2 (A configuration of the 3-process € 5-channel system) Let us con-
sider the 3-process & 5-channel system.

Figure 4.1 The 3-process & 5-channel system

We suppose that p(0) has one token t(1), the other processes have no token, one channel
from p(0) to p(1) consists of one token t(0), and the other channels are empty. The state
of the system is expressed as the following configuration:

(p-state[p(0)] : ¢(1)) (p-state[p(1)] : noToken

([p(2)] : noToken) (c-state[p(0), p(1), 0] : (¢(0) | empChan))
(c-state[p(0), p(1), 1] : empChan) (c-state[p(0), p(2), 0] : empChan)
((1), p(2), 0] : empChan) (c-state[p(2), p(0), 0] : empChan)

The state of a system is expressed as a soup of observable components that is called a
configuration. The corresponding sort is Config that is a super-sort of 0Com. The empty
configuration is denoted as empConfig that is an identity of the constructor of soups of
observable components. The corresponding module is described as follows:

fmod CONFIGURATIONS is
pr OBSERVABLE-COMPONENT .
sort Config .
subsort 0Com < Config .
op empConfig : -> Config [ctor]
op __ : Config Config -> Config [ctor assoc comm id: empConfig]

var 0C : 0OCom .
eq 0C 0C = OC .

30

var CF : Config .
vars P’ P Q : Pid .
var PS : PState .
var C : Chan .

var M : Msg .

var N : Nat .

op bcast : Config Pid Marker -> Config .
op inchans : Config Pid -> Config .

-—— bcast
eq bcast(empConfig,P,M) = empConfig .
eq bcast((c-state[P,Q,N] : C) CF,P,M)
= (c-state[P,Q,N] : put(C,M)) bcast(CF,P,M)
eq bcast(0C CF,P,M) = 0OC bcast(CF,P,M) [owise]

——— inchans
eq inchans(empConfig,P) = empConfig .
eq inchans((c-state[Q,P,N] : C) CF,P)
= (c-statel[Q,P,N] : empChan) inchans(CF,P) .
eq inchans(0C CF,P) = inchans(CF,P) [owise] . --- no OC!!!
endfm

where the function bcast takes a configuration cf, a process p and a marker marker, and
returns another configuration by putting one marker into each of its outgoing channels
And the function inchans takes a configuration cf and a process p, and returns another
configuration by initializing the states of all incoming channels of process p.

Moreover, to take into account a UDS superimposed by the CLDS A ;| we should add
some more information to record the start state when the CLDSA starts, the snapshot
and the finish state when the CLDS A terminates.

The states of a UDS , the start state, the snapshot, and the finish state are expressed
as base-state(...), start-state(...), snapshot(...), and finish-state(...), respectively,
where ... is a soup (associative-commutative collection) of p-state and c-state observ-
able components. Those are called meta configuration components and the corresponding
sort is MCComp. The corresponding modules are described as follows:

fmod META-CONFIGURATION-COMPONENT is
pr CONFIGURATIONS .
sort MCComp .

ops base-state start-state finish-state

snapshot control : Config -> MCComp .
endfm

31

fmod META-CONFIGURATION is
pr META-CONFIGURATION-COMPONENT .
sort MConfig .
subsort MCComp < MConfig .
op __ : MConfig MConfig -> MConfig [assoc comm]

var MOC : MCComp .
eq MOC MOC = MOC .
endfm

A global state of a UDS superimposed by the CLDSA is expressed as a soup of meta
configuration components:

base-state(bc) start-state(sc) snapshot(ssc) finish-state(fc) control(ctl)

which is called a meta configuration. And the corresponding sort is MConfig. Initially,
all of sc, ssc and fc are empConfig. If scis not empConfig, it means that a distributed
snapshot has started being taken. If fc is not empConfig, it means that a distributed
snapshot has been taken and then ssc is the snapshot.

Example 3 (A meta configuration of the 3-process € 5-channel system) Let us
consider the 3-process € 5-channel system again.

Figure 4.2 The 3-process & 5-channel system

Initially, we suppose that p(0) has one token t(1), the other processes have no tokens,
and one channel from p(0) to p(1) consists of one token t(0) , and the other channels are
empty. Tokens may be consumed. Then the global sate of the UDS superimposed by the
CLDSA can be expressed as a meta configuration as follows:

base-state((p-state[p

(0)] : t(1)) (p-state[p(1)] : noToken) (p-state[p(2)] : noToken)
(c-state[p(0), p E

)
), 0] = ((0) | empChan))
(c-state[p(0), p(1), 1] : empChan) (c-state[p(0), p(2), 0] : empChan)
(c-state[p(1), p(2), 0] : empChan) (c-state[p(2), p(0), 0] : empChan))
start-state(empConfig)
snapshot(empConfig)
finish-state(empCon fig)
control((cnt : 3) (#ms[p(0)] : 1) (#mslp(1)] : 2) (Amslp(2)] : 2))

32

(done[p(0), p(1), 0] : false) (done[p(0), p(1), 1] : false)
(done[p(0), p(2), 0] : false) (done[p(1), p(2), 0] : false)
(done[p(2), p(0), 0] : false)

Eprog[p(O)] ; not)i)/et) (prog[p(1)] : notYet) (prog[p(2)] : notYet)
consume : true

4.1.2 State Transitions for a YDS Superimposed by the CLDS A
What each process in a UDS superimposed by the CLDS A does is as follows:

1.
2.

The process may consume a token owned by it and changes its state accordingly.

The process may put a token into one of its outgoing channels if it has some outgoing
channels and changes its state accordingly.

The process may get a token from one of its nonempty incoming channels if it has
some nonempty incoming channels and changes its state accordingly.

The process may start the CLDSA when it has not yet received any markers. It
records its state, initializes the states of its incoming channels as empty if any, and
puts one marker into each of its outgoing channels if any.

The process may get a marker from one of its incoming channels if it has some
incoming channel. If it has already started the CLDSA , it has completed the
record of the incoming channel. Moreover, if it has received markers from all the
incoming channels, it has locally completed the CLDSA . If it has not yet started,
it records its state and the state of the incoming channel as empty, and initializes
the states of the other incoming channels as empty if any. Then, it puts one marker
into each of its outgoing channels if any. If it has only one incoming channel, it has
locally completed the CLDSA . Note that the first three describe the UDS part.

In the rest of the report, BC, CC, SC and SSC are Maude variables of sort Config, P and
Q are Maude variables of sort Pid, T is a Maude variable of sort Token, PS is a Maude
variable of sort PState, N is a Maude variable of sort Nat, C and C’ are Maude variables
of sort Chan, and NzN and NzN’ are Maude variables of sort NzNat. Note that NzNat for
natural numbers except 0, such as 1,2,3,....

For a UDS superimposed by the CLDSA | we can have the following rewrite rules.

e Consumption of Tokens. For the first case, it can be described by the following

rewrite rule:

rl [chgStt]
base-state((p-state[P] : (T PS)) BC)
finish-state(empConfig)
control((consume : true) CC)

33

=>

base-state((p-state[P] : PS) BC)
finish-state(empConfig)
control((consume : true) CC)

where chgStt is the label of the rewrite rule. When a distributed snapshot has been
taken, namely that the content of the meta configuration component finish-state
is not empConfig, then we intentionally stop the underlying computation because
we want to reduce the size of the reachable state space. This is why we have
finish-state(empConfig) on both sides of the rule.

e Sending of Tokens. For the second case, it can be described by the following
rewrite rule:

rl [sndTkn]
base-state((p-state[P] : (T PS)) (c-state[P,Q,N] : C) BC)
finish-state(empConfig)
=>
base-state((p-state[P] : PS) (c-state[P,Q,N] : put(C,T)) BC)
finish-state(empConfig)

where put takes a channel C and a token T and returns the channel obtained by
putting T into C at the end. If a given term contains an instance of (p-state [P]

(T PS)) (c-state[P,Q,N] : C), the instance is replaced with the corresponding
instance of (p-state[P] : PS) (c-state[P,Q,N] : put(C,T)).

e Receipt of Tokens. For the third case, we need to take into account four subcases:

1. The process has not yet started the CLDSA .

rl [recTkn¬Yet&~done]
base-state((p-state[P] : PS) (c-state[Q,P,N] : T | C) BC)
finish-state(empConfig)
control((prog[P] : notYet) CC)
=>
base-state((p-state[P] : (T PS)) (c-statel[Q,P,N] : C) BC)
finish-state(empConfig)
control ((prog[P] : notYet) CC)

2. The process has completed the CLDSA .

rl [recTkn&completed&done]
base-state((p-state[P] : PS) (c-state[Q,P,N] : T | C) BC)
finish-state(empConfig)
control ((prog[P] : completed) CC)
=>

34

base-state ((p-state[P] : (T PS)) (c-statel[Q,P,N] : C) BC)
finish-state(empConfig)
control ((prog[P] : completed) CC)

3. The process has started the CLDSA |, not yet completed it, and has not yet
received a marker from the incoming channel.

rl [recTkn&started&~done]
base-state((p-state[P] : PS) (c-state[Q,P,N] : T | C) BC)
snapshot ((c-state[Q,P,N] : C’) SSC)
finish-state(empConfig)
control((prog[P] : started) (donel[Q,P,N] : false) CC)
=>
base-state((p-state[P] : (T PS)) (c-statel[Q,P,N] : C) BC)
snapshot ((c-state[Q,P,N] : put(C’,T)) SSC)
finish-state(empConfig)
control((prog[P] : started) (donel[Q,P,N] : false) CC)

4. The process has started the CLDSA , not yet completed it, and has already
received a marker from the incoming channel.

rl [recTkn&started&done]
base-state((p-state[P] : PS) (c-state[Q,P,N] : T | C) BC)
finish-state(empConfig)
control((prog[P] : started) (donelQ,P,N] : true) CC)
=>
base-state((p-state[P] : (T PS)) (c-statel[Q,P,N] : C) BC)
finish-state(empConfig)
control((prog[P] : started) (donelQ,P,N] : true) CC)

When a process P starts the CLDSA , it initializes the record of each incoming
channel (identified by a natural number N) from each process Q unless a marker
has been received from the channel. The initialization is described by adding
“c-state[Q,P,N] : empChan” into the snapshot meta configuration component.
For the third case, such a record is updated by putting the received token. For the
other three cases, it is not necessary to update such a record.

Record of Process States. If a process has already received a marker, namely
that it has already recorded its state as well. Hence, we only need to take into
account the case in which a process has not yet received any markers. When a
process records its state in the case, the case is split into two subcases:

1. The process globally initiates the CLDSA , namely that it is the first pro-
cess that records its state in the system. This case is further split into three
subcases:

(a) The UDS only consists of the process. For this case, the CLDS A will be
completed.

35

rl [start&cnt=1&#ms=0]
base-state((p-state[P] : PS))
start-state(empConfig)
snapshot (empConfig)
finish-state(empConfig)
control((cnt : 1) (progl[P] : notYet) (#ms[P] : 0) CC)
=>
base-state((p-state[P] : PS))
start-state((p-state[P] : PS))
snapshot ((p-state[P] : PS))
finish-state((p-state[P] : PS))
control((cnt : 0) (prog[P] : completed) (#ms[P] : 0) CC)

where start-state(empConfig) in the left hand side of the rewrite rule
indicates that the process P is the first one that starts taking a distributed
snapshot. And then the start state is recorded as “(p-state[P] : PS)” in
the start-state meta configuration component, and the state of process
P is recorded and the state of each incoming channel to P is initialized
as“(p-state[P] : PS)” in the snapshot meta configuration component.
And the observable component (cnt : 0) in control meta configuration
component means that the CLDSA will be completed, representing by the
observable component (prog[P] : completed).
The system consists of more than one process, and the process does not
have any incoming channels. For this case, the process will locally complete
the CLDS A .
crl [start&cnt>1&#ms=0]
base-state((p-state[P] : PS) BC)
start-state(empConfig)

snapshot (empConfig)
control((cnt : NzN’) (prog[P] : notYet) (#ms[P] : 0) CC)
=>

base-state((p-state[P] : PS) bcast(BC,P,marker))

start-state((p-state[P] : PS) BC)

snapshot ((p-state[P] : PS))

control((cnt : sd(NzN’,1)) (prog[P] : completed) (#ms[P]
if NzN’ > 1 .

where bcast (BC,P,marker) puts one marker into each of its outgoing
channels, and sd stands for symmetric difference, takes two natural num-
bers z, y, and returns (z — y) if * > y and (y — x) otherwise. And the
observable component (#ms[P] : 0) in control meta configuration com-
ponent means that the process does not have any incoming channels. After
recording its state and putting a marker into each of its outgoing chan-
nels, the process will locally complete the CLDSA |, representing by the
observable component (prog[P] : completed).

36

: 0) CC)

(¢) The system consists of more than one process, and the process has one or
more incoming channels.
rl [start&cnt>1&#ms>0]

base-state((p-state[P] : PS) BC)

start-state(empConfig)

snapshot (empConfig)

control((prog[P] : notYet) (#ms[P] : NzN’) CC)

=>

base-state((p-state[P] : PS) bcast(BC,P,marker))

start-state((p-state[P] : PS) BC)

snapshot ((p-state[P] : PS) inchans(BC,P))

control((prog[P] : started) (#ms[P] : NzN’) CC)
where inchans (BC,P) initializes the states of its all incoming channels.
(#ms[P] : NzN’) means that the process P has one or more incoming
channels because NzN’ is a non-zero natural number, and then the system
consists of more than one process. P has not started the CLDSA , which
is indicated by (prog[P] : notYet).
The start state is recorded as “(p-state[P] : PS) BC” inthe start-state
meta configuration component, and the state of process P is recorded and
the state of each incoming channel to P is initialized as“(p-state[P] : PS)
inchans (BC,P)” in the snapshot meta configuration component.
In other words, after recording its state, the process P will also need to
start to record the states of all its incoming channels, representing by
inchans (BC,P).

2. The process does not, namely that there exists another process that has globally
initiated the CLDSA . This case is further split into three subcases:

(a) The process does not have any incoming channels, and there are no pro-
cesses except for the process that have not completed the CLDSA . For
this case, the CLDS A will be completed.

crl [record&cnt=1&#ms=0]
base-state((p-state[P] : PS))
start-state(SC)
snapshot (SSC)
finish-state(empConfig)
control((cnt : 1) (progl[P] : notYet) (#ms[P] : 0) CC)
=>
base-state((p-state[P] : PS))
start-state(SC)
snapshot ((p-state[P] : PS) SSC)
finish-state((p-state[P] : PS))
control((cnt : 0) (prog[P] : completed) (#ms[P] : 0) CC)
if (SC =/= empConfig)
The condition SC =/= empConfig indicates that the process P is not the

37

first one that starts the CLDSA |, namely that there exists another process
in the system that has already started the CLDSA .

(b) The process does not have any incoming channels, and there are some
other processes that have not completed the CLDSA . For this case, the
process will locally complete the CLDSA .

crl [record&cnt>1&#ms=0]
base-state((p-state[P] : PS) BC)
start-state(SC)
snapshot (SSC)
control((cnt : NzN’) (prog[P] : notYet) (#ms[P] : 0) CC)
=>
base-state((p-state[P] : PS) bcast(BC, P, marker))
start-state(SC)
snapshot ((p-state[P] : PS) SSC)
control((cnt : sd(NzN’,1)) (prog[P] : completed) (#ms[P] : 0) CC)
if (NzN’ > 1) /\ (SC =/= empConfig)
(¢) The process has some incoming channels.

crl [record&cnt>1&#ms>0]
base-state((p-state[P] : PS) BC)
start-state(SC)
snapshot (SSC)
control((prog[P] : notYet) (#ms[P] : NzN’) CC)
=>
base-state((p-state[P] : PS) bcast(BC,P,marker))
start-state(SC)
snapshot ((p-state[P] : PS) inchans(BC,P) SSC)
control((prog[P] : started) (#ms[P] : NzN’) CC)
if (SC =/= empConfig)
The three subcases in the second case are almost the same as what de-
scribed in the first case. The main difference between the two cases is the
condition part SC =/= empConfig, which indicates that the process P is
not the first one that starts the CLDSA , namely that there exists another
process in the system that has already started the CLDSA .

e Receipt of Markers. When a process receives a marker from an incoming channel,
we first need to take into account the following two cases:

1. The process has not yet started the CLDSA . This case is further split into
three subcases:

(a) The process has only one incoming channel, and there are no processes
that have not yet completed the CLDSA except for the process, which
implies that the process does not have any outgoing channels.

rl [recMkr¬Yet&#ms=1&cnt=1]

38

base-state((p-state[P] : PS) (c-statel[Q,P,N] : marker | C) BC)

snapshot (SSC)

finish-state(empConfig)

control ((prog[P] : notYet) (#ms[P] : 1) (cnt : 1)
(done[Q,P,N] : false) CC)

=>

base-state((p-state[P] : PS) (c-statel[Q,P,N] : C) BC)

snapshot ((p-state[P] : PS) (c-state[Q,P,N] : empChan) SSC)

finish-state((p-state[P] : PS) (c-state[Q,P,N] : C) BC)

control((prog[P] : completed) (#ms[P] : 0) (cnt : 0)
(done[Q,P,N] : true) CC)

(b) The process has only one incoming channel, and there are some other
processes that have not yet completed the CLDSA .

crl [recMkr¬Yet&#ms=1&cnt>1]
base-state((p-state[P] : PS) (c-statel[Q,P,N] : marker | C) BC)
snapshot (SSC)
control((prog[P] : notYet) (#ms[P] : 1) (cnt : NzN)
(done[Q,P,N] : false) CC)
=>
base-state((p-state[P] : PS) (c-state[Q,P,N] : C)
bcast (BC,P,marker))
snapshot ((p-state[P] : PS) (c-statel[Q,P,N] : empChan) SSC)
control((prog[P] : completed) (#ms[P] : 0) (cnt : sd(NzN,1))
(done[Q,P,N] : true) CC)
if NzN > 1 .
(¢) The process has more than one incoming channel.

crl [recMkr¬Yet&#ms>1&cnt>1]
base-state((p-state[P] : PS) (c-statel[Q,P,N] : marker | C) BC)
snapshot (SSC)
control((prog[P] : notYet) (#ms[P] : NzN’) (cnt : NzN)
(done[Q,P,N] : false) CC)
=>
base-state((p-state[P] : PS) (c-statel[Q,P,N] : C)
bcast (BC,P,marker))
snapshot ((p-state[P] : PS) (c-statel[Q,P,N] : empChan)
inchans(BC,P) SSC)
control ((prog[P] : started) (#ms[P] : sd(NzN’, 1)) (cnt : NzN)
(done([Q,P,N] : true) CC)
if NzN’ > 1 .
Note that when a process receives a marker from an incoming channel, the
natural number in the #ms observable component must be greater than
zero and the natural number in the cnt observable component must be
greater than zero. This is why we have (cnt : NzN) on both sides.

39

2. The process has already started the CLDSA . This case is further split into
three subcases:

(a) There are no incoming channels from which markers have not been received
except for the incoming channel, and there are no processes that have not
yet completed the CLDS A except for the process.

rl [recMkr&started&#ms=1&cnt=1]
base-state((p-state[P] : PS) (c-statel[Q,P,N] : marker | C) BC)
finish-state(empConfig)
control ((prog[P] : started) (#ms[P] : 1) (cnt : 1)
(done([Q,P,N] : false) CC)
=>
base-state((p-state[P] : PS) (c-statel[Q,P,N] : C) BC)
finish-state((p-state[P] : PS) (c-state[Q,P,N] : C) BC)
control ((prog[P] : completed) (#ms[P] : 0) (cnt : 0)
(done([Q,P,N] : true) CC)
When the process P receives the marker, a global snapshot has been taken
because of the assumption. The receipt of the marker by P does not af-
fect (the contents of) the global snapshot. This is why the rewrite rule
does not have any snapshot meta configuration components. The finish
state is recorded as (p-state[P] : PS) (c-state[Q,P,N] : C) BC in
the finish-state meta configuration component.

(b) There are no incoming channels from which markers have not been received
except for the incoming channel, and there are some other processes that
have not yet completed the CLDSA .

crl [recMkr&started&#ms=1&cnt>1]
base-state((p-state[P] : PS) (c-statel[Q,P,N] : marker | C) BC)
control ((prog[P] : started) (#ms[P] : 1) (cnt : NzN)
(done[Q,P,N] : false) CC)
=>
base-state((p-state[P] : PS) (c-statel[Q,P,N] : C) BC)
control((prog[P] : completed) (#ms[P] : 0) (cnt : sd(NzN,1))
(done[Q,P,N] : true) CC)
if NzN > 1 .
(¢) There are some other incoming channels from which markers have not been
received.
crl [recMkr&started&#ms>1&cnt>1]

base-state((p-state[P] : PS) (c-statel[Q,P,N] : marker | C) BC)

control ((prog[P] : started) (#ms[P] : NzN’) (cnt : NzN)
(done[Q,P,N] : false) CC)

=>

base-state((p-state[P] : PS) (c-state[Q,P,N] : C) BC)

control((prog[P] : started) (#ms[P] : sd(NzN’,1)) (cnt : NzN)
(done[Q,P,N] : true) CC)

40

if NzN’ > 1 .

Case analysis, which often needs to be conducted for interactive theorem proving, has
played a very important role in the specification. The system specification depends on
neither the number of processes nor the number of channels, which demonstrates the
power of Maude. Note that the same specification can also be described in CafeOBJ, a
sibling language of Maude. The current implementation of Maude is superior to that of
CafeOBJ, however, in terms of execution performance. This is why the authors have used
Maude in their case study.

To model check the DSR property (RP1 and RP2), however, we need to fix those
numbers, which are described in initial meta configurations. The corresponding module
is described as follows:

fmod INIT-META-CONFIG is
pr META-CONFIGURATION .

op imc : -> MConfig .
eq imc
= base-state((p-state[p(0)]: t(0)) (p-state[p(1)]: noToken)
(c-state[p(0),p(1),0]: empChan) (c-state[p(1),p(0),0]: empChan))
start-state(empConfig)
finish-state(empConfig)
snapshot (empConfig)
control((cnt : 2) (#ms[p(0)]: 1) (#ms[p(1)]: 1)
(done[p(0),p(1),0]: false) (donel[p(1),p(0),0]: false)
(proglp(0)]: notYet) (proglp(1)]: notYet)
(consume : false))

A meta configuration is a global view (state) of the system (a UDS superimposed by
the CLDSA). We need to have such a global view so that we can check (or verify)
the DSR property of the system. Global views of the system are also used to describe
rewrite rules. For each of most basic actions of processes such as receipt of a marker, there
are multiple rewrite rules that have been obtained by case analyzes (or case distinctions)
based on predicates that are not locally observable by any process. The purpose of the case
analyzes is to cover all possible situations. The case analyzes based on global predicates
do not affect the action of each process designated by the system. This is because each
rewrite rule whose main player is a process P can modify only the P’s state, incoming
channels and/or outgoing channels w.r.t. the base-state meta configuration component.

We informally reason about the algorithm to write rewrite rules. For Record of Pro-
cess States, we argue the following. “If a process has already received a marker, it has
already recorded its state as well. Hence, we only need to take into account the case
in which a process has not yet received any markers.” For the case 1-(a) in Receipt of
Markers, we argue the following. “The process has only one incoming channel, and there
are no processes that have not yet completed the algorithm except for the process, which

41

implies that the process does not have any outgoing channels.” This informal reasoning
can reduce the number of rewrite rules but may overlook some possible situations.

Since any process of making formal models and writing formal specifications is not
formal, however, any way of dosing so may overlook some possible situations. As far as
we know, all we can do is to carefully make formal models and write formal specifications,
and carefully validate them by some means such as animation. Since formal specifications
in Maude (and any other OBJ family languages such as CafeOBJ) are executable, we can
animate/execute formal specifications to validate them.

4.2 Model Checking of the DSR Property

As we described before, the desired properties the CLDS A should satisfy are the following
DSR property:

1. s, is always reachable from s; (RP1), and
2. sy is always reachable from s, (RP2).

where s; (called the start state) is the state when the CLDS A starts (a distributed snap-
shot starts being taken), s, is the snapshot, and s, (called the finish state) is the state
when the CLDSA terminates (the snapshot completes being taken).

As far as we have investigated, to formalize the DSR property, we have to consider two
kinds of states, (1) the states of a UDS , and (2) the states of the UDS superimposed
by the CLDSA . In existing temporal logics such as LTL and CTL, only one kind of
states are considered when they are used to formalize system properties. Thus, it is not
straightforward to express the DSR property in LTL and CTL.

In the existing study [OH12|, the authors model checked w.r.t. the DSR property
with the Maude search command after a UDS superimposed by the CLDSA has been
formally specified in Maude. This demonstrates the power of the command, namely
that more general invariant properties can be checked by the command than standard
LTL and CTL model checkers. It is also worth noting that the formal specification of
the CLDSA in Maude depends on neither the number of processes nor the number of
channels in the distributed system, although we need to fix them to conduct some model
checking experiments.

The DSR property can be divided into RP1 and RP2 , which can be checked with
the Maude search command, respectively. Let imc be an initial meta configuration of a
UDS superimposed by the CLDSA . We suppose that the system consists of n processes
p(0), ..., p(n—1).

The following search (called the search for snapshots) finds all states in which a snapshot
has been taken:

search in EXPERIMENT :
imc =>*x start-state(SC) finish-state(FC) snapshot(SSC) MC
such that FC =/= empConfig .

42

where EXPERIMENT is a module where the system specification module is imported and
some variables such as SC, FC, SSC and MC are declared. Let mg be the number of the
solutions to the search for snapshots.

The following search (called the search for RP1) finds all states in which a snapshot
has been taken such that the snapshot SSC is reachable from the start state SC under the
UDS

search in EXPERIMENT :
imc =>* start-state(SC) finish-state(FC) snapshot(SSC) MC
such that FC =/= empConfig
/\ base-state(SC) finish-state(empConfig)

control ((prog[p(0)]: notYet) ... (proglp(n-1)]: notYet) (consume : b))
=>

base-state(SSC) finish-state(empConfig)

control((prog[p(0)]: notYet) ... (proglp(n-1)]: notYet) (consume : b))

where b is true if tokens may be consumed, and false otherwise. The rewrite expression
in the condition checks if SSC is reachable from SC with the three rewrite rules “chgStt”,
“sndTkn” and “recTkn¬Yet&~done”, namely under the underlying distributed system.
We need to have finish-state(empConfig) and control((progl[p(0)]: notYet)
(proglp(n-1)]: notYet) (consume : b)) in the rewrite expression to enforce using
the three rewrite rules.

Let m; be the number of the solutions to the search for RP1 . If m; equals mg, the
CLDSA enjoys RP1 w.r.t. the underlying distributed system.

RP2 can be checked likewise. All needed to do is to replace SC and SSC with SSC and
FC, respectively, in the rewrite expression. This search is called the search for RP2 and
it can be described as follows:

search in EXPERIMENT :
imc =>* start-state(SC) finish-state(FC) snapshot(SSC) MC
such that FC =/= empConfig
/\ base-state(SSC) finish-state(empConfig)

control((prog[p(0)]: notYet) ... (proglp(n-1)]: notYet) (consume : b))
=>

base-state(FC) finish-state(empConfig)

control ((prog[p(0)]: notYet) ... (proglp(n-1)]: notYet) (consume : b))

Let my be the number of the solutions to the search for RP2 . If ms equals myg, the
CLDSA enjoys RP2 w.r.t. the underlying distributed system.

The DSR property (RP1 and RP2) holds if and only if ((m; == mg) A (mg == my)).
And this is the key point of model checking the DSR property.

43

4.2.1 Conducting Some Experiments for the DSR Property

To model check the DSR property the CLDS A should satisfy, I have already conducted
some model checking experiments with several different YDSs with the Maude search
command.

For each experiment of a concrete UDS , we should do three sub-experiments to find
mg, mq and ma, respectively, and then check whether they are equal or not. If and only
if (moy == my == my), then the DSR property holds for this concrete UDS .

Let us consider the following concrete system:

Figure 4.3 The 3-process & 5-channel system

There are three processes p(0), p(1), p(2) in the system.

There are at most two tokens t(0), t(1) in the system.

The state of each process only depends on the tokens owned by itself. So, the state
of each process can be expressed as @, {t(0)}, {t(1)} or {t(0),t(1)}. Initially, p(0)
has the two tokens t(0), t(1), and the other processes do not have any tokens.

There are five channels: p(0) — p(1), p(0) — p(1), p(0) — p(2), p(1) — p(2),
p(2) — p(0). Initially, each channel is empty sequence.

What each process in the system does repeatedly is as follows:
1. The process may consume a token owned by it. Accordingly, it changes its state.

2. The process may put a token owned by it in one of its outgoing channels if it has
some outgoing channels. Accordingly, it changes its state.

3. The process may get a token from one of its non-empty incoming channels if it has
some non-empty incoming channels. Accordingly, it changes its state.

The results returned by Maude shows that all the searches for snapshots, RP1 and
RP2 find 190,434 solutions. Therefore, the algorithm enjoys RP1 and RP2 with respect
to the 3-process & 5-channel system. Note that the number of reachable states (meta
configurations) from #mec (initial meta configuration) with respect to the 3-process &
5-channel system is 3,587,681.

44

The following table shows the information of some other experiments I have conducted.

Table 4.1 Model checking experiments for some concrete UDSs

’ H #Processes ‘ #Channels ‘ #Tokens ‘ Consume H #Solutions ‘ Time (mins) ‘

imc00 2 2 1 F 40 0.03
imcO01 2 2 1 T 55 0.05
imc02 3 2 3 T 874 0.75
imc03 2 3 2 T 9,315 7.90
imc04 3 4 2 F 20,851 34.6
imc05 3 4 2 T 33,344 63.1
imc06 3 4 2 T 81,740 169
imc07 3 4 3 T — 910
imc08 3 5 2 T 190,434 828
imc09 5 8 1 T 2,380 9.47
imc10 5 8 2 T — 243
where

e imc** indicates initial meta configurations of concrete UDSs superimposed by the
CLDS A we are conducting.

e #Processes indicates the number of processes in the UDS .
e #Channels indicates the number of channels in the UDS .

e #Tokens indicates the number of tokens in the UDS , namely that the total number
of tokens in processes and channels.

e Consume indicates whether tokens can be consumed or not. The value of consume
b is either true (T) or false (F). If b is true, tokens may be consumed. Otherwise,
tokens are not.

e #Solutions indicates the number of solutions we obtained from Maude system by
using the search command, namely that the values of mg, m; and ms. Note that all
values of them are the same, meaning that the DSR property holds in the concrete
UubDS .

e Time (mins) indicates how much time we need to find the solution of each sub-
experiment. Since for each experiment of a concrete UDS , we should do three
sub-experiments to find mg, m; and msy, respectively, and then check whether they
are equal or not, so we need 3 times the value of Time (mins) showed in the table
to check whether the DSR property holds or not for the concrete UDS .

Note that for some concrete UDSs such as imc07 and imc10, we cannot obtain the
solutions because of the state explosion problem in case that the number of components
(process, channel and token) in the system are large enough to the Maude system.

45

As described before, a UDS consists of a finite set of processes and a finite set of chan-
nels, which can be described by a labeled, directed graph in which the vertices represent
the processes and the directed edges represent the channels.

The system may be different even though the number of processes and channels are
exactly the same, because it also depends on the direction of the channels and how to
connect the processes by channels. This is the reason why the number of solutions are
different for some UDSs with the same number of processes, channels and tokens. And the
following are the corresponding labeled, directed graphs representing the Y DSs described

in Table 4.1.

Figure 4.4 The system for imc00 & imcO1 Figure 4.8 The system for imc06 & imc07

/

Figure 4.5 The system for imc02 Figure 4.9 The system for imc08

imc06 : t(0) t(1)

t(0) | :
;

imc00 : F
imc01 : T

Y
£
Q
S
\]
t+
—
=
N/
/

/6

-+
—~

(=}
=

|

@@
_—

N_ S
©

6@

Figure 4.6 The system for imc03 Figure 4.10 The system for imc09
. £(0)
) t(1) \
£(0) (1 l H
imc04 : F /
Figure 4.7 The system for imc04 & imc05 Figure 4.11 The system for imc10

46

Only model checking does not let us conclude that the CLDS A enjoys the DSR property
(RP1 and RP2) for all distributed systems. One possible way to achieve this goal is to
prove that if the CLDS A does not enjoy the DSR property for a distributed system that
consists of an arbitrary number of processes and an arbitrary number of channels, then
neither does it for a smaller system that consists of a few processes and a few channels
such as the 3-process & 5-channel system.

47

Chapter 5

A Consideration on How to Model
Check the DSR Property

5.1 Motivation of the Consideration

Many problems in distributed systems such as stable property detection and checkpointing
can be cast in terms of the problem of detecting global states.

The CLDSA [CL85], which was proposed by Chandy and Lamport in 1985, can be
used to determine consistent global states of a distributed system during its computation.
Since it is very important and also non-trivial, it deserves to be formally specified and
verified with respect to (w.r.t.) the DSR property.

As far as we have investigated, to formalize the DSR property, we have to consider two
kinds of states, (1) the states of a UDS , and (2) the states of the UDS superimposed
by the CLDSA . In existing temporal logics such as LTL and CTL, only one kind of
states are considered when they are used to formalize system properties. Thus, it is not
straightforward to express the DSR property in LTL and CTL.

Moreover, there is an existing study [OH12| in which a distributed system superim-
posed by the CLDSA has been formally specified in Maude and model checked w.r.t.
the DSR property with the Maude search command. We do not, however, think that
the existing study [OH12] provides the sufficiently good foundation backing up that the
CLDSA is surely model checked w.r.t. the DSR property, because the authors did not
discuss whether the property is faithfully expressed or not. And then the DSR property
encoded in the Maude search command are neither readable nor comprehensible. To
make it executable in Maude, moreover, the system superimposed by the CLDSA has
been specified in a very concrete way, in which the state of each process only depends on
the tokens owned by the process itself. We do think that it is necessary to make sure that
the property is faithfully expressed to claim that the property is model checked for the
CLDSA .

To complement the existing study [OH12], we consider how to surely model check the
DSR property [ZOZ15]. To this end, we should find a way to faithfully express the
DSR property. Our way to express the property relies on two state machines, although

48

the two state machines are closely related. And the property used in the existing study
relies on only one state machine. Our way to express the DSR property has been affected
by the Chandy-Misra’s [CM88].

From here on, we specify the system in a more abstract way, namely that we can just
use one kind of symbol such as ps instead of a set of tokens to express its state, use
messages instead of tokens, and consider marker as a special kind of message.

5.2 Modeling a UDS as a State Machine

Each process in the distributed system has its own local state, and so does each channel.
The state of a UDS should consist of the state of each process and the state of each
channel in the system, where the state of a process is characterized by the state of its
local memory and depends upon the context, and the state of a channel is characterized
by the sequence of messages “in-transit”, those that have been sent on that channel, but
not yet received by its destination process.

State machine can be used to model distributed systems. It consists of a set of states
and a set of state transitions (i.e., a binary relation over the states).

5.2.1 State Expression for a UDS

We can use name-value pairs (called observable components) to express the states of
processes and channels, where name may have parameters, and use a set of process and
channel states to represent the state of a UDS as follows:

op p-state[]:- : Pid PState — OCom [ctor] .

op c-state[, ., J:_: Pid Pid Nat CState — OCom [ctor] .

op empConfig : — Config [ctor] .

op - - : Config Config — Config [ctor assoc comm id: empConfig] .

where
— Pid for process identifiers such as p,q,r,...;

— Nat for natural numbers such as 0,1,2,..., which is used to identify one of the
channels in case that there are more than one channel from one process to another;

OCom for observable components;

— Config for UDS states, a super-sort of OCom.

Given a term s of sort Config, let p-state(s) and c-state(s) be the set of p-state ob-
servable components in s and the set of c-state observable components in s, respectively.
Given two p-state observable components (p-state[pl] : ps;) and (p-state[p2] : psy), they
are equal up to process states iff (pl = p2), and given two c-state observable components
(c-state[pl, ql, nl] : ¢s1) and (c-state[p2, q2, n2] : c¢sq), they are equal up to channel
states iff ((pl = p2) A (ql = q2) A (nl = n2)).

49

Given two terms sl and s2 of sort Config, they are equal up to process and channel
states iff (if s1 contains (p-state[pl] : psi), then s2 contains (p-state[pl] : pss), and vice
versa; and if s1 contains (c-state[pl, ql, nl] : ¢sy), then s2 contains (c-state[pl, ql, nl] :
cs9), and vice versa).

Example 4 (A configuration of the 3-process € J-channel system) Let us con-
sider the 3-process € j-channel system described as the following.

OE==—10
c2 ~
c4 c3

O,

Figure 5.1 The 3-process & 4-channel system

Then the global sate s € Syps of of the UDS described in Figure 5.1 can be expressed
as a configuration as follows:

52 ((p-statelp] : psy) (p-stateld] : psa) (p-statels] : pss)
(c-state[p, q, 0] : ¢s1) (c-statelp, q, 1] : ¢s2)
(c-state[q, 1, 0] : c¢s3) (c-state[r, p, 0] : ¢sy))

5.2.2 State Transitions for a UDS

Taking an arbitrary process, an incoming channel and an outgoing channel of the process
from a UDS , we have the following three state transitions. Note that the process may
not have any incoming channel or outgoing channel, and (s, s’) € T is represented in the
form of s = .

e Change of Process States. The process may change its state without sending or
receiving any message, which can be described by the following transition rule:

T R]chgStt] :
(p-state[P] : PS)
=
(p-state[P] : PS")
e Sending of Messages. The process may put a message into one of its outgoing

channels if it has some outgoing channels and may change its state accordingly,
which can be described by the following transition rule:

TR[sndMsg] :
(p-state[P] : PS) (c-state[P, Q, N] : Ms)

20

=
(p-state[P] : PS’) (c-state[P, Q, N] : enqueue(Ms, M))
where enqueue(M s, M) means that putting the message M into the end of the FIFO
queue Ms.

e Receipt of Messages. The process may get a message from one of its nonempty
incoming channels if it has some nonempty incoming channels and may change its
state accordingly, which can be described by the following transition rule:

TRrecMsg] :
(p-state[P] : PS) (c-state|Q, P, N] : (M | Ms))
=
(p-state[P] : PS’) (c-state[Q, P, N] : Ms)
Definition 8 (Myps) For a state machine M = (S,I,T) formalizing a UDS , Myps
2 (Sups, lups, Tups) , where

1. Syps is a set of terms whose sorts are Config such that all terms in the set are equal
up to process and channel states;

2. Iyps is a subset of Syps;

3. Typs is defined from those three transition rules T Rs described above for each pro-
cess, each incoming channel and each outgoing channel of the process.

5.3 Modeling a UDS Superimposed by the CLDSA as
a State Machine

5.3.1 State Expression for a UDS Superimposed by the CLDS A

As we described in Chapter 4, a global state of a UDS superimposed by the CLDSA is
expressed as a soup of meta configuration components:

base-state(bc) start-state(sc) snapshot(ssc) finish-state(fc) control(ctl)

where base-state(bc) for the state of a UDS , start-state(sc) for the start state,
snapshot(ssc) for the snapshot, finish-state(fc) for the finish state, and control(ctl) for
specifying the behaviors of the CLDSA . Those are called meta configuration components
and the corresponding sort is MCComp. bc, sc, ssc and fc, whose sort are Config, are a
soup (associative-commutative collection) of p-state and c-state observable components.
And ctl, whose sort is CtlConfig, is a soup of the following observable components:

— (cnt : n): n is the number of processes that have not yet completed the CLDSA .
When n becomes 0, a distributed snapshot has been taken.

o1

— (prog[p] : pg): pg is the progress of a process p, indicating that the process has not
yet started, has started, or completed the CLDSA . notYet, started, or completed
can be used to represent them respectively.

— (#ms[p] : n): n is the number of incoming channels to a process p from which
markers have not yet been received. When n becomes 0, p has received markers
from all of its incoming channels, implying that p completes the CLDSA if p has
one or more incoming channels. Note that p may not have any incoming channels
and then n may be 0 even in initial states.

— (done[p, q,n] : b): b is either true or false. If b is true, a process ¢ has received a
marker from the incoming channel identified by n from a process p to g. Otherwise,
q has not.

When the content in each prog component is completed, a snapshot of the whole system
has been taken. To make the system specification less complicated, the component cnt is
used, although it seems to be redundant.

base-state(bc) start-state(sc) snapshot(ssc) finish-state(fc) control(ctl) is called
a meta configuration. And the corresponding sort is MConfig. Initially, all of sc, ssc and
fc are empConfig. If scis not empConfig, it means that a distributed snapshot has
started being taken. If fc is not empConfig, it means that a distributed snapshot has
been taken and then ssc is the snapshot.

Example 5 (A meta configuration of the 3-process € 5-channel system) Let us
consider the 3-process € 5-channel system described as the following.

Figure 5.2 The 3-process & 5-channel system

Initially, we suppose that one channel from p(0) to p(1) consists of one message M , and
the other channels are empty. Then the global sate s € S¢rpsa of the UDS superimposed
by the CLDS A described in Figure 5.2 can be expressed as a meta configuration as follows:

s £ base-state((p-state[p(0)] : psg) (p-state[p(1)] : ps;) (p-state[p(2)] : pss)
(c-state[p(0), p(1), 0] : (M | empChan))
(c-state[p(0), p(1), 1] : empChan) (c-state[p(0), p(2), 0] : empChan)
(c-state[p(1), p(2), 0] : empChan) (c-state[p(2), p(0), 0] : empChan))
start-state(empCon fig)
snapshot(empCon fig)

52

finish-state(empCon fig)

control((cnt : 3) (#ms[p(0)] : 1) (#ms[p(1)] - 2) (#ms[p(2)] : 2))
(done[p(0), p(1), 0] : false) (done[p(0), p(1), 1] : false)
(done[p(0), p(2), 0] : false) (done[p(1), p(2), 0] : false)
(donelp(2), p(0), 0] : false)

(prog[p(0)] : notYet) (prog[p(1)] : notYet) (prog[p(2)] : notYet))

5.3.2 State Transitions for a UDS Superimposed by the CLDS A
What each process in a UDS superimposed by the CLDS A does is as follows:

1.

2.

The process may change its state without sending or receiving any message.

The process may put a message into one of its outgoing channels if it has some
outgoing channels and changes its state accordingly.

. The process may get a message from one of its nonempty incoming channels if it

has some nonempty incoming channels and changes its state accordingly.

The process may start the CLDSA when it has not yet received any markers. It
records its state, initializes the states of its incoming channels as empty if any, and
puts one marker into each of its outgoing channels if any.

The process may get a marker from one of its incoming channels if it has some
incoming channel. If it has already started the CLDSA , it has completed the
record of the incoming channel. Moreover, if it has received markers from all the
incoming channels, it has locally completed the CLDSA . If it has not yet started,
it records its state and the state of the incoming channel as empty, and initializes
the states of the other incoming channels as empty if any. Then, it puts one marker
into each of its outgoing channels if any. If it has only one incoming channel, it has
locally completed the CLDSA . Note that the first three describe the UDS part.

In the rest of the report, BC', SC and SSC' are variables of sort Config, C'C' is a variable
of sort CtlConfig, P and Q are variables of sort Pid, PS and PS’ are variables of sort
PState, N is a variable of sort Nat, Ms and M s’ are variables to represent sequences of
messages, and NzN and NzN’ are variables of sort NzNat. Note that NzNat for natural
numbers except 0, such as 1,2,3,....

For a UDS superimposed by the CLDSA | we can have the following state transitions.

e Change of Process States. For the first case, it can be described by the following

transition rule:
TR'[chgStt] :
base-state((p-state[P] : PS) BC)
=
base-state((p-state[P]| : PS") BC)

93

e Sending of Messages. For the second case, it can be described by the following
transition rule:

TR'[sndMsg] :
base-state((p-state[P] : PS) (c-state[P, Q, N] : Ms) BC)
=
base-state((p-state[P] : PS’) (c-state[P, Q, N] : enqueue(Ms, M)) BC)

e Receipt of Messages. For the third case, we need to take into account four
subcases:

1. The process has not yet started the CLDSA .
TR'[recMsg¬Yet&~done] :
base-state((p-state[P] : PS) (c-state[Q, P, N] : M | Ms) BC)
control((prog[P] : notYet) CC)
=
base-state((p-state[P] : PS’) (c-state[Q, P, N| : Ms) BC)
control((prog[P] : notYet) CC)
2. The process has completed the CLDSA .
TR'[recMsg&completed&done] :
base-state((p-state[P] : PS) (c-state[Q, P, N] : M | Ms) BC)
control((prog[P] : completed) CC)
=
base-state((p-state[P] : PS’) (c-state[Q, P, N] : Ms) BC)
control((prog[P] : completed) CC)

3. The process has started the CLDSA | not yet completed it, and has not yet
received a marker from the incoming channel.

TR [recMsg&started&~done] :
base-state((p-state[P] : PS) (c-state[Q, P, N] : M | Ms) BC)
snapshot((c-state[Q, P, N] : Ms") SSC)
control((prog[P]| : started) (done[Q, P, N| : false) CC)
=
base-state((p-state[P] : PS’) (c-state[Q, P, N] : Ms) BC)
snapshot((c-state[Q, P, N] : enqueue(Ms', M)) SSC')
control((prog[P] : started) (done[Q, P, N| : false) CC)

4. The process has started the CLDSA , not yet completed it, and has already
received a marker from the incoming channel.

TR'[recMsg&started&done] :
base-state((p-state[P] : PS) (c-state[Q, P, N] : M | Ms) BC)

o4

control((prog[P]| : started) (done[Q, P, N] : true) CC')

=

base-state((p-state[P] : PS’) (c-state[Q, P, N] : Ms) BC)
control((prog[P] : started) (done[Q, P, N| : true) CC)

e Record of Process States. If a process has already received a marker, namely
that it has already recorded its state as well. Hence, we only need to take into
account the case in which a process has not yet received any markers. When a
process records its state in the case, the case is split into two subcases:

1. The process globally initiates the CLDSA , namely that it is the first pro-
cess that records its state in the system. This case is further split into three
subcases:

(a) The UDS only consists of the process.
TR'[start&ent=1&#ms=0] :
base-state((p-state[P] : PS))
start-state(empConfig)
snapshot(empCon fig)
finish-state(empConfig)
control((prog[P] : notYet) (cnt : 1) (#ms[P] : 0) CC)
=
base-state((p-state[P] : PS))
start-state((p-state[P] : PS))
snapshot((p-state[P] : PS))
finish-state((p-state[P] : PS))
control((prog[P] : completed) (cnt : 0) (#ms[P] : 0) CC)
(b) The system consists of more than one process, and the process does not
have any incoming channels.
TR [start&ent>1&#ms=0] :
base-state((p-state[P] : PS) BC)
start-state(empConfig)

snapshot(empCon fig)
control((prog[P] : notYet) (ent : NzN') (#ms[P] : 0) CC)
=

base-state((p-state[P] : PS) bcast(BC, P, marker))
start-state((p-state[P] : PS) BC)
snapshot((p-state[P] : PS))
control((prog[P] : completed) (cnt : sd(NzN',1)) (#ms[P] : 0) CC)
if N2N">1
where sd stands for symmetric difference, takes two natural numbers x, vy,
and returns (x —y) if x > y and (y —) otherwise.

(¢) The system consists of more than one process, and the process has one or
more incoming channels.

95

TR [start&ent>1&#ms>0] :
base-state((p-state[P] : PS) BC)
start-state(empConfig)

snapshot(empConfig)
control((prog[P] : notYet) (#ms[P] : N2N') CC)
=

base-state((p-state[P] : PS) bcast(BC, P, marker))

start-state((p-state[P] : PS) BC)

snapshot((p-state[P] : P.S) inchans(BC, P))

control((prog[P] : started) (#ms[P] : N2N') CC)
where bcast(BC, P, marker) puts one marker into each of its outgoing
channels, and inchans(BC, P) initializes the states of its all incoming chan-
nels.

2. The process does not, namely that there exists another process that has globally
initiated the CLDSA . This case is further split into three subcases:

(a) The process does not have any incoming channels, and there are no pro-
cesses except for the process that have not completed the CLDSA .
TR'[record&ent=1&#ms=0] :
base-state((p-state[P] : PS))
start-state(SC')
snapshot(SSC)
finish-state(empCon fig)
control((prog[P] : notYet) (cnt : 1) (#ms[P] : 0) CC)
=
base-state((p-state[P] : PS))
start-state(SC)
snapshot((p-state[P] : PS) SSC)
finish-state((p-state[P] : PS))
control((prog[P] : completed) (cnt : 0) (#ms[P] : 0) CC)
if SC # empConfig
(b) The process does not have any incoming channels, and there are some
other processes that have not completed the CLDSA .
TR [record¢>1&#ms=0] :
base-state((p-state[P] : PS) BC)
start-state(SC)
snapshot(55C)
control((prog[P] : notYet) (cnt : NzN') (#ms[P] : 0) CC)
=
base-state((p-state[P] : PS) bcast(BC, P, marker))
start-state(SC)
snapshot((p-state[P] : PS) SSC)
control((prog[P] : completed) (cnt : sd(NzN’, 1)) (#ms[P] : 0) CC)
if (N2N'> 1) A (SC # empConfig)

o6

(¢) The process has some incoming channels.
TR'[record¢>1&#ms>0] :
base-state((p-state[P] : PS) BC)
start-state(SC)
snapshot(5SC)
control((prog[P] : notYet) (#ms[P] : N2N') CC)
=
base-state((p-state[P] : PS) beast(BC, P, marker))
start-state(SC)
snapshot((p-state[P] : PS) inchans(BC, P) SSC)
control((prog[P] : started) (#ms[P] : NzN') CC)
if SC # empConfig

e Receipt of Markers. When a process receives a marker from an incoming channel,
we first need to take into account the following two cases:

1. The process has not yet started the CLDSA . This case is further split into
three subcases:

(a) The process has only one incoming channel, and there are no processes
that have not yet completed the CLDSA except for the process, which
implies that the process does not have any outgoing channels.

TR [recMkr¬Yet&#ms=1¢=1] :

base-state((p-state[P] : PS) (c-state[Q, P, N| : marker | Ms) BC)
snapshot(SSC)
finish-state(empConfig)
control((prog[P] : notYet) (#ms[P] : 1) (cnt : 1)

(done[Q, P, N] : false) CC)
=
base-state((p-state[P] : PS) (c-state|Q, P, N| : Ms) BC)
snapshot((p-state[P] : PS) (c-state[Q, P, N] : empChan) SSC)
finish-state((p-state[P] : PS) (c-state[Q, P, N] : Ms) BC)
control((prog[P] : completed) (#ms[P] : 0) (cnt : 0)

(done[Q, P, N] : true) CC)

(b) The process has only one incoming channel, and there are some other

processes that have not yet completed the CLDSA .
TR'[recMkr¬ Yet&#ms=1&cnt>1] :
base-state((p-state[P] : PS) (c-state[Q, P, N| : marker | Ms) BC)
snapshot(SSC)
control((prog[P] : notYet) (#ms[P] : 1) (ent : NzN)
(done[Q, P, N] : false) CC)
=
base-state((p-state[P] : PS) (c-state|Q, P, N| : Ms)
beast(BC, P, marker))
snapshot((p-state[P] : PS) (c-state[Q, P, N] : empChan) SSC)

27

control((prog[P] : completed) (#ms[P] : 0) (cnt : sd(NzN, 1))
(done[Q, P, N] : true) CC)
it N2N > 1
(c) The process has more than one incoming channel.
TR'[recMkr¬ Yet&#ms>1¢>1] :
base-state((p-state[P] : PS) (c-state[Q, P, N| : marker | Ms) BC)
snapshot(SSC)
control((prog[P] : notYet) (#ms[P] : NzN') (ent : NzN)
(done[Q, P, N] : false) CC)
=
base-state((p-state[P] : PS) (c-state|Q, P, N| : Ms)
beast(BC, P, marker))
snapshot((p-state[P] : PS) (c-state[Q, P, N] : empChan)
inchans(BC, P) SSC)
control((prog[P] : started) (#ms[P| : sd(NzN’,1)) (cnt : NzN)
(done[Q, P, N] : true) CC)
it NzN' > 1

2. The process has already started the CLDSA . This case is further split into
three subcases:

(a) There are no incoming channels from which markers have not been received
except for the incoming channel, and there are no processes that have not
yet completed the CLDS A except for the process.

TR'[recMkr&started&#ms=1¢=1] :
base-state((p-state[P] : PS) (c-state[Q, P, N| : marker | Ms) BC)
finish-state(empConfig)
control((prog[P] : started) (#ms[P] : 1) (cnt : 1)
(done[Q, P, N] : false) CC)
=
base-state((p-state[P] : PS) (c-state|Q, P, N] : Ms) BC)
finish-state((p-state[P] : PS) (c-state[Q, P, N] : Ms) BC)
control((prog[P] : completed) (#ms[P] : 0) (cnt : 0)
(done[Q, P, N] : true) CC)

(b) There are no incoming channels from which markers have not been received
except for the incoming channel, and there are some other processes that
have not yet completed the CLDSA .

TR'[recMkr&started&#ms=1&cnt>1] :
base-state((p-state[P] : PS) (c-state[Q, P, N] : marker | Ms) BC')
control((prog[P] : started) (#ms[P] : 1) (ent : NzN)
(done[Q, P, N] : false) CC)
=
base-state((p-state[P] : PS) (c-state|Q, P, N] : Ms) BC)
control((prog[P] : completed) (#ms[P] : 0) (cnt : sd(NzN, 1))
(done[Q, P, N] : true) CC)

o8

if N2N > 1

(¢) There are some other incoming channels from which markers have not been
received.
TR'[recMkr&started&#ms>1¢>1] :
base-state((p-state[P] : PS) (c-state[Q, P, N] : marker | Ms) BC)
control((prog[P] : started) (#ms[P] : NzN’) (ent : NzN)
(done[Q, P, N] : false) CC)
=
base-state((p-state[P] : PS) (c-state|Q, P, N| : Ms) BC)
control((prog[P] : started) (#ms[P] : sd(NzN',1)) (cnt : NzN)
(done[Q, P, N] : true) CC)
if NzN">1

5.3.3 The Function CL

In this section, we will give a definition of the function CL, which takes a state machine
Myps = (Sups, lups, Tups) , and returns another state machine Merpsa = (Serpsa,
Ieepsas Teepsa) = CL(Myps). Note that Myps represents the UDS and Mcrpsa rep-
resents the UDS superimposed by the CLDSA . Now let us consider how to model a
UDS superimposed by the CLDS A as a state machine. It should include the UDS part
discussed in §5.2, and another part to reflect the behaviors of the CLDSA .

Now, we give the definition of the function CL as follows:

Definition 9 (CL(Myps)) For a state machine Myps = (Sups, lups, Tups) formalizing
aUDS , we have Merpsa =CL(Myps) = (CLstate (Sups), CLinit (ups), CLTrans (Tups).

where

1. CLstate (Sups) = {base-state(bc) start-state(sc) snapshot(ssc) finish-state(fc)
control(ctl) | bc € Syps, sc € Config, ssc € Config, fc € Config, ctl € CtiConfig},
where Config and CtlConfig are used as the sets of terms whose sorts are Config and
CtlConfig, respectively;

2. CLnit (lups) = {base-state(bc) start-state(empConfig) snapshot(empConfig)
finish-state(empConfig) control(ctl) | be € Iyps, ctl € CtlConfig};

3. CLArans (Tups) S CLstate (Sups) X CLState (Sups), which can be induced by the tran-
sition rules TR's described in §5.3.2.

Initially, all of sc, ssc and fc are empConfig. This is the reason why empConfig is
used in start-state, snapshot and finish-state in the definition of CLy;(lyps). If sc
is not empCon fig, it means that a distributed snapshot has started being taken. If fc is
not empCon fig, it means that a distributed snapshot has been taken and then ssc is the
snapshot.

However, the control(ctl) part in the definition CL ., (Iyyps) is not precise, just saying
that ctl € CtlConfig. We know that for an initial state of a UDS ;| there are some

29

constraints to obtain the ctl part, which is not an arbitrary soup of cnt, prog, #ms, and
done observable components.

Example 6 (A meta configuration of the 3-process € 5-channel system) Let us
consider the 3-process € 5-channel system described as the following.

Figure 5.3 The 3-process & 5-channel system

Initially, we suppose that one channel from p(0) to p(1) consists of one message M , and
the other channels are empty. Then the global sate s € S¢,spsa of the UDS superimposed
by the CLDS A described in Figure 5.3 can be expressed as a meta configuration as follows:

s £ base-state((p-state[p(0)] : pso) (p-state[p(1)] : psi) (p-state[p(2)] : pss)

(c-state[p(0), p(1), 0] : (M | empChan))
(c-state[p(0), p(1), 1] : empChan) (c-state[p(0), p(2), 0] : empChan)
(c-state[p(1), p(2), 0] : empChan) (c-state[p(2), p(0), 0] : empChan))

start-state(empConfig)

snapshot(empConfig)

finish-state(empCon fig)

control((c : 3 (0] 1) Gemslp(1)]: 2) (ms(p(2)] - 2)

(done[p(0), p(1), 0] : False) (donefp(0), p(1), 1] : false)
(done[p(0), p(2), 0] : false) (done[p(1), p(2), 0] = false)
(done[p(2), p(0), 0] : false)

(prog[p(0)] : notYet) (prog[p(1)] : notYet) (prog[p(2)] : notYet))

From the contents (a soup of observable components) of base-state and control, we
can have some relations between them as follows:

1. The value of cnt observable component should be the number of the processes;

2. The value of #ms observable component should be the number of the incoming
channels of each process;

3. The value of done observable component should be false for each channel;
4. The value of prog observable component should be notYet for each process.

Moreover, to obtain the ctl part, we should contain one cnt, #ms for each process, done
for each channel and prog for each process.

60

For a state machine Mcpsa = (Scrpsa, lecpsa, Terpsa) formalizing an underlying
distributed system superimposed by the CLDS A , we have the following definitions for
start-state, snapshot, finish-state and terminates.

Definition 10 (start-state, snapshot, finish-state and terminates) For a state ma-
chine Mcrpsa = (Secpsa, lecpsa, Tecpsa) » Vs € Seepsa,

start-state(s) £ sc.

snapshot(s) £ ssc.

finish-state(s) = fc.

terminates(s) £ (fc # empConfig).

5.4 A Way to Express the DSR Property

The following is the definition that a state s” is reachable from a state s’ in a path 7 w.r.t.
a state machine M:

Definition 11 (M, |= isReachable(s',s")) For a state machine M = (S,I,T), a path
m w.r.t. M and states s',s" € S, M, |= isReachable(s',s") iff Ji,j € Nat ((i < j)N(s' =
7Ti) A (S” = 7Tj)).

The following is the definition that a state s” is reachable from a state s’ w.r.t. a state
machine M:

Definition 12 (M |= isReachable(s',s")) For a state machine M = (S, I,T) and states
s s" €S, M = isReachable(s', s") iff Im € 11 (M, 7 = isReachable(s', s")).

In other words, a state s” is said to be reachable from a state s’ iff there is a sequence of
states in which s’ occurs earlier than or at the same time as s”. For the latter case, s” is
the same state as s.

Our way to express the DSR property has been affected by Chandy-Misra’s, in which
the CLDS A was analyzed based on the formal method UNITY [CMS88]. Now we give our
definition of the DSR property as follows:

Definition 13 (DSR Property) For a state machine Myps = (Sups, lups, Tups) ,
Vs € CLstate (Sups), if (CL(Myps) | terminates(s)), then (Myps |= isReachable(sy, s.)
A Myps [isReachable(s., s2)), where

1. s, = start-state(s);
2. s, = snapshot(s);

3. sy = finish-state(s).

61

Chapter 6

Conclusions

6.1 Contributions

What we have done are the following.
e Existing Studies:
— Learnt some basic technical knowledge such as distributed systems, state ma-
chine, model checking and Maude specification language;
— Learnt the CLDSA and the DSR property;

— Learnt an existing study [OH12], in which a UDS superimposed by the CLDS A
has been formally specified in Maude and model checked w.r.t. the DSR property
with the Maude search command.

e Original Works:

— Realized the expression of the DSR property in the existing study [OH12] does
not respect the property (written in English) in the original paper [CL85];

— Given the definition of the function CL;
— Found a way [Z0Z15] to faithfully express the DSR property.

6.2 Future Work

Until now, we still have not model checked the DSR property defined in this report in a
proper way. There are several things to do as future issues.

1. To specify the system according to the expression of the DSR property (Definition
13).

2. To prove that the function CL preserves the behaviors of a state machine Myps
formalizing a UDS .

62

For the second issue, we need to prove that reachability is preserved from Mps to
CL(Myps). What to prove is Vs', 8" € Syps (Myps = isReachable(s', s") iff CL(Myps)
= isReachable(base-state(s’), base-state(s”))). In other words, we need to prove that
the reachability in Myps is exactly the same as the reachability in CL(Myps). The
simulation-based invariant verification method [OF07b] is one candidate way to prove it.

63

Appendix A
Specification of the CLDS A in Maude

xxx Specification of the Chandy—Lamport Distributed Snapshot

Algorithm in Maude

fmod PID 1is
pr NAT
sort Pid
op p : Nat -> Pid [ctorl]

endfm

fmod TOKEN is
pr NAT
sort Token
op t : Nat -> Token [ctor]

endfm

fmod MARKER is
sort Marker
op marker : -> Marker [ctor]

endfm

fmod MESSAGE 1is
pr TOKEN
pr MARKER
sort Msg

64

subsorts Token Marker < Msg

endfm

fmod CHANNEL is
pr MESSAGE
sorts EmpChan NeChan Chan
subsorts EmpChan NeChan < Chan
op empChan : -> EmpChan [ctor]

op _l_ : Msg Chan -> NeChan [ctor]

op put : Chan Msg -> NeChan
op delMC : Chan -> Chan

vars M1 M2 : Msg

var C : Chan
var T : Token
---put

eq put (empChan ,M2) = M2 | empChan

eq put(M1 | C,M2)

---delMC
eq delMC(empChan) empChan
eq delMC(marker | C) = delMC(C)

M1 | put(C,M2)

eq delMC(T | C) = T | delMC(C) [owise]

endfm

fmod PROCESS-STATE is
pr BOOL
pr TOKEN
sort PState
subsort Token < PState

op noToken : -> PState [ctor]
op __ : PState PState -> PState
var T : Token
eq T T =T

endfm

65

[ctor assoc comm id:

noToken]

fmod PROGRESS is
sort Prog
ops notYet started completed : -> Prog [ctor]

endfm

fmod OBSERVABLE-COMPONENT 1is
pr PID
pr CHANNEL
pr PROCESS-STATE
pr PROGRESS

sort 0OCom

xxx p—state [p] is the state of process p.

op (p-statel[_] :_) : Pid PState -> 0Com [ctor]

xxx c—state [p,q,n] is the nth channel from p to q.

op (c-statel_,_,_] :_) : Pid Pid Nat Chan -> 0Com [ctor]
xxx When cnt becomes 0, the snapshot has been taken.

op (cnt :_) : Nat -> 0Com [ctor]

xx*x the number of markers not yet received by a process.
op (#ms[_] :_) : Pid Nat -> 0Com [ctor]

x*xx indicating whether a marker has been received from
xxx a channel from p to q.

op (domne[_,_,_]1 :_) : Pid Pid Nat Bool -> 0Com [ctor]
xxx indicating that a process has not yet started , has started
xxx or completed the algorithm .

op (progl_] :_) : Pid Prog -> 0Com [ctor]

xxx indicating whether messages are consumed.

op (consume :_) : Bool -> 0Com [ctor]

endfm

fmod CONFIGURATIONS is
pr OBSERVABLE-COMPONENT
sort Config
subsort 0Com < Config

op empConfig : -> Config [ctor]

66

op __ : Config Config -> Config [ctor assoc comm id: empConfig]

var 0C : 0OCom
eq 0C 0C = 0OC

var CF : Config
vars P’ P Q : Pid
var PS : PState
var C : Chan

var M : Msg

var N : Nat

op bcast : Config Pid Marker -> Config
op inchans : Config Pid -> Config
op delM : Config -> Config

--- bcast
eq bcast(empConfig,P,M) = empConfig
eq bcast((c-state[P,Q,N] : C) CF,P,M)
= (c-state[P,Q,N] : put(C,M)) bcast (CF,P,M)
eq bcast(0C CF,P,M) = 0C bcast(CF,P,M) [owise]

--- inchans
eq inchans(empConfig,P) = empConfig
eq inchans((c-state[Q,P,N] : C) CF,P)
= (c-state[Q,P,N] : empChan) inchans (CF,P)
eq inchans(0C CF,P) = inchans(CF,P) [owise] . --- no 0C!!!

--- delM
eq delM(empConfig) = empConfig
eq delM((c-state[P,Q,N] : C) CF)
= (c-state[P,Q,N] : delMC(C)) delM(CF)
eq delM(0OC CF) = 0C delM(CF) [owise]

endfm

67

red (p-statel[p(0)] : t(1)) (p-statel[p(1)] : noToken) (p-statel[p(2)
] : noToken)
(c-state[p(0), p(1), 0] : (t(0) | empChan)) (c-statel[p(0), p
(1), 11 : empChan)
(c-statel[p(1), p(2), 0] : empChan) (c-statel[p(2), p(0), O]
empChan)

fmod META-CONFIGURATION-COMPONENT is
pr CONFIGURATIONS
sort MCComp

ops base-state start-state finish-state
snapshot control : Config -> MCComp

endfm

fmod META-CONFIGURATION is
pr META-CONFIGURATION-COMPONENT
sort MConfig
subsort MCComp < MConfig
op __ : MConfig MConfig -> MConfig [assoc comm]

var MOC : MCComp
eq MOC MOC = MOC

endfm

*k %k
red base-state((p-statel[p(0)] : (£(0) t(1))) (p-statelp(1)]
noToken) (p-statel[p(2)] : noToken)
(c-state[p(0), p(1), 0] : empChan) (c-statelp(0), p(1),
1] : empChan)
(c-statel[p(1), p(2), 0] : empChan) (c-statel[p(2), p(0),
0] : empChan))
start-state (empConfig)

68

finish-state (empConfig)
snapshot (empConfig)
control ((cnt : 3) (#ms[p(0)] : 1) (#ms[p(1)] : 2) (#ms[p(2)]
1)
(done[p(0), p(1), 0] : false) (donel[p(0), p(1), 1]
false)
(done[p(1), p(2), 0] : false) (domnel[p(2), p(0), 0] : false)
(proglp(0)] : notYet) (proglp(1)] : notYet) (proglp(2)]

notYet) (consume : true))

fmod INIT-META-CONFIG is
pr META-CONFIGURATION

Let us consider the following system:

- There are two processes p(0), p(1).

- There is one token t(0) in the system.

- The state of each process only depends on the tokens owned by
the process. So, the state of each process can be expressed as
\empty, {t(0)}. Initially, p(0) has the token t(0), and p(1)

does not have any tokens.

- There are two channels: p(0) --> p(1), p(1) --> p(0). Initially

each channel is empty.

- Each process repeatedly does the following:

i. If the process has a token, then it puts the token in the

outgoing channel. Accordingly its state changes.

69

ii. If the incoming channel to the process is not empty, then the

process gets the token from it. Accordingly its state changes.

Let imc0O be the initial state of the system.

)
op imcOO : -> MConfig
eq imcO0O
= base-state ((p-state[p(0)]: t(0)) (p-statel[p(1)]: noToken)
(c-state[p(0),p(1) ,0]: empChan) (c-statel[p(1l),p(0),0]:
empChan))
start-state (empConfig)
finish-state (empConfig)
snapshot (empConfig)
control ((cnt : 2) (#ms[p(0)]: 1) (#ms[p(1)]: 1)
(done[p(0) ,p(1) ,0]: false) (domnelp(1),p(0),0]: false)
(proglp(0)]: notYet) (proglp(1)]: notYet)
(consume : false))
sk

Let us consider the following system:

- There are two processes p(0), p(1).

- There is one token t(0) in the system.

- The state of each process only depends on the tokens owned by
the process. So, the state of each process can be expressed as
\empty, {t(0)}. Initially, p(0) has the token t(0), and p(1)

does not have any tokens.

- There are two channels: p(0) --> p(1), p(1) --> p(0). Initially

each channel is empty.

- Each process repeatedly does the following:

70

i. The process may consume a token owned by the process.

ii. If the process has a token, then it puts the token in the

outgoing channel. Accordingly its state changes.

iii. If the incoming channel to the process is not empty, then the

process gets the token from it. Accordingly its state changes.

Let imcO1 be the initial state of the system.

op imcO1 : -> MConfig
eq imcO1
= base-state((p-statel[p(0)]: t(0)) (p-statel[p(l)]: noToken)
(c-state[p(0),p(1),0]: empChan) (c-statel[p(1),p(0),0]:
empChan))
start-state (empConfig)
finish-state (empConfig)
snapshot (empConfig)
control ((cnt : 2) (#ms[p(0)]: 1) (#ms[p(1)]: 1)
(done[p(0) ,p(1) ,0]: false) (donelp(1),p(0),0]: false)
(proglp(0)]: notYet) (proglp(1)]: notYet)

(consume : true))
op imcO02 : -> MConfig
eq imcO02

= base-state((p-state[p(0)]: t(0)) (p-statelp(l)]: noToken)
(p-statel[p(2)]: t(2))
(c-state[p(0) ,p(1) ,0]: empChan) (c-statel[p(0),p(1),1]: (¢t
(1) | empChan)))

start-state (empConfig)

finish-state (empConfig)

snapshot (empConfig)

control ((cnt : 3) (#ms[p(0)]: 0) (#ms[p(1)]: 2) (#ms[p(2)]:

0)

(done[p(0) ,p(1) ,0]: false) (donel[p(0),p(1),1]: false)

71

(proglp(0)]: notYet) (proglp(1l)]: notYet) (proglp(2)]:

notYet)
(consume : true))
op imc03 : -> MConfig

eq imcO03
= base-state ((p-state[p(0)]: (£(0) t(1))) (p-statelp(1)]:

noToken)

(c-state[p(0),p(1) ,0]: empChan) (c-statel[p(0),p(1),1]:
empChan)

(c-state[p(1),p(0) ,0]: empChan))

start-state (empConfig)

finish-state (empConfig)

snapshot (empConfig)

control ((cnt : 2) (#ms[p(0)]: 1) (#ms[p(1)]: 2)
(done[p(0) ,p(1) ,0]: false) (donelp(0),p(1),1]: false)
(done[p(1),p(0),0]: false)
(proglp(0)]: notYet) (proglp(1)]: notYet)

(consume : true))

op imc0O4 : -> MConfig
eq imcO4
= base-state ((p-statel[p(0)]: (£(0) t(1))) (p-statel[p(1)]:
noToken)
(p-state[p(2)]: noToken)
(c-state[p(0),p(1) ,0]: empChan) (c-statel[p(0),p(2),0]:
empChan)
(c-statel[p(1),p(0) ,0]: empChan) (c-statelp(1l),p(2),0]:
empChan))
start-state (empConfig)
finish-state (empConfig)
snapshot (empConfig)

control ((cnt : 3) (#ms[p(0)]1: 1) (#ms[p(1)]: 1) (#ms[p(2)]1:

2)
(done[p(0) ,p(1) ,0]: false) (donel[p(0),p(2),0]: false)

72

(done[p (1) ,p(0) ,0]: false) (donelp(1l),p(2),0]: false)
(proglp(0)]: notYet) (proglp(1)]: notYet) (proglp(2)1]:

notYet)
(consume : false))
op imcO5 : -> MConfig

eq imcO05b
= base-state ((p-statel[p(0)]: (£(0) t(1))) (p-statel[p(1)]:
noToken)
(p-state[p(2)]: noToken)
(c-state[p(0),p(1) ,0]: empChan) (c-statel[p(0),p(2),0]:
empChan)
(c-state[p(1) ,p(0) ,0]: empChan) (c-statel[p(1),p(2),0]:
empChan))
start-state (empConfig)
finish-state (empConfig)
snapshot (empConfig)
control ((cnt : 3) (#ms[p(0)]: 1) (#ms[p(1)]: 1) (#ms[p(2)]1:
2)
(done[p(0) ,p(1) ,0]: false) (donel[p(0),p(2),0]: false)
(done[p (1) ,p(0) ,0]: false) (donelp(1),p(2),0]: false)
(proglp(0)]: notYet) (proglp(1)]: notYet) (proglp(2)1]:

notYet)
(consume : true))
op imcO6 : -> MConfig

eq 1imcO06
= base-state((p-statel[p(0)]: (t(0) t(1))) (p-statelp(l)]:
noToken)
(p-state[p(2)]: noToken)
(c-state[p(0),p(1),0]: empChan) (c-state[p(0),p(1),1]1:
empChan)
(c-statel[p(1),p(2),0]: empChan) (c-state[p(2),p(0),0]:
empChan))
start-state (empConfig)

73

finish-state (empConfig)
snapshot (empConfig)
control ((cnt : 3) (#ms[p(0)]: 1) (#ms[p(1)]: 2) (#ms[p(2)]:
1)
(done[p(0) ,p(1) ,0]: false) (donel[p(0),p(1),1]: false)
(done[p (1) ,p(2),0]: false) (donel[p(2),p(0),0]: false)
(proglp(0)]: notYet) (proglp(1)]: notYet) (proglp(2)1]:

notYet)
(consume : true))
op imcO7 : -> MConfig

eq imcO7
= base-state((p-statel[p(0)]: (£(0) t(1) t(2)))
(p-state[p(1)]: noToken) (p-statel[p(2)]: noToken)
(c-state[p(0),p(1),0]: empChan) (c-state[p(0),p(1),1]1:
empChan)
(c-statel[p(1),p(2) ,0]: empChan) (c-statel[p(2),p(0),0]:
empChan))
start-state (empConfig)
finish-state (empConfig)
snapshot (empConfig)
control ((cnt : 3) (#ms[p(0)]: 1) (#ms[p(1)]: 2) (#ms[p(2)]:
iy
(done[p(0) ,p(1),0]: false) (donel[p(0),p(1),1]: false)
(done[p (1) ,p(2),0]: false) (donel[p(2),p(0),0]: false)
(progl[p(0)]: notYet) (proglp(1l)]: notYet) (proglp(2)]:
notYet)

(consume : true))

op imc08 : -> MConfig
eq imcO08
= base-state((p-state[p(0)]: (t(0) t(1))) (p-statelp(1)]1:
noToken)
(p-state[p(2)]: noToken)

74

(c-state[p(0),p(1),0]: empChan) (c-state[p(0),p(1),1]:
empChan)
(c-state[p(0),p(2),0]: empChan) (c-state[p(1l),p(2),0]:
empChan)
(c-state[p(2),p(0) ,0]: empChan))
start-state (empConfig)
finish-state (empConfig)
snapshot (empConfig)
control ((cnt : 3) (#ms[p(0)]: 1) (#ms[p(1)]: 2) (#ms[p(2)]:
2)
(done[p(0) ,p(1) ,0]: false) (donel[p(0),p(1),1]: false)
(done[p(0) ,p(2) ,0]: false) (donelp(1),p(2),0]: false)
(done[p(2) ,p(0) ,0]: false)
(proglp(0)]: notYet) (proglp(l)]: notYet) (proglp(2)]:

notYet)
(consume : true))
op imc09 : -> MConfig

eq 1imc09
= base-state((p-state[p(0)]: noToken)
(p-statel[p(1)]: noToken) (p-statel[p(2)]: noToken)
(p-statel[p(3)]: t(0)) (p-statel[p(4)]: noToken)
(c-state[p(0),p(1) ,0]: empChan) (c-statel[p(l),p(2),0]:
empChan)
(c-state[p(2),p(3) ,0]: empChan) (c-statel[p(2),p(4),0]:
empChan)
(c-state[p(3),p(0) ,0]: empChan) (c-statel[p(3),p(0),1]:
empChan)
(c-state[p(3),p(2) ,0]: empChan) (c-statel[p(4),p(3),0]:
empChan))
start-state (empConfig)
finish-state (empConfig)
snapshot (empConfig)
control ((cnt : 5) (#ms[p(0)]: 2) (#ms[p(1)]: 1)
(#ms[p(2)]1: 2) (#ms[p(3)]: 2) (#msl[p(4)]1: 1)
(done[p(0) ,p(1) ,0]: false) (donelp(1),p(2),0]: false)

5

(done[p(2) ,p(3),0]: false) (donelp(2),p(4),0]: false)

(done[p(3) ,p(0) ,0]: false) (donel[p(3),p(0),1]: false)

(done[p(3),p(2),0]: false) (donelp(4),p(3),0]: false)

(proglp(0)]: notYet) (proglp(1)]: notYet) (proglp(2)]:
notYet)

(proglp(3)]: notYet) (proglp(4)]: notYet) (consume : true
))

op imcl10 : -> MConfig
eq imc10
= base-state((p-state[p(0)]1: (£(0) t(1)))
(p-state[p(1)]: noToken) (p-statel[p(2)]: noToken)
(p-state[p(3)]: noToken) (p-statelp(4)]: noToken)
(c-state[p(0),p(1),0]: empChan) (c-statel[p(1),p(2),0]:
empChan)
(c-state[p(2),p(3),0]: empChan) (c-statel[p(2),p(4),0]:
empChan)
(c-state[p(3),p(0),0]: empChan) (c-state[p(3),p(0),1]:
empChan)
(c-state[p(3),p(2),0]: empChan) (c-state[p(4),p(3),0]:
empChan))
start-state (empConfig)
finish-state (empConfig)
snapshot (empConfig)
control ((cnt : 5) (#ms[p(0)]: 2) (#ms[p(1)]: 1)
(#ms [p(2)]: 2) (#ms[p(3)1: 2) (#ms[p(4)]1: 1)
(done[p(0) ,p(1) ,0]: false) (donelp(1),p(2),0]: false)
(done[p(2) ,p(3),0]: false) (donel[p(2),p(4),0]: false)
(done[p(3) ,p(0) ,0]: false) (donel[p(3),p(0),1]: false)
(done[p(3),p(2) ,0]: false) (donel[p(4),p(3),0]: false)
(proglp(0)]: notYet) (proglp(1l)]: notYet) (proglp(2)]:
notYet)
(progl[p(3)]: notYet) (proglp(4)]: notYet) (consume : true
))

endfm

76

mod CHANDY-LAMPORT 1is
pr META-CONFIGURATION

vars BC CC SC SSC Config
vars P’ P Q Pid

var T Token

var PS PState

var N Nat

vars C C’ Chan

vars NzN NzN’ NzNat

skxokxk Consumption of Tokens sxkkxx
* % %
xxx When a distributed smapshot has been taken , we intentionally
xxx stop the base computation because we want not to make the
xx*x size of the reachable state space too large.
X 3k 3k
xxx Process P only changes 1its state.
rl [chgStt]
base-state ((p-state [P] (T PS)) BC)
finish-state(empConfig)
control ((consume true) CC)
=>
base-state ((p-state [P] PS) BC)
finish-state (empConfig)
control ((consume true) CC)
skxokxk Sending of Tokens sxksxxsx
xxx Process P sends a token to process Q.
rl [sndTkn]
base-state ((p-state [P] (T PS)) (c-state[P,Q,N] C) BC)

finish-state (empConfig)
=>

base-state ((p-state [P]
finish-state (empConfig)

PS) (c-state[P,Q,N]

7

put (C,T)) BC)

sxxkxxkk Receipt of Tokens sksxkx

xxx Process P receives a token

along

xxx case—1: The process has not

xxx Note: No need (done[Q,P,NJ]
rl [recTkn¬Yet& done]

yet started the

an

false) on

imcoming

channel.

algorithm .

both sides.

base-state((p-state[P] : PS) (c-statel[Q,P,N] : T

finish-state(empConfig)

control ((prog[P] : notYet) CC)

=>

base-state ((p-state[P] : (T PS)) (c-statel[Q,P,N]

finish-state (empConfig)

control ((prog[P] : notYet) CC)

xxx case—2: The process has completed the

xxx Note: No need (done[Q,P,N]
rl [recTkn&completed&donel

true)

base-state ((p-state[P] : PS) (c-statel[Q,P,N] : T

finish-state (empConfig)

control ((prog[P] : completed) CC)

=>

base-state((p-state[P] : (T PS)) (c-statel[Q,P,N]

finish-state (empConfig)

control ((prog[P] : completed) CC)

xxx case—3: The process has started

xxx namely that it has already

recorded

xx%x not yelt completed it, and has not

xx% from the incoming channel.

rl [recTkn&started& donel

the

base-state ((p-state[P] : PS) (c-statel[Q,P,N] : T
snapshot ((c-state[Q,P,N] : C’) SSC)

finish-state (empConfig)

control ((prog[P] : started) (donel[Q,P,N]

=>

| C) BC)
C) BC)
algorithm .
on both sides.

| C) BC)
C) BC)

algorithm ,

1ts state ,
yet received a marker
| C) BC)

false) CC)

C) BC)

base-state((p-state[P] : (T PS)) (c-statel[Q,P,N]
snapshot ((c-state[Q,P,N] : put(C’,T)) SSC)

finish-state (empConfig)

78

control ((prog[P] : started) (donel[Q,P,N] : false) CC)

xxx case—4: The process has started the algorithm ,
xxx not yet completed it , and has already received a marker
xxx from the incoming channel.
rl [recTkn&started&done]
base-state ((p-state[P] : PS) (c-statel[Q,P,N] : T | C) BC)
finish-state (empConfig)
control ((prog[P] : started) (donel[Q,P,N] : true) CC)
=>
base-state ((p-state[P] : (T PS)) (c-state[Q,P,N] : C) BC)
finish-state (empConfig)
control ((prog[P] : started) (donel[Q,P,N] : true) CC)

sxxxxkx Record of Process States sssxskksx

xxx Process P starts taking the distributed snapshot.

xxx case—1: The process globally initiates the algorithm ,

xxx namely the first process that records its state in the
system .

xxx case—2: The process does mot, mnamely that there exists
another process

xxx that has globally initiated the algorithm.

xxx case—1: 1s further split into three sub—cases:

xxx case—1—1: The underlying system only consists of the process

x*xx Note: finish—state should be added.
rl [start&cnt=1&#ms=0]
base-state ((p-state[P] : PS))
start-state (empConfig)
snapshot (empConfig)
finish-state (empConfig)
control ((cnt : 1) (progl[P] : notYet) (#ms[P] : 0) CC)
=>
base-state((p-state[P] : PS))
start-state ((p-state[P] : PS))
snapshot ((p-state[P] : PS))

79

finish-state ((p-state[P] : PS))
control ((cnt : 0) (progl[P] : completed) (#ms[P] : 0) CC)

xxx case—1—2: The system consists of more than one process,

xxx and the process does mot have any incoming channels.
crl [start&cnt>1&#ms=0]
base-state ((p-state[P] : PS) BC)
start-state (empConfig)
snapshot (empConfig)
control ((cnt : NzN’) (progl[P] : notYet) (#ms[P] : 0) CC)
=>
base-state ((p-state[P] : PS) bcast(BC,P,marker))
start-state ((p-state[P] : PS) BC)
snapshot ((p-state[P] : PS))
control ((cnt : sd(NzN’,1)) (progl[P] : completed) (#ms[P]
CcC)
if NzN’ > 1

xxx case—1—3: The system consists of more than one process,

xxx and the process has one or more incoming channels.
rl [start&cnt>1&#ms>0]
base-state ((p-state[P] : PS) BC)
start-state (empConfig)
snapshot (empConfig)
control ((prog[P] : notYet) (#ms[P] : NzN’) CC)
=>
base-state ((p-state[P] : PS) bcast(BC,P,marker))
start-state ((p-state[P] : PS) BC)
snapshot ((p-state[P] : PS) inchans(BC,P))
control ((prog[P] : started) (#ms[P] : NzN’) CC)

xxx case—2: The process does not, namely that there exists
another process
xxx that has globally initiated the algorithm .

xxx case—2: 1s further split into three sub—cases:

0)

xxx case—2—1: The process does mot have any incoming channels ,

xx*x and there are mo processes except for the process

80

xxx that have mot completed the algorithm.
xxx Note: finish—state should be added.
crl [record&cnt=1&#ms=0]
base-state((p-state[P] : PS))
start-state (SC)
snapshot (SSC)
finish-state (empConfig)
control ((cnt : 1) (progl[P] : notYet) (#ms[P] : 0) CC)
=>
base-state ((p-state[P] : PS))
start-state (SC)
snapshot ((p-state[P] : PS) SSC)
finish-state((p-state[P] : PS))

control ((cnt : 0) (progl[P] : completed) (#ms[P] : 0) CC)

if (SC =/= empConfig)

xxx case—2—2: The process does not have any incoming channels

xxx and there are some other processes that have not completed

the algorithm.
crl [record&cnt>1&#ms=0]
base-state ((p-state[P] : PS) BC)
start-state (SC)
snapshot (SSC)
control ((cnt : NzN’) (progl[P] : notYet) (#ms[P] : 0) CC)
=>
base-state ((p-state[P] : PS) bcast(BC, P, marker))
start-state (SC)
snapshot ((p-state[P] : PS) SSC)
control ((cnt : sd(NzN’,1)) (progl[P] : completed) (#ms/[P]
cec)
if (NzN’> > 1) /\ (SC =/= empConfig)

xxx case—2—3: The process has some incoming channels.
crl [record&cnt>1&#ms>0]

base-state ((p-state[P] : PS) BC)

start-state (SC)

snapshot (SSC)

81

0)

control ((prog[P] : notYet) (#ms[P] : NzN’) CC)

=>

base-state ((p-state[P] : PS) bcast (BC,P,marker))

start-state (SC)

snapshot ((p-state[P] : PS) inchans(BC,P) SSC)

control ((prog[P] : started) (#ms[P] : NzN’) CC)
if (SC =/= empConfig)

xxxxxk Receipt of Markers ssxskxx
xxx Process P recetves a marker along an incoming channel.
xxx case—1: The process has not yet started the algorithm.
xxx case—2: The process has already started the algorithm.
xkx case—1 is further split into three sub—cases:
xxx case—I1—1: The process has only one incoming channel,
xx*x and there are mo processes that have not yet completed the
algorithm
xxx except for the process, which implies that the process does
x*xx not have any outgoing channels.
xxx Note: finish—state should be added.
rl [recMkr¬Yet&#ms=1&cnt=1]
base-state ((p-state[P] : PS) (c-statel[Q,P,N] : marker | C) BC)
snapshot (SSC)
finish-state (empConfig)
control ((prog[P] : notYet) (#ms[P] : 1) (cnt : 1) (donel[Q,P,N]
false) CC)
=>
base-state ((p-state[P] : PS) (c-statel[Q,P,N] : C) BC)
snapshot ((p-state[P] : PS) (c-state[Q,P,N] : empChan) SSC)
finish-state((p-state[P] : PS) (c-statel[Q,P,N] : C) BC)
control ((prog[P] : completed) (#ms[P] : 0) (cnt : 0) (donel[Q,P
,NI : true) CC)

xxx case—1—2: The process has only one incoming channel,
xxx and there are some other processes that have not yet
completed the algorithm.

crl [recMkr¬Yet&#ms=1&cnt >1]

82

base-state ((p-state[P] : PS) (c-statel[Q,P,N] : marker | C) BC)

snapshot (SSC)

control ((prog[P] : notYet) (#ms[P] : 1) (cnt : NzN) (donelQ,P,
N] : false) CC)

=>

base-state ((p-state[P] : PS) (c-statel[Q,P,N] : C) bcast(BC,P,
marker))

snapshot ((p-state[P] : PS) (c-state[Q,P,N] : empChan) SSC)

control ((prog[P] : completed) (#ms[P] : 0) (cnt : sd(NzN,1)) (
done[Q,P,N] : true) CC)

if NzN > 1

xxx case—1—3: The process has more than one incoming channel
crl [recMkré¬Yet&#ms>1&cnt >1]
base-state ((p-state[P] : PS) (c-statel[Q,P,N] : marker | C) BC)
snapshot (SSC)
control ((prog[P] : notYet) (#ms[P] : NzN’) (cnt : NzN) (donelQ
,P,N] : false) CC)
=>
base-state ((p-state[P] : PS) (c-statel[Q,P,N] : C) bcast(BC,P,
marker))
snapshot ((p-state[P] : PS) (c-statel[Q,P,N] : empChan) inchans
(BC,P) SsSC)
control ((prog[P] : started) (#ms[P] : sd(NzN’, 1)) (cnt : NzN)
(done[Q,P,N] : true) CC)
if NzN°’ > 1
xxx case—2: The process has already started the algorithm.
xkx case—2 is further split into three sub—cases:
xxx case—2—1: There are mno incoming channels from which markers
have not been
xxx received except for the imncoming channel, and there are no
processes
xxx that have mnot yet completed the algorithm except for the
process.
rl [recMkr&started&#ms=1&cnt=1]
base-state ((p-state[P] : PS) (c-statel[Q,P,N] : marker | C) BC)

83

finish-state (empConfig)

control ((prog[P] : started) (#ms[P] : 1) (cnt : 1) (donelQ,P,N
] : false) CC)

=>

base-state ((p-state[P] : PS) (c-statel[Q,P,N] : C) BC)

finish-state((p-state[P] : PS) (c-state[Q,P,N] : C) BC)

control ((prog[P] : completed) (#ms[P] : 0) (cnt : 0) (donelQ,P
,N] : true) CC)

xxx case—2—2: There are mno incoming channels from which markers
have not been
xxx received excepl for the incoming channel, and there are some
other processes
xxx that have mot yet completed the algorithm.
xxx Note: finish—state should not be added.
crl [recMkré&started&#ms=1&cnt >1]
base-state ((p-state[P] : PS) (c-statel[Q,P,N] : marker | C) BC)
control ((prog[P] : started) (#ms[P] : 1) (cnt : NzN) (donelQ,P
,N] : false) CC)
=>
base-state ((p-state[P] : PS) (c-statel[Q,P,N] : C) BC)
control ((prog[P] : completed) (#ms[P] : 0) (cnt : sd(NzN,1)) (
done[Q,P,N] : true) CC)
if NzN > 1

xxx case—2—38: There are some other incoming channels from which
markers have mnot

xxx been received.

xxx Note: finish—state should not be added.

crl [recMkr&started&#ms>1&cnt>1]
base-state ((p-state[P] : PS) (c-statel[Q,P,N] : marker | C) BC)
control ((prog[P] : started) (#ms[P] : NzN’) (cnt : NzN)
(done[Q,P,N] : false) CC)
=>
base-state((p-state[P] : PS) (c-state[Q,P,N] : C) BC)
control ((prog[P] : started) (#ms[P] : sd(NzN’,1)) (cnt : NzN)

(done[Q,P,N] : true) CC)

84

if NzN’ > 1

endm

mod EXPERIMENT is
pr CHANDY-LAMPORT
pr INIT-META-CONFIG
vars SC FC SSC : Config
vars MC : MConfig

endm

85

Appendix B

Verification of the DSR Property

xxx Verification of the Distributed Snapshot Reachability Property

xxx Frxperiment for imc00 xxx

x*xx states: 104
search in EXPERIMENT : imcOO =>*% MC such that false

xkx Solution 40 (state 163)

xxx states: 164 rewrites: 1341 in 18ms cpu

xkx (6159ms real) (70817 rewrites/second)

search in EXPERIMENT
imc00 =>* start-state(SC) finish-state(FC) snapshot(SSC) MC
such that FC =/= empConfig

sxkx Solution 40 (state 163)
xx*x states: 164 rewrites: 1578 in 25ms cpu
xkx (5896ms real) (61566 rewrites/second)
search in EXPERIMENT
imc00 =>* start-state(SC) finish-state(FC) snapshot(SSC) MC
such that FC =/= empConfig
/\ base-state(SC) finish-state(empConfig)
control ((progl[p(0)]: notYet) (proglp(1)]: notYet)

(consume : false))

86

base-state (SSC) finish-state(empConfig)
control ((progl[p(0)]: notYet) (proglp(1)]: notYet)

(consume : false))

xxx Solution 40 (state 163)
xx%x Sstates: 164 rewrites: 1575 in 26ms cpu
xkx (5871ms real) (60057 rewrites/second)
search in EXPERIMENT
imc00 =>* start-state(SC) finish-state(FC) snapshot(SSC) MC
such that FC =/= empConfig
/\ base-state(SSC) finish-state(empConfig)
control ((proglp(0)]: notYet) (proglp(1)]: notYet)
(consume : false))
=>
base-state(FC) finish-state(empConfig)
control ((proglp(0)]: notYet) (proglp(1)]: notYet)

(consume : false))

xxx Ind of Exzperiment for imc00 sxx

xxx Lrperiment for imcOl sxx

x*xx States: 239

search in EXPERIMENT : imcO1l =>x MC such that false

xkx Solution 55 (state 238)

xxx states: 289 rewrites: 1968 in 27ms cpu

xxx (2169ms real) (70386 rewrites/second)

search in EXPERIMENT
imc01 =>* start-state(SC) finish-state(FC) snapshot(SSC) MC
such that FC =/= empConfig

xkx Solution 55 (state 238)

xxx Sstates: 239 rewrites: 2396 in 38ms cpu
xkx (2153ms real) (62003 rewrites/second)
search in EXPERIMENT

87

imc01 =>* start-state(SC) finish-state(FC) snapshot(SSC) MC
such that FC =/= empConfig
/\ base-state(SC) finish-state(empConfig)

control ((progl[p(0)]: notYet) (proglp(1)]: notYet)

(consume : true))

=>

base-state(SSC) finish-state(empConfig)

control ((prog[p(0)]: notYet) (proglp(1)]: notYet)

(consume : true))

xxx Solution 55 (state 238)
xx*x states: 2839 rewrites: 2360 in 38ms cpu
sk (2324ms real) (61615 rewrites/second)
search in EXPERIMENT
imc01 =>* start-state(SC) finish-state(FC) snapshot(SSC) MC
such that FC =/= empConfig
/\ base-state(SSC) finish-state(empConfig)
control ((proglp(0)]: notYet) (proglp(1)]: notYet)
(consume : true))
=>
base-state (FC) finish-state(empConfig)
control ((proglp(0)]: notYet) (proglp(1)]: notYet)

(consume : true))

xxx End of FExperiment for imc01 sxxx

xxx Fxperiment for imc02 xxx

xxx states: 8451 rewrites: 101397 in 706ms cpu
xkx (707ms real) (143426 rewrites/second)
search in EXPERIMENT : imc02 =>* MC such that false

x+xx Solution 87/ (state 8450)

xxx Sstates: 8451 rewrites: 109842 in 974ms cpu
xkx (59634ms real) (112729 rewrites/second)
search in EXPERIMENT

88

imc02 =>* start-state(SC) finish-state(FC) snapshot(SSC) MC
such that FC =/= empConfig

xxx Solution 874 (state 8450)
xxx States: 8451 rewrites: 139329 in 1552ms cpu
xkx (44910ms real) (89716 rewrites/second)
search in EXPERIMENT
imc02 =>* start-state(SC) finish-state(FC) snapshot(SSC) MC
such that FC =/= empConfig
/\ base-state(SC) finish-state(empConfig)
control ((proglp(0)]: notYet) (proglp(1)]: notYet)
(progl[p(2)]: notYet) (consume : true))
=>
base-state (SSC) finish-state(empConfig)
control ((proglp(0)]: notYet) (proglp(1)]: notYet)
(proglp(2)]: notYet) (consume : true))

xxx Solution 874 (state 8450)
xxx states: 8451 rewrites: 121493 in 1255ms cpu
xxx (40742ms real) (96790 rewrites/second)
search in EXPERIMENT
imc02 =>x start-state(SC) finish-state(FC) snapshot(SSC) MC
such that FC =/= empConfig
/\ base-state(SSC) finish-state(empConfig)
control ((prog[p(0)]: notYet) (proglp(1)]: notYet)
(progl[p(2)]: notYet) (consume : true))
=>
base-state(FC) finish-state(empConfig)
control ((proglp(0)]: notYet) (proglp(1)]: notYet)
(proglp(2)]: notYet) (consume : true))

xxx Fnd of FEzrperitment for imc02 xxx

xxx Fxperiment for imc08 sxx

xxx States: 600695

89

search in EXPERIMENT : imc03 =>*% MC such that false

xxx Solution 9315 (state 60694)

xxx Sstates: 606095 rewrites: 553158 in 8221ms cpu

xkx (4062784ms real) (67285 rewrites/second)

search in EXPERIMENT
imc03 =>* start-state(SC) finish-state(FC) snapshot(SSC) MC
such that FC =/= empConfig

xxx Solution 9315 (state 60694)
xxx States: 60695 rewrites: 1814286 n 24295ms cpu
xxx (409544ms real) (74674 rewrites/second)
search in EXPERIMENT
imc03 =>* start-state(SC) finish-state(FC) snapshot(SSC) MC
such that FC =/= empConfig
/\ base-state(SC) finish-state(empConfig)
control ((proglp(0)]: notYet) (proglp(1)]: notYet)
(consume : true))
=>
base-state (SSC) finish-state(empConfig)
control ((progl[p(0)]: notYet) (proglp(1)]: notYet)

(consume : true))

xkx Solution 9315 (state 60694)
xxx states: 60695 rewrites: 1725059 in 23364ms cpu
xxkx (612072ms real) (73833 rewrites/second)
search in EXPERIMENT
imc03 =>* start-state(SC) finish-state(FC) snapshot(SSC) MC
such that FC =/= empConfig
/\ base-state(SSC) finish-state(empConfig)
control ((proglp(0)]: notYet) (proglp(1)]: notYet)
(consume : true))
=>
base-state(FC) finish-state(empConfig)
control ((progl[p(0)]: notYet) (proglp(1)]: notYet)

(consume : true))

90

xxx End of Fxperiment for imc08 xxx

xxx Krperiment for imc04 sxxx

xxx States: 269508

search in EXPERIMENT : imc04 =>*% MC such that false

xxx Solution 20851 (state 2695006)

xxx states: 2069507 rewrites: 3825380 in 43031ms cpu

xxx (2074578ms real) (88898 rewrites/second)

search in EXPERIMENT
imc04 =>* start-state(SC) finish-state(FC) snapshot(SSC) MC
such that FC =/= empConfig

xkx Solution 20851 (state 269506)
xxx states: 269507 rewrites: 7333415 in 102291ms cpu
xkx (2741392ms real) (71691 rewrites/second)
search in EXPERIMENT
imc04 =>x start-state(SC) finish-state(FC) snapshot(SSC) MC
such that FC =/= empConfig
/\ base-state(SC) finish-state(empConfig)
control ((proglp(0)]: notYet) (proglp(1)]: notYet)
(progl[p(2)]: notYet) (consume : false))
=>
base-state(SSC) finish-state(empConfig)
control ((proglp(0)]: notYet) (proglp(1)]: notYet)
(progl[p(2)]: notYet) (consume : false))

xkx Solution 20851 (state 269506)
xxx states: 269507 rewrites: 6935913 in 99523ms cpu
skx (2715449ms real) (69690 rewrites/second)
search in EXPERIMENT
imc04 =>* start-state(SC) finish-state(FC) snapshot(SSC) MC
such that FC =/= empConfig
/\ base-state(SSC) finish-state(empConfig)
control ((progl[p(0)]: notYet) (proglp(1)]: notYet)

91

(proglp(2)]: notYet) (consume : false))
=>
base-state(FC) finish-state(empConfig)
control ((progl[p(0)]: notYet) (proglp(1)]: notYet)
(proglp(2)]: notYet) (consume : false))

xxx End of FExperiment for imc04 sxx

xxx FKrperiment for imc05 xxx

xx*x states: 471295
search in EXPERIMENT : imcO05 =>*% MC such that false

xxx Solution 33344 (state 471293)

xxx states: 471294 rewrites: 6874881 in 86366ms cpu

xkx (5815273ms real) (79601 rewrites/second)

search in EXPERIMENT
imc05 =>x start-state(SC) finish-state(FC) snapshot(SSC) MC
such that FC =/= empConfig

xkx Solution 33344 (state 471293)
xxx Sstates: 471294 rewrites: 14393284 n 225842ms cpu
xkx (3378231ms real) (63731 rewrites/second)
search in EXPERIMENT
imc05 =>* start-state(SC) finish-state(FC) snapshot(SSC) MC
such that FC =/= empConfig
/\ base-state(SC) finish-state(empConfig)
control ((proglp(0)]: notYet) (proglp(1)]: notYet)
(proglp(2)]: notYet) (consume : true))
=>
base-state (SSC) finish-state(empConfig)
control ((proglp(0)]: notYet) (proglp(1)]: notYet)
(proglp(2)]: notYet) (consume : true))

xxx Solution 338344 (state 471293)
xxx Sstates: 471294 rewrites: 12802410 in 214548ms cpu

92

xkx (3572482ms real) (59672 rewrites/second)
search in EXPERIMENT
imc05 =>x start-state(SC) finish-state(FC) snapshot(SSC) MC
such that FC =/= empConfig
/\ base-state(SSC) finish-state(empConfig)
control ((proglp(0)]: notYet) (proglp(1)]: notYet)
(proglp(2)]: notYet) (consume : true))
=>
base-state (FC) finish-state(empConfig)
control ((proglp(0)]: notYet) (proglp(1)]: notYet)
(progl[p(2)]: notYet) (consume : true))

xxx End of Ezperiment for imc05 sxx

xxx Fxperiment for imc06 xxx

xxx Sstates: 810938 rewrites: 11021149 in 5357391096ms cpu
xkx (434192ms real) (2 rewrites/second)
search in EXPERIMENT : imcO6 =>*% MC such that false

xkx Solution 81740 (state 810937)
xxx states: 810938 rewrites: 11832087 in 5357391621ms cpu
xkx (1726642ms real) (2 rewrites/second)
search in EXPERIMENT
imc06 =>* start-state(SC) finish-state(FC) snapshot(SSC) MC
such that FC =/= empConfig

xkx Solution 81740 (state 810937)
xxx states: 810938 rewrites: 31965889 in 5357390769ms cpu
skx (2014779ms real) (5 rewrites/second)
search in EXPERIMENT
imc06 =>* start-state(SC) finish-state(FC) snapshot(SSC) MC
such that FC =/= empConfig
/\ base-state(SC) finish-state(empConfig)
control ((progl[p(0)]: notYet) (proglp(1)]: notYet)
(proglp(2)]: notYet) (consume : true))

93

=>

base-state (SSC) finish-state(empConfig)

control ((progl[p(0)]: notYet) (proglp(1)]: notYet)
(proglp(2)]: notYet) (consume : true))

xkx Solution 81740 (state 810937)
xxx States: 810938 rewrites: 31087639 in 5357394898ms cpu
xxx (1914408ms real) (5 rewrites/second)
search in EXPERIMENT
imc06 =>* start-state(SC) finish-state(FC) snapshot(SSC) MC
such that FC =/= empConfig
/\ base-state(SSC) finish-state(empConfig)
control ((proglp(0)]: notYet) (proglp(1)]: notYet)
(progl[p(2)]: notYet) (consume : true))
=>
base-state(FC) finish-state(empConfig)
control ((progl[p(0)]: notYet) (proglp(1)]: notYet)
(proglp(2)]: notYet) (consume : true))

xxx End of FExperiment for imc06 sxx

xxx Fxperiment for imc07 sxx

xxx maude. intelDarwin (708,0xac6062c¢0) malloc :

sk mmap(size =2097152) failed (error code=12)

xx*x error: can’t allocate region

xxx set a breakpoint in malloc_error_break to debug

x*xx terminate called throwing an exceptionAbort trap: 6
search in EXPERIMENT : imcO7 =>% MC such that false

xxx Solution 137140 (state 6854875)

xxx Sstates: 06854876 rewrites: 105922148 in 5213061ms cpu

xxx (27530117ms real) (20318 rewrites/second)

xkx maude. intelDarwin (737,0xac6062c0) malloc :

94

xxx mmap(size =2097152) failed (error code=12)
x*kx error: can’t allocate region
xxx set a breakpoint in malloc_error_break to debug
xxx terminate called throwing an exceptionAbort trap: 6
search in EXPERIMENT
imc07 =>* start-state(SC) finish-state(FC) snapshot(SSC) MC
such that FC =/= empConfig

xxx Solution 122682 (state 6400916)
xxx states: 6400917 rewrites: 440565484 in 38431146ms cpu
skk (54612651ms real) (11463 rewrites/second)

xkx maude. intelDarwin (12040,0xac1522c¢0) malloc :
sk mmap(size =2097152) failed (error code=12)
xx*x error: can’'t allocate region
xxx set a breakpoint in malloc_error_break to debug
xxx terminate called throwing an exceptionAbort trap: 6
search in EXPERIMENT
imc07 =>* start-state(SC) finish-state(FC) snapshot(SSC) MC
such that FC =/= empConfig
/\ base-state(SC) finish-state(empConfig)
control ((prog[p(0)]: notYet) (proglp(1l)]: notYet)
(progl[p(2)]: notYet) (consume : true))
=>
base-state (SSC) finish-state(empConfig)
control ((proglp(0)]: notYet) (proglp(1)]: notYet)
(progl[p(2)]: notYet) (consume : true))

xxx Solution 125725 (state 6485240)
xxx states: 60485241 rewrites: 373514223 in 23539706ms cpu
xxx (39141309ms real) (15867 rewrites/second)

xxx maude. intelDarwin (205,0xac6062c0) malloc :

skx mmap(size =2097152) failed (error code=12)

xxx error: can’t allocate region

95

x*xx set a breakpoint in malloc_error_break to debug
xxx terminate called throwing an exceptionAbort trap: 6
search in EXPERIMENT
imc07 =>* start-state(SC) finish-state(FC) snapshot(SSC) MC
such that FC =/= empConfig
/\ base-state(SSC) finish-state(empConfig)
control ((prog[p(0)]: notYet) (proglp(1)]: notYet)
(progl[p(2)]: notYet) (consume : true))
=>
base-state(FC) finish-state(empConfig)
control ((proglp(0)]: notYet) (proglp(1)]: notYet)
(proglp(2)]: notYet) (consume : true))

xxx (imc07 SSC FC

Solution 123827 (state 6448377)

states: 6448378 rewrites: 368379995 in 32136576ms cpu (46709597ms
real) (11462

rewrites/second)

maude . intelDarwin (310,0xac1522c0) malloc: xxx mmap(size =2621//)
xxx error: can’'t allocate region

xxx set a breakpoint in malloc_error_break to debug

terminate called throwing an exceptionAbort trap: 6

)

xxx FEnd of Fxperiment for imc07 *xx

xxx Frxperiment for imc08 xxx

xxx States: 3587681 rewrites: 51560637 in 1914834ms cpu
xkx (1915236ms real) (26926 rewrites/second)

search in EXPERIMENT : imc08 =>*% MC such that false

96

xxx Solution 190434 (state 3587680)

xxx States: 3587681 rewrites: 55148210 in 2047317ms cpu

xxx (46673794ms real) (26936 rewrites/second)

search in EXPERIMENT
imc08 =>* start-state(SC) finish-state(FC) snapshot(SSC) MC
such that FC =/= empConfig

xkx Solution 190434 (state 3587680)
xxx States: 3587681 rewrites: 118469042 in 5181498ms cpu
sk (49712756ms real) (22863 rewrites/second)
search in EXPERIMENT
imc08 =>* start-state(SC) finish-state(FC) snapshot(SSC) MC
such that FC =/= empConfig
/\ base-state(SC) finish-state(empConfig)
control ((proglp(0)]: notYet) (proglp(1)]: notYet)
(proglp(2)]: notYet) (consume : true))
=>
base-state (SSC) finish-state(empConfig)
control ((progl[p(0)]: notYet) (proglp(1)]: notYet)
(proglp(2)]: notYet) (consume : true))

sk« Solution 190434 (state 3587680)
xxx Sstates: 3587681 rewrites: 116431923 in 5081011ms cpu
sk (48872905ms real) (22915 rewrites/second)

search in EXPERIMENT
imc08 =>* start-state(SC) finish-state(FC) snapshot(SSC) MC
such that FC =/= empConfig
/\ base-state(SSC) finish-state(empConfig)
control ((proglp(0)]: notYet) (proglp(1)]: notYet)
(proglp(2)]: notYet) (consume : true))
=>
base-state(FC) finish-state(empConfig)
control ((progl[p(0)]: notYet) (proglp(1)]: notYet)
(proglp(2)]: notYet) (consume : true))

97

xxx End of Fxperiment for imc08 #xx

xxx Fxperiment for imc09 sxxx

xxx Sstates: 579896 rewrites: 24480376 in 192794ms cpu
xkx (192858ms real) (126976 rewrites/second)
search in EXPERIMENT : imc09 =>x MC such that false

xxx Solution 2380 (state 579886)

xxx states: HT79887 rewrites: 25059911 in 194375ms cpu

xkk (500287Tms real) (128925 rewrites/second)

search in EXPERIMENT
imc09 =>* start-state(SC) finish-state(FC) snapshot(SSC) MC
such that FC =/= empConfig

xxx Solution 2380 (state 579886)
xxx states: HT79887 rewrites: 25128901 in 236470ms cpu
xkx (56287Tms real) (106266 rewrites/second)
search in EXPERIMENT
imc09 =>x start-state(SC) finish-state(FC) snapshot(SSC) MC
such that FC =/= empConfig
/\ base-state(SC) finish-state(empConfig)
control ((prog[p(0)]: notYet) (proglp(1)]: notYet)
(progl[p(2)]: notYet) (proglp(3)]: notYet)
(progl[p(4)]: notYet) (consume : true))
=>
base-state(SSC) finish-state(empConfig)
control ((proglp(0)]: notYet) (proglp(1)]: notYet)
(proglp(2)]: notYet) (proglp(3)]: notYet)
(proglp(4)]: notYet) (consume : true))

xxx Solution 2380 (state 579886)

xxx Sstates: 579887 rewrites: 25128496 in 267381ms cpu
xxx (647594ms real) (93980 rewrites/second)

search in EXPERIMENT

98

imc09 =>* start-state(SC) finish-state(FC) snapshot(SSC) MC
such that FC =/= empConfig
/\ base-state(SSC) finish-state(empConfig)
control ((progl[p(0)]: notYet) (proglp(1)]: notYet)
(proglp(2)]: notYet) (proglp(3)]: notYet)
(proglp(4)]: notYet) (consume : true))
=>
base-state (FC) finish-state(empConfig)
control ((progl[p(0)]: notYet) (proglp(1)]: notYet)
(proglp(2)]: notYet) (proglp(3)]: notYet)
(progl[p(4)]: notYet) (consume : true))

xxx End of FExperiment for imc09 sxxx

xxx Fxperiment for imcl0 sxxx

xkx maude. intelDarwin (295,0xac6062c0) malloc :

xxx mmap(size =262144) failed (error code=12)

xxx error: can’'t allocate region

xxx set a breakpoint in malloc_error_break to debug

x*xx terminate called throwing an exceptionAbort trap: 6

search in EXPERIMENT : imcl1l0 =>*% MC such that false

* %ok

search in EXPERIMENT
imcl10 =>* start-state(SC) finish-state(FC) snapshot(SSC) MC
such that FC =/= empConfig

xkx Solution 779 (state 5662572)
xxx states: HO62573 rewrites: 254245940 in 14463958ms cpu
xkx (14540092ms real) (17577 rewrites/second)
search in EXPERIMENT
imc10 =>* start-state(SC) finish-state(FC) snapshot(SSC) MC
such that FC =/= empConfig
/\ base-state(SC) finish-state(empConfig)

99

control ((proglp(0)]: notYet) (proglp(1)]: notYet)
(proglp(2)]: notYet) (proglp(3)]: notYet)
(proglp(4)]: notYet) (consume : true))
=>
base-state (SSC) finish-state(empConfig)
control ((proglp(0)]: notYet) (proglp(1)]: notYet)
(proglp(2)]: notYet) (proglp(3)]: notYet)
(proglp(4)]: notYet) (consume : true))

search in EXPERIMENT
imcl1l0 =>* start-state(SC) finish-state(FC) snapshot(SSC) MC
such that FC =/= empConfig
/\ base-state(SSC) finish-state(empConfig)
control ((proglp(0)]: notYet) (proglp(1)]: notYet)
(proglp(2)]: notYet) (proglp(3)]: notYet)
(proglp(4)]: notYet) (consume : true))
=>
base-state (FC) finish-state(empConfig)
control ((progl[p(0)]: notYet) (proglp(1)]: notYet)
(proglp(2)]: notYet) (proglp(3)]: notYet)
(proglp(4)]: notYet) (consume : true))

xxx End of FExperiment for imcl0 sxx

100

Bibliography

[AP10]

[BBF+10]

[BM11]

[CCGH02]

[CDE*07]

[CGI*01]

[CGPYY]

[CKNZ12]

[CL85]

[CMSsS]

[CS01]

X. An and J. Pang. Model checking round-based distributed algorithms.
pages 127-135. 15th IEEE ICECCS, 2010.

B. Berard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, and
P. Schnoebelen. Systems and Software Verification: Model-Checking Tech-
niques and Tools. Springer, 2010.

K. Bae and J. Meseguer. State/event-based 1t] model checking under para-
metric generalized fairness. volume 6860 of LNCS, pages 132-148. 23rd CAV,
Springer, 2011.

A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Ro-
vere, R. Sebastiani, and A. Tacchella. Nusmv 2: An opensource tool for
symbolic model checking. volume 2404 of LNCS, pages 359-364. Springer,
Heidelberg, 2002.

M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and
C. Talcott. All About Maude - A High-Performance Logical Framework,
volume 4350 of LNCS. Springer, 2007.

E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Progress on the
state explosion problem in model checking. informatics - 10 years back. 10
years ahead. volume 2000 of LNCS, pages 176—-194. Springer-Verlag, 2001.

E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking. MIT Press,
Cambridge, 1999.

E. M. Clarke, W. Klieber, M. Novacek, and P. Zuliani. Model checking and
the state explosion problem. volume 7682 of LNCS, pages 1-30, 2012.

K. M. Chandy and L. Lamport. Distributed snapshots: Determining global
states of distributed system. pages 63-75. ACM TOCS 3, 1985.

K. M. Chandy and J. Misra. Parallel Program Design: A Foundation.
Addison-Wesley, 1988.

E. M. Clarke and H. Schlingloff. Model checking. Handbook of Automated
Reasoning. Elsevier, 2001.

101

[AMOR™04] L. de Moura, S. Owre, H. RueB, J. Rushby, N. Shankar, M. Sorea, and

[DS80]

[GhoO6]

[GLO5]

[HHS2]

[Hol04]

[KSO08]

IMCS82]

[Mes96]

[OF07a]

[OFO7h]

[OH12]

[TS11]

[Z0Z15]

A. Tiwari. Sal 2. volume 3114 of LNCS, pages 496-500. Springer, Heidelberg,
2004.

E. W. Dijkstra and C. S. Scholten. Termination detection for diffusing com-
putations. pages 1-4. Inf. Proc. Lett. 11, 1, 1980.

S. Ghosh. Distributed Systems: An Algorithmic Approach. Chapman &
Hall/CRC, 2006.

J. Goguen and K. Lin. Specifying, programming and verifying with equa-
tional logic. We Will Show Them! 2:1-38, 2005.

G. Huet and J. Hullot. Proofs by induction in equational theories with
constructors. Computer and System Sciences, 25(2):239-266, 1982.

G. J. Holzmann. The spin model checker - primer and reference manual.
Addison-Wesley, 2004.

A. D. Kshemkalyani and M. Singhal. Distributed Computing: Principles,
Algorithms, and Systems. Cambridge University Press, 2008.

J. Misra and K. M. Chandy. Termination detection of diffusing computations
in communicating sequential processes. pages 37-43. ACM Trans. Program.
Lang. Syst. 4, 1, 1982.

J. Meseguer. Rewriting logic as a semantic framework for concurrency:
a progress report. volume 1119 of LNCS, pages 331-372. 7Tth CONCUR,
Springer, 1996.

K. Ogata and K. Futatsugi. Comparison of maude and sal by conducting
case studies model checking a distributed algorithm. Fundamentals E90-A,
pages 1690-1703. IEICE Trans, 2007.

K. Ogata and K. Futatsugi. Simulation-based verification for invariant prop-
erties in the ots/cafeobj method. Electronic Notes in Theoretical Computer

Science 201 (2008), pages 127-154. BCS-FACS Refinement Workshop, 2007.

K. Ogata and T. T. P. Huyen. Specification and model checking of the chandy
and lamport distributed snapshot algorithm in rewriting logic. volume 7635
of LNCS, pages 87-102. 14th ICFEM, 2012.

T. Tsuchiya and A. Schiper. Verification of consensus algorithms using sat-
isfiability solving. In Distributed Computing 23, pages 341-358, 2011.

W. J. Zhang, K. Ogata, and M. Zhang. A consideration on how to model
check distributed snapshot reachability property. In IEICE Technical Report,
volume 114, No. 416, ISSN 0913-5685, pages 49-54. IEICE, 2015.

102

