
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Confluence Analysis for Term Rewriting via

Commutation

Author(s) 新谷, 喜楽

Citation

Issue Date 2015-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/12660

Rights

Description Supervisor: 廣川 直, 情報科学研究科, 修士

Confluence Analysis for Term Rewriting via
Commutation

By Kiraku Shintani

A thesis submitted to
School of Information Science,

Japan Advanced Institute of Science and Technology,
in partial fulfillment of the requirements

for the degree of
Master of Information Science

Graduate Program in Information Science

Written under the direction of
Associate Professor Nao Hirokawa

March, 2015

Confluence Analysis for Term Rewriting via
Commutation

By Kiraku Shintani (1310032)

A thesis submitted to
School of Information Science,

Japan Advanced Institute of Science and Technology,
in partial fulfillment of the requirements

for the degree of
Master of Information Science

Graduate Program in Information Science

Written under the direction of
Associate Professor Nao Hirokawa

and approved by
Associate Professor Nao Hirokawa

Professor Mizuhito Ogawa
Professor Kazuhiro Ogata

February, 2015 (Submitted)

Copyright c© 2015 by Kiraku Shintani

Contents

1 Introduction 2

2 Preliminaries 5
2.1 Relations and Orders . 5
2.2 Terms and Substitutions . 7
2.3 Term Rewrite Systems . 10
2.4 Confluence Analysis . 11
2.5 Church-Rosser modulo . 11

3 Confluence via Church-Rosser Modulo 12
3.1 Associative Unification . 12
3.2 Coherence . 15
3.3 Commutative Unification . 16

4 Commutation 17
4.1 Commutation Criteria . 17
4.2 Commutation Theorem . 18

5 Implementation 21

6 Conclusion 23

A Additional Experiments 27

B Examples 30

1

Chapter 1

Introduction

Term rewriting is a simple Turing complete computational model, which underlies au-
tomated theorem proving (e.g. E, Vampire, Waldmeister) and declarative programming
languages (CafeOBJ, Haskell, OCaml). Confluence is a fundamental property that en-
sures uniqueness of computational results, which plays a crucial role in applications. While
in programming languages confluence guarantees well-definedness of functions, in theorem
proving confluence is used for equational reasoning.

Rewriting and Confluecne. In this thesis we investigate automated confluence anal-
ysis for term rewriting. A term rewrite system (TRS) is a directed equational system on
terms. The following system R2 is an instance of left-linear TRSs:

1 : eq(a, a)→ T 3: eq(a ∗ x, a ∗ y)→ eq(x, y) 5 : (x ∗ y) ∗ z → x ∗ (y ∗ z)

2 : eq(a, x ∗ y)→ F 4: eq(x, y)→ eq(y, x) 6 : x ∗ (y ∗ z)→ (x ∗ y) ∗ z

The function eq checks if a given two sequences of a are identical. For instance, the term
eq((a ∗ a) ∗ a, a ∗ a) is computed by the following rewrite steps:

eq((a ∗ a) ∗ a, a ∗ a)→R eq(a ∗ (a ∗ a), a ∗ a)

→R eq(a ∗ a, a)

→R eq(a, a ∗ a)

→R F

The above is merely one way of computation. The term eq((a∗a)∗a, a∗a) is also rewritten
in a different way:

eq((a ∗ a) ∗ a, a ∗ a)→R eq(a ∗ a, (a ∗ a) ∗ a)

→R eq(a ∗ a, a ∗ (a ∗ a))

→R eq(a, a ∗ a)

→R F

Although the computation paths are different, the computational results are same. Here a
natural question arises: Does such a uniqueness hold for any computation that starts from

2

the same term? Confluence addresses the issue. Since the above TRS fulfils confluence,
uniqueness of results is guaranteed.

Automated Confluence Proving. Research of confluence has a long history, and
many powerful confluence criteria have been proposed [7, 9, 12, 20, 21, 22]. Especially a
significant amount of research exists for the class of left-linear TRSs, which model much
of functional programs. Left-linearity means that for every rewrite rules each variable in
the left-hand side occurs exactly once. In 2009 the first automatic confluence tool ACP [3]
appeared. This triggered a renewed interest in renovating confluence criteria in the aspect
of computability and efficiency [1, 2, 3, 6, 8, 11, 24], and development of confluence tools
(CSI [24] and Saigawa).

We are concerned with associativity and/or commutativity rules and the commutation
property of rewrite systems. Associativity and commutativity are fundamental notions in
mathematics and computer science to axiomatize monoids and symmetric functions. The
following TRS corresponds to a semi-group with a left-identity element:

1 : 0 + x→ x 2: x+ (y + z)→ (x+ y) + z 3: (x+ y) + z → x+ (y + z)

None of confluence criteria [1, 2, 3, 6, 8, 9, 11, 12, 20, 22, 24] can show confluence of the
TRS. Difficulty here is that standard techniques based on termination (e.g. [12, 8, 24])
and developments [9, 20, 22, 3] fail. Let’s have a look at another TRS:

1 : 0× y → nil 9: q(q(x, y), z)→ q(x, q(y, z))

2 : s(x)× y → y++(x× y) 10 : q(x, q(y, z))→ q(q(x, y), z)

3 : hd(c(x))→ x 11: q(e, x)→ x

4: hd(c(x) ++ y)→ x 12: q(x, e)→ x

5: nil ++x→ x 13: x+ (y + z)→ (x+ y) + z

6: x++ nil→ x 14: x+ y → y + x

7: x++(y++ z)→ (x++ y) ++ z 15: 0 + x→ x

8: (x++ y) ++ z → x++(y++ z) 16 : s(x) + y → s(x+ y)

17 : len(e)→ 0

18: len(a)→ s(0)

19 : len(q(a, y))→len(a) + len(y)

When analyzing such a complex TRS, decomposition is effective [3, 24]. In particular
ACP showed powerfulness of commutation-based decomposition [20, 3]. According to
the method, confluence of the TRS follows from confluence of the commuting subsys-
tems (see Figure 1.1 for the commutation property): {1, 2, 5, 6, 7, 8}, {3, 4, 5, 6, 7, 8}, and
{9, 10, . . . , 19}. However, due to an exponential number of possible subsystems, the com-
putational cost of the decomposition method is high.

Approach. In this thesis we propose a confluence analysis for left-linear TRSs via com-
mutation. Commutation is a generalization of the confluence property (see Figure 1.1).

3

· ·

· ·

R
*

R
*

R
*

R
*

· ·

· ·

R
*

S
*

S
*

R
*

Figure 1.1: Confluence (left) and commutation (right)

The celebrated Commutation Theorem of Hindley [7] enables us to decompose the con-
fluence problem of a complex TRS into a group of commutation problems of its subsys-
tems. As direct methods for commutation, we employ confluence criteria including rule
labeling [1] and the Church-Rosser modulo theorem [10], recasting them in commutation
criteria. In order to derive the power of the Church-Rosser modulo theorem we have
to perform equational unification, automation of which is one of the highlights of this
thesis. In addition to those core contributions, we introduce several techniques useful for
improving power and efficiency of confluence analysis. We remark that left-linearity of
TRSs is an essential property of commutation, in fact many commutation criteria require
left-linearity.

Overview. We introduce notions and notations in Chapter 2 that include the definition
of TRS and rewrite steps. In Chapter 3 we introduce Jouannaud and Kirchner’s crite-
rion [10] for Church-Rosser modulo. We show unification algorithms and the coherence
problem for automation of the criterion. In Chapter 4 we recall three existing commu-
tation criteria and discuss a decomposition technique based on Hindley’s commutation
theorem and composability. All presented techniques have been implemented in our con-
fluence tool CoLL. Chapter 5 reports experimental results based on the tool. Finally, in
Chapter 6 we conclude the thesis with a discussion of related work and future directions.

Contributions. Here we list the main contributions of the thesis:

• a confluence proof by Church-Rosser modulo associativity and/or commutativity
theories (Chapter 3),

• a commutation-based confluence analysis (Chapter 4),

• composability decomposition (Chapter 4),

• redundant rule elimination (Chapter 5),

• signature extension for commutation (Chapter 6), and

• the powerful confluence tool CoLL:

http://www.jaist.ac.jp/project/saigawa/coll/

4

Chapter 2

Preliminaries

We introduce notions and notations on term rewrite systems. Term rewriting is built on
terms and relations on them. In this paper, we denote non-negative integers by N. We
assume basic knowledge of set theory.

2.1 Relations and Orders

Abstract notion of rewriting is formalized as binary relations.

Definition 2.1. A (binary) relation → on a set A is a subset of A × A. We denote
(a, b) ∈ → by a → b. A pair 〈A,→〉 of a set A and a relation on A is called abstract
rewrite system (ARS). We denote the relation → of an ARS A by →A. Throughout the
thesis, we use relations and ARSs interchangeably.

The next definition introduces several important operations on relations. The nota-
tion →1 · →2 stands the composition of relations →1 and →2 defined by →1 · →2 =
{ (a, c) | a→1 b and b→2 c }.

Definition 2.2. Let → be a relation on a set A. The compositions of → are defined as
follows:

• The n-step relation is defined for all n ∈ N as follows:

→n =

{
{ (x, x) | x ∈ A } if n = 0

→ · →n−1 if n > 0

• The reflexive closure →= is defined as → ∪ →0.

• The transitive closure →+ is defined as
⋃
i>0→i.

• The reflexive transitive closure →∗ is defined as
⋃
i>0→i.

• The symmetric closure ↔ is defined as → ∪ ←.

5

• The inverse ← is defined as { (b, a) | a→ b }.

• The relation ← · → is a peak.

• The relation → · ← is a valley.

• Two elements a, b ∈ A are joinable if a→∗ · ∗← b holds.

Definition 2.3. Let → be a relation on A. An element a ∈ A is a normal form if there
is no b ∈ A such that a→ b. The set of all normal forms of → is denoted by NF(→).

Definition 2.4. A relation → is well-founded if there are no infinite sequence such that

a1 → a2 → a3 → · · ·

A relation is terminating if it is well-founded.

Commutation is a property on interaction of two relations.

Definition 2.5. Let →1 and →2 be relations.

• The relations commute if ∗1← · →∗2 ⊆ →∗2 · ∗1← holds.

• The relations locally commute if 1← · →2 ⊆ →∗2 · ∗1← holds.

A relation is called confluent if the relation self-commutes, i.e., the relation commutes
with itself.

With the next example we explain the confluence property.

Example 2.6. Let A1 be the ARS 〈{a, b, c}, {a → b, a → c, b → c}〉. Since every peak
of A1 is joinable at the element c, the ARS A1 is confluent. Consider the another ARS
A2 = 〈{a, b, c}, {a → b, a → c}〉. Because the peak b A2← a →A2 c is not joinable, A2 is
not confluent.

We define several types of orders. We say that an irreflexive and transitive relation >
is a strict order, and a reflexive and transitive relation > is a preorder.

Definition 2.7. Let > be a strict order. The lexicographic order >lex is defined as follows:

(a1, b1) >lex (a2, b2) ⇐⇒ a1 > a2 or, a1 = a2 and b1 > b2

Definition 2.8. Let A be a set. A multiset M over A is a function A to N. Suppose M
and N are multisets over A. The basic multiset operators are defined as follows:

• The x ∈M holds if M(x) > 0.

• The M ⊆ N holds if M(x) 6 N(x) for all x ∈ A.

• The union M ∪N is the function defined by (M ∪N)(x) = M(x) +N(x).

6

• The difference M \N is defined as follows:

(M \N)(x) =

{
0 if M(x) < N(x)

M(x)−N(x) if M(x) > N(x)

Definition 2.9. Let M and N be multisets over A and > strict order on A. The multiset
extension M >mul N holds if there is a set X ⊆ M such that X 6= ∅, N ⊇ (M \X) and
x > y for some x ∈ X for all y ∈ N \ (M \ X). We write M >mul N if M >mul N or
M = N .

2.2 Terms and Substitutions

Definition 2.10. A signature F is a set of function symbols, where each function symbol
f is associated with non-negative integer n, the arity of f . We denote the arity of a
function symbol f by f (n). If c ∈ F has 0-arity, we call c a constant.

Terms are defined both from a signature F and a set V of variables.

Definition 2.11. Let F be a signature and V a set of variables with F ∩V = ∅. The set
T (F ,V) of terms is defined as follows:

• x ∈ T (F ,V) if x ∈ V, and

• f(t1, . . . , tn) ∈ T (F ,V) if f (n) ∈ F and t1, . . . , tn ∈ T (F ,V).

We use small letters s, t, u, . . . for terms and x, y, z, . . . for variables.

Definition 2.12. Let t be a term in T (F ,V).

• The set Fun(t) of all function symbols in t is denoted as:

Fun(t) =

{
∅ if t ∈ V
{f} ∪

⋃n
i=1Fun(ti) if t = f(t1, . . . , tn)

• The set Var(t) of all variables in t is denoted as:

Var(t) =

{
{t} if t ∈ V⋃n
i=1 Var(ti) if t = f(t1, . . . , tn)

• The set Pos(t) of finite sequences of positive numbers, called positions, is defined
as follows:

Pos(t) =

{
ε if t ∈ V
ε ∪ { ip | 1 6 i 6 n, p ∈ Pos(ti) } if t = f(t1, . . . , tn)

where ε is empty sequence named root position.

7

• The set PosF(t) of positions corresponded non variable subterms is defined as:

PosF(t) =

{
∅ if t ∈ V
ε ∪ { ip | 1 6 i 6 n, p ∈ PosF(ti) } if t = f(t1, . . . , tn)

• The root symbol root(t) of t is defined as follows:

root(t) =

{
t if t ∈ V
f if t = f(t1, . . . , tn)

Definition 2.13. The notation s|p denotes the subterm of the term s at the position
p ∈ Pos(s), i.e.,

s|p =

{
s if p = ε

ti|q if p = iq and s = f(t1, . . . , ti, . . . , tn)

The notation s[t]p denotes the term resulting from replacing the subterm at the position
p ∈ Pos(s) by t:

s[t]p =

{
t if p = ε

f(s1, . . . , si[t]q, . . . , sn) if p = iq and s = f(s1, . . . , si, . . . , sn)

Definition 2.14. A term s is a subterm of t if there is a position p ∈ Pos(t) such that
t|p = s. If p 6= ε then s is a proper subterm of t. We write s E t (s C t) if s is a (proper)
subterm of t.

Definition 2.15. Let � be a fresh constant called the hole. A term C ∈ T (F ∪ {�},V)
is a context if C contains exactly one hole �. The term C[t] is inductively defined as
follows:

C[t] =

{
t if C = �

f(t1, . . . , C
′[t], . . . , tn) if C = f(t1, . . . , C

′, . . . , tn) with context C ′

Definition 2.16. Let V be a set of variables and t in T (F ,V). An assignment σ on V
to T (F ,V) is called substitution over T (F ,V) with the property that its domain Dom(σ)
is finite.

• We write tσ for a term replaced variables by a substitution σ such that

tσ =

{
σ(t) if t ∈ V
f(t1σ, . . . , tnσ) if t = f(t1, . . . , tn)

• A set {x1 7→ t1, . . . , xn 7→ tn} of variable bindings represents a substitution σ such
that σ(xi) = ti for all 1 6 i 6 n.

8

• The application tστ of a composited substitution στ is defined by (tσ)τ .

Definition 2.17. A bijective substitution is called a renaming. The terms s and t are
variant if there is a renaming σ such that sσ = t. The pairs (s1, t1) and (s2, s2) are variant
if there is a renaming σ such that s1σ = s2 and t1σ = t2.

The next definition is a main topic of this section.

Definition 2.18. A unifier σ of s and t is substitution such that sσ = tσ. A unifier σ of
s and t is a most general unifier if for every unifier σ′ of s and t there is some substitution
τ such that στ = σ′.

An equality s ≈ t is a pair of terms s and t. We use the notation to express unification
problems.

Example 2.19. We show few examples of unification on T ({f,+, a, b},V). Consider the
following equation:

x ≈ f(a)

The equation has exactly one unifier {x 7→ f(a)}. The following each equations are not
unifiable:

x ≈ f(x) a + x ≈ b + y

In the former equation the variable x appears in the different terms in both sides, while
in the latter equation the left-hand-side of the terms are different. Therefore they admit
no unifier. Consider the following equation:

x ≈ f(y)

Whereas there are infinitely many unifiers

{x 7→ f(y)}, {x 7→ f(a), y 7→ a}, {x 7→ f(f(y)), y 7→ f(y)}, · · ·

the most general unifier {x 7→ f(y)} subsumes all unifiers.

We extend unification so as to make terms identical in a given equational theory.

Definition 2.20. Let E be an equational theory. An E-unifier σ of s and t is substitution
such that sσ ↔∗E tσ for some substitution σ. A set U of E-unifiers of s and t is complete if
for every E-unifier σ′ of s and t there is σ in U such that στ ↔∗E σ′ for some substitution τ .
A minimal complete set U of E-unifiers is a complete set satisfies the additional condition:
for all σ, σ′ ∈ U , if στ ↔∗E σ′ for some substitution τ then σ = σ′.

We denote by UE(s ≈ t) a fixed complete set of E-unifiers for terms s and t.

Example 2.21. We continue Example 2.19. Let →E be a relation such that →E= {(a +
b, b + a)}. Consider the following equation that is not unifiable in syntactic unification:

a + x ≈ b + y

The equation is unifiable by the E-unifier {x 7→ b, y 7→ a} as a + b→∗E b + a.

9

2.3 Term Rewrite Systems

Definition 2.22. A pair of terms ` and r is called rewrite rule if ` is not variable and
Var(`) ⊇ Var(r). We write a rewrite rule (`, r) by ` → r. A term rewrite system (TRS)
is a set of rewrite rules.

Usually we denote TRSs by R and S. Consider the following TRS R0:

1 : 0 + x→ x 2: s(x) + y → s(x+ y) 3 : x+ s(y)→ s(x+ y)

We use the TRS as a running example to explain notions introduced in this section.

Definition 2.23. Let R be a TRS. The rewrite step s→R t is defined by there is rewrite
rule ` → r in R such that s|p = `σ and t = s[rσ]p for some position p ∈ PosF(s) and
substitution σ.

Given a TRS R, we denote the set of normal forms of →R by NF(R). The term
s(0) + s(0) is rewritten as follows:

s(0) + s(0)→R0 s(0 + s(0)) (by rule 2 with p = ε and σ = {x 7→ 0, y 7→ s(0)})
→R0 s(s(0)) (by rule 1 with p = 1 and σ = {x 7→ s(0)})

The next definitions are used in remaining chapters.

Definition 2.24. Let R be a TRS. The multi-step ◦−→R is inductively defined on terms
as follows:

1. x ◦−→R x for all x ∈ V,

2. f(s1, . . . , sn) ◦−→R f(t1, . . . , tn) if si ◦−→R ti for all 1 6 i 6 n, and

3. `σ ◦−→R rτ if `→ r ∈ R and xσ ◦−→R xτ for all variables x.

Definition 2.25. Linearity is defined on terms, rewrite rules and TRSs:

• A term t is linear if in t every variables occurs exactly once.

• A rewrite rule `→ r is left-linear if ` is linear.

• A TRS R is left-linear if every rewrite rule in R is left-linear.

10

2.4 Confluence Analysis

Conditions for confluence are often based on the notion of critical pairs.

Definition 2.26. Let `1 → r1 be a rule in a TRS R and `2 → r2 a variant of a rule in a
TRS S with Var(`1) ∩ Var(`2) = ∅. When p ∈ PosF(`2) and σ ∈ UE(`1 ≈ `2|p), the pair
(`2σ[r1σ]p, r2σ) is called an E-extended critical pair (or simply E-critical pair) of R on
S, and written `2σ[r1σ]p R,E←o→S r2σ.

For E = ∅ the set of all E-critical pairs is denoted by R←o→S , and they are simply
called critical pairs. For R0 there are two critical pairs:

s(y′) R0←o→R0 s(0 + y′)

s(x′ + s(y′)) R0←o→R0 s(s(x′) + y′)

Consider the rules {1, 2} and C = {x+ y → y + x}. Since s(x′) + 0↔∗C 0 + s(x), we have
C-critical pair s(0) {1,2},C←o→{1,2} s(x′ + 0).

Observe that termination ofR0 is trivial. Under the termination assumption, confluence
is characterized by the local confluence property, according to famous Newman’s Lemma.

Theorem 2.27. A terminating relation is confluent if and only if it is locally confluent.

Local confluence is shown by the following Critical Pair Lemma [4].

Lemma 2.28. A TRS is locally confluent if and only if all its critical pairs are joinable.

Since all critical pairs of R0 are joinable by R0←, confluence of R0 is concluded.

2.5 Church-Rosser modulo

Rewriting modulo E uses E-pattern matching in rewriting, and the counterpart of the
confluence property is called Church-Rosser modulo.

Definition 2.29. Let R and E be TRSs. The rewrite step of R modulo theory E, denoted
by s →R,E t, is defined as follows: If s|p ↔∗E `σ and t = s[rσ]p for some position p ∈
PosF(s), rule `→ r ∈ R, and substitution σ.

Definition 2.30. The relation →R,E is Church-Rosser modulo E, denoted as CR(R, E)
if ↔∗R∪E ⊆ →∗R,E · ↔∗E · ∗

R,E←.

Definition 2.31. Let FA, FC and FAC be pairwise disjoint sets of binary function symbols.
We define the three theories A (associativity, A), C (commutativity, C), and AC as:

A = { f(f(x, y), z)→ f(x, f(y, z)), f(x, f(y, z))→ f(f(x, y), z) | f ∈ FA }
C = { f(x, y)→ f(y, x) | f ∈ FC }

AC = { f(f(x, y), z)→ f(x, f(y, z)), f(x, y)→ f(y, x) | f ∈ FAC }

In the next chapter we explain how to use Church-Rosser modulo in confluence analysis.

11

Chapter 3

Confluence via Church-Rosser
Modulo

In this chapter we explain how the next theorem by Jouannaud and Kirchner [10] is
used for confluence analysis. Especially, we discuss how to deal with associativity and/or
commutativity rules.

Theorem 3.1. Let R and E be TRSs that R/E is terminating and B · ↔∗E is well-founded.
Then, CR(R, E) if and only if R,E←o→R∪E∪E−1 ⊆ →∗R,E · ↔∗E · ∗

R,E←.

We use the next left-linear TRS R1 to illustrate problems that arise when employing
Theorem 3.1:

1 : 0 + x→ x 2: x+ (y + z)→ (x+ y) + z 3: (x+ y) + z → x+ (y + z)

An idea here is proving CR({1}, {2, 3}) to conclude confluence of R1. The next trivial
lemma validates this idea. We call a TRS E reversible if →E ⊆ ∗

E← holds.

Lemma 3.2. Suppose E is reversible. If CR(R, E) then R∪ E is confluent.

Reversibility of {2, 3} and well-foundedness of B · ↔∗{2,3} are trivial. Termination of

{1}/{2, 3} can be shown by AC-RPO [17]. Therefore, it remains to test joinability of
extended critical pairs to apply Theorem 3.1.

3.1 Associative Unification

How to compute A-critical pairs? Plotkin [15] introduced a procedure that enumerates
a minimal complete set of A-unifiers. It is well-known that a minimal complete set need
not to be finite, and thus the procedure may not terminate. In fact there is a TRS that
admits infinitely many A-critical pairs. Probably this is one of main reasons that existing
confluence tools do not support Theorem 3.1 for associativity rules. However, as observed
in [18], a minimal complete set resulting from the procedure is finite whenever an input
equality is a pair of linear terms that share no variables. Therefore, for every left-linear
TRS one can safely use Plotkin’s procedure to compute their A-critical pairs.

12

We present a simple A-unification procedure obtained by specializing Plotkin’s pro-
cedure to our setting. Let S and T be sets of substitutions. We abbreviate the set
{στ | σ ∈ S and τ ∈ T} to ST . Given a term t, we write t↓A′ for the normal form of t
with respect to A′. Here A′ is the complete TRS {f(f(x, y), z)→ f(x, f(y, z)) | f ∈ FA}.

Definition 3.3. Let s and t be terms. The function 〈s ≈ t〉 is inductively defined as
follows.

〈s ≈ t〉 =

{{s 7→ t}} if s ∈ V
{{t 7→ s}} if s /∈ V and t ∈ V
(A1 · · ·An) ∪ As,t ∪ At,s if s = f(s1, . . . , sn) and t = f(t1, . . . , tn)

∅ otherwise

where,

Ai = 〈si ≈ ti〉, As,t =

{
{{s1 7→ f(t1, s1)}}〈s ≈ t2〉 if (∗)
∅ otherwise

and (∗) stands for s = f(s1, s2), t = f(t1, t2), f ∈ FA, and s1 ∈ V.

Lemma 3.4. Let s and t be linear terms with Var(s) ∩ Var(t) = ∅. If µ ∈ 〈s ≈ t〉 then
sµ↔∗A tµ and Dom(µ) ⊆ Var(s) ∪ Var(t).

Proof. We perform induction on the multiset {s, t} with respect to Bmul.

• If s ∈ V then sµ = tµ and Dom(µ) = {s} ⊆ Var(s) ∪ Var(t). Similarly, the case of
s /∈ V and t ∈ V is also proved.

• If s = f(s1, . . . , sn) and t = f(t1, . . . , tn) with f /∈ FA then we define µi as {x 7→ xµ |
x ∈ Var(si)∪Var(ti)}. Due to linearity of s and t and Var(s)∩Var(t) = ∅, we have
µ = µ1 · · ·µn and µi ∈ 〈si ≈ ti〉. Thus, the induction hypotheses yield siµi ↔∗A tiµi
and Dom(µi) ⊆ Var(si) ∪ Var(ti) for all i, and therefore, the claim follows.

• Otherwise, µ is derived from As,t ∪ At,s in the case of s = f(s1, s2), t = f(t1, t2)
with f ∈ FA. Without loss of generality assume µ ∈ As,t. There is a substitution
µ2 ∈ 〈s ≈ t2〉A such that Dom(µ2) ⊆ {s} ∪ Var(t1) and µ = {s1 7→ f(t1, s1)}µ2.
By the assumption we have Var(s1) ∩ Var(t) = ∅. Therefore, by the induction
hypothesis

sµ = f(f(t1µ2, s1µ2), s2µ2)→A f(t1µ2, sµ2)↔∗A f(t1µ2, t2µ2) = tµ

is obtained. Moreover, we have Dom(µ) = {s1} ∪ Dom(µ2) ⊆ Var(s) ∪ Var(t).

Let A′ = {f(f(x, y), z)→ f(x, f(y, z)) | f ∈ FA}.

13

Lemma 3.5. Suppose s, t ∈ NF(A′) and Var(s)∩Var(t) = ∅. If sσ ↔∗A tσ then µ ∈ 〈s ≈ t〉
and σ ↔∗A µτ for some substitutions µ and τ .

Proof. By induction on the multiset {s, t} with respect to Bmul.

• If s ∈ V then sσ = tσ. By taking µ = {s 7→ t} we have µ ∈ 〈s ≈ t〉 and σ = µσ.
Analogously, the case of s /∈ V and t ∈ V is proved.

• If s = f(s1, . . . , sn) and t = f(t1, . . . , tn) with f 6∈ FA then siσ ↔∗A tiσ. By the
induction hypothesis for each i ∈ {1, . . . , n} there are µi ∈ 〈si ≈ ti〉 and τi such that
µiτi ↔∗A σ. We define µ = µ1 · · ·µn and

τ(x) =

{
xτi if 1 6 i 6 n and x ∈ Var(si) ∪ Var(ti)

xσ otherwise

It is not difficult to prove µ ∈ 〈s ≈ t〉 and µτ ↔∗A σ.

• Otherwise, s = f(s1, s2), t = f(t1, t2) with f ∈ FA. We distinguish three cases,
depending on s1 and t1. Note that the root symbols of s1 and t1 are not in FA, due
to the assumption s, t ∈ NF(A′).

– If si ↔∗A ti for each i ∈ {1, 2} then the claim is straightforward from the
induction hypotheses.

– If s1 ∈ V and s1σ ↔∗A f(t1σ, u) for some term u then

sτ1σ = f(u, s2σ)↔∗A f(u, t2σ)

for τ1 = {s1 7→ u}. By the induction hypothesis µ1 ∈ 〈s ≈ t2〉 and τ1σ ↔∗A µ1τ2
for some substitutions µ1 and τ2. Let µ = {s1 7→ f(t1, s1)}µ1 and τ = τ1τ2.
We have µ ∈ 〈s ≈ t〉 and µτ ↔∗A {s1 7→ f(t1, u)}σ ↔∗A σ.

– If t1 ∈ V and t1σ ↔∗A f(s1σ, u) for some u then the above argument goes
through.

Theorem 3.6. Let s and t be linear terms with Var(s)∩Var(t) = ∅. The set 〈s↓A′ ≈ t↓A′〉
is a finite complete set of their A-unifiers.

Proof. Finiteness is trivial. Completeness is shown by Lemma 3.4 and Lemma 3.5.

We illustrate use of the theorem. Let s = 0 + x, t = (x′ + y′) + z′, and FA = {+}. A
complete set of A-unifiers for the terms is computed as follows:

〈s↓A′ ≈ t↓A′〉 = 〈0 + x ≈ x′ + (y′ + z′)〉
=
(
〈0 ≈ x′〉〈x ≈ y′ + z′〉

)
∪
(
{{x′ 7→ 0 + x′}}〈x ≈ x′ + (y′ + z′)〉

)
=
{
{x′ 7→ 0, x 7→ y′ + z′}, {x′ 7→ 0 + x′, x 7→ x′ + (y′ + z′)}

}
14

This set induces the A-critical pairs:

y′ + z′ {1},A←o→{3} 0 + (y′ + z′)

x′ + (y′ + z′) {1},A←o→{3} (0 + x′) + (y′ + z′)

Both of the right-hand sides reduces to the corresponding left-hand sides by the rewriting
modulo step →{1},A.

3.2 Coherence

Consider the A-critical pair:

x+ z {1},A←o→{2} (x+ 0) + z

Contrary to our intention, (x+ 0) + z →{1},A x+ z does not hold, and thus CR({1},A) is
refuted by Theorem 3.1. The undesired incapability of rewriting is known as the coherence
problem of rewriting modulo [10, 14].

Definition 3.7. A pair (R, E) is strongly coherent if ↔∗E · →R,E ⊆ →R,E · ↔∗E .
Lemma 3.8. Suppose E is reversible and (R, E) is strongly coherent. If CR(R, E) then
R∪ E is confluent, and vice versa.

While the strong coherence property always holds for rewriting modulo C, rewriting
modulo A and AC rarely satisfy the property. This can be overcome by extending a rewrite
system. While an extension for AC is well-known [10, 14], we present the A-extension of
a TRS.

Definition 3.9. Let R be a TRS. The A-extended TRS ExtA(R) consists of

`→ r f(`, x)→ f(r, x) f(x, f(`, y))→ f(x, f(r, y))

f(x, `)→ f(x, r)

for all rules `→ r ∈ R with f = root(`) ∈ FA. Here x and y are fresh variables not in `.

Lemma 3.10. The pair (ExtA(R),A) is strongly coherent and →ExtA(R) =→R.

Proof. From the inclusion→A · →ExtA(R),A ⊆ →ExtA(R),A · →∗A the first claim follows. Since
→R is closed under contexts, the second claim is trivial.

The TRS ExtA({1}) consists of the four rules:

0 + x→ x w + ((0 + x)→ w + x

(0 + x) + y → x+ y w + ((0 + x) + y)→ w + (x+ y)

As the extended TRS contains all original rules, we have again the previous A-critical
pair:

x+ z {1},A←o→{2} (x+ 0) + z

Since (x + 0) + z →ExtA({1}),A x + z holds, the pair is joinable. Similarly, one can verify
that all other A-critical pairs are joinable. Therefore, CR(ExtA({1}),A) is concluded by
Theorem 3.1. Finally, confluence of R1 is established.

15

3.3 Commutative Unification

Commutative unification also benefits from left-linearity. We define UC
E (s ≈ t) as {µ |

s ◦−→C s
′ and µ ∈ UE(s′ ≈ t) for some s′}.

Lemma 3.11. Suppose C and E ∪ E−1 commute. If Var(s) ∩ Var(t) = ∅ and s is linear
then UC

E (s ≈ t) is a complete set of C ∪ E-unifiers for s and t.

Proof. Since it is trivial that UC
E (s ≈ t) consists of E ∪C-unifiers, we only show complete-

ness of the set. Let sσ ↔∗C∪E tσ. By commutation we have sσ ∗
C← u ↔∗E tσ for some u.

Since ◦−→C =↔∗C holds, sσ ◦−→C u. Due to the linearity of s there are s′ and σ′ such that
u = s′σ′, s ◦−→C s

′, and xσ ◦−→C xσ
′ for all variables x. We define µ as follows:

µ(x) =

xσ if x ∈ Var(s)

xσ′ if x ∈ Var(t)

x otherwise

Since s and t share no variables, µ is well-defined. By the definition we obtain s′µ ↔∗E
tµ.

Since A and C are left-linear TRSs that share no function symbols, their commutation
can be proved (by using e.g. Theorem 4.1 in the next chapter). So Lemma 3.11 gives a
way to compute A ∪ C-critical pairs.

Example 3.12. Consider the left-linear TRS R2 with FA = {∗} and FC = {eq}:

1: eq(a, a)→ T 3: eq(a ∗ x, y ∗ a)→ eq(x, y) 5 : (x ∗ y) ∗ z → x ∗ (y ∗ z)

2 : eq(a, x ∗ y)→ F 4: eq(x, y)→ eq(y, x) 6 : x ∗ (y ∗ z)→ (x ∗ y) ∗ z

Let R = {1, 2, 3} and E = {4, 5, 6}. Note that E = C ∪ A. It is sufficient to show
CR(ExtA(R), E). We can use AC-RPO to prove termination of R/E, which is equivalent
to that of ExtA(R)/E due to the identity in Lemma 3.8. Let s = eq(a ∗ x, y ∗ a) and
t = eq(a ∗ x′, y′ ∗ a). A complete set of their A ∪ C-unifiers is:

UC
A (s ≈ t) = 〈s ≈ t〉 ∪ 〈eq(y ∗ a, a ∗ x) ≈ eq(a ∗ x′, y′ ∗ a)〉

=

{x 7→ x′, y 7→ y′},
{x 7→ a, y 7→ a, x′ 7→ a, y′ 7→ a}
{x 7→ y′ ∗ a, y 7→ a ∗ y, x′ 7→ y ∗ a, y′ 7→ a ∗ y′}

In this way we can compute complete sets to induce the set of all E-critical pairs. Since
all pairs are joinable, CR(R, E) is concluded.

16

Chapter 4

Commutation

4.1 Commutation Criteria

Our tool employs three commutation criteria. The first commutation criterion is the
development closedness theorem [3, 9, 20, 22].

Theorem 4.1. Left-linear TRSs R and S commute if the inclusions

R←o→S ⊆ ◦−→S R←n→S ⊆ →∗S · ◦←−R

hold.

The second criterion is the commutation version of the rule labeling technique with
weight function [23, 1].

Definition 4.2. A weight function w is a function from F to N. The weight w(C) of a
context C is defined as follows:

w(C) =

{
0 if C = �

w(f) + w(C ′) if C = f(t1, . . . , C
′, . . . , tn) with a context C ′

The weight is admissible for a TRS R if

{w(C) | C[x] = `} >mul {w(C) | C[x] = r}

holds for all ` → r ∈ R and x ∈ Var(r). A rule labeling φ for a TRS R is a function
from rules in R to N. The labeled step

α−→R is defined as follows: s →R,(k,m) t if there
are a rule ` → r, a context C, and a substitution σ such that s = C[`σ], t = C[rσ], and
α = (w(C), φ(`→ r)).

In the next theorem we use the following abbreviations for labeled steps:

I−→ =
⋃
α∈I

α−→ gα = {β ∈ I | α � β} gαβ = (gα) ∪ (gβ)

where, � stands for the lexicographic order on N× N.

17

Theorem 4.3. Left-linear TRSs R and S commute if there is an admissible weight func-
tion w and a rule labeling φ for R∪ S such that

(R
α←−o β−→S) ∪ (R

α←−n β−→S) ⊆ gα−→∗S ·
β−→=
S ·

gαβ−−→∗S ·
gαβ←−−∗R ·

α←−=
R ·

gβ←−∗R

for all pairs α, β ∈ N× N.

The final criterion is a trivial adaptation of Theorem 3.1 to the commutation property,
integrating lemmata in Section 3.

Theorem 4.4. Let R,S be left-linear TRSs and E ∈ {A,AC} such that R/(E ∪ C) is
terminating. The TRSs R∪ E ′ and S ∪ E ′ commute if and only if

(R′,E ′←o→S′∪E ′) ∪ (R′∪E ′←n→S′,E ′) ⊆ →∗S′,E ′ · ↔∗E ′ · ∗
R′,E ′←

where, R′ = ExtE(R), S ′ = ExtE(S), and E ′ = E ∪ C.

Note that our tool uses the algorithm in [16] for AC unification and flattened term
representation for overcoming the coherence problem of AC-rewriting. Since we use the
dedicated algorithms for A and AC unification, currently we cannot employ Theorem 3.1
with E = A ∪ AC.

4.2 Commutation Theorem

The next theorem is known as Hindley’s Commutation Theorem [7].

Theorem 4.5. ARSs A = (A, {→α}α∈I) and B = (B, {→β}β∈J) commute if →α and →β

commute for all α ∈ I and β ∈ J .

Example 4.6. Consider the left-linear TRS R3:

1: 0× y → nil 9: q(q(x, y), z)→ q(x, q(y, z))

2 : s(x)× y → y++(x× y) 10 : q(x, q(y, z))→ q(q(x, y), z)

3 : hd(c(x))→ x 11: q(e, x)→ x

4: hd(c(x) ++ y)→ x 12: q(x, e)→ x

5: nil ++x→ x 13: x+ (y + z)→ (x+ y + z)

6 : x++ nil→ x 14: x+ y → y + x

7: x++(y++ z)→ (x++ y) ++ z 15: 0 + x→ x

8: (x++ y) ++ z → x++(y++ z) 16 : s(x+ y)→ s(x+ y)

17 : len(e)→ 0

18: len(a)→ s(0)

19 : len(q(a, y))→len(a) + len(y)

By using the Commutation Theorem we show self-commutation of R3. Suppose R3A =
{1, . . . , 8} and R3B = {9, . . . , 19}.

18

1. Self-commutation of R3A follows from CR(Ext{7,8}({1, . . . , 6}), {7, 8}).

2. We show self-commutation of R3B:

(i) Commutation of R3B and {10} follows from the rule labeling technique, and
also R3B \ {10} and {10} commute by the same way.

(ii) Self-commutation of R3B \ {10} is proved by the next Church-Rosser modulo
property: CR(Ext{13,14}{9, 11, 12, 15, . . . , 19}, {13, 14}).

(iii) By the Commutation Theorem commutation of R3B and R3B \ {10} is proved,
and hence R3B and R3B commute.

3. Commutation of R3A and R3B is proved by the development closedness.

Hence, R3 is confluent.

It is a non-trivial task to find suitable commuting subsystems from an exponential
number of candidates. In order to address the problem we introduce a decomposition
method based on composability, which was introduced by Ohlebusch [13]. Let R be a
TRS. We write FR, DR, and CR for the following sets:

FR =
⋃

`→r∈R

Fun(`) ∪ Fun(r) DR = {root(`) | `→ r ∈ R} CR = FR \ DR

Definition 4.7. We say that TRSs R and S are composable if CR ∩DS = CS ∩DR = ∅
and {`→ r ∈ R ∪ S | root(`) ∈ DR ∪ DS} ⊆ R ∩ S.

Ohlebusch [13] posed the following question.

Conjecture 4.8. Left-linear composable TRSs R and S are confluent if and only if R∪S
is confluent.

Although this conjecture still remains open, the variation Theorem 4.11 is valid.

Lemma 4.9. If TRSs R and S are composable then T (FS ,V) ⊆ NF(R \ S).

Proof. We claim DR\S ∩DS = ∅. Because the composability implies DR\S ∩ CS = ∅, we
obtain the following equalities from the claim:

DR\S ∩ FS = DR\S ∩ (DS ∪ CS) = (DR\S ∩ DS) ∪ (DR\S ∩ CS) = ∅

Therefore, T (FS ,V) ⊆ NF(R\S) is concluded. It remains to show the claim. Assume to
the contrary there is an f ∈ DR\S ∩ DS . By the definition there is a rule `→ r ∈ R \ S
with root(`) = f . Thus, the composability of R and S deduces ` → r ∈ R ∩ S, which
contracts to the assumption `→ r /∈ S. Hence, we obtain DR\S ∩ DS = ∅.

Lemma 4.10. Composable TRSs R and S are confluent if R∪ S is confluent.

19

Proof. We only argue confluence of R. Let t, u ∈ T (FR,V) with t ∗R← · →∗R u. Because
R∪S is confluent, we have t→∗R∪S · ∗

R∪S← u. According to Lemma 4.9, every term over
FS is irreducible by S \ R. Therefore, the valley must be of the form t→∗R · ∗R← u.

Theorem 4.11. Commuting composable TRSs R and S are confluent if and only if R∪S
is confluent.

Proof. The proof is obtained by combining the Commutation Theorem and Lemma 4.10.

Example 4.12. Recall the TRS R3 from Example 4.6. It is the union of the four com-
muting composable subsystems: {1, 2, 5, 6, 7, 8}, {3, 4, . . . , 8}, {9}, and R3B. Confluence
of each subsystem can be proved in the same method used in the previous example. Hence,
R3 is confluent.

20

Chapter 5

Implementation

All presented techniques have been implemented in CoLL version 1.1. The tool consists
of about 5,000 lines of OCaml code. Given an input TRS, the tool first performs the next
trivial redundant rule elimination.

Theorem 5.1. Let R and S be TRSs with S ⊆ →∗R. The TRS R∪S is confluent if and
only if R is confluent.

Example 5.2. We illustrate the elimination technique with the small example taken from
the Confluence Problem Database (Cops)1: Consider the TRS:

1: f(x)→ g(x, f(x)) 2 : f(f(f(f(x))))→ f(f(f(g(x, f(x)))))

Since {2} ⊆ →∗{1} holds, we eliminate the redundant rule 2. Confluence of the simplified

system {1} is easily shown by Theorem 4.1. Note that CoLL cannot prove confluence
without using the elimination technique.

Next, the tool employs Theorem 4.11 to split the simplified TRS into commuting com-
posable subsystems R1, . . . ,Rn. For each subsystem Ri the tool checks non-confluence by
the technique by Zankl et al. [24, Lemma 1]. If non-confluence is detected, the tool out-
puts NO (non-confluence is proved). Otherwise, the tool uses the Commutation Theorem
together with the three commutation criteria (Theorems 4.1, 4.3, and 4.4) to determine
self-commutation of Ri. Suitable commuting subsystems are searched by enumeration. It
outputs YES (confluence is proved) if all ofR1, . . . ,Rn are confluent. Concerning automa-
tion, we employed AC-RPO for checking termination R/E automatically. Automation of
Theorem 4.3 is based on the SAT encoding technique of [8].

We tested the presented techniques on 188 left-linear TRSs in Cops Nos. 1–425, where
we ruled out duplicated problems. We compared CoLL (v1.1) with the tools that par-
ticipated in the 3rd Confluence Competition (CoCo 2014): ACP v0.52, CSI v0.4.13, and

1http://cops.uibk.ac.at/
2http://www.nue.riec.tohoku.ac.jp/tools/acp/
3http://cl-informatik.uibk.ac.at/software/csi/

21

YES NO timeout

Church-Rosser modulo 93 8 1
development closed 17 0 0
rule labeling 58 0 26
all three 125 8 –
all with elimination 136 9 –

CoLL 136 16 20
ACP 134 41 0
CSI 118 38 11
Saigawa 105 16 17

E YES NO timeout

∅ 18 8 0
A 24 0 0
C 42 8 0
AC 64 8 1
C] AC 88 8 1
A] C] AC 93 8 1

Figure 5.1: Experimental results.

Saigawa v1.74. The tests were single-threaded run on a PC equipped with an Intel Core
i7-4500U CPU with 1.8 GHz and 3.8 GB of RAM using a timeout of 120 seconds. We
employed AC-RPO to check the termination condition for Theorem 4.4. The first table in
Figure 5.1 summarizes results. The first three indicates the results of each commutation
criterion without using the Commutation Theorem. The row ‘all three’ is the summation
of their results, and ‘all with elimination’ is the same but the elimination technique is en-
abled. The second table indicates the results of individual theories for Theorem 4.4. The
row CoLL corresponds to the strategy stated above. From the results it is unclear whether
commutation is useful. This is because out of 188 TRSs, 136 are proved confluent by ‘all
with elimination’ and 41 are known to be non-confluent. Therefore, stemming from func-
tional programs, we prepared additional confluence problems to evaluate commutation.
Its problems and results are available in Chapter A (TRSs S1 – S12) of Appendix.

4http://www.jaist.ac.jp/project/saigawa/

22

Chapter 6

Conclusion

We presented the new confluence tool CoLL for left-linear TRSs, which proves confluence
via commutation. Our primary contribution is automation of Jouannaud and Kirchner’s
Church-Rosser modulo criterion for associativity and/or commutativity theory, where
left-linearity and commutation are exploited in several ways.

CoLL is neither the first tool that implements the Church-Rosser modulo criterion nor
decomposition techniques. The Church-Rosser checker CRC 31 [5] for Maude is capable of
handling various AC-related theories except the solo use of associativity theory. It is worth
investigating whether our unification algorithm can be integrated. Aoto and Toyama’s
reduction-preserving completion [2] extends a TRS by adding redundant rules induced
from critical pairs. ACP proved that the method effectively works for TRSs including
reversible rules. A remarkable advantage is that it only uses syntactical unification, so
it is capable of handling non-AC reversible rules. A disadvantage of the method is that
it hardly works for associativity theory. Layer-preserving decomposition [13] has been
implemented in ACP and CSI. The technique is incomparable to Theorem 4.11. If it is
affirmatively solved, Conjecture 4.8 generalizes those two results for the class of left-linear
TRSs.

As future work we plan to investigate whether Theorem 4.11 can be generalized to cover
a subclass of hierarchical combination [13]. Another interesting direction is the modularity
of the commutation property. Since confluence is a modular property [19], it is closed
under signature extension. Contrary to our expectation, (even local) commutation is not
signature extensible. Consider the TRSs R and S over the signature F = {f(1), a(0), b(0)}:

R = { a→ b } S = { f(x, x)→ b, f(b, x)→ b, f(x, b)→ b }

Since C[b] →∗S b holds, we obtain the strong commutation R← · →S ⊆ →∗S · =R←, which
entails commutation of R and S. However, if one extends the signature to F ∪ {g(1)}, no
longer the local peak f(g(b), g(a)) R← f(g(a), g(a)) →S b commutes. We conjecture that
(local) commutation is closed under signature extension for left-linear TRSs.

1http://maude.lcc.uma.es/CRChC/

23

Acknowledgements. I am most grateful to my supervisor Prof. Nao Hirokawa for his
guidance and valuable advice. I would like to thank Prof. Takahito Aoto and Prof. Yuki
Chiba for their comments on Hindley’s commutation. I also thank Prof. Kazuhiro Ogata
for suggesting me to investigate the coherence property. Special thanks go to members in
Hirokawa, Ogawa, and Terauchi laboratories for their valuable advices and supports.

24

Bibliography

[1] T. Aoto. Automated confluence proof by decreasing diagrams based on rule-labelling.
In Proc. 21st RTA, volume 6 of LNCS, pages 7–16, 2010.

[2] T. Aoto and Y. Toyama. A reduction-preserving completion for proving confluence
of non-terminating term rewriting systems. LMCS, 8(1):1–29, 2012.

[3] T. Aoto, J. Yoshida, and Y. Toyama. Proving confluence of term rewriting systems
automatically. In RTA 2009, volume 5595 of LNCS, pages 93–102, 2009.

[4] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

[5] Francisco Durán and José Meseguer. A church-rosser checker tool for conditional
order-sorted equational maude specifications. In Rewriting Logic and Its Applications,
pages 69–85. 2010.

[6] B. Felgenhauer. Deciding confluence of ground term rewrite systems in cubic time.
In Proc. 23rd RTA, LIPIcs, pages 165–175, 2012.

[7] J. R. Hindley. The Church-Rosser Property and a Result in Combinatory Logic. PhD
thesis, University of Newcastle-upon-Tyne, 1964.

[8] N. Hirokawa and A. Middeldorp. Decreasing diagrams and relative termination.
Journal of Automated Reasoning, 47(4):481–501, 2011.

[9] G. Huet. Confluent reductions: Abstract properties and applications to term rewrit-
ing systems. Journal of the ACM, 27(4):797–821, 1980.

[10] J.-P. Jouannaud and H. Kirchner. Completion of a set of rules modulo a set of
equations. SIAM Journal on Computing, 15(4):1155–1194, 1986.

[11] D. Klein and N. Hirokawa. Confluence of non-left-linear TRSs via relative termina-
tion. In Proc. 18th LPAR, volume 7180 of LNCS, pages 258–273, 2012.

[12] D.E. Knuth and P.B. Bendix. Simple word problems in universal algebras. In J. Leech,
editor, Computational Problems in Abstract Algebra, pages 263–297. Pergamon Press,
1970.

25

[13] E. Ohlebusch. Modular Properties of Composable Term Rewriting Systems. PhD
thesis, Universität Bielefeld, 1994.

[14] G.E. Peterson and M.E. Stickel. Complete sets of reductions for some equational
theories. Journal of the ACM, 28(2):233–264, 1981.

[15] G. Plotkin. Building in equational theories. Machine Intelligence, 7:73–90, 1972.

[16] L. Pottier. Minimal solutions of linear diophantine systems: Bounds and algorithms.
In Proc. 4th RTA, volume 488 of LNCS, pages 162–173, 1991.

[17] A. Rubio. A fully syntactic AC-RPO. Information and Computation, 178(2):515–533,
2002.

[18] K.U. Schulz. Word unification and transformation of generalized equations. In Word
Equations and Related Topics, volume 677 of LNCS, pages 150–176, 1993.

[19] Y. Toyama. On the Church-Rosser property for the direct sum of term rewriting
systems. Journal of the ACM, 34(1):128–143, 1987.

[20] Y. Toyama. Commutativity of term rewriting systems. In K. Fuchi and L. Kott,
editors, Programming of Future Generation Computers II, pages 393–407. North-
Holland, 1988.

[21] V. van Oostrom. Confluence by decreasing diagrams. Theoretical Computer Science,
126(2):259–280, 1994.

[22] V. van Oostrom. Developing developments. Theoretical Computer Science,
175(1):159–181, 1997.

[23] V. van Oostrom. Confluence by decreasing diagrams converted. In A. Voronkov,
editor, Proc. 19th RTA, volume 5117 of LNCS, pages 306–320, 2008.

[24] H. Zankl, B. Felgenhauer, and A. Middeldorp. CSI — a confluence tool. In Proc.
23rd CADE, pages 499–505. Springer, 2011.

26

Appendix A

Additional Experiments

As in Chapter 5, we compared the confluence tools for the TRSs S1 – S12, listed below.
Table A.1 shows the results of tools. A cell is X if confluence of the column’s TRS is
proved/disproved by the row’s tool. Otherwise, × is written.

Table A.1: Experimental results for commutation

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 sum
all with elimination X X × × × × × × X X × × 4
CoLL X X X X X X X X X X X X 12
ACP × × × × × × × × X × × × 1
CSI × × × × × × × × X × × × 1
Saigawa × × × × × × × × × × × × 0

S1: The TRS R1 in Chapter 3.

1: 0 + x→ x 2: x+ (y + z)→ (x+ y) + z 3: (x+ y) + z → x+ (y + z)

S2: The TRS R2 in Example 3.12.

1: eq(a, a)→ T 3: eq(a ∗ x, a ∗ y)→ eq(x, y) 5 : (x ∗ y) ∗ z → x ∗ (y ∗ z)

2 : eq(a, x ∗ y)→ F 4: eq(x, y)→ eq(y, x) 6 : x ∗ (y ∗ z)→ (x ∗ y) ∗ z

S3: A TRS like a functional program.

1: 0× y → nil 5: nil ++x→ x

2: s(x)× y → y++(x× y) 6 : x++ nil→ x

3: hd(c(x))→ x 7: x++(y++ z)→ (x++ y) ++ z

4: hd(c(x) ++ y)→ x 8: (x++ y) ++ z → x++(y++ z)

9 : from(x)→ x : from(s(x))

27

S4: An non-confluent TRS.

1: x+ y → y + x 8: x× y → y × x
2: (x+ y) + z → x+ (y + z) 9 : 0× y → 0

3: 0 + y → y 10: s(x)× y → y + (x× y)

4 : s(x) + y → s(x+ y) 11 : fib(x)→ x++(fib(x) + fib(s(x)))

5 : (x · y) · z → x · (y · z)

6 : x · (y · z)→ (x · y) · z
7: a · (b · a)→ (b · a) · b

S5: A TRS whose subsystems are constructor sharing

1: a→ b 7: x+ y → y + x

2: b→ c 8: (x+ y) + z → x+ (y + z)

3 : c→ a 9: 0 + y → x

4: f(s(a))→ a 10: s(x) + y → s(x+ y)

5 : f(s(b))→ f(s(a))

6 : f(s(c))→ f(s(b))

S6: A proof score in CafeOBJ.

1: (x ∗ y) ∗ z → x ∗ (y ∗ z) 9 : rep(0, x)→ nil

2: x ∗ (y ∗ z)→ (x ∗ y) ∗ z 10: rep(s(x), y)→ x ∗ rep(x, y)

3 : eq(x, y)→ eq(y, x) 11 : hd(c(x) ∗ y)→ x

4: eq(a, a)→ T 12: lt(x ∗ c(y))→ y

5: eq(a, x ∗ y)→ F 13: tl(c(x) ∗ y)→ y

6: eq(a ∗ x, a ∗ y)→ eq(x, y) 14 : x+ y → y + x

7: lem1(x)→ eq(hd(x) ∗ tl(x), x) 15 : (x+ y) + z → x+ (y + z)

8 : lem2(x ∗ y)→ eq(lt(x ∗ y), lt(tl(x ∗ y))) 16 : 0 + y → x

17: s(x) + y → s(x+ y)

S7: A Composable TRS.

1: x++(y++ z)→ (x++ y) ++ z 4: x+ y → y + x

2: (x++ y) ++ z → x++(y++ z) 5 : (x+ y) + z → x+ (y + z)

3 : 0 ++x→ x 7: s(x) + y → s(x+ y)

6 : 0 + y → y

28

S8: A TRS that admits no composable subsystems.

1: e(x)→ x++ e(x+ x) 5 : x+ y → y + x

2: x++(y++ z)→ (x++ y) ++ z 6: (x+ y) + z → x+ (y + z)

3 : (x++ y) ++ z → x++(y++ z) 8 : s(x) + y → s(x+ y)

4 : 0 ++x→ x 7: 0 + y → y

S9: Queue, not confluent.

1: q(e, x)→ x 5: eq(e, q(a, x))→ false

2: q(x, e)→ x 6: eq(q(a, x), q(a, y))→ eq(x, y)

3 : q(q(x, y), z)→ q(x, q(y, z)) 7 : eq(x, y)→ eq(y, x)

4 : q(x, q(y, z))→ q(q(x, y), z)

S10: Queue.

1: q(e, x)→ x 4: eq(e, q(a, x))→ false

2: q(q(x, y), z)→ q(x, q(y, z)) 5 : eq(q(a, x), q(a, y))→ eq(x, y)

3 : q(x, q(y, z))→ q(q(x, y), z) 6 : eq(x, y)→ eq(y, x)

S11: The length function for queues.

1: q(q(x, y), z)→ q(x, q(y, z)) 7 : 0 + x→ x

2: q(x, q(y, z))→ q(q(x, y), z) 8 : s(x) + y → s(x+ y)

3 : q(e, x)→ x 9: len(e)→ 0

4: q(x, e)→ x 10: len(a)→ s(0)

5 : x+ (y + z)→ (x+ y) + z 11: len(q(a, y))→ len(a) + len(y)

6 : x+ y → y + x

S12: The TRS R3 in Example 4.6.

1: 0× y → nil 12: q(q(x, y), z)→ q(x, q(y, z))

2 : s(x)× y → y++(x× y) 13 : q(x, q(y, z))→ q(q(x, y), z)

3 : hd(c(x))→ x 14: q(e, x)→ x

4: hd(c(x) ++ y)→ x 15: q(x, e)→ x

5: nil ++x→ x 16: x+ (y + z)→ (x+ y) + z

6: x++ nil→ x 17: x+ y → y + x

7: x++(y++ z)→ (x++ y) ++ z 18: 0 + x→ x

8: (x++ y) ++ z → x++(y++ z) 19 : s(x) + y → s(x+ y)

20 : len(e)→ 0

21: len(a)→ s(0)

22 : len(q(a, y))→ len(a) + len(y)

29

Appendix B

Examples

In this appendix we show examples of input and output for the confluence tool CoLL.

Listing B.1: Sample Input I.

(VAR x y z)

(RULES

(x,(y,z)) -> *(*(x,y),z)

((x,y),z) -> *(x,*(y,z))

eq(*(a,x),*(a,y)) -> eq(x,y)

eq(a,a) -> T

eq(a,*(x,y)) -> F

eq(x,y) -> eq(y,x)

)

30

Listing B.2: Sample Output I.

YES

1 decompositions

#1 -----------

1: *(x1,*(x2,x3)) -> *(*(x1,x2),x3)

2: *(*(x1,x2),x3) -> *(x1,*(x2,x3))

3: eq(*(a(),x1),*(a(),x2)) -> eq(x1,x2)

4: eq(a(),a()) -> T()

5: eq(a(),*(x1,x2)) -> F()

6: eq(x1,x2) -> eq(x2,x1)

@Jouannaud and Kirchner’s criterion

--- R

1: *(x1,*(x2,x3)) -> *(*(x1,x2),x3)

2: *(*(x1,x2),x3) -> *(x1,*(x2,x3))

3: eq(*(a(),x1),*(a(),x2)) -> eq(x1,x2)

4: eq(a(),a()) -> T()

5: eq(a(),*(x1,x2)) -> F()

6: eq(x1,x2) -> eq(x2,x1)

--- S

1: *(x1,*(x2,x3)) -> *(*(x1,x2),x3)

2: *(*(x1,x2),x3) -> *(x1,*(x2,x3))

3: eq(*(a(),x1),*(a(),x2)) -> eq(x1,x2)

4: eq(a(),a()) -> T()

5: eq(a(),*(x1,x2)) -> F()

6: eq(x1,x2) -> eq(x2,x1)

31

Listing B.3: Sample Input II.

(VAR x y z)

(RULES

++(++(x,y),z) -> ++(x,++(y,z))

++(x,++(y,z)) -> ++(++(x,y),z)

++(nil,x) -> x

++(x,nil) -> x

hd(c(x)) -> x

hd(++(c(x),y)) -> x

*(nil,y) -> nil

(s(x),y) -> ++(y,(x,y))

q(q(x,y),z) -> q(x,q(y,z))

q(x,q(y,z)) -> q(q(x,y),z)

q(e,x) -> x

q(x,e) -> x

plus(x,plus(y,z)) -> plus(plus(x,y),z)

plus(x,y) -> plus(y,x)

plus(0,x) -> x

plus(s(x),y) -> s(plus(x,y))

len(e) -> 0

len(a) -> s(0)

len(q(a,y)) -> plus(len(a),len(y))

)

32

Listing B.4: Sample Output II.

YES

3 decompositions

#1 -----------

1: ++(++(x1,x2),x3) -> ++(x1,++(x2,x3))

2: ++(x1,++(x2,x3)) -> ++(++(x1,x2),x3)

3: ++(nil(),x1) -> x1

4: ++(x1,nil()) -> x1

5: hd(c(x1)) -> x1

6: hd(++(c(x1),x2)) -> x1

#2 -----------

1: ++(++(x1,x2),x3) -> ++(x1,++(x2,x3))

2: ++(x1,++(x2,x3)) -> ++(++(x1,x2),x3)

3: ++(nil(),x1) -> x1

4: ++(x1,nil()) -> x1

7: *(nil(),x2) -> nil()

8: *(s(x1),x2) -> ++(x2,*(x1,x2))

#3 -----------

9: q(q(x1,x2),x3) -> q(x1,q(x2,x3))

10: q(x1,q(x2,x3)) -> q(q(x1,x2),x3)

11: q(e(),x1) -> x1

12: q(x1,e()) -> x1

13: plus(x1,plus(x2,x3)) -> plus(plus(x1,x2),x3)

14: plus(x1,x2) -> plus(x2,x1)

15: plus(0(),x1) -> x1

16: plus(s(x1),x2) -> s(plus(x1,x2))

17: len(e()) -> 0()

18: len(a()) -> s(0())

19: len(q(a(),x2)) -> plus(len(a()),len(x2))

@Jouannaud and Kirchner’s criterion

--- R

1: ++(++(x1,x2),x3) -> ++(x1,++(x2,x3))

2: ++(x1,++(x2,x3)) -> ++(++(x1,x2),x3)

3: ++(nil(),x1) -> x1

4: ++(x1,nil()) -> x1

5: hd(c(x1)) -> x1

6: hd(++(c(x1),x2)) -> x1

--- S

33

1: ++(++(x1,x2),x3) -> ++(x1,++(x2,x3))

2: ++(x1,++(x2,x3)) -> ++(++(x1,x2),x3)

3: ++(nil(),x1) -> x1

4: ++(x1,nil()) -> x1

5: hd(c(x1)) -> x1

6: hd(++(c(x1),x2)) -> x1

@Jouannaud and Kirchner’s criterion

--- R

1: ++(++(x1,x2),x3) -> ++(x1,++(x2,x3))

2: ++(x1,++(x2,x3)) -> ++(++(x1,x2),x3)

3: ++(nil(),x1) -> x1

4: ++(x1,nil()) -> x1

7: *(nil(),x2) -> nil()

8: *(s(x1),x2) -> ++(x2,*(x1,x2))

--- S

1: ++(++(x1,x2),x3) -> ++(x1,++(x2,x3))

2: ++(x1,++(x2,x3)) -> ++(++(x1,x2),x3)

3: ++(nil(),x1) -> x1

4: ++(x1,nil()) -> x1

7: *(nil(),x2) -> nil()

8: *(s(x1),x2) -> ++(x2,*(x1,x2))

@Commutation Lemma

@Rule Labeling

--- R

9: q(q(x1,x2),x3) -> q(x1,q(x2,x3))

10: q(x1,q(x2,x3)) -> q(q(x1,x2),x3)

11: q(e(),x1) -> x1

12: q(x1,e()) -> x1

13: plus(x1,plus(x2,x3)) -> plus(plus(x1,x2),x3)

14: plus(x1,x2) -> plus(x2,x1)

15: plus(0(),x1) -> x1

16: plus(s(x1),x2) -> s(plus(x1,x2))

17: len(e()) -> 0()

18: len(a()) -> s(0())

19: len(q(a(),x2)) -> plus(len(a()),len(x2))

--- S

34

10: q(x1,q(x2,x3)) -> q(q(x1,x2),x3)

@Commutation Lemma

@Rule Labeling

--- R

10: q(x1,q(x2,x3)) -> q(q(x1,x2),x3)

--- S

9: q(q(x1,x2),x3) -> q(x1,q(x2,x3))

11: q(e(),x1) -> x1

12: q(x1,e()) -> x1

13: plus(x1,plus(x2,x3)) -> plus(plus(x1,x2),x3)

14: plus(x1,x2) -> plus(x2,x1)

15: plus(0(),x1) -> x1

16: plus(s(x1),x2) -> s(plus(x1,x2))

17: len(e()) -> 0()

18: len(a()) -> s(0())

19: len(q(a(),x2)) -> plus(len(a()),len(x2))

@Jouannaud and Kirchner’s criterion

--- R

9: q(q(x1,x2),x3) -> q(x1,q(x2,x3))

11: q(e(),x1) -> x1

12: q(x1,e()) -> x1

13: plus(x1,plus(x2,x3)) -> plus(plus(x1,x2),x3)

14: plus(x1,x2) -> plus(x2,x1)

15: plus(0(),x1) -> x1

16: plus(s(x1),x2) -> s(plus(x1,x2))

17: len(e()) -> 0()

18: len(a()) -> s(0())

19: len(q(a(),x2)) -> plus(len(a()),len(x2))

--- S

9: q(q(x1,x2),x3) -> q(x1,q(x2,x3))

11: q(e(),x1) -> x1

12: q(x1,e()) -> x1

13: plus(x1,plus(x2,x3)) -> plus(plus(x1,x2),x3)

14: plus(x1,x2) -> plus(x2,x1)

15: plus(0(),x1) -> x1

16: plus(s(x1),x2) -> s(plus(x1,x2))

17: len(e()) -> 0()

18: len(a()) -> s(0())

35

19: len(q(a(),x2)) -> plus(len(a()),len(x2))

36

Listing B.5: Sample Input III.

(VAR x y z)

(RULES

+(x,y) -> +(y,x)

+(+(x,y),z) -> +(x,+(y,z))

+(0,x) -> x

+(s(x),y) -> s(+(x,y))

fib(x) -> :(x,+(fib(x),fib(+(x,1))))

*(x,y) -> *(y,x)

*(0,y) -> 0

(s(x),y) -> +(y,(x,y))

sq(x) -> *(x,x)

sq(s(x)) -> +(*(x,x),s(+(x,x)))

.(.(x,y),z) -> .(x,.(y,z))

.(x,.(y,z)) -> .(.(x,y),z)

.(a,.(b,a)) -> .(.(b,a),b)

)

37

Listing B.6: Sample Output III.

NO

2 decompositions

#1 -----------

12: .(.(x2,x1),x3) -> .(x2,.(x1,x3))

13: .(x2,.(x1,x3)) -> .(.(x2,x1),x3)

14: .(a(),.(b(),a())) -> .(.(b(),a()),b())

#2 -----------

1: +(x2,x1) -> +(x1,x2)

2: +(+(x2,x1),x3) -> +(x2,+(x1,x3))

3: +(0(),x2) -> x2

4: +(s(x2),x1) -> s(+(x2,x1))

5: fib(x2) -> :(x2,+(fib(x2),fib(+(x2,1()))))

6: fib(0()) -> 0()

7: *(x2,x1) -> *(x1,x2)

8: *(0(),x1) -> 0()

9: *(s(x2),x1) -> +(x1,*(x2,x1))

10: sq(x2) -> *(x2,x2)

11: sq(s(x2)) -> +(*(x2,x2),s(+(x2,x2)))

unjoinable peak

.(.(a(),b()),.(.(b(),a()),b()))

<- .(.(a(),.(b(),a())),.(b(),a())) ->

.(.(.(b(),a()),b()),.(b(),a()))

38

