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Abstract

Study on tensor calculus and CP-decomposition

Nguyen Vu Linh (1350016)

School of Knowledge Science,
Japan Advanced Institute of Science and Technology

March 2015

Keywords: Tensor, CP-decomposition, Multi-way array, Temporal link prediction,
Spectral clustering.

Tensor have been widely studied in mathematics and physics for along time and increas-
ingly applied in many areas of data mining. There are two ways to think about tensors:
tensors are representations of multilinear maps; tensors are elements of a tensor product of
two or more vector spaces. For our purpose, “a N th-order tensor” is defined as “an element
of tensor product of N real vector spaces V1,V2, . . . ,VN , denoted by V1 ⊗ V2 ⊗ . . .⊗ VN .
When fixing the bases of V1, V2 and VN , a tensor can be represented by a N”-way array
in the vector space Rd1×d2×...×dN and elements in Vn can be represented as vectors in Rdn ,
where dn is the dimension of Vn.

The equivalence between two vector space Rd1 ⊗ Rd2 ⊗ . . . ⊗ RdN and Rd1×d2×...×dN

allows us to not distinguish these two spaces. Such equivalence provides great advan-
tages for data mining applications because N -way array may provide nature and compact
representation for numerous complex kinds of data that the integrated result of several
inter-related variables or they are combinations of underlying latent components or fac-
tors. Furthermore, when considering N -way array as element of Rd1×d2×...×dN , powerful
results related to tensor can be employed to construct tensor based methods to solve
challenging problems. Especially, when working with challenging problems for big data
related to capture, manage, search, visualize, cluster, classify, assimilate, merge, and pro-
cess the data within a tolerable elapsed time. When working on tensor data, the large
required storage memory and the inter-relation between variables often make the prob-
lems become more complicated. Many tensor-based models known as multiway models
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have been constructed to deal with those challenges by exploring the meaningful hidden
structure and to finding low-rank representation of data. Also, each kind of model have
its own advantages and disadvantages which should be carefully considered based on the
application context. For example, using CP-decomposition may lead to losing important
data structure while Tucker decomposition may be problematic in high-dimensions with
many irrelevant features.

One interesting tensor-based method is temporal link prediction method based on CP-
decomposition constructed to do temporal link prediction task on bipartite networks
whose links evolve over time and node set consists vertices of two types such that only
vertices of diffent types can be linked. Such problem is important and has been stud-
ied in many researches because prediction is crucial tasks in real applications and bi-
partite networks can be used to represent various kinds of structures, dynamics, and
interaction patterns found in social activities. Temporal link prediction method based on
CP-decomposition have shown advantages comparing with others, such as its power in
exploring the structure of data, requiring less memory and giving outperformed experi-
mental results. Also, tensor based-methods can predict the links for times (T + 1)th, . . .
, (T + L)th while other models are limited to temporal prediction for a single time step.
Motivating by these advantages, we extend tensor-based method on bipartite networks
to do temporal link prediction problem on specific class of bipartite networks in which
new verticies of one type may join networks at concerning time and may link to other
vertices in the next time point. The key ideas of the proposed methods are to employ
CP-decomposition to decompose weight data into factors of three separated kinds, each
fluctuates independently from others and collect additional information of vertices of open
type and learn a function to predict values of open type vertex factors from the additional
information and use to predict values of those factors corresponding to new vertices.

Clustering plays an outstanding role in numerous data mining applications such as scien-
tific data exploration, information retrieval and text mining, spatial database applications,
Web analysis, CRM, marketing, medical diagnostics, computational biology, and many
others. Intuitively, clustering aims to identify groups of “similar behavior” data considered
as a first impression on data when dealing with the empirical data. Since tensor data have
became popular in data mining, we focus on constructing a versatile clustering for tensor
data. Considering clustering methods based on vector space model, spectral clustering
have several attractive advantage such that it is versatile, easy to implement, often pro-
vide better performance comparing with traditional methods like K-mean. Furthermore,
spectral clustering is easy to extend for tensor data since it work with only requirement
about similarity while other methods often require more additional information. To han-
dling the clustering task on tensor data, we construct a CP-decomposition based spectral
clustering by constructing appropriate similarities and employing CP-decomposition to
exploring the hidden structure of data and reducing the storage memory. The empirical
results provide the evidence to conclude that the proposed models can give the acceptable
accuracy and CP-decomposition may help to reduce the storage memory and improve the
clustering accuracy by exploring the hidden structure of data.

Concerning temporal link prediction and clustering problems, we discuss about the
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achievements and provide suggestions to and make plan to complete these objective as
future works. For temporal link prediction problem, we plan to implement the method
and evaluate using empirical results and extend method to do more general problem
when vertices of two type join the concerning networks at the same time. Considering
the clustering problem, we plan to construct several similarity measures and extend the
available vector space model based multi-view spectral clustering for tensor data. We
also give opportunity and suggestions to construct a tensor space model based clustering
method which tensor data is transformed in to vector space data and spectral clustering
methods are applied on the transformed data in order to cluster the data.
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Chapter 1

Introduction

The first part of this chapter provides an overview of tensor calculus and its role in data
mining. In the second part, the research problems and objectives are presented. Finally,
the content of this thesis is given in the third part.

1.1 Tensor calculus and its role in data mining

1.1.1 Tensor calculus

Tensor have been widely studied in mathematics and physics for along time and increas-
ingly applied in many areas of data mining. There are two ways to think about tensors:
tensors are representations of multilinear maps; tensors are elements of a tensor product
of two or more vector spaces [21,45,60]. In this thesis, we use the definition of tensor that
“a N th-order tensor is an element of tensor product of N vector spaces V1,V2, . . . ,VN ,
denoted by V1 ⊗ V2 ⊗ . . . ⊗ VN , which is represented by a N”-way array or element of
vector spaces Rd1×d2×...×dN when the bases of V1, V2 and VN are fixed.

Tensor and tensor product of vector spaces are difficult objects in algebra. Those objects
have been studied for along time in algebra areas like tensor algebra and multilinear
algebra [11, 19, 24, 30, 49, 55, 66, 70]. To understand the properties of those objects, deep
understanding about vector space, relation between vector space and other algebra objects
including multi-linear function, quotient spaces, etc are required. There are some readable
documents about tensor, tensor product of vector spaces and related results in general
case, for example [49,60].

In this thesis, we consider one specific case of 3rd-order tensor as element of tensor
product of 3 Euclidean vector spaces RI , RJ and RT , denoted by RI ⊗ RJ ⊗ RT , which
is not so complicated but have been widely applied in multi-way data analysis [3, 19, 38].
Also the definition of tensor product of vector spaces is not presented here because it is
complicated and we only work on the vector space constructed on the set of 3 real way
arrays, denoted by RI×J×T . Vector space RI ⊗RJ ⊗RT , and the relation between RI , RJ

and RT have been well studied in algebra. Furthermore, as point out in [21], the structure
of two vector spaces RI ⊗ RJ ⊗ RT and RI×J×T are equivalent, it implies that results on
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RI ⊗ RJ ⊗ RT can be easily proved on RI×J×T .

1.1.2 Tensor-based models in data mining

Data representation has been considered as one of the most important problem in machine
learning and data mining [12, 33]. Many applications are based on vector space model
in which data is represented as vectors x ∈ RI . In vector space model, the features are
implicitly assumed to be independent [12]. Vector space model have been used to construct
many models, for example, classification, clustering [54], support vector machine, etc.
There are numerous readable documents about vector space based models [33,54,64].

However, in many situations, there are reasons to consider data as tensors. For example,
multi-channel electroencephalogram (EEG) data are commonly represented by an I × T
matrix which represents recorded signals of I electrodes at T times. In order to discover
hidden brain dynamics, often frequency content of the signals like signal power at J
particular frequencies, also needs to be considered. Then, EEG data can be arranged as
an 3-way dataset of size I × J × T [50]. Similarly, a 3-way tensor X of size I × J × T
can be used to represent the publication information of I authors on J conferences over
T years, where element xijt is 1 if authors i have publication on conference j at year t
and is 0 if otherwise [2, 26].

Generally, tensors can be used to represent several complex kinds of data that the
integrated result of several inter-related variables or they are combinations of underlying
latent components or factors [18]. For instances, 3-order tensors can be used to represent
multi-view data [48], time series data [2, 26], etc. When tensors are used to represent
data, we work on tensor space model instead of vector space model [13, 34,50,56,59,69].

Note that, when working with vector space models RI , a I × J matrix is often used
to represent a dataset consists of J samples. Further more, as matrix have been well
studied in linear algebra, many interesting results can be employed when handling data.
For example, one may apply matrix factorization models to explore the structure of data
or find low-rank representation. Some popular matrix factorization methods are LU, QR,
SVD, etc. The situation is similar when working with tensor space models. When tensors
are used to represent data, tensor based methods allows us to discover meaningful hidden
structures of complex data and to perform generalizations by capturing multi-linear and
multi-aspect relationships [17].

Tensors and tensor based methods have recently became a promising direction in many
areas, especially in data mining because it may provide a natural representation for Big
Data which consists of multidimensional, multi-modal datasets which are so huge, complex
and cannot be easily stored or processed by using standard computers. Many challenging
problems for big data are related to capture, manage, search, visualize, cluster, classify,
assimilate, merge, and process the data within a tolerable elapsed time. Such problems
can be solved by employing tensor decomposition models (or multi-way models), which
allow us to discover meaningful hidden structures of complex data and provide compact
representation via suitable low-rank approximations [3, 17,18,38].

There many tensor decomposition models and each kind of model have its own ad-
vantages and disadvantages when comparing with others. For example, ones may lose
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important structure in the data when using CP-decomposition while Tucker decomposi-
tion may be problematic in high-dimensions with many irrelevant features [6, 7]. Some
popular multi-way models (tensor based models) are listed in Figure 1.1.

Figure 1.1: List of popular multi-way models (tensor based models) [3].

1.2 Problem formulating and objectives

1.2.1 Constructing a temporal link prediction method on open
bipartite networks evolve over time

Temporal link prediction is a common problem for data which is assumed to have the
underlying periodic structure. Formally, temporal link prediction is the problem of pre-
dicting the links at time (T + 1)th given link data for times 1 through T th [2, 26]. In
other words, we consider the problem of predicting the change or apparition of new links
in time-evolving networks. Temporal link prediction is different from simply predicting
future links without considering the network evolution history because it exploits the past
history of link evolution provided by the state of the network at successive time slices [27].

In many applications dealing with temporal link prediction, data can be represented in
form of bipartite networks with two set of vertices and only vertices of different types can
be connected by links [2, 26, 43]. Considering bipartite networks that evolve over time,
two sets of vertices are fixed and only the link between different kind of vertices change.
Bipartite networks can be used to represent various kinds of structures, dynamics, and
interaction patterns found in social activities [8, 22, 52, 53, 67]. For example, bipartite
network is used to represent the network consists of I authors and J conferences where
each link represents the possibility that an author publishes on a conference and temporal
link prediction is used to predict which authors will publish at which conferences in year
(T + 1)th given the publication data for the T previous years [2, 26]; I users/groups of
user, J providers and their relations in a recommendation systems can be represented by
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a bipartite network [67]; Another example is the bipartite network consists of I patient
groups and J drugs with the links represent the adverse effect of drugs.

Many temporal link prediction methods are based on matrix calculus which collapse the
data into a single matrix by summing (with and without weights) the matrices correspond-
ing to the time slices and using the result matrix to predict the network links in the next
time points. Such methods have been successfully applied in several applications. For ex-
ample, data about co-authorship networks extracted from arXiv [3,26,27], etc. However,
the matrix-based methods are limited to temporal prediction for a single time step while
in many applications, we wish to predict the links for a period of time starting at (T +1)th

or in other words, for times (T + 1)th, . . . , (T + L)th. Recently, tensor-based methods
were proposed which can be used in solving both single step and periodic temporal link
prediction problems [3, 26, 27, 61]. In other words, tensor-based methods can be used to
extend the application context of matrix based methods. In tensor-based methods, tensor
decomposition namely CP-decomposition (CANDECOMP/PARAFAC) is employed with
several purposes such as to explore the natural three-dimensional structure, reduce tensor
dimensionality or to retrieve latent trends [3, 61].

When using bipartite networks to represent data, we may face some special bipartite
networks with common situation that new vertices may join network at time T th and may
link to other vertices at time (T + 1)th. For example, when a bipartite network is used
to represent data in recommendation system, new users/groups of user appear and may
interest or use service of providers in next time points; also in drug side effect example,
new drugs are launched and may have adverse effect on patient groups in the future;
etc. For simplicity, let call such networks by open bipartite networks to distinguish from
networks without new added vertices.

Several temporal link prediction methods have been proposed for bipartite networks
[2, 23, 26] but in our knowledge, no temporal link prediction method have been proposed
to deal with problem on open bipartite networks. In our point of view, temporal link
prediction is challenging because it is difficult to learn how new vertices will link to other
vertices and how it effects links among previous vertices at time (T + 1)th. Our objective
is to extend temporal link prediction method using CP-decomposition in [2,26] to address
temporal link prediction in open bipartite networks in which new vertices of type-1 may
join networks at time T th.

1.2.2 Constructing a versatile clustering method for tensor data

Clustering is an important subject of active research areas in several fields such as statis-
tics, pattern recognition, machine learning and data mining which aims to identify groups
of “similar behavior” data. In machine learning and data mining, clusters correspond to
hidden patterns and is often referred as a first impression on data when dealing with the
empirical data. Clustering plays an outstanding role in numerous data mining applications
such as scientific data exploration, information retrieval and text mining, spatial database
applications, Web analysis, CRM, marketing, medical diagnostics, computational biology,
[9, 44,57,64], and many others.
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Many clustering algorithms have been proposed and successfully applied to real-life data
mining problems. A list of popular clustering methods and algorithms is given bellow [9].

1. Hierarchical methods: Agglomerative algorithms, divisive algorithms.

2. Partitioning methods: Relocation algorithm, probabilistic clustering, K-medoids
methods, K-mean methods, density-based algorithms.

3. Grid-based methods.

4. Methods based on co-occurrence of categorical data.

5. Constraint-based clustering.

6. Clustering algorithms used in machine learning:Gradient descent and artificial neu-
ral networks, evolutionary methods.

7. Scalable clustering algorithms.

8. Algorithm for high dimensional data: Subspace clustering, projection techniques,
co-clustering techniques.

A detail review on these clustering algorithms is given in [9]. Also, there are many readable
survey papers on clustering algorithms such as [1, 63,65]

Two general criterias used to compare clustering methods are “How easy to use the
method?” and “How well the performance is when applying methods to analyze data?”[57].
The former is usually used to compare the execution time and storage requirements of
computer-oriented methods. As complex kinds of data have became a challenge in data
mining, we suggest to consider “How easy to interpret the result?” and “How easy to
extend such methods for complex kinds of data?” as parts of the first criteria when com-
paring clustering methods.

Among numerous clustering methods, spectral clustering has recently became one of
the most popular modern methods because it is simple to implement and often provide
outperforms performance when comparing with traditional clustering algorithms such as
the K-means [54, 64]. The intuition of spectral clustering is to representing the data of
I data sample x1, x2, . . . , xI is in form of the similarity graph G = (V,E) which have
following properties

• Each vertex vi ∈ V represents a data point xi.

• Two vertices xi and xj are connected if their similarity sij is positive or larger than
a certain threshold, and sij is weight of edge E(xi, xj) ∈ E.

The problem of finding “similar groups” among original data sample x1, x2, . . . , xI now
is equivalent to the problem of finding groups of vertices in the similarity graph such
that the edges between different groups have very low weights and the edges within a
group have high weights. The latter problem can be solve by employing results from
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linear algebra and graph theory, and the result can be easily interpreted on the original
data[64].

Note that spectral clustering is simple to implement and easily to extend for complex
data because it only requires determined similarity measures while other methods often
require more additional information. For example, even when extending simple method
like K-mean, we have to consider two objects, centers/centroids and distance measure.
Furthermore, as multi-view approach have been considered as a promising direction in
data mining with the power to simultaneously treat heterogeneous kinds of data in order to
improve the empirical results. Considering clustering task, up to now, we have not found
any paper working under multi-view direction related to K-mean while several interesting
multi-view spectral clustering methods were recently proposed with well empirical results
and is theoretically guaranteed [48,62].

Motivating by the above reasons, we plan to extend the spectral clustering for 3rd order
tensor data as the first attempt in constructing efficient and easy implement clustering
methods for tensor data.

1.3 Thesis structure

This thesis is organized as follow

• Chapter 1 presents the research problems, objectives of the thesis. An overview of
tensor calculus and its role in data mining is also presented as a guide for further
study in tensor calculus. Then two interseting problems in data mining, namely,
temporal link prediction and clustering are introduced and the objectives related to
constructing such methods for tensor data are given.

• Chapter 2 firstly provides necessary notations to understand the content of thesis.
Then, definition of tensor and an overview of a common used tensor decomposi-
tion, namely CP-decomposition, and related family of application multi-way mod-
els known as PARAFAC family. We also give discussions to avoid confusion when
applying tensor calculus in data mining, though tensor is complicated objects.

• Chapter 3 presents a quick survey on temporal link prediction and a proposed tem-
poral link prediction method using CP-decomposition. The first part of this chapter
presents necessary concepts related to temporal link prediction and open bipartite
networks and an introduction to temporal link prediction on bipartite networks.
Then the second part provide the related works which is needed to understand the
proposed temporal link prediction method for open bipartite networks. In the third
part, the proposed method is presented. Finally, discussions and future works is
given in the fourth part.

• Chapter 4 provides an overview of spectral clustering and suggestions to extend
this method to deal with tensorial data. Firstly, we give an overview of spectral clus-
tering including the general schema, opportunity to extend for tensorial data. Also,
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the currents research on clustering methods for tensor data is given. Secondly, a
proposed spectral clustering method namely CP-decomposition based spectral clus-
tering is presented. Then, experiment results is analyzed to evaluate the proposed
method. Finally, the suggestions for future research are given.

• Chapter 5 provides the conclusion of thesis and the future works. In the first
part, contributions are given and evaluated. Then, research plans and promising
techniques might be used to complete or improve the considered research problems
in this thesis are presented.
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Chapter 2

Tensor and CP-decomposition

This chapter provides the list of notations which will be used through this thesis, defi-
nition of tensor and an overview of a common used tensor decomposition, namely CP-
decomposition, and related family of application multi-way models known as PARAFAC
family. We also give discussions to avoid confusion when applying tensor calculus in data
mining, though tensor is complicated objects.

2.1 Preliminaries

In this section, we introduce the list of notations related to tensor which will be used
through this thesis. We also recall the definition of some vector spaces which is necessary
for understanding the later parts of this thesis.

2.1.1 Notations

The notations used in this thesis is very similar to that presented in [38]. The important
notations are presented in Table 2.1 and other notations will be introduced where they
are necessary.

2.1.2 Some notations related to 3rd order tensor

We recall some notations related to 3rd tensor X ∈ RI×J×T from [38] which are used in
later parts.

1. Fibers

Fibers are the higher order analogue of matrix rows and columns. A fiber is defined
by fixing every index but one. A matrix column is a mode-1 fiber and a matrix row
is a mode-2 fiber. Third-order tensors have column, row, and tube fibers, denoted
by x:jt, xi:t, and xij:, respectively. Fibers are always assumed to be column vectors.
See Figure 2.1 for an illustration.

8



Table 2.1: List of important notations.

Symbol Notation
RI The Euclidean vector space of dimension I.
A The matrix A.
aij The (i, j)-th element of matrix A ∈ RI×J .
a The vector a.
ai The i-th element of vector a ∈ RI .
X The tensor X
xd1d2...dN The (id1 , id2 , . . . , idN )-th element of tensor X ∈ Rd1×d2×...×dN

Xi::,X:j: The i-th horizontal, j-th lateral slices of tensor X ∈ RI×J×T

X::t,Xt The t-th frontal slices of tensor X ∈ RI×J×T

X(n) The mode-n of N -th order tensor X ∈ RI×J×T

◦ The outer product “◦”
⊗ The tensor product “⊗”

Figure 2.1: Fibers of a 3rd-order tensor [38].

2. Slices

Slices are two-dimensional sections of a tensor, defined by fixing all but two indices.
Figure 2.2 shows the horizontal, lateral, and frontal slides of a third-order tensor X ,
denoted by Xi::, X:j:, and X::t, respectively.

3. Mode-n matricization

The mode-n matricization of a 3rd tensor X ∈ RI×J×T is denoted by X(n) and
arranges the mode-n fibers to be the columns of the matrix. The following example
of 3rd tensor X ∈ R3×4×2 may help ones to have a better understanding about
mode-n matricization and its relation to slices.

Let the frontal slices X1 (X::1) and X2 (X::2) of X ∈ R3×4×2 be as in Figure 2.3.

Then, the three mode-n (n = 1, 2, 3) unfoldings are given in Figure 2.4.
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Figure 2.2: Slices of a 3rd-order tensor [38].

Figure 2.3: The frontal slices of tensor [38].

Figure 2.4: The three mode-n of tensor [38].

2.1.3 Real vector space

For the sake of simplicity, we introduce an intuitive version of real vector space from [70].
Ones whose interested in mathematical definition may referred to several stand algebra
books, for example [4, 10], etc.

Definition 1 A vector space V over R, or a real vector space V, is a set of objects, known
as vectors, together with vector addition “+” and multiplication of vectors by element of
R, and satisfying the following properties:

• (VA1) For every x,y ∈ V, we have x + y ∈ V.

• (VA2) For every x,y, z ∈ V, we have x + (y + z) = (x + y) + z.
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• (VA3) There exists an element 0 ∈ V such that for every x ∈ V, we have x + 0 =
0 + x = x.

• (VA4) For every x ∈ V, there exists −x ∈ V such that x + (−x) = 0.

• (VA5) For every x,y ∈ V, we have x + y = y + x.

• (SM1) For every α ∈ R and x ∈ V, we have αx ∈ V.

• (SM2) For every α ∈ R and x,y ∈ V, we have α(x + y) = αx + αy.

• (SM3) For every α, β ∈ R and x ∈ R, we have (α + β)x = αx + βx.

• (SM4) For every α, β ∈ R and x ∈ R, we have (αβ)x = α(βx).

• (SM5) For every x ∈ V, we have 1x = x.

Note that the elements α, β, γ ∈ R discussed in (SM1)-(SM5) are known as scalars.
Multiplication of vectors by elements of R is sometimes known as scalar multiplication.

2.1.4 Vector spaces Rd1×d2×...×dN

The following definition of vector spaces Rd1×d2×...×dN is cited from [21]

Definition 2 Let Rd1×d2×...×dN be the set of all N-way array of size d1 × d2 × . . . ×
dN , Rd1×d2×...×dN is a vector space of dimension d1d2 . . . dN together with the following
operations

• Addition
A + B := C, where cd1d2...dN = ad1d2...dN + bd1d2...dN (2.1)

for all A,B ∈ Rd1×d2×...×dN .

• Scalar multiplication

λA := B,where bd1d2...dN = λad1d2...dN , (2.2)

for all A ∈ Rd1×d2×...×dN and λ ∈ R.

2.2 What is Tensor?

Tensor have been widely studied in various fields including mathematics, physics, engineer-
ing and have became a trend in data mining and data analytics as the rapidly increasing
of big data. But when reviewing papers and application works, we saw that the definition
of tensor in some papers are somewhat vague. For example the term “a N -way data” is
often referred to “a N th-order tensor” or these two terms are used exchangeably. Also,
when looking for documents with key word “tensor”, ones may see some terms related to
“tensor”, for instance “metric tensor”, “stress tensor”, “Riemann curvature tensor”. To
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answer the question “what is tensor?” and which “definition” we should be studied and
applied in our research scope, we looking for the answer in the popular papers, books and
research documents related to tensor.

Very clearly answers for the above questions can be found in [21]:

“Even though tensors are well-studied objects in the standard graduate
mathematics curriculum [4, 25, 36, 42, 58] and more specifically in multilinear
algebra [10, 30, 49, 55, 66], a “tensor” continues to be viewed as a mysterious
object by outsiders. We feel that we should say a few words to demystify the
term.

In mathematics, the question “what is a vector?” has the simple answer
“a vector is an element of a vector space” in other words, a vector is charac-
terized by the axioms that define the algebraic operations on a vector space.
In physics, however, the question what is a vector? often means “what kinds
of physical quantities can be represented by vectors?” The criterion has to
do with the change of basis theorem: an n-dimensional vector is an “object”
that is represented by n real numbers once a basis is chosen only if those
real numbers transform themselves as expected when one changes the basis.
For exactly the same reason, the meaning of a tensor is obscured by its more
restrictive use in physics. In physics (and also engineering), a tensor is an
“object” represented by a k-way array of real numbers that transforms ac-
cording to certain rules (cf. (2.2)) under a change of basis. In mathematics,
these “transformation rules” are simply consequences of the multilinearity of
the tensor product and the change of basis theorem for vectors.”

Similar discussions also can be found in [38, 46]. In many documents, term “3rd order
tensor” (or “3-way tensor”) is identical with the 3-way array A which is indeed a repre-
sentation of tensor X when the bases are fixed as point out in later section 2.3. In our
understanding, the reasons of this situation are formal definition of tensor and related
properties in multilinear algebra are complicated and many common used results in data
mining can be stated without introducing arrays of coordinates as point out in [19,38,41].

2.3 Tensor and CP-decomposition

In this section, we give definition of tensor and summary some important results from
[21,46]. Ones who interested in tensor, tensor product of vector spaces and related results
may referred to several papers such as [19, 21, 47, 69] and standard algebra books [4, 10,
21,25,30,36,42,49,55,58,66].

Definition 3 Let V1,V2, . . . ,VN be real vector spaces of dimensions d1, d2, . . . , dN , respec-
tively, tensor product space V1 ⊗ V2 ⊗ . . . ⊗ VN is vector space of dimension d1d2 . . . dN ;
element X ∈ V1 ⊗ V2 ⊗ . . .⊗ VN is called a tensor of order N .
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When we fix a choice of basis {endin |din = 1, 2, . . . , dn}, for Vn, respectively, then X has
coordinate representation

X =

d1∑
di1=1

. . .

dN∑
diN=1

xdi1 ...diN e1
di1
⊗ . . .⊗ eNdiN

. (2.3)

The coefficients form a N -way array, A ∈ Rd1×...×dN . Also, element of an dn-dimensional
vector space Vn may be represented by an dn-tuple of numbers in Rdn up to a choice of
basis, for n = 1, 2, . . . , N [21].

Before giving the formulation of CP-decomposition, we summarize results from [21]
which may give insight view about the relations among some related terms such as
“tensor”,“N -way array”, “tensor product”, “outer product”, etc., and the first imagi-
nation about CP-decomposition (or outer-product decomposition of a tensor).

Let Rd1 ⊗Rd2 ⊗ . . .⊗RdN be the tensor product of the vector spaces Rd1 ,Rd2 , . . . ,RdN

and let φ be the Segre map which is a multilinear such that

φ : Rd1 × Rd2 × . . .× RdN −→ Rd1×d2×...×dN (2.4)

(x1,x2, . . . ,xN) 7−→ φ(x1,x2, . . . ,xN) = X ,

where the (id1 , id2 , . . . , id1)-th element of X is defined as

xid1 id2 ...id1 = x1id1x2id2 . . . xNidN . (2.5)

From the universal property of tensor product we have a unique linear map θ such that
the diagram in Figure 2.5 commutes, i.e,

φ((x1,x2, . . . ,xN)) = θ(⊗((x1,x2, . . . ,xN))) = θ((x1 ⊗ x2 ⊗ . . .⊗ xN)), (2.6)

for all (x1,x2, . . . ,xN) ∈ Rd1 × Rd2 × . . .× RdN . In other word, we have φ = θo⊗, where
“θo⊗” is composite function.

Figure 2.5: Commutative diagram [21].

Note that result of Segre map in Equation 2.5 can be write in form of outer product
such that φ((x1,x2, . . . ,xN)) = x1◦x2◦ . . .◦xN , where “◦” is the outer product of vectors.
Equation 2.6 implies that

θ((x1 ⊗ x2 ⊗ . . .⊗ xN)) = x1 ◦ x2 ◦ . . . ◦ xN . (2.7)
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Furthermore, θ is a vector space isomorphism since dim(Rd1 ⊗ Rd2 ⊗ . . . ⊗ RdN ) =
dim(Rd1×d2×...×dN ) = d1d2 . . . dN . It implies that tensor product of vector x1 ⊗ x2 ⊗ . . .⊗
xN and the N -way array X = φ((x1,x2, . . . ,xN)) = x1 ◦ x2 ◦ . . . ◦ xN are equivalent
objects which belong to equivalent vector spaces Rd1 ⊗Rd2 ⊗ . . .⊗RdN and Rd1×d2×...×dN ,
respectively. Such equivalences allows us to not distinguish between these two spaces, and
both X ∈ Rd1 ⊗ Rd2 ⊗ . . .⊗ RdN and θ(X ) ∈ Rd1×d2×...×dN can be called tensor.

Such results provide great advantages for data mining applications related to N -way
array data because N -way array (consider as element of Rd1×d2×...×dN ) may provide nature
and compact representation for data and target problem may be solve using tensor space
model based methods [3, 13, 17, 34, 38, 50, 56, 59, 69]. From now on, we only focus on the
special case of 3-way tensors which is indeed 3 way arrays in RI×J×T because it is enough
for understanding the content of later parts with notice that many important results are
originally proved on RI ⊗ RJ ⊗ RT .

Rank-1 tensor or decomposable tensor is a special kind of tensor and is necessary to
understand CP-decomposition [21,38].

Definition 4 A 3rd-order tensor X ∈ RI×J×T
is of rank one if it can be written as the

outer product of 3 vectors, i.e.,
X = a ◦ b ◦ c, (2.8)

where a ∈ RI , b ∈ RJ and c ∈ RT .

CP-decomposition is used to decompose a tensor into a sum of component rank-one
tensors [19, 38]. Theoretically, any tensor X can be decomposed (non uniquely) into a
linear combination of decomposable tensors or in other words, given a tensor X ∈ RI×J×T

,
we can find ar ∈ RI , br ∈ RJ and cr ∈ RT such that

X =
R∑
1

λrar ◦ br ◦ cr, (2.9)

where ar ∈ RI , br ∈ RJ and cr ∈ RT .
Elementwise, equation 2.9 is written as

xijt =
R∑
r=1

λraribrjcrt, (2.10)

for i = 1, 2, . . . , I, j = 1, 2, . . . , J , t = 1, 2, . . . , T and r = 1, 2, . . . , R.
CP-decomposition of a 3rd-order tensor is illustrated in Figure 2.6
Matrices A = [a1, a2, . . . , aR] ∈ RI×R, B = [b1,b2, . . . ,bR] ∈ RJ×R and C = [c1, c2, . . . , cR] ∈

RT×R are called component matrices.
There are some kind of ranks defined on tensors, the most common ones called CP-rank,

outer product rank or in short rank(.) [21, 38].

Definition 5 The rank of a tensor X , denoted rank(X ), is defined as the smallest number
R of rank-one tensors that generate X as their sum.

14



Figure 2.6: CP decomposition of a third order tensor [38].

For a 3rd order tensor X ∈ RI×J×T , the lower and upper bounds of number R are
max{I, J, T} and min{IJ, JT, IT}, respectively. Or in other words, we have the fol-
lowing inequality

max{I, J, T} ≤ R ≤ min{IJ, JT, IT} (2.11)

For detail about the bounds of tensor rank, ones may refer to some documents [20,35,38,
40], etc.

Another important remark is that in Equation 2.9, we see that for any 3rd-order tensor
X ∈ RI×J×T can be decomposed into a linear combination of decomposable tensors but
we did not see how to find such combination for a given tensor. In our point of view,
there is no available model to find an exactly decomposition for a given tensor. Generally,
CP-decomposition is used to determine the feasible solution region for the approxima-
tion problems. And based on the purpose of the approximation problems, the objective
functions are constructed and are solved to find the optimal solution/solutions on the
determined feasible solution region. The class of models follow this procedures is called
PARAFAC family and is presented in Section 2.4.

2.4 PARAFAC family

PARAFAC family consists of PARAFAC model and other models, which have relaxed the
restrictions enforced by a PARAFAC model to capture data-specific structures [3]. The
simplest version of PARAFAC model is R-component PARAFAC model. Given a tensor
X and a number R, R-component PARAFAC model used to find a linear combination of
R-decomposable tensors which is best approximates the given tensor X [3,14,15,20,21,32,
37, 38]. In other words, R-component PARAFAC model find three component matrices
A = [a1, a2, . . . , aR] ∈ RI×R, B = [b1,b2, . . . ,bR] ∈ RJ×R and C = [c1, c2, . . . , cR] ∈
RT×R by solving the following optimization problem

min
A∈RI×R,B∈RJ×R,C∈RT×R

‖X −
R∑
r=1

ar ◦ br ◦ cr‖F , (2.12)

where F is Frobenius norm.
Note that component matrices A, B, and C are determined uniquely up to a permu-

tation and scaling of columns [3]. Permutation of column mean that if

{A = [a1, . . . , aR] ∈ RI×R,B = [b1, . . . ,bR] ∈ RJ×R,C = [c1, . . . , cR] ∈ RT×R}
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is an optimal solution of optimization 2.12 and σ is a permutation on {1, 2, . . . , R} such
that

σ(1, 2, . . . , R) = (σ(1), σ(2), . . . , σ(R)) (2.13)

then
{A′

= [aσ(1), . . . , aσ(R)],B
′
= [bσ(1), . . . ,bσ(R)],C = [cσ(1), . . . , cσ(R)]}

is also an optimal solution. And scaling of columns mean that

{A = [α1a1, . . . , αRaR], B = [β1b1, . . . , βRbR],C = [γ1c1, . . . , γRcR]}

with {αr, βr, γr ∈ R|αrβrγr = 1, r = 1, 2, . . . , R} is also an optimal solution of optimization
problem 2.12.

To avoid the scaling solutions which may make the problem become more complicated,
the result of optimization problem 2.12 is usually normalized and the optimization problem
is reformed as follows

min
A∈RI×R,B∈RJ×R,C∈RT×R

‖X −
R∑
r=1

λrar ◦ br ◦ cr‖F , (2.14)

where {‖ar‖ = ‖br‖ = ‖cr‖ = 1|r = 1, 2, . . . , R}.
Although there is no model can find the exactly number R for a given tensor, several

extension models of PARAFAC can be used to determine an appropriate number R by
capturing data-specific structures [3]. Because extensions of PARAFAC are complicated
and determining an appropriate number R for tensor data requires additional background,
we leave those models as a future research and just list some popular models and their
important characteristics in Table 2.2.

Table 2.2: Models in PARAFAC family [3].

Model name Mathematical formulation
Handles
rank-efficiency

Extend to
N -way array

PARAFAC xijt =
∑R

r=1 aribrjcrt + eijt No Yes

PARAFAC2 Xt = AtDtB
T + Et No Yes

S-PARAFAC xijt =
∑R

r=1 ar(i+sjr)brjcrt + eijt No Yes

PARALIND Xt = AHDtB
T + Et Yes Yes

cPARAFAC xijt =
∑R

r=1 arib
r(j−θ)cθrt + eijt No Yes

From literature reviews, we see that applications of PARAFAC model on 3rd-order
tensor usually consist of two stages: firstly, assuming that data have multiway structure
and representing the data in form of 3rd-order tensors; then, PARAFAC model is employed
to carry out three component matrices which can be understood as a new representation
with certain multiway structure [3, 11, 20, 38]. Note that certain multiway structure in
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this case mean that data can represented in form of a 3-order tensor which is then can be
represented in CP-decomposition form.

Furthermore, when working with 3rd-order tensor, the number of elements that we have
to store and manipulate is larger and rapidly increasing when the size of ways increase. It
is also important to find a new representation which requires less storage memory like CP-
decomposition form. For example, when working with a 3rd-order tensor X ∈ RI×J×T , we
have to store and manipulate totally IJT elements while working with R-component CP-
decomposition, ones only need to concern R(I+J+T ) elements. As point out in literature
reviews [20,29,38], finding good approximation with small R have been widely studied and
numerous fast and efficient algorithms have been proposed, improved and implemented on
popular softwares (for example MATLAB), tensor decomposition models (in particularly,
PARAFAC model) have become promising solution to handle the multiway array data.
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Chapter 3

CP-decomposition based temporal
link prediction on open bipartite
networks evolve over time

The first part of this chapter present necessary concepts related to temporal link predic-
tion, open bipartite networks and an introduction to temporal link prediction on bipartite
networks. Then the second part provides the related works need to understand the pro-
posed temporal link prediction method for open bipartite networks. In the third part, the
proposed method is presented. Finally, discussions and future works is given in the fourth
part.

3.1 Introduction

The temporal link prediction is a common problem for data which is assumed to have the
underlying periodic structure. The problem of temporal link prediction can be summa-
rized as follows

Definition 6 Given link data for times 1 through T th, temporal link prediction is the
problem of predicting the links at time (T + 1)th.

Of course this is a general problem and can be found in many kinds of data. In this
chapter, we restrict the problem on one special kind of data which can be represented by
bipartite networks whose links evolve over time.

Definition 7 Bipartite networks are a common type of network data in which there are
two types of vertices, and only vertices of different types can be connected by links [2,26,43].

In a bipartite network that evolve over time, two sets of vertices are fixed and only
the links between different kind of vertices change. Figure 3.1 is an example of bipartite
networks with 5 vertices of each type.

Bipartite networks can be used to represent various kinds of structures, dynamics, and
interaction patterns found in social activities [8, 22, 52, 53, 67]. For example, bipartite

18



Figure 3.1: An example of bipartite network that evolve over time.

network is used to represent the network consists of I authors and J conferences where
each link represents the possibility that an author publishes on a conference and temporal
link prediction is used to predict which authors will publish at which conferences in year
(T +1)th given the publication data for the T previous years [2,26]; I users/group of users
and J providers and their relations in a recommendation systems can be represented by
a bipartite network [67]; Another example is the bipartite network consists of I patient
groups and J drugs with the links represent the adverse effect of drugs.

In real applications, we can face some special bipartite networks with common situation
that new vertices may join network at time T th and may link to other vertices at time
(T +1)th. There are numerous examples about such kind of networks. For example, when
consider a recommendation system, new users/group of users appear and may interest or
use service of providers in next time points; also in drug side effect example, new drugs
are launched and may have adverse effect on patient groups in the future; etc.

For simplicity, let call such networks by open bipartite networks to distinguish from
bipartite networks without new added vertices. We define such kind of networks as in
Definition 8 and give illustration in Figure 3.2.

Definition 8 An open bipartite network is a bipartite network in which new subjects may
join the network at time T and may link to objects at time (T + 1)th.

Figure 3.2: An example of open bipartite network that evolve over time.

Several temporal link prediction methods have been proposed for bipartite networks
[2, 26] but in our knowledge, no temporal link prediction method proposed to deal with
problem on open bipartite networks. In our point of view, temporal link prediction on open
bipartite networks is challenging because it is difficult to learn how new vertices will link to
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other vertices and how new added vertices effect links among previous vertices at time (T+
1)th. To do temporal link prediction on open bipartite networks, we extend temporal link
prediction method using CP-decomposition in [2, 26] to address temporal link prediction
in open bipartite networks in which new vertices of type-1 may join networks at time T th.

3.2 Related works

Temporal link prediction methods for bipartite networks assume that link data have an
underlying periodic structure and apply time series techniques to predict future links [2,
5,23,26,67]. Almost traditional methods apply time series techniques directly on the link-
data to predict future links. This schema is simple in implementation but have limitations
such as high complexity, memory consuming and difficulty in exploiting the natural three-
dimensional structure of temporal link data. Recently, temporal link prediction method
using CP-decomposition were proposed and shown its power in exploring the structure
of data, requiring less memory and giving outperformed experimental results comparing
with the traditional methods [2, 26]. Because the proposed method for open bipartite
networks can be seen as an extension of the method in [2,26], understanding the key ideas
of the method proposed in [2, 26] is necessary.

3.2.1 Temporal link prediction using CP-decomposition

In the method proposed in [2,26], a 3rd-order tensor is used to represent the link informa-
tion data; CP-decomposition employed to explore the three dimensional structure of data;
and the link information in the next time point is predicted using temporal forecasting
techniques.

Figure 3.3 gives an illustration of consisting steps in this method.

Figure 3.3: Illustration of temporal link prediction method proposed in [2, 26].

The method can be summarized as follows
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• Step 1: Data representation

The data is organized as a 3rd-order tensor X of size I×J×T , where xijt represents
weight of the link between type-1 vertex ith and type-2 vertex jth at time tth.

• Step 2: CP-decomposition

Carry out CP-decomposition method to get three-component matrices:

A = [a1, a2, . . . , aR] ∈ RI×R, (3.1)

B = [b1,b2, . . . ,bR] ∈ RJ×R, (3.2)

C = [c1, c2, . . . , cR] ∈ RT×R. (3.3)

where ar ∈ RI , br ∈ RJ and cr ∈ RT , such that

X =
R∑
1

λrar ◦ br ◦ cr. (3.4)

In Equation 3.4, {ar|r = 1, 2, . . . , R}, {br|r = 1, 2, . . . , R} and {cr|r = 1, 2, . . . , R}
are the type-1 vertex, type-2 vertex and time factors, respectively. Furthermore,
‖ar‖ = ‖cr‖ = ‖cr‖ = 1 and are obtained by normalizing the result from the
following optimization problem

min
ar,br,cr

= ‖X −
R∑
r=1

ar ◦ br ◦ cr‖22, (3.5)

and λr = ‖ar‖‖br‖‖cr‖, for r = 1, 2, . . . , R.

• Step 3: Temporal forecasting

Using assumption that time factors inherits the underlying periodic properties of
data, we can predict value of time factors at time (T + 1)th, denoted by γr, from
elements of vector cr = (cr1, cr2, . . . , crT ) and the links of network at time (T + 1)th

by using temporal forecasting method as follows

Step 3.1: Predict value of time factors at time (T + 1)th from its values at T
previous time.

The temporal profiles are captured in the vectors cr, r = 1, 2, . . . , R. Different
components may have different trends, for example, they may have increasing, de-
creasing, or steady profiles. For each time factor vector r, its value at time (T +1)th

is estimated by

γr =
1

T0

T∑
t=T−T0−1

crt, (3.6)

where K0 is prior number.
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Alternatively, we can use the temporal profiles computed by CP-decomposition as
a basis for predicting the scores in future [16].

Step 3.2: Predict the links of network at time (T + 1)th.

We define the similarity score for type-1 vertex ith and type-2 vertex jth using results
from R-component CP model in Equation 3.4 and results in Step 3.1 as the (i, j)
entry of the following matrix

XT+1 =
R∑
r=1

λrγ1ar ◦ br, (3.7)

or in other words, weight of links between type-1 vertex ith and type-2 vertex jth at
time (T + 1)th is

x(T+1)ij =
R∑
r=1

λrγraribrj, (3.8)

for i = 1, 2, . . . , I and i = 1, 2, . . . , J .

3.3 The proposed method

In this section, we present a proposed method to predict the weights of links at time
(T + 1)th of an open bipartite network whose the node set consists of I type-1 vertices
and J type-2 vertices, and N new vertices of type-1 join network at time T . The pro-
posed method was presented at ACIS2014 in December 2014. For the sake of an easy
understanding and clear presentation, we revised some parts from the paper at ACIS2014
where the key ideas and contributions are the same.

3.3.1 Problem formulating

The method proposed in [2, 26] work for bipartite networks when the weights of all links
through T previous time points are given. The key idea is to employ CP-decomposition
the weight into three separated factors, each fluctuates independently from others. From
this assumption, it is clear that if we known the value of time factors at time (T + 1)th,
then the weights of links at time (T + 1)th can be found by combining the values of time
factors at time (T + 1)th with values of vertex factors of type-1 and type-2. Furthermore,
as time factors are assumed to be inherited the underlying structure of weight data, it
allows to predict the values of time factors at time (T + 1)th from values of time factors
in T previous time points. The method works without any addition information than
weights of links in T previous time points.

Considering the problem of predicting the weights of links at time (T + 1)th of an open
bipartite networks whose a new vertex of type-1 join networks at time T and may link to
vertices of type-2 at time (T +1). Furthermore, it may also have effect on the fluctuations
of weights on the whole networks though the structure of networks is changed. Then, it
is easy to see that the main challenges/tasks in such problem are
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• to learn the effect of new vertex of type-1 on the fluctuations of weights on the whole
networks,

• and to predict the weights at time (T + 1)th.

If we employ the same assumptions, apply CP-decomposition to separate weights of
links into 3 factors and predict the values of time factors as method in [2, 26], then we
only have to predict the values of type-1 vertices factors corresponding to new vertex of
type-1 in order to predict the weights at time (T + 1)th. Without additional information
about or related to type-1 vertex factors, we can not predict the values corresponding to
new vertex. Our solution for this task is to collect additional information of all type-1
vertices and learn a function which can predict values of type-1 vertex factors from the
additional information and use to predict values of type-1 factors corresponding to new
vertex. In case N new vertices of type-1 join network at time T , we use the function to
predict all corresponding values of type-1 vertex factors. In other words, values of type-1
factors corresponding to new vertices are learned form additional information.

This schema implies that the values of factors corresponding to new vertices do not
effect on learning the values of time factors corresponding to time (T + 1)th, then they do
not effect on the weights of links between other vertices of type-1 and vertices of type-2.
Also the proposed method is in fact the same with the method in [2, 26] when no new
vertex join the networks.

The input and output of the proposed temporal link prediction method can be summa-
rized as in Algorithm 1.

Algorithm 1: Temporal link prediction on an open bipartite network

Input:

1. A set of information of I type-1 vertices S = {si|si ∈ RP , i = 1, 2, . . . , I}.

2. A set of information of N new vertices of type-1
Q = {qn|qn ∈ RP , n = 1, 2, . . . , N}.

3. A weight tensor X ∈ RI×J×T , where the (i, j, t)-th element xijt is the weight
corresponding to link between type-1 vertex ith and type-2 vertex jth at time

tth, for i = 1, 2, . . . , I, j = 1, 2, . . . , J and t = 1, 2, . . . , T .

Output: A matrix XT+1 ∈ R(I+N)×J , with x(T+1)ij is the predicted information of
link between type-1 vertex ith and type-2 vertex jth at time (T + 1)th, for
i = 1, 2, . . . , I, I + 1, . . . , I +N and i = 1, 2, . . . , J .

3.3.2 Assumptions

The proposed methods work under some assumptions as follows
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• Assumption 1: When no vertices join network, weights data have underlying
periodic structure or in other words, the weights at time (T + 1)th can be predict
from weights through T previous time points.

• Assumption 2: Information of vertices of type-1 is available and encoded in form
of vectors in RP , P is a non-negative integer number.

• Assumption 3: For each type-1 vertex factor ar, we can learn a function fr such
that ari = fr(si), where si is information of type-1 vertex ith.

3.3.3 Method

The assumptions in Section 3.3.2 are employed to construct a temporal link prediction
method as follows

• Step 1: Data representation

The weights of links through T time points are organized as a 3rd-order tensor X
of size I × J × T , where xijt represents weight of the link between type-1 vertex ith

and type-2 vertex jth at time tth.

Information of I type-1 vertices is represented in form of a matrix S ∈ RI×(P+1),
where the ith row is the row vector (1, si1, . . . , siP ), for i = 1, 2, . . . , I.

Information of N new vertices of type-1 is represented in form of a matrix Q ∈
RN×(P+1), where the nth row is the row vector (1, qn1, . . . , qnP ), for n = 1, 2, . . . , N .

• Step 2: CP-decomposition

Carry out CP-decomposition method to get three-component matrices:

A = [a1, a2, . . . , aR] ∈ RI×R, (3.9)

B = [b1,b2, . . . ,bR] ∈ RJ×R, (3.10)

C = [c1, c2, . . . , cR] ∈ RT×R. (3.11)

where ar ∈ RI , br ∈ RJ and cr ∈ RT , such that

X =
R∑
r=1

λrar ◦ br ◦ cr. (3.12)

• Step 3: Predict the values of type-1 vertex factors corresponding to new vertices

In this works, we assume that functions fr is linear or in other words, for each r,
we have

fr(si) = αr0 +
P∑
p=1

αrpsip, (3.13)

for i = 1, 2, . . . , I.
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For each function fr, we use least square method [33] to estimate vector αr =
(αr0, αr1, . . . , αrP )T ∈ RP+1 as follows

αr = (STS)−1STar, (3.14)

where ST is transpose matrix of S. For each new type-1 vertex n and each type-1
vertex factor, we find the corresponding value

s
′

rn = αr0 +
P∑
p=1

αrpsip, (3.15)

for n = 1, 2, . . . , N and r = 1, 2, . . . , R.

Concisely, we can found matrix α = [α1, α2, . . . , αR] ∈ RR×(P+1) such that

α = (STS)−1STA, (3.16)

and then find a matrix S
′

such that

S
′
= Qα, (3.17)

where the (r, n)th element of S
′

is indeed s
′
rn in Equation 3.15.

For each r, we form column vector dr ∈ RD, where D = I +N , such that

dr = (ar1, . . . , arI , s
′

r1, . . . , s
′

rN)T . (3.18)

Note that forming vectors dr only help to make the computational procedure in
later steps more concisely.

• Step 4: Temporal forecasting

Using assumption that time factors are inherited the underlying periodic properties
of data, we can predict value of time factors at time (T + 1)th, denoted by γr, from
elements of vector cr = (cr1, cr2, . . . , crT ). Then the links of network at time (T+1)th

by combining γr, br and dr estimated from Step 3 by following procedures

Step 4.1: Predict values of time factors at time (T + 1)th from its values at T
previous time.

The temporal profiles are captured in the vectors cr. Different components may
have different trends, for example, they may have increasing, decreasing, or steady
profiles. For each time factor vector cr, its value at time (T + 1)th is estimated by

γr =
1

T0

T∑
t=T−T0−1

crt, (3.19)

where T0 is a prior number.

Step 4.2: Predict the links of network at time (T + 1)th.
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We define the similarity score for type-1 vertex dth and type-2 vertex jth using result
from R-component CP model in Equation 3.12, and result from Steps 3 and Step
4.1 as the (d, j) entry of the following matrix

XT+1 =
R∑
r=1

λrγrdr ◦ br, (3.20)

or in other words, weight of link between type-1 vertex dth and type 2 vertex jth at
time (T + 1)th is

X(T+1)dj =
R∑
r=1

λrγrdrdbrj, (3.21)

for d = 1, 2, . . . , D and i = 1, 2, . . . , J .

Note that, for d = 1, 2, . . . , I, type-1 vertex dth is the previous vertex i = d, and for
d = I + 1, I + 2, . . . , I +N , type-1 vertex dth is the new type-1 vertex n = d− I.

3.4 Discussions and future works

The proposed method can be applied to do temporal link prediction on open bipartite
networks whose N new vertices of type-2 join networks instead of type-1 vertices since
the role of type-1 vertices and type-2 vertices are the same in the proposed method.

We also point out that in the proposed method, new vertices do not effect the fluctuation
of weights corresponding to links among previous vertices at time (T +1)th. Furthermore,
the proposed method is an extension of method in [2, 26], then it can be used to extend
the application context in that papers.

The proposed method is an intuitive method, it should be applied to analyze datasets
in order to evaluate the performance. Unfortunately, because of limited time, we have
not implemented the program and tested on real datasets. We leave this task as a future
work of this thesis.

In the later research, we plan to focus on the following tasks

1. Collect data and run experiments on real datasets in order to evaluate performance
of the proposed method.

2. Extend the proposed method to predict the links for a period of time starting at
(T + 1)th or in other words, for times (T + 1)th, . . . , (T + L)th.

3. Construct temporal link prediction for open bipartite networks when the new ver-
tices of type-1 and type-2 join the concerned networks at the same time.
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Chapter 4

CP-decomposition based spectral
clustering

This section provides an overview of spectral clustering and suggestions to extend this
method to deal with tensorial data. Firstly, we give an overview of spectral clustering
including the general schema, opportunity to extend for tensor data. Also, the currents
research on clustering methods for tensor data is given. Secondly, a proposed spectral
clustering method namely CP-decomposition based spectral clustering is presented. Then,
experiment results are analyzed to evaluate performance of the proposed method. Finally,
the future plan to improve the proposed methods and suggestion to construct a versatile
clustering method based on tensor space model are given.

4.1 Spectral clustering

Spectral clustering has became one of the most popular clustering algorithms [54, 64].
In this section, we present the general schema of spectral clustering and discussions that
motivate us focus on studying spectral clustering and extend such methods for tensor data,
though there many other clustering methods, for example, K-mean clustering, hierarchical
clustering, etc.

4.1.1 General Schema of spectral clustering

Before going to present the general schema of spectral clustering, we provide an intuitive
overview about spectral clustering which is summarized from technique papers [54, 64].

In applications deal with empirical data, clustering is use to identify the groups of data
which have “similar behavior” and can be seen as the first attempt to learn about the
structure of data. It is clear that different ways to define “similar behavior” will motivate
people to construct different classes of clustering method.

One intuitive way to define the similar behavior is to assume that the T considered
data points, denoted by s1, s2, . . . , sT , are embedded into a weighted similarity graph
G = (V,E) where each vertex vt represent data point st and for each edge (vi,vj) ∈ E,
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its weight wi,j represent the “similarity” between vertex vi and vj or equivalently the
“similarity” between data point vi and sj. Then, the problem of find groups of similar
data points change to a relaxation problem that finding groups of similarity vertices in the
similarity graph. The relaxation problem is easier to solve because graph and similarity
graph have been studied for a long time and many powerful results have been found. By
embedding the data points into a similarity graph, we can employ any techniques and
results related to similarity graph to do clustering on the embed similarity graph. Finally,
the result on the similarity graph can be converted to the original data space though the
embedded function is clear.

The clustering methods that follow the above procedure is called spectral clustering
methods. Note that “similarity” is a general notation and also there are several tech-
niques to do clustering on embed similarity graph. Spectral clustering methods are dis-
tinguished mainly by which similarity measures and clustering techniques on similarity
graph are employed. In this thesis, we focus on symmetric similarity measure which used
to constructed the embedded undirected graph with the properties that wij = wji which
is used to distinguished with other kind of graph whose wij may be different from wji.

The general schema of spectral clustering used in this thesis can be summarize as in
Algorithm 2.

This schema is similar to schema in other papers [54, 64]. The only difference here
is that we do not mention about any certain similarity measure as it should be chosen
appropriately for each kind of data.

The matrix L in step 2 is called normalized Laplacian matrix. For other kinds of
Laplacian and their applications in spectral clustering, ones are suggested to refer technical
documents and survey papers [31,64], etc.

4.1.2 Motivation and opportunity for tensor data

Before presenting the reasons that motivate us to study and extend spectral clustering
methods for tensor data, we summarize two general criterias which have been used to
compare clustering methods from [57] as follows

1. How easy to use the method. This criteria is usually used to compare the execution
time and storage requirements of computer-oriented methods.

2. How well the performance is when applying methods to analyze data.

In our point of view, the second criteria can be used only when the evaluation criteria and
purpose of the application problems are determined, and considered methods are used
under same restricted conditions. Also, we suggest to consider “how easy to interpret the
result” and “how easy to extend method for complex kinds of data” as parts of the first
criteria when applying clustering method in data mining applications because interpret
the result is a crucial steps and complex data has became a challenge in numerous real
applications related to data mining.

Concerning the above criteria, we have seen reason that motivate us to focus on spectral
clustering as follows
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Algorithm 2: General schema of spectral clustering

Input:

1. A set of T data point P = {st|t = 1, 2, . . . , T}, where st represents information of
data point tth.

2. A similarity function S

S :P × P −→ R\(−∞, 0)

(si, sj) 7−→ S((si, sj)) = wij.

3. A number K of data groups.

Output: K groups of data points G1, G2, . . . , GK such each data point st belong to
one group Gk, for t = 1, 2, . . . , T and k = 1, 2, . . . , K.

1. Construct an embedded undirected similarity graph G = (V,E) using similarity
measure S.

2. Compute the similarity matrix W, where the (i, j)-th element of W is
wij = S(vi, vj).

3. Define D to be the orthogonal matrix whose (i, i)-th element is the sum of
elements in W’s i-th row, and compute Laplacian matrix L = D−1/2WD−1/2.

4. Compute the first K largest eigenvectors u1,u2, . . . ,uK of L and form the matrix
U = [u1,u2, . . . ,uK ] ∈ RT×K ] by stacking the eigenvectors in columns.

5. Form a matrix Y from U by renormalizing each of U’s row to have unit norm.

6. Treating each row of Y as a vector in RK and cluster them via K-mean method.

7. Finally, assign the original point st to the the cluster k if row tth of Y was assigned
to the cluster k.
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1. Considering the first criteria, K-mean and spectral clustering are two good methods
as point out in [57, 64]. More precisely, K-mean clustering methods work when a
distance measure and centroids are defined while spectral clustering work when
a similarity measure is given. As distance and similarity measure have very close
properties, and it is difficult to define centroids for complex kind of data as tensorial
data, we think that spectral clustering is more versatile and somewhat easier to
extend for complex data.

2. On the second criteria, in many application on data in RT , the empirical results
of spectral clustering methods are better comparing with K-mean methods [54,64].
We hope to achieve the similar results when working on complex data.

Another motivated reason comes when we study about the multi-view approach which
have been considered as a promising direction in data mining with the power to simulta-
neously treat heterogeneous kind data in order to improve the empirical results. Up to
now, we have not found any paper working under multi-view direction related to K-mean
while several interesting multi-view spectral clustering methods were recently proposed
with well empirical results and is theoretically guaranteed [48,62].

Motivating by the above reasons, we plan to firstly extend the spectral clustering for
3rd order tensor data. After that we aim to construct appropriate similarity measure in
order to extend multi-view spectral clustering.

4.2 CP-decomposition based spectral clustering

4.2.1 Challenges and tasks

When constructing spectral clustering method for 3rd tensor data using the general schema
in 4.1.1, we faced two following challenges

1. When working with data in form of a 3-order tensor X ∈ RI×J×T , we have to store
and manipulate IJT elements which will rapidly increase when I, J or T increase.

2. What is an appropriate similarity measure should be constructed because when the
whole data of T point is store in form of a 3-order tensor X ∈ RI×J×T , data of each
data point tth is represented in form of a 2-way tensor Xt ∈ RI×J .

To deal with the first challenge, we employed CP-decomposition with a small number
R of components to find a new representation of data. Note that when working on new
representation, the number of elements that we have store and manipulate is (I+J+T )R
which is small comparing with IJT when R is small.

The second challenge seems more complicated and we decided to construct difference
similarity measures and empirically comparing them on real data.

Combining the two challenges, our tasks now change to construct a CP-decomposition
spectral clustering method which consists of two following smaller tasks: to find a similar-
ity measure; and determine the smallest number of component in CP-decomposition that
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help to reduce the storage memory while keep the good performance result though we
may loose important information when applying CP-decomposition with small number
of component. The answer for this question will be given in Section 4.3.2 after doing
experiments on real data and analyzing the results.

4.2.2 The proposed method

The key ideas of the proposed method are to carry out CP-decomposition method to
get a three-component matrices which is the new representation of original data in form
of a 3rd order tensor; and apply the spectral clustering method in Algorithm 2 on the
new representation with an appropriate similarity measure. A summary of the proposed
spectral clustering method is given in Algorithm 3.

Note that to apply the proposed method we have to determine which similarity measure
will be employed in Step 1. In this thesis, we firstly extend the similarity measure used
in [54] to measure the similarity between 2rd-order tensors as follows

S1 :RI×J × RI×J −→ R\(−∞, 0) (4.3)

(si, sj) 7−→ S((si, sj)) = exp(‖ si − sj ‖2fro /2σ2),

where σ2 is scaling parameter and should be chosen appropriately for each special kind
of data as pointed out in [54].

We also construct another similarity measuare by appropriately modifying 2-dimensional
(2D) correlation which has been used in applications related to 2-way data [51,68]. Given
two 2-way arrays X, Y ∈ RI×J , their 2D correlation is defined as

corr2(A,B) =

∑I
i=1

∑J
j=1(aij − A)(bij −B)√

(
∑I

i=1

∑J
j=1(aij − A))2(

∑I
i=1

∑J
j=1(bij −B))2

, (4.4)

where A = 1
IJ

∑I
i=1

∑J
j=1 ai,j and called mean of A.

Note that given two 2-way arrays, their 2D correlation may be positive or negative
and a high negative correlation indicates a high correlation as high positive does. If we
consider the similarity between two 2-way arrays as how high their correlation is, we can
construct a similarity measure S2 such that

S2 :RI×J × RI×J −→ R\(−∞, 0) (4.5)

(si, sj) 7−→ ((si, sj)) =| corr2(si, sj) |,

where | x | is the absolute value of x ∈ R, and corr2(si, sj) is the 2D correlation of
si, sj ∈ RI×J .

4.3 Experiment

In this section, we formulate the problem of retrieving the nature label of data using
Algorithm 3 and set up 4 experiment on Blue Crabs dataset which is a 3-way data set
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Algorithm 3: CP-decomposition based spectral clustering

Input:

1. A set of T data point P = {st|t = 1, 2, . . . , T}, we st ∈ RI×J represents information
of data tth.

2. A similarity function S

S :P × P −→ R\(−∞, 0)

(si, sj) 7−→ S((si, sj)) = wij.

3. A number K of data groups.

4. A number R of components in CP-decomposition.

Output: k groups of data points G1, G2, . . . , GK such each data point st belong to
one group Gk, for t = 1, 2, . . . , T and k = 1, 2, . . . , K.

1. Form a 3rd order tensor X ∈ RI×J×T such that the frontal slices X::t = st, for
t = 1, 2, . . . , T .

2. Carry out CP-decomposition to get three-component matrices

A = [a1, a2, . . . , aR] ∈ RI×R,

B = [b1,b2, . . . ,bR] ∈ RJ×R, (4.1)

C = [c1, c2, . . . , cR] ∈ RT×R.

where ar ∈ RI , br ∈ RJ and cr ∈ RT .

3. Form new representation s
′
t ∈ RI×J for each data point tth in the following form

s
′

t =
R∑
r=1

crtar ◦ br, (4.2)

for t = 1, 2, . . . , T .

4. Apply Algorithm 2 on new representation S
′
= {s′t|t = 1, 2, . . . , T}.

5. Assign the original point st to the cluster k if s
′
t was assigned to the cluster k.
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with the natural label. Detail information of Blue Crabs Data dataset can be found in
the website of The Three-Mode Company (http://three-mode.leidenuniv.nl) or in
the related papers [28,39].

4.3.1 Data description and experiment setup

The Blue Crabs dataset contains information of 16 healthy Blue Crabs originating from
the Albermarle Sound, 16 healthy Blue Crabs from Pamlico River and 16 diseased Blue
Crabs from Pamlico River.

Figure 4.1: Image of a Blue Crab.

For each Blue Crabs, information consist of levels of 25 trace elements in 3 tissues
namely gill, hepatopancreas, and muscle tissue. The information of each Blue Crab is
represent in form of a 25 × 3 matrix, let denoted by Xt ∈ R3×25, where xijt is the level
of trace element i in tissue j consider Crab t, for i = 1, 2, . . . , 25, j = 1, 2, 3 and t =
1, 2, . . . , 48. The whole data set is represented in form of a 3rd-order tensor X ∈ R25×3×48.

From this dataset, we extract some datasets and design some experiments as described
in Table 4.1.

For Algorithm 2, when the dataset, number of cluster and similarity are determined,
we repeat the experiment 100 times and calculate the mean of accuracy of 100 repeated
times.

For Algorithm 3, when the dataset, number of cluster, similarity and number of com-
ponent in CP-decomposition R are determined, we repeat the experiment 100 times and
also calculate the mean of accuracy of 100 repeated times. We run this procedure for
R = 1, 2, . . . , 75 because we want to test whether we can find a new representation with
small number of component which give good clustering results and if yes, how small R
can be.

To access the accuracy of a determined experiment, we use the criteria given in [57]
which can be summaries as follow

• For each data set, we form L = {L1, L2, . . . , LK} is a disjoint partition of Crabs
such that all Cabs in group Lk have the same properties and Crabs with different
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Table 4.1: Description of experiments.

Input Number of Cluster Algorithm Similarity measure

48 Crabs

3 Algorithm 2 S1

3 Algorithm 2 S2

3 Algorithm 3 S1

3 Algorithm 3 S2

16 healthy Crabs from
Albemarle Sound and 16
healthy Crabs from
Pamlico River

2 Algorithm 2 S1

2 Algorithm 2 S2

2 Algorithm 3 S1

2 Algorithm 3 S2

16 healthy Crabs from
Pamlico River and 16
disease Crabs from Pamlico
River

2 Algorithm 2 S1

2 Algorithm 2 S2

2 Algorithm 3 S1

2 Algorithm 3 S2

16 healthy Crabs from
Albemarle Sound and 16
disease Crabs from Pamlico
River

2 Algorithm 2 S1

2 Algorithm 2 S2

2 Algorithm 3 S1

2 Algorithm 3 S2

properties are assign in different groups. There are 3 properties namely healthy from
Albemarle Sound, healthy from Pamlico River and disease from Pamlico River.

• L′ = {L′1, L
′
2, . . . , L

′
K} is another disjoint partition of Crabs that we find after run

experiment.

• The accuracy is defined as the similarity between two partitions L and L
′
, denoted

by c(L,L
′
), and is calculated as follows

c(L,L
′
) = (

T∑
t=1

T∑
j=i+1

γij)/

(
T

2

)
, (4.6)

where

(
T

2

)
= T !

2!(T−2)! and

γij =



1 if there exist k and k
′

such that si and sj are in

both Lk and L
′

k′
,

1 if there exist k and k
′

such that si is in both of

Lk and L
′

k′
while sj is neither in Lk nor L

′

k′
,

0 otherwise.

(4.7)

The following example from [57] may help to a better understanding about the criteria.
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Example 1 Let S = {a, b, c, d, e, f} be a dataset consists of six data point which have
disjoint partition L = {L1, L2} such that L1 = {a, b, c} and L2 = {d, e, f}. Assuming
that we apply a clustering method with the priori number of clusters are 3 and obtain the
results L

′
= {L′1, L

′
2, L

′
3} such that L

′
1 = {a, b}, L′2 = {c, d, e} and L

′
3 = {f}. Then the

point-pairs are tabulated as in Figure 4.2.

Figure 4.2: The point-pairs result [57].

Using criteria in Equation 4.6, it is easy to see that

c(L,L
′
) = 9/

(
6

2

)
= 0.6,

or in other words, the accuracy of the considering clustering method is 60% with respect
to criteria given in Equation 4.6.

4.3.2 Experimental result and discussion

In this section, we present results of experiments setup in Table 4.1. The results are also
analyzed and visualized, and used to evaluate Algorithm 2 and Algorithm 3 presented in
Section 4.1.1 and Section 4.2.2, respectively. Note that when applying Algorithm 2, the
scaling parameter σ2 should be determined as a turning parameter. In this section, we fix
σ2 = 0.001 since our main purpose is to test the ability to find a compact representation
(i.e, a low-rank representation with acceptable accuracy) of CP-decomposition in Algo-
rithm 3 and leave turning parameter problem as a future work of this thesis. For short,
we denote that

• Dataset 1 contains information of all 48 Crabs which belong to three clusters
namely healthy Crabs from Albemarle Sound, healthy Crabs from Pamlico River
and disease Crabs from Pamlico River.

• Dataset 2 contains information of 16 healthy Crabs from Albemarle Sound and 16
healthy Crabs from Pamlico River.

• Dataset 3 contains information of 16 healthy Crabs from Pamlico River and 16
disease Crabs from Pamlico River.

• Dataset 4 contains information of 16 healthy Crabs from Albemarle Sound and 16
disease Crabs from Pamlico River.
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Figure 4.3: Experimental result on 4 datasets.

We implement the Algorithm 2 and Algorithm 3 and run experiments on MATLAB
(R2013b). The experiment results are visualized in Figure 4.3.

From the experimental results, we see that for both similarity measurement S1 and
S2, we can choose a small number of component in CP-decomposition which give the
acceptable result comparing with K-mean. In other words, CP-decomposition can be
used to find low-rank representation of the original data which may help to reduce the
storage memory while still give acceptable accuracy. Furthermore, when analyzing the
experiments results corresponding to dataset 1 and 4, results of Algorithm 3 are slightly
higher than that of Algorithm 2. Such results are matched with discussions from some
papers that CP-decomposition also help to explore the hidden structure of data which give
advantages for CP-decomposition based methods when comparing with other methods
[3, 17,18].

4.4 Future works

In later research, we plan to focus on following tasks

1. Construct several similarity measures for tensor data.

2. Extend the multi-view spectral clustering methods proposed in [48] which is illus-
trated in Figure 4.4 for tensor data.

3. Construct a tensor space model based spectral clustering method.
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Figure 4.4: Comparison between single view (left) and multi-view (right) spectral clus-
tering [48].

4.4.1 Single-view spectral clustering vs multi-view spectral clus-
tering

Considering multi-view spectral clustering method in Figure 4.4, a data source can be
considered as the combination of original data and a similarity measure. In case V
similarity measure are constructed and dataset consist of I data sample, we can form
a similarity tensor X ∈ RI×I×V and applying tensor based methods proposed in [48] to
cluster data.

In order to see the relation between single view spectral clustering and multi-view
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spectral clustering proposed in [48], it is necessary to know about the formulations of
these two approaches.

Let U ∈ RI×K is the relaxed assignment matrix, where I is the number of data points
and K is the number of clusters, the single-view spectral clustering problem can be ex-
pressed as follows

min
U

trace(UTLNcutU), (4.8)

s.t. UTU = I,

where I is the K × K identity matrix and LNcut is the normalized Laplacian matrix
corresponding to the normalized cuts (Ncut) which is defined as LNcut = I− L.

As point out in [48], the single-view spectral clustering can also be formulated as the
following Frobenius norm optimization problem

min
U

‖UTLU‖F , (4.9)

s.t. UTU = I.

Results of Problem 4.8 and 4.9 are the set of K dominant eigenvectors of LNcut and
the set of K dominant eigenvectors of L. These two sets are equivalent in the sense that
they both span the dominant eigenspace of L [48].

When V -similarity measures are determined, we plan to construct V similarity matrices
L1,L2, . . . ,LV and cluster the data by applying multi-view spectral clustering methods
proposed in [48] whose formulations are as follows

1. Multi-view clustering by trace maximization

max
U,w

V∑
v=1

wvtrace(UTLvU) =
V∑
v=1

trace(UTwvL
vU), (4.10)

s.t. UTU = I, w ≥ 0 and ‖w‖F = 1.

2. Multi-view clustering by integration of the Frobenius- norm objective function

max
U

=
V∑
v=1

‖UTLvU‖2F , (4.11)

s.t. ‖w‖F = 1.

3. Multi-view clustering by matrix integration in the Frobenius-norm objective function

max
U,w

=
V∑
v=1

‖UTwvL
vU‖2F , (4.12)

s.t. UTU = I, w ≥ 0 and ‖w‖F = 1.

All of three optimization problems 4.10, 4.11 and 4.12 using tensor methods as proposed
in [48].
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4.4.2 A tensor space model based clustering method

As tensor data requires large storage memory, we also try to construct a tensor space
model based clustering method in which tensor data in RI×J is transformed in to vector
space RT and spectral clustering methods are applied on the transformed data in order to
cluster the data. Figure 4.5 gives an illustration of the proposed method and Algorithm
4 provides a summary.

Figure 4.5: A tensor space model based clustering method.

Algorithm 4: A tensor space model based clustering method

Input: A set of point P = {s1, s2, . . . , sT |st ∈ RI×J , t = 1, 2, . . . , T} and number K
of clusters.

Output: K groups of data points G1, G2, . . . , GK such each data point st belong to
one group Gk, for t = 1, 2, . . . , T and k = 1, 2, . . . , K.

1. For each data point st, construct a new representation xt ∈ RT such that,
xtj = corr2(st, sj) , for j = 1, 2, . . . , T .

2. Apply a clustering method on new representation P
′
= {xt|t = 1, 2, . . . , T}.

3. Assign the original point st to the cluster k if xt was assign to the cluster k.

Note that Method 4 is very versatile. Given a dataset consists of T point, each is
represented inform of second order tensor in RI×J , the key ideas are to learn a new
representation in Euclidean vector space RT and apply a clustering to do clustering task
on the new representation.

Since the clustering algorithm in step 2 should be chosen appropriately by studying
the structure of data in new presentation space, we have to carefully analyze the relation
between S and S

′
and the transformation function in step 1 in order to fully complete

the clustering task. In this section, we employ the spectral clustering proposed algorithm
proposed in [54] to do clustering task in steps 2 and implement the Algorithm 4 to cluster
data in 4 datasets described in Table 4.1 .
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Because of limited time, we skip the procedure to choose the scaling parameter σ2

automatically as suggested in [54] because it should be adjusted appropriately for each
kind of data. The main purposes here are to check whether method given in Algorithm 4
can give acceptable results and whether the scaling parameter σ2 have effect on the cluster
results. The former is done by comparing the results with results given by Algorithm 2
together with similarity measure S2 as given in Figure 4.3 while the later was done by
analyzing the results of 200 experiments when the value of scaling parameter σ2 is fixed
as σ2 ∈ {0.01n|n = 1, 2, . . . , 200} ∈ [0.01, 2].

Figure 4.6: Experiment results of Algorithm 4 on 4 datasets.

From the Figure 4.6, we see that different value of scaling parameter σ2 may give
different accuracy. In the Table 4.2, we compare the highest results from those experiment
and results given by Algorithm 2 together with similarity measure S2.

Table 4.2: Comparing results of Algorithm 2 (S2) and highest result of Algorithm 4.

Algorithm Dataset 1 Dataset 2 Dataset 3 Dataset 4 Results
Algorithm 2 and S2 0.7721 0.8413 0.5897 0.9363 Accuracy

Algorithm 4
0.8384 1.0000 0.5954 0.9975 Accuracy
1.89 0.01− 0.04 0.31 0.01 σ2

The result from Table 4.2 show that if we can find an appropriate scaling parameter
σ2, we can get acceptable accuracy when applying Algorithm 4. Considering later works
related to Algorithm 4, we plan to focus on two following tasks: construct method to
learn the scaling parameter σ2 automatically; and construct other clustering methods to
do clustering task in step 2.
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Chapter 5

Thesis conclusion and future works

5.1 Thesis conclusion

We have presented our research focusing on tensor calculus, some tensor based methods
and their applications in data mining. As “tensor” is a complicated subject and some
times is defined in different way, it is difficult for one who starts to learn about tensor
and apply tensor-based methods. In chapter 2, we present some discussions which are
helpful to obtain a clear understanding about tensor, and how to avoid confuse when
applying tensor and tensor-based methods in machine learning and data mining. Con-
cerning the applications of tensor-based methods, in Chapter 3 and Chapter 4, we present
two interesting problems in machine learning namely temporal link prediction and spec-
tral clustering, and employ CP-decomposition models to extend the available methods for
tensor data. The main contributions of this thesis can be summarized as follows

1. Temporal link prediction: We propose a temporal link prediction method for open
bipartite networks by extending the method proposed in [2, 26] for bipartite net-
work. The key ideas of the proposed method are: considering weight of link as a
multivariate function of three variables which represent time and vertices; carry-
ing out CP-decomposition to extract the hidden structure of data represented by
three component matrices where each matrix is corresponding to one variable and
columns of the corresponding matrix are considered as separated factors; employing
linear regression to learn the relations between vertices’ information and the cor-
responding component matrices and using those relations to estimate the value of
separated factors corresponding to new vertices; finally, all the results are combined
in order to predict the weights of links at time (T + 1)th.

2. Spectral clustering: We present an intuitive overview about spectral clustering and
a general schema of spectral clustering. We also provide discussions about advan-
tages of spectral clustering over other clustering methods and opportunity to extend
spectral clustering methods for data tensor. Then, we propose a CP-decomposition
based spectral clustering method, implement the method and run the program on 4
experiments. After analyzing the results, we make conclusion that, for small number
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of component R in CP-decomposition, the proposed method may give the acceptable
results. In other word, CP-decomposition may help to reduce the storage memory.
Furthermore, employing CP-decomposition may help to improve the accuracy of
spectral clustering by explore the hidden structure of data.

5.2 Future works

Because of the limited time, we can not solve completely tasks discussed in this thesis and
we plan to do them as future works as discussion in Section 3.4 and Section 4.4. Some
important points can be summarized as follows

1. Temporal link prediction: We plan to focus on several tasks: collecting data and run
experiments on real datasets in order to evaluated the proposed method; extending
the proposed method in Section 3.3.3 to predict the links for a period of time starting
at (T + 1)th or in other words, for times (T + 1)th, . . . , (T + L)th; constructing
temporal link prediction for open bipartite networks when the new vertices of type-
1 and type-2 join the concerned networks at the same time.

2. Spectral clustering: We will focus on constructing several similarity measures for
tensor data and extending the multi-view spectral clustering methods proposed
in [48] as discussed in Section 4.4.1. Another important tasks related to spectral
clustering/clustering is to construct a tensor space model based clustering method
using suggestions presented in Section 4.4.2.

Of course, the above tasks are challenging and require time focusing on both theoretical
discussion and experiment works. But as tensor data has been increasingly considered in
data mining, and the presented results and suggestions are reasonable, the works presented
in this thesis are worth for us to focusing on.
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