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Abstract - Uncertainty is one of the most difficult fac-
tors to handle when we wish to develop an algorithm for
robot motion planning in real circumstances. This pa-
per presents a solution for a robot to deal with “lack of
observation” in the scope of object manipulation. Con-
sidering a robotic bartender that picks up a glass filled
with an unknown amount of water and tilts it to pour the
water into empty glasses, the question is how to find the
angle at which the giver glass is tilted to pour the water
to the same level in each of empty receiver glasses. To
achieve the objective, the amount of water poured is rep-
resented with mathematical models of non-linear func-
tions, and numerical simulations are performed using the
point-based value iteration algorithm for POMDP to get
corresponding tilting angles of the giver glass. We found
that the experimental result accuracy reaches 99.025% of
similarity with the assumed mathematical model, given
an initial tilting angle and the water level in the initial
glass. We further verified the validity of the proposed al-
gorithm through dynamic simulations.

Keywords - Dextrous manipulations, Learning behavior,
Adaptive Systems

1. Introduction
1.1 Learning Manipulative Skills
Learning to perform certain skills is a complex pro-

cess and a challenging issue in robotics, especially when
latent variables exist. One of the possible causes of la-
tent variable to appear is uncertainty. Uncertainty is one
of the most difficult factors to handle when we wish to
develop an algorithm for robot motion planning in real
circumstances. Over the past decade, increasing attention
has been paid to the imitation-based skill learning prob-
lem. It is often the case that the state of the real world is
incompletely known to the robotic agent due to noisy or
error-prone observations.

This paper presents a solution for the skill learning
problem described using Partially Observable Markov
Decision Processes (POMDP). As a sequential deci-
sion making framework with high computational cost,
POMDP deals with observation uncertainty. Available
for both discrete and continuous states, POMDP has be-
come a viable, attractive solution closer to a real world
representation. On the other hand, a control based ap-
proach does not work properly to solve this kind of prob-
lem, because sensors may not be available to estimate a
latent variable.

Motivated by the flexibility of POMDP, we aim to use
it as a solution for estimating parameters that is diffi-
cult to be estimated directly. In recent years, numerous

studies have been published about the development of
POMDPs in various robotics applications, including se-
quential decision making. Some of them are related to
mobile robots development [1–6], motion planning [7–9],
and solving continuous POMDPs [1, 10–13]. The avail-
able research studies focus on the computational speed,
comparing their method and the state-of-the-art method.
Yu [15] discussed estimation of the policy gradient in
POMDP with a special class of structured policies that
are finite-state controllers. She also discussed in her the-
sis [18] approximate solutions for POMDP and POS-
MDP. In another publication, Yu and Bertsekas [19] pro-
posed a new lower approximation scheme for POMDP
with discounted and average cost criterion. Brooks [1]
presented a theoretical and practical result focusing on a
mobile robot navigation problem in a continuous domain
POMDP. He used Monte Carlo methods to estimate dis-
tributions over future parameterized beliefs, improving
planning accuracy without a loss of efficiency. Zhou et
al. [10] developed a continuous-state POMDP solver by
reducing the dimensionality of the belief space via den-
sity projection and implemented it in an inventory con-
trol problem. Roy et al. [2] proposed a method to solve
large-scale POMDPs by reducing the dimensionality of
belief space using Exponential Family Principal Compo-
nents Analysis [20] to represent sparse, high dimensional
belief spaces using small sets of learned features.

On the contrary, our research utilizes POMDP as a so-
lution to estimate a latent variable which is not measur-
able directly. To find the optimal value, we use a value it-
eration for a specified range of belief space. The optimal
value here refers to the optimal action to be taken. After
the chosen action is performed, a resulting state will oc-
cur, which is our desired estimated latent variable. In this
research, we illustrate our problem of interest with a sim-
ple case study, showing that a robotic manipulator tilts a
glass filled with an unknown amount of water to an ap-
propriate angle, in order to pour the water into two empty
glasses up to the same level. One of the strong points
of the proposed method is that we avoid going through
a pre-discretization process of dealing with the POMDP
set. This means we can have a wider range set of inputs
and outputs which increases the accuracy of the decision
making especially in continuous parameters.

The paper is organized as follows: section 2 provides
the problem statement, section 3 explains the definitions
of the proposed method, and section 4 presents the exper-
imental results. Section 5 provides discussions regarding
the obtained results and finally, Section 6 concludes the
paper.



2. Problem Statement
The assumptions made in this research are:

• only three identical glasses will be involved, one filled
with an unknown amount of water, and the others are ini-
tially empty.
• the level of the water poured into the glass at a certain
tilt angle is modeled after a non-linear equation.
• the initial tilt angle and the initial level of the water
poured into the glass are known to the decision maker.

With a robotic manipulator as the decision maker,
whose perception of the world is incomplete, our case
study example is addressed as follows
Consider that a manipulator picks up a liquid container
filled with an unknown amount of water and pours the
water into identical empty containers with a certain tilt
angle. With its after-pour state, how does the manipula-
tor decide the next tilt angle in order to pour the same
amount of water as the initial pouring?

We propose a solution regarding sequential decision-
making process based on the point-based value iteration
algorithm to generate the optimal policy, which consists
of the optimal action that should be taken by the decision
maker. The challenge of this research is to estimate the
angle at which the glass is tilted to obtain the desired wa-
ter level being poured after initially poured, considering
that we could not really measure directly the water level
using sensors.

3. Proposed Parameter Estimation
Algorithm

The flow of pouring scenario can be divided into:
1. predetermined initial tilt angle of pouring
2. estimation of next tilt angles

During the initial pouring, the robot knows the initial
tilt angle of the glass, and the resulting water level within
the glass. First, the manipulator is to pour the glass of wa-
ter, where the poured water is represented by exponential
functions, which is obtained by trial-and-error. In this re-
search, we define three categories of pouring processes.

Definition 1. Categories of pouring functions Three dif-
ferent categories were defined based on the initial water
level. The 1st water poured category is defined as the
function f (x) valid for initial water level from 70% until
100%, with x as the pour angle, represented in the follow-
ing equation

f (x) = 1.667(1.0615x) (1)

Meanwhile the 2nd and 3rd category are defined as the
function g(x) and h(x) valid for initial water level from
40% until 70%, and 0% until 40% with the following
functions:

g(x) = 5.9259259×10−4(1.14499x) (2)

h(x) = 7.8491×10−19(1.709975x) (3)

respectively.

Note that f (x), g(x) and h(x) correspond to the rela-
tive water level function with respect to the initial water
level in the grasped glass. The functions are depicted in
Figure 1.
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Fig. 1: Mathematical models of poured water

It should be emphasized that the POMDP set in this
work was not pre-discretized, which increases the vari-
ety of inputs and output, hence allows the robot to take a
more accurate action than a pre-discretized POMDP.

Definition 2. The set of states The set of states S here
is represented by the water level percentage after-pour
conditions in the target glass, which is defined as S :=
{s|0%≤ s≤ 100%}. This set of states corresponds to the
state in every timestep, including the current and the next
state.

Definition 3. The set of actions The set of actions A that
is available to be taken by the robot are the pouring angle
where A := {a|0◦ ≤ a≤ 90◦}.

Definition 4. Reward Function The reward which is as-
signed if the robot is doing something that is intended, is
determined by the reward function of

R(a) = µR−2|X(s)−µ(a)|

considering µ(a) is a function that maps the action to
the current state µ(a) : a→ s, with range of 0 ≤ µ(a) ≤
100%, 0 < a < 90, and µR is the mean reward value rep-
resented by any positive integer, which is defined to be
5.

Definition 5. Transition function The transition function,
which represents the probabilistic value of the next state
that will occur, considering the action taken by the deci-
sion maker and the current state, is represented by uni-
form distribution in the equation

T (a) =


1

a−µR
if s′ < a

0 else

where s′ corresponds to the after poured state.

From the known parameters, water level and pour an-
gle, we can determine the percentage of water poured
from the respective equations mentioned. As we get the
result, considering that the after-pour condition is not
changing, our main objective is to pour with a proper



angle to have the same amount of water being poured
initially. To deal with that, we performed a point-based
value iteration algorithm to obtain an optimal action to
take.

Definition 6. Observation function The observation
function allows mapping the obtained observations from
the sensors, with respect to the actions. In this case, it
is assumed to have similar expression with the transition
function. Also to simplify the problem, ∀s′ ∈ S, the prob-
ability mass function is identical for each action.

The main algorithm of typical POMDP case consists
of two parts, the sampling of reachable belief states and
the iteration process to determine the optimal action,
which is the appropriate tilt angle to produce the same
water level percentage with respect to the initial pouring.
Algorithm 1 describes the pseudocode of the belief states
sampling.

Algorithm 1 Belief Sampling (M,N,ε)

n← 1
N← number o f samples
b← belie f initial
while n < N do

a pm f ← GAUSS(N,σ , poured, i)
a← GENERATE FROM PMF(a pm f ,a values)
s′← GENERATE FROM PMF(trn(a),s values)
o′← GENERATE FROM PMF(obs(a),s values)
bnew← SE(a,b,states, trn,obs)
arg1 = |bn[0]−bnew|
if n > 1 then arg2 = |bn[n−1]−bnew|
elsearg2 = [∞]×23
if min(arg1,arg2)> ε then

n+= 1 bn = append(b˙new)
return bn

The next state s′ and the observation o′ go through the
similar procedure with the action selection, but using the
set of transition trn and the set of observation obs re-
spectively, instead of the set of action a. SE represents
the state estimator, which is mathematically represented
by Equation 4, and the pseudocode is described in Algo-
rithm 2, where P(o′|a,b) is the normalization part.

SE(b,a,o′) = b′(s′)
= P(s′|o′,a,b)

=
P(o′|s′,a,b)P(s′|a,b)

P(o′|a,b)

=
P(o′|s′,a)∑s P(s′|a,b,s)P(s|a,b)

P(o′|a,b)

=
P(o′|s′,a)∑s P(s′|a,s)b(s)

P(o′|a,b)
(4)

Then it will compare the absolute difference between
bn and the new belief state generated bnew and find the
minimum. If the resulting value is larger than ε , the new
belief will be appended to the set of sampled belief states.
Parameter ε ensures that the sampled results are spread

Algorithm 2 State Estimator (A,S,b, trn,obs)

total← 0
for all s ∈ S do

for all x,y ∈ (trn(a),b) do
b(s)← x× y
belie fnew = belie fnew×obs(a)
total+= sum(belie fnew)

return bnew/total

out in belief space, which is set to be 0.001. The returned
value bn, is the sampled belief states which will be used as
an input in the value iteration procedure in Algorithm 3.

Algorithm 3 Value iteration (M , bn, N, γ)
αmax←−∞

for n← 0→ N do
for all s ∈ S do

for all a ∈ A do
for all o ∈ O do

bnew← SE((a),bn[n],(s), trn,obs)
α ← sum(trn(a)× obs(a)× rwd(a)×

bnew)

if α > αmax then
αmax = α

value(a)← rwd(a)+ γ×αmax
FIND ACTION(b˙n, value, a)

For the 2nd step, the value iteration process is de-
scribed in Algorithm 3. It would continue to loop as many
as the amount of sampled belief state N, and performs
nested loop for each states, actions, and observations,
then updates the new belief bnew using the state estima-
tor procedure described in Algorithm 2. Then the future
values α is calculated, and find the maximum value of α

during the nested loops. It proceeds to the value calcu-
lations and moves on to determining the optimal action,
described in Algorithm 4.

Algorithm 4 Find optimal action (bn,a,value)

prev action value← 0
prev action taken←′ none′

for a ∈ A do
action value← sum(bn× value(a))
taken action← a
if action value > prev action value then

prev taken action← taken action
return prev taken action

In determining the optimal action to be taken, just sim-
ply find the maximum value of actions, and select the ac-
tion as the optimal action.

4. Experimental Procedure & Results
The experiment procedures are listed as follows:

1. initial pouring with a certain water level and tilt angle
2. obtain the percentage water level remained within the
grasped glass



3. estimate the optimal tilt angle based on the remaining
water level
4. repeat for other initial tilt angles θ for 0 < θ < 90

The experiment were tested for all three categories of
pouring process, randomly selected initial water level, in
this case 70%, 45%, and 30% which represent their re-
spective categories. The experiment consists of two parts,
numerical and dynamics simulation.

Numerical Simulation The proposed method was sim-
ulated numerically in Python. The graphs in Figure 2 de-
pict the optimal action data taken for various angles, be-
ing fitted to each curve from their respective categories.
The curves are fitted based on the implementation of non-
linear least-squares (NLLS) Levenberg-Marquardt Algo-
rithm as shown in Table 1. Coefficients a and b corre-
spond to the basic exponential equation a(bx). Finally,
we can obtain the final value of a and b for each equa-
tion’s category, which are used to plot the graph in Fig-
ure 2.

Dynamics Simulation As an illustration in robotics ap-
plications, an experiment using Open Dynamics Engine
(ODE) available within the V-REP robot simulator was
performed to show one of the results from the above-
mentioned results. The setup is defined as follows: a Mit-
subishi PA-10 manipulator equipped with Barrett Hand
as the grasper, grasps a glass filled with a certain amount
of water which is known by the manipulator, pours to an
empty glass with a certain initial tilt angle, and pours to
the other identical empty glass with the optimal tilt an-
gle to reproduce the same amount of poured water level
as the initial pouring. The pouring process is illustrated
in Figure 3b and Figure 3c. In this case, the pouring po-
sition for each glass are pre-determined without affect-
ing the decision making, hence the only challenge is how
to obtain similar water level with a proper action, which
is the optimal tilt angle. The water particles are simu-
lated using a frictionless tiny spheres with density set to
be 1000kg/m3, which is water density. Acceleration of
pouring were not taken into account since the pouring
velocity is set to be constant. The pouring results which
compare the both water level are shown in Figure 3d.

5. Discussion
Numerical Simulation Analysis Since we assumed to

have a mathematical model as the pouring function in
the first place, it is more convenient for us to check
the accuracy of our estimation algorithm by the differ-
ence of the next glass tilt angles with the initial tilt
angle. The results of the data fitted with f (x) curve
show the equation obtained f f it(x) = 1.84406(1.05125x).
If we compare with the assumed mathematical equa-
tion f (x) = 1.667(1.0615x), we can calculate each co-
effiecient’s percentage error by calculating the absolute
difference with respect to the initial equation, which
we obtained 9.60% for coefficient a and 0.975% for
b. The error for both coefficients of the 2nd category
for f (x) = 5.9259259× 10−4(1.14499x) and f f it(x) =
0.00039676(1.141x) appeared to be Err a45 = 33.05%
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(a) data fit f (x) Curve with 70% water level
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(b) data fit g(x) Curve with 45% water level
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Fig. 2: Curve fitting optimal action data with the re-
spective function from experimental results

and Err b45 = 0.348%. For the 3rd category, the
errors obtained for f (x) = 7.8491× 10−19(1.709975x)
and f f it(x) = 5.94028× 10−19(1.70166x) are Err a30 =
2.431×10−37% which almost reaches 0 technically, and
Err b30 = 0.486%. Since the parameter a is the y-
intercept of the graph, meaning the graph crosses the y-
axis at the point (0,a), we can just focus on the differ-
ence of parameter b, which in this case since b > 0 de-
termines the growth rate of the function. Also we de-
sired less percentage error of coefficient b. Summarizing
the percentage errors of b, which are Err b70 = 0.975%,
Err b45 = 0.348%, and Err b30 = 0.486%. Hence, we
can determine that the most similar growth rate exponen-
tial function with our initial assumption of exponential



Table 1: Curve Fitting Result

Coefficient Asymptotic Standard Error
Initial Final +/− % Iterations Fitted equation

f f it(x)
a 1 1.84406 0.6021 32.65

13 1.84406(1.05125x)
b 1 1.05125 0.004234 0.4028

g f it(x)
a 0.5 0.00039676 0.0001104 27.84

615 0.00039676(1.141x)
b 1 1.141 0.00366 0.3208

h f it(x)
a 1 5.94028×10−19 6.49×10−20 10.93

20866 5.94028×10−19(1.70166x)
b 1 1.70166 0.0002097 0.1233

(a) Conditions of 60% initial water level (b) First pouring with pre-determined initial
angle 60◦

(c) Optimal pouring result with angle 70◦

(d) Comparison of the remaining water in ini-
tial glass(right), initial pouring(middle) and
estimation pouring(left)

(e) Fail pouring illustration result with 63◦ as
the output angle

Fig. 3: Consecutive pouring experiment with V-REP

function is the 2nd category, and our estimation algorithm
works best with the 2nd category. Experimentally, with
the assumption of exponential functions, the maximum
error of the pouring estimation based on the optimal ac-
tion taken reaches 0.976%, which is by the 1st category.

Dynamics Simulation Analysis We can determine the
numbers of water particles initially in the simulator, but
it is currently not feasible to compute the existing parti-
cles within the glass. Since there is no metric available to
measure the amount of water that have been poured in dy-
namics simulation using V-REP, we visually compare the
water level. Figure 3e illustrates the non-optimal pour-
ing angle taken by the robot. It emphasized our strength
point, which implies that the robot can have a more spe-
cific output instead of, for instance 5◦ discretized output
and the difference of 7◦ from the optimal angle yield large
difference in the water level. As seen in Figure 3d, even
though the water surface is not flat, the proper estimation
leads to similar water level on both target glasses, where
the optimal action to be taken by the agent were 70◦ for
the 2nd pouring. We will investigate the problem in a real
humanoid robot as one of the future works.

Generalization The performed task of manipulative
skill discussed is just one illustration of how POMDP can
be use to estimate a latent variable in object manipula-

tion. In general, the proposed principle can be analogous
to another application domain as long as a latent variable
is involved. In recent applied pharmaceutical research, no
sensors available to determine a perfect mixing for liquid-
liquid mixing. The state-of-the-art method to determine
a perfect mixing is to mix the mixture manually based
on consistency of mixing speed and time. Therefore the
sample taken from any point of the mixture is expected to
have exactly the same composition. POMDP will come
in handy to solve this kind of problem, considering there
is no sensing device to determine whether the particles
are distributed evenly within a mixture. The robot arm
stirring the mixture must consider those latent variables
in order to stop stirring when perfect mixing occurs. The
proposed method can be applied to a more general appli-
cation domain with similar ideas on estimation of latent
variables.

6. Conclusion
This paper presents a solution to estimate a latent vari-

able which are unlikely to be observed or quantitatively
measured directly using sensors. The purpose of this re-
search is to demonstrate the use of POMDP as an esti-
mation technique, which is a robust yet effective tool to
take uncertainty into account in decision making repre-



sentation. To illustrate the estimation fidelity within ma-
nipulative skills, a water pouring experiment was cho-
sen. The pouring process was modeled as exponential
equations for different water level percentage. Numerical
simulations using Python were performed to evaluate the
accuracy of the proposed method and demonstrated using
dynamic simulations. The results show that the minimum
accuracy reached 99.025%. In future works, we will ap-
ply the proposed method to a more complex domain, aim-
ing at achieving sophisticated robotic skill learning.
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