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Abstract

Today, when many computing services are relying on large scale distributed systems, the
system reliability becomes one of the most challenging research topics. A distributed
system is defined as the set of computational processes that collaboratively work to solve
the same problem. In distributed systems, fault, which usually occurs everywhere, is the
most critical issue of reliability. In some system configurations, a single simple fault can
easily corrupt the correctness of the system. Moreover, the recovering time from failed
state is usually much larger than the execution time of a computation in the systems.
Thus, fault-tolerance, which ensures the system still works correctly in the presence of
faults, becomes a fundamental property of distributed systems.

Fault-tolerant distributed systems have been widely studied in literature for both
process and communication channel failure. However, most of existing works focus on
tolerating static faults occurring in processes of a stationary network whereas computa-
tional machines are more dynamic today due to the development of communication and
mobile computing technology. Therefore, dynamic fault-tolerance problem is gaining
more research interest. Unlike a static one, a dynamic fault can randomly move between
the processes. Consequently, dynamic faults are more difficult to tolerate due to the
change of their location and the increasing of the number of faults.

In this research, we aim to tolerate the dynamic faults, which are modeled as the
movement of malicious mobile agents between processes in a stationary network. We
study to deal with different levels of dynamicity of faults including the intermittent to
propagating malicious fault. In particular

• For intermittent malicious fault, we propose a model that balances the power
between the malicious agent and the correct process, which is not justified in the
previous models. Under the proposed model, we prove the tight bound on the total
number of processes to tolerate a given number of faults as well as the optimal
algorithm.

• For problems with propagating fault, we study the possibility to limit the number
of faults in a bounded value. This is a two-side problem of the spread of fault (which
is also called as infection) and the containment of such spread. This problem is
studied under a stochastic model, in which, three parameters play an important
role: (1) the probability of successful infection, (2) the probability of successful
detection and (3) the countermeasure against the infection.



By both simulation and mathematical analysis, we found that long-edge1, which
connects different clusters, is an important factor favoring the propagation. The
propagation can be contained in graph that does not include long-edges, while it
is impossible to isolate in graph having long-edges.

Keywords: distributed systems, fault-tolerant, dynamic, transient, propagation

1The definitions of long-edge and local-edge are given in Section 4.5.1
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Chapter 1

Introduction

A distributed system is one in which the failure of a
computer you did not even know existed can render your

own computer unusable.
— Leslie Lamport (b.1941)

Nowadays, the computer world has migrated from single and small-scale networks of
stationary machines located in a small place to very large-scale (even planetary scale)
systems with heterogeneous devices from stationary to mobile, hand-held and wearable
devices. The motivation of this migration originates from the demand of sharing compu-
tation power and collaborative working. According to the time, more and more instances
of distributed system appear such as cloud-based systems, mobile cloud, smart-home,
planetary scale sensor network, social network, network of commodity and super-parallel
computers. Such real systems are based on a well-developed theory called distributed
systems which established in the last decades the fundamental concepts for replicated
state machine.

The current situation is that the large-scale distributed systems become more loosely
connected, mobile and heterogeneous. It is the consequence when data centers are
increasingly deployed and more and more the mobile devices that can connect to the
systems. The mobility property is not anymore an exceptional case but becomes normal
situation. This circumstance motivates the research on dealing with dynamic faults.

1.1 Distributed Systems

Distributed system is a set of computational processes (called processes in this thesis)
that tries to work together to solve a common problem based on the partial information
input from every process. Since only a part of input is provided to each process, processes
must exchange the information to each other in order to complete the computation. From
a methodological point of view, there are two ways of communication: directly talking

2



1.2 Faults

to each other and indirectly communicating via an intermediate resource. These two
ways are abstracted by two models in distributed systems; which are “message passing”
corresponding to direct communication, and “shared memory” corresponding to indirect
communication.

In message passing model, any two processes exchange their information to each
other by sending message via a communication channel connecting them. In reality,
multiple examples of message passing systems are LAN, WAN or Internet, replicated
data center, cloud-based systems, and sensor network. On the other hand, in shared
memory model, every process maintains a local shared memory. All processes remotely
access the shared memory of the other ones via a communication protocol. There are
also different models of shared memory such as single-bus multiprocessor, or switched
multiprocessor where processors access to a shared physical memory, or Non-uniform
memory access (NUMA) [9,49] where multiple computers access to a shared file systems
on disk or Midway [8] that allows a concurrent software program to use a shared variable.
In this work, we concern on the message passing model.

The fundamental characteristic of distributed systems is that all processes have to
collaborate to solve a common problem with a partial input. Without the collaboration,
system is only the set of independent sequential processes working in parallel. Thus,
no failure of single process or communication channel affects to the correctness of sys-
tems. In contrast, because of the dependency, failure that occurs in any component of
a distributed system strongly affects the collaboration result.

1.2 Faults

In distributed systems, fault is the most critical issue. Fault is originated from the
fact that, during the execution time, many kinds of faults can occur everywhere from
process (in both hardware and software) to communication channel. For instance, any
process may randomly crash or be switched off at arbitrary time, and any communi-
cation attempt can be failed or delayed arbitrarily. It is critical because a single crash
failure, in an asynchronous distributed system, can lead the system to undecidable or
indistinguishable situation [33].

In spite of the improvements of computer reliability, the growth of the number of
processes and communication channel leads to increase the chance of failure in the
system. In addition, the time to discover and recover from local faults is prolonged
and significantly larger than the time to execute an algorithm.

3



1.2 Faults

Therefore, in a distributed system, fault-tolerance, the attribute enabling a system
to continue working correctly in the presence of failure in some components, is one
of the most important problems focused by many research in decades. Most of fault-
tolerant mechanisms are based on the redundancy techniques, which use redundant
correct processes to tolerate the failed one. The complexity of redundancy depends on
the types and serious levels of faults.

1.2.1 Fault classifications

There are various types of faults that originate from different reasons during the exe-
cution of system. There are also multiple approaches from different points of view in
classifying these types of faults.

• From dependability and secure point of view, Avizienis et al. [5], provide an exhaus-
tive classification of various faults and failures according to eight basic aspects in-
cluding Phase of occurrence, System boundaries, Phenomenological cause, Dimen-
sion, Objective, Intent, Capacity, and Persistence. Dimension aspect in Avizienis’
classification is used to distinguish between software and hardware component. In
distributed system, the interest of dimension does not come from software or hard-
ware but comes from two main entities of distributed systems that are process and
communication channel.

Other aspects such as the Phase of occurrence, System boundaries, and the Phe-
nomenological cause are not important because most of research and also this work
concern on operational fault which is usually initiated inside the system. It also
does not matter whether the fault is natural or human-made.

• On the other hand, from the distributed system point of view, fault is classified by
the originality (from accidental crash, omission failure or malicious behaviors) and
the component in which fault occurs (in processes or communication channels).

This dissertation classifies different types of faults according to the viewpoint of
distributed systems. We concern on the behavior of faults in the system in not only the
intention or originality but also in the mobility of failure. In addition to the existing
classifications, we put the effort in formalizing the change of the set of failure components
in different levels.

4



1.3 Contributions

1.2.2 Dynamic faults

In distributed system, faults are in either process or communication channel. While
the fault in process is usually considered as fixed set of failed processes, the fault in
communication channel is more dynamic and it is considered according to the success
of message exchanging.

In the failure of communication channel, the most significant model of faults is pro-
posed by Santoro and Widmayer for complete graph [63, 65] and arbitrary graph [64]
in order to study agreement problem. These models are later used to study different
problem such as reliable broadcast in multiple families of graphs [24,25,27,35].

Consider failure of process, most of research study different types of fault (i.e. Crash,
Byzantine, Omission) with a static set of failed processes. Besides, a few works model
the transient fault where the faulty set is changed such as Crash-Recovery [1, 56], Self-
stabilizing [26] or Mobile Byzantine [36, 62], however, in these works, the size of faulty
set is bounded or finally converge to a bounded number and the property of dynamicity
is not formalized and considered exhaustively.

1.3 Contributions

This research aims to study the dynamicity of fault that is formally defined in Chapter 2.
The formulation covers all possible changes of the set of failed components including
Permanent, Intermittent, and Propagating fault. The two later types of Intermittent
and Propagating fault are modeled by refining and generalizing the existing model
of malicious mobile agent proposed by Garay [36]. Under defined models, the main
contributions of this research are dealing with these dynamic faults by two mechanisms
including:

Tolerating intermittent malicious fault When the size of the set of failed processes
is bounded by a number t smaller than the size of system, fault can be handled by a
fault-tolerant mechanism. It is usually a masking technique such as replication.

Isolating propagating fault Reversely, if there is no assumption on the size of the set
of failed processes and it can increase to the size of the whole system, the fault-tolerant
mechanisms cannot guarantee the availability of the system anymore. However, if we
have a chance to detect the fault when it tries to propagate, in this case, instead of using a

5



1.3 Contributions

masking tolerant technique, it is important to consider the possibility to limit the growth
of failed components in a bounded size and save some remaining correct processes by
a specific fault-isolation (i.e. a countermeasure of propagation). Interestingly, studying
fault isolation makes a bridge connecting to the research on the defense against the
propagation of an infection or information.

The more details of two mechanisms are presented more specifically in the following
sections.

1.3.1 Tight bound on Mobile Byzantine Agreement

We refine and generalize the model of malicious mobile agent to simulate the Intermittent
malicious faults. The refined model is more realistic than the previous ones because it
ensures the balanced power between the malicious agent and the correct algorithm.
Besides, it is more general because it considers more options for malicious agents to
move.

In the presence of Intermittent malicious fault, we study fault-tolerant algorithms
for Byzantine Agreement, a building block problem of distributed systems. We prove
the tight bound on the number of processes to tolerate a bounded number of malicious
mobile agents. This tight bound can be achieved by a rotating coordinator algorithm.

1.3.2 Propagating fault

When the size of failed process is not limited and can grow to the size of system, no
fault-tolerant mechanism can guarantee the correctness of the system anymore. Then,
in order to maintain the correctness of the system, the tolerance mechanism must limit
the number of failed processes to the bounded value by a countermeasure. Then, we can
apply a replication technique to tolerate those failed processes. This circumstance leads
to a two-side probabilistic game between the growth of fault and the countermeasures
based on imperfect fault detection. The effect of countermeasures in containing the
infection propagation is varied in different graph topologies.

Locality graphs In the graphs where any two nodes are connected by a local-edges1

(e.g. grid/torus and unit-disk graphs), the countermeasure based on killing strategy can
contain the infection. When the infection probability grows, increasing the number of

1The definition of local-edge is given in Section 4.5.1
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killing processes helps to contains the infection. This claim is discovered by simulation
and proved for the case of infinite grid.

Graphs with long-edges Reversely, in the graphs where there is a moderated number
of long-edges2 (such as small-world, scale-free), the infection cannot be contained due to
the effect of long-edges and the small diameter of graph.

1.4 Outline

The rest of this dissertation is organized as follows. Chapter 2 defines the model used
in the entire of this dissertation. This model includes the definitions of two main en-
tities (process and communication channel) of a distributed system and the fault with
the dynamicity property. Chapter 3 gives the definition of the Mobile Byzantine Agree-
ment problem, proves both possibility and impossibility results for Mobile Byzantine
Agreement in complete graph. Chapter 4 introduces the two-side game between the
propagation and the countermeasure with imperfect malicious detector. The game is
extensively studied by simulation for some basic networks in Chapter 5. The arising
questions from the simulation are formalized in Chapter 6 for infinite graphs. Then, an
application of the countermeasure is introduced in Chapter 7 with the Internet topology.
Finally, Chapter 8 summarizes the contributions of this research and discusses the open
questions that can lead to potential research.

2The definition of long-edge is given in Section 4.5.1
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Chapter 2

Model

Simplicity is prerequisite for reliability.

— Edsger Dijkstra (1930–2002)

Science is beautiful when it makes simple explanations of
phenomena or connections between different observations.

— Stephen Hawking (b.1942)

A system model, on one hand, must precisely and correctly describes all entities, pa-
rameters and necessary assumptions of a system. On the other hand, it should be as
general as possible to be able to open for further problems. In this chapter, we define
the system model as well as the fault in the system and necessary definition used in this
dissertation.

In literature, at the abstract level, a distributed system is usually represented by
concurrent executions of the set of computational processes. During the executions, those
processes exchange their information via a method of inter-process communication. The
two dominant models of inter-process communication are indirect communication via
shared memories (shared memory model) or direct communication via message passing
(message passing model). Another fundamental property of a distributed system is the
timing model that determines the relative model of time for events occurring in the
system. For example, the synchronization of time in different processes, or the upper
bound of delay for a message exchange. In this work, distributed system is abstracted
by synchronous message passing model, which has the two main entities process and
communication channel under a synchronous timing model.

Synchronous message passing distributed systems Formally, a distributed sys-
tem is modeled as a set of processes Π = {p1, p2, . . . , pn}, in which every two process pi, pj

communicate by exchanging message via a bidirectional communication channel cij. We
call Γ the set of communication channels. The whole system evolves in a round-based
synchronous time model where every numbered synchronous round is called round.
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2.1 Processes

2.1 Processes

In this dissertation, every process pi is a deterministic automaton with an internal state
si ∈ S (where S is the set of all states) and the transition function f : S ×M → S,
where M is the set of all available messages exchanging.

• Transition function f depends on two parameters: the internal state of process
and the information received from all other processes.

• The internal state at time round r, denoted by si(r), evolves according the execu-
tion time and transition function f .

Process pi has a unique identity i ∈ N. pi can access a global discrete time clock
according to the round number. Every synchronous round consists of three steps as
follow:

• send: process creates messages based on its internal local state and sends those
messages to all its neighbors.

• receive: process receives messages sent by its neighbors.

• compute: process computes a new state by transition function f with two pa-
rameters including the internal state in until current step and received messages
from other process.

0 1 2
com send rec com send rec com

Fig. 2.1 Illustration of the three first rounds in send-receive-compute order.

The first round always starts with compute step as in Figure 2.1.

2.2 Communication channel

Throughout this work, all pairs of processes pi, pj are linked through a communication
channel cij which is a reliable and timely channel with following properties:

9



2.3 Topology

Reliable channel: Channel cij is reliable if it satisfies the following conditions: If
both process pi and pj are correct, then every message sent by pi is eventually received
at pj only once and there is no message received at pj without pi as sender.

• No loss: every message sent by pi is eventually received at pj.

• No duplication: every message sent by pi is received at pj only once.

• No addition: No message is received at pj without sending by pi

• No alteration: content of a sent message is not changed by the communication
channel.

Timely channel: Timely channel is a reliable channel which satisfies the following
property:

• No delay: every message sent by process pi to process pj in round r is received
in process pj in round r.

The four properties No loss, No duplication, No addition, No alteration
are the fundamental properties of any reliable channel. While No delay property
originated from the assumption of round synchronous system.

2.3 Topology

A graph G(Π, Γ) represents the topology of a distributed systems where Π is the set of
processes and Γ is the set of communication channel as given in previous section. In this
dissertation, we consider the following basic communication topologies:

p1

p2p3

p4

p5 p6

(a) complete

p1

p2p3

p4

p5 p6

(b) ring

p1

p4

p7

p2

p5

p8

p3

p6

p9

(c) grid

Fig. 2.2 Basic topologies
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2.4 Fault

• Complete graph is the graph where every pair of processes is connected by a
communication channel.

• Ring is the graph where processes are connected in a single sequence through each
process in which each process is connected with exactly two neighbors.

• Grid is the graph where nodes are located on the square lattice. Each node is
connected to the nodes at distance one in each of the four cardinal directions.

The more complex and practical topologies including some random graphs are intro-
duced in more detail later, in the particular related chapter.

2.4 Fault

Fault is a deviation of the system execution from the expected behavior. Fault divides
the system into the set of failed components and correct components.

• Failed component is the one whose behavior deviates from its specification in a
round.

• Correct component is the one that works according to the specification (i.e. is
not failed) in a round.

There are various kinds of faults that can occurs (i.e. different fault models) in a
distributed system, many of them are not equivalent. In this dissertation, we classify
faults under two properties: the Dimension property, corresponding to where the fault
is; and the Dynamicity property, corresponding to how the set of failed components
evolves according to the execution time.

2.4.1 Dimension of fault

Dimension is the location where the fault occurs. In a distributed system, there are
two main entities including the process and the communication channel. Thus, fault can
be located and corrupt the correctness of either process or communication channel.

There are various failure models that simulate different types of fault. In this work,
faults are categorized by different levels of seriousness. These levels are adapted from def-
initions by Cristian [22] and Schneider [71]. However, the authors did not classify these
types according to the main components of a system, which is later briefly mentioned
by Timo Warns [76] and continuously developed in this work.
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2.4 Fault

Process failure

A process fails when it does not work according to the specification. It could be caused
by the corruption of the transition function (algorithm), internal computation state or
just simply crash accidentally. All faults in process fall into one of four types as below:

• Failstop: Any process can fail by halting. Any other process is eventually notified
of that fail [70].

Failstop model assumes that other processors can detect and continue the task of
halted processors. It is simplified to consider the fault tolerance property in small
system.

• Crash: Any process can fail by halting. Other processes may not detect that
fail [19, 33,34].

Crash model is studied in many research. However, in asynchronous system, a fa-
mous result from Fischer et al. proved that it is impossible to reach the agreement,
a building block problem of distributed systems, even with one crash failure. Later,
research on agreement of asynchronous concern on the weakest level of synchrony
enabling the agreement. It will be discussed in more detail in Section 3.1.

• Omission: Any process can skip sending message (in sender omission model) or
skip receiving message (in general omission model).

The behavior of skipping sending message of a process can be considered and
treated as similarly as those of not sending message of crash failure. Hence, in this
work, we just consider the Omission failure originating from the failed attempt of
communication channel in exchanging messages.

• Byzantine Failure: Any process can fail by acting arbitrarily without any con-
straint [43].

A process is called Byzantine if it exhibits an arbitrary faulty behavior. It may
crash or omit messages, but also construct fake messages that are not part of
the protocol. In the extreme case, Byzantine processes can maliciously attempt
to disrupt the rest of the system by participating to the protocols and sending
syntactically valid messages carrying invalid information or sending inconsistent
messages to different processes. An arguably weaker variant considers accidental

12



2.4 Fault

arbitrary faults. Although its worst case corresponds to the malicious case, acci-
dental faults can be dealt with through simpler mechanisms. Some other research
try to categorize arbitrary faults in Byzantine models into different types (Byzan-
tine, Altruistic, and Rational) in order to reduce the cost in tolerating weaker
fault [2].

Communication channel failure

A failed communication channel is the one that does not transmit the messages correctly
according to the defined properties of a communication channel. In particular, in this
dissertation, that is timely reliable channel with four properties defined in Section 2.2.

Communication channel failure affects to the result of every message transmission
via that channel even when the process is working correctly. This classification adapted
from the failure model in “Time is not a healer” of Santoro and Widmayer [63] which is
later used in [50,68]. Consider a transmission of message m via communication channel
cij, let (α, β) be a transmission; where α is the sent message at sender and β is the
received message at receiver, and δ denotes an absence of communication by process.
All failure modes are classified into the following main classes:

• Omission: Channel cij fails then any message mij sent by process pi is not received
at pj. A transmission fails by unable delivery to destination.

α ̸= δ = β

An Omission fault can occur in a communication channel for different reasons such
as the collision of different messages or the noise that make message not sent and
received correctly.

• Spurious Creation: Channel cij fails then any message mij is received at process
pj without sending event occurring at process pi. A transmission is created in the
communication channel, not a sender nodes.

α = δ ̸= β

• Tampering: Channel cij fails then the content of transmitted message mij is
corrupted.

δ ̸= α ̸= β ̸= δ
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2.4 Fault

The content of message can be corrupted by the noise of communication channel
or by the third party factor that intentionally alternate the content of message to
create the misbehavior in the system.

• Arbitrary includes all types of Omission, Spurious Creation and Tampering. It
is some time called Byzantine Channel [68].

Similar to the Byzantine fault of process, an arbitrary fault in communication
channel cannot be predicted. In different execution time, it exists as different
shape of Omission, Spurious Creation and Tampering fault.

2.4.2 Dynamicity of fault

Avizienis et al. [5] mention to Persistence aspect which is defined by the presence time
of fault in the host. So, the fault is either permanent fault (where the presence of fault
is assumed unbounded) or transient fault (where the presence of fault is in a bounded
time). Consider the set of failed entities in the system, this set is not static when fault
is either a transient one or a permanent fault with the self-replication ability.

Dynamicity is the change of the set of failed entities in distributed system. The dif-
ferent levels of dynamicity include the permanent fault, intermittent fault or propagating
fault, which are defined as follows:

Let Fr be the set of failed processes at round r,

• Permanent: When a fault occurs in a component, it will retain the component
in an unbounded time.

∀r, r′ r < r′,Fr ⊂ Fr′ ⊂ Π

A permanent fault does not necessarily occurs at the starting time of the system
however when it occurs, the failed state of failed component is sustained forever.

• Intermittent: When the members of the set of failed components change accord-
ing to the execution round but the size of faulty set is bounded by a constant
t.

∀r,Fr ⊂ Π ∧ |Fr| ≤ t

In contradiction with the permanent fault, the intermittent fault can appear in a
component then disappear in that component and appear in another component
in different rounds. When the number of failed components reaches the bound,

14



2.5 State of the art

a new intermittent failed component can appear provided that an existing one is
removed. Consequently, intermittent fault does not retain the component forever.

• Propagating: When the members of the set of failed components change ac-
cording to the execution time and the size of faulty set is not bounded by any
t < |Π|.

∀r,Fr ⊂ Π

In propagating fault, the number of failed components is not bounded by any t <

|Π|. Therefore, in this model, a failed component does not necessarily disappear
in order to have a new failed component. We call this property is Propagating.

2.5 State of the art

2.5.1 Classifying faults

Table 2.1 shows the classification of failure models of process and communication channel
according to different Dynamicity levels of failed set. There is a small different between
different levels:

• In the Permanent and Intermittent fault, the goal is to guarantee the correctness
of system in the presence of fault by some fault-tolerant mechanism. Normally, to
guarantee the correctness, the fault-tolerant mechanism requires a bound of the
number of failed components.

• On the contrary, in Propagating fault, the goal is to isolate or contain the failed
components such that the number of failed components is limited in a targeted
number then we can use a fault-tolerant mechanism to guarantee the correctness.

With traditional fault models that simulate the failure in process, most of them
illustrate the permanent faults except two models of Crash-recovery [1, 56] and Self-
stabilizing [26]. While, the Propagating fault has not been illustrated yet in both process
and communication channel.

• Crash-recovery illustrates only the Intermittent fault for crash failure. In Crash-
recovery, any process can fail by halting, but may subsequently recover after some
periods of time. During the time a process is failed, other processes may not
detect that fail [1, 56]. Crash-recovery model is considered in an asynchronous
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2.5 State of the art

Dynamicity
Permanent Intermittent Propagating

Process
Failstop [70],
Crash [33,34]

Crash-recovery
[1, 56]

this thesis
[implied result]

Byzantine [43]
Self-stabilizing
Byzantine [23];
this thesis [11]

this thesis

Channel
Time is not a healer [63],

Heard-Of [20]

Table 2.1 Failure models with dynamicity property

distributed system. In this model, the process is categorized into different types
such as Always-up, Eventually-up, Eventually-down, and Unstable [1]. Among
which, Unstable is the most serious type.

• On the contrary, Self-stabilizing, defined by Dijkstra [26], simulates the Intermit-
tent fault. A recent significant work on the Self-stabilizing Byzantine, proposed
by Daliot and Dolev [23], studies the self-stabilizing property for a fundamental
agreement problem of distributed systems.

However, unlike the Crash-recovery model and all Permanent fault models, the
correctness of systems is not always guaranteed. A self-stabilizing system can start
arbitrarily from illegitimate states but converges to legitimate state after a finite
time. In Self-stabilizing Byzantine [23], authors propose a subtle modification
where in the legitimate state the number of faults in the system converges to t

as the number of faults that can be tolerated by the system. Tel [73] uses two
terminologies “Robust algorithm” and “Self-stabilizing algorithm” to distinguish
the two types of systems in which the algorithm is permanently and intermittently
correct.

On the other hand, the major models of communication channel failure (“Time is not
a healer” [63] and “Heard-Of” [20]) naturally illustrate the Intermittent fault because the
correctness of communication channel is considered according to every message exchange.

Consider now, a malicious failure, in realistic environment, even when a process is a
software thread of the operating system, malicious faults are usually separated logical
units that are installed into the system from the opponent besides the correct units
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2.5 State of the art

of process. This malicious can corrupt the correct local state of process as well as
the algorithm. Moreover, it can move between processes via message exchange and
self-replication ability. Consequently, the set of faulty process is dynamically changed.
This change could be either Intermittent or Propagating. This is the motivation of our
dynamic malicious fault models.

2.5.2 Dynamic malicious fault

The dynamic malicious fault is modeled by malicious factor (e.g. malware, intruder,
worms, and virus) as a separate entity on the top of distributed system, it is called
“worms” or “mobile agents” depending on whether it can replicate or cannot replicate
itself inside the system.

Malicious mobile agent Faults are represented by the set of malicious mobile agents.
In every round, there are at most t malicious agents in the system (t < n). An agent
can occupy any process. A process is said to be failed in a given round if it is occupied
by a malicious agent. Malicious agent can change local state of the faulty process and
control the operation (send/receive/compute) of process. However, it cannot corrupt
the correct algorithm which is assumed to be stored in a tamper-proof memory.

An important ability is that Malicious mobile agent can move from one process to
another process. There are two parameters related to the movement of malicious agent:

• The time of movement is the time in a synchronous round that agent moves
from one process to another one.

Agent can move from one process to another one between two steps of a same
round or between two steps of two continuous rounds. The detailed definition is
given in Chapter 3.

• Self-replication is the ability of malicious agent to make a copy of itself and
attach into the sending message.

r r + 1
rec com send rec

pi

pj

move

Fig. 2.3 Virus propagating via send/receive step
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Consider malicious agent can replicate itself into the sending message then it can
still occupy the process and copied versions of malicious agent will try to move to
another process via the sent messages (see Figure 2.3), the number of malicious
agents will be increased. In this case, the failed process becomes a permanent fault
and the set of failed processes also expands. Considering fault as an infectious
factor, the development of the set of failed processes is infection propagation.

In this dissertation, we consider two models of dynamic malicious fault caused by
mobile malicious agent.

Intermittent malicious fault

The first model, called Intermittent Malicious Fault, considers dynamic malicious fault
caused by malicious agent without the self-replication ability.

Under this model, like the classical works, we investigate the condition to solve
Byzantine Agreement, a fundamental problem of distributed systems. The movement
of malicious agent in this model causes more difficulties for system to maintain the cor-
rectness because the agent can always break the correct state of any healthy process.
Moreover, by continuously moving in rounds, a malicious agent can corrupt the cor-
rect state of more than one process. The formal definition and the state of the art in
Byzantine Agreement problem is presented in Chapter 3.

Propagating malicious fault

The second model, called Propagating Malicious Fault, considers dynamic malicious fault
cause by malicious agent with the self-replication ability.

The detail of this model is formally defined in Chapter 4 by the two-side game be-
tween the infectious factors and its countermeasure. The two-side game is a probabilistic
one with tunable parameters of the infection probability p; and the detection probability
q for each infection attempt. Under this model, we investigate how the system changes
according to the power of the infection and the countermeasure of the infection.
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Part II

Intermittent Malicious Faults

19



Chapter 3

Agreement in the Presence of
Intermittent Malicious Faults

An algorithm must be seen to be believed, and the best way
to learn what an algorithm is all about is to try it.

— Donald Knuth (b.1938),
The Art of Computer Programming, vol.1, p.4

In this chapter, under model of Intermittent Malicious Fault, we investigate the case
where transient state corruptions, which can be abstracted as malicious “agents”, can
move through the network and corrupt the nodes they occupy. This models the situation
where, as soon as a faulty node is repaired (e.g., by software rejuvenation), another one
becomes compromised. For more than two decades, the main case study problem in this
context is Byzantine Agreement. Briefly stated, it requires processes, some of which
are malicious, that start the computation with an initial value to decide on the same
value. When faults are mobile the problem is known as Mobile Byzantine Agreement
and requires special attention for preserving agreement once it has been reached.

3.1 Byzantine Agreement problem

The agreement problem is a building block of any distributed system. It is the heart of
other activities and applications of a system (e.g. atomic broadcast, election, renaming)
and the topic of many research in fault-tolerant property. In Byzantine Failure model,
the problem is called Byzantine Agreement, which is formalized by Lamport et al. [43,60]
and originally studied in the complete graph of stationary processes.

Byzantine Agreement: Every process tries to achieve the agreement in two steps by
firstly proposing a value and finally deciding on a proposed value. The two steps must
satisfy the three properties:
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3.1 Byzantine Agreement problem

1. Termination: Eventually, all non-faulty processes decided some value.

2. Agreement: No two non-faulty processes decide different values.

3. Validity: If all initially-correct processes propose the same value w, correct pro-
cesses can decide only w.

Later, the problem has been studied for decades in static distributed systems under
different aspects (e.g., possibility, complexity, and cost) in both process failure model
and communication failure model. Table 3.1 gives a complete picture about impossibility
and possibility bounds for Byzantine Agreement problem in different fault models. The
details of these bounds are explained in the next sections.

3.1.1 Agreement in process failure models

Synchronous Initially, Byzantine Agreement problem is studied with synchronous
model in “Byzantine Generals Problem” paper [43, 60] by Leslie Lamport with tight
bound n ≤ 3t for impossibility and an algorithm with n > 3t. Other line of work
concern early stopping condition of agreement protocol on number of rounds [16, 30].
The problem is also concerned in unauthenticated system model, with the same bounds
of correct processes but cost more time to reach the agreement [29,55]).

Model Impossibility result Possibility result

Process
Synchronous [43] n ≤ 3t n > 3t

Asynchronous [33] t = 1 t = 0

Channel
Time is not
a healer [63]

(n− 1) transmission
faults ⇔ t = 1

< (n− 1)
transmission faults

Agent
Garay [7,36] open question n > 4t

Sasaki et al. [66] n ≤ 6t n > 6t

This result n ≤ 5t n > 5t

Table 3.1 Lower and upper bounds for Byzantine Agreement
with different failure models

Asynchronous For asynchronous distributed system, in a well-known result FLP [33],
Fischer et al., based on the bivalent situation, proved that even with only one crash
failure the agreement cannot be solved in asynchronous system. Due to this discouraging
result, the later research try to circumvent with the impossibility by either using Failure
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3.1 Byzantine Agreement problem

Detector (with some recent results [21,51,61]) or using probabilistic approaches [12,32].
In Failure Detector approach, authors assume an “oracle” that can provide to processes
the information about faulty factor. The key point is what level of synchrony is necessary
such that the agreement is achievable. In probabilistic approach, the processes use the
characteristic of stochastic procedure to overcome the bivalent state because there is
a chance (event very small) in which all correct processes can randomly propose and
choose the same value.

Another line of research focuses on providing a practical Byzantine consensus protocol
based on Quorum system such that a faster time of agreement is achievable such as
Paxos [44,45], View Change [17].

3.1.2 Agreement in communication failure models

Santoro et al. [63,64], and later Schmid et al. [69], investigate the agreement problem in
dynamic transmission failure models for both complete and arbitrary networks. These
models assume that different communication links may randomly fail at different times.
Santoro and Widmayer [63] study the k-agreement problem, where the system reaches
a k-agreement if, in finite time, k processes choose the same value, either 0 or 1, with
k > ⌈n/2⌉,1 where n is the total number of processes.

Based on the bivalent argument of Fischer et al. [33], they state that (⌈n/2 + 1⌉)-
agreement is impossible in a synchronous system if at each time there are more than
or equal to (n − 1) transmission faults. It is equivalent to the whole message from one
process may be corrupted. Although not explicitly stated, the impossibility applies to
the mobile Byzantine model. Thus, works on Mobile Byzantine Agreement typically
rely on the assumption that at least one process remains uncorrupted for Ω(n) rounds
of communication.

3.1.3 Agreement in intermittent malicious fault model

In the Intermittent Malicious Fault model, because of the continuous movement of ma-
licious agent, the classical Termination property cannot be satisfied. Therefore, the
Agreement and Validity property must be maintained forever. The Mobile Byzan-
tine Agreement, firstly mentioned by Reischuk [62], has regained much attention re-
cently. Research on the problem, in synchronous systems, follows two main directions:
constrained or unconstrained mobility.

1If k ≤ ⌈n/2⌉ the k-agreement problem is trivial.
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3.1 Byzantine Agreement problem

Constrained mobility. This direction, studied by Buhrman et al. [14], considers that
malicious agents move from one node to another only when protocol messages are sent
(similar to how viruses would propagate). In that model, they prove a tight bound for
Mobile Byzantine Agreement (n > 3t, where t is the maximal number of simultaneously
faulty processes) and propose an algorithm that matches this bound.

Unconstrained mobility. In this direction, which includes the work in this paper, the
mobility of malicious agents is not constrained by message exchanges [7, 36,57,62,66].

Reischuk [62] proposed a first sub-optimal solution under an additional hypothesis on
the stability/stationarity of malicious agents for a given period of time. Later, Ostrovsky
and Yung [57] introduced the notion of an adversary that can inject and distribute
faults in the system at a constant rate in every round and proposed solutions (mixing
randomization and self-stabilization) for tolerating the attacks of mobile viruses. Then,
Garay [36] and, more recently, Banu et al. [7] and Sasaki et al. [66] consider, in their
model, that processes execute synchronous rounds composed of three phases: send,
receive, and compute. Between two consecutive rounds, malicious agents can move from
one host to another, hence the set of faulty processes has a bounded size although its
membership can change from one round to the next. Garay’s model is particular in that,
a process has a limited ability to detect its own infection after the fact. More precisely,
during the first round following the leave of the malicious agent, a process enters a state,
called cured, during which it can take preventive actions to avoid sending messages that
are based on a corrupted state. Under this assumption, Garay [36] proposes an algorithm
that solves Mobile Byzantine Agreement provided that n > 6t.

Notice that Garay’s model advantages the cured processes since they have the possi-
bility of miraculously detecting the leave of malicious agents. In the same model, Banu
et al. [7] propose a Mobile Byzantine Agreement algorithm for n > 4t. However, to the
best of our knowledge, the tightness of the bound remains an open question.

Sasaki et al. [66] investigate the problem in a different model where processes do not
have this ability to detect when malicious agents move. This is similar to our model
with the subtle difference that cured processes have no control on the messages they
send. That is, messages are computed in the previous round (i.e., when the process
was still faulty) and the cured process cannot control the buffer where these messages
are stored, even though the process is no longer faulty. It follows that a cured process
may behave as a malicious one for one additional round. They propose tight bounds
for Mobile Byzantine Agreement in arbitrary networks if n > 6t and the degree of the
network is d > 4t. This work extends the tight bounds (n > 3t and d > 2t) for Byzantine
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Agreement of Dolev [28] in arbitrary networks with static faults.

3.2 Motivation

Analyzing the results proposed in [7, 36, 66], it is clear that there is a gap between
how these models capture the power of malicious agents or cured processes. Garay’s
model [36] is biased toward the cured processes, whereas the model of Sasaki et al. [66]
favors the malicious agent, as it can control the send buffer of a cured process even
though it is no longer hosted by the process. Our research fills the gap by avoiding these
biases; similarly to Sasaki’s model [66], a cured process may send corrupted messages,
but only computed based on the corrupted state left by a malicious agent. In particular,
a malicious agent can corrupt neither the code nor the identity of the process it occupies,
and a cured process always executes a correct code which ensures, for instance, that it
will send the same message to all of its neighbors.

r − 2 r − 1 r

correct faulty cured

send rec com s r c s r c

(a) Garay’s model [7, 36]

r − 2 r − 1 r

correct faulty cured

send rec com s r c s r c

(b) Sasaki et al. model [66]

r − 2 r − 1 r

correct faulty cured

send rec com s r c s r c

(c) Our model2

r − 2 r − 1 r

correct faulty cured

send rec com s r c s r c

(d) Buhrman et al. model [14]

Fig. 3.1 Graphical representation of the various fault models

The difference between the three models are subtle (see Figure 3.1) but they have
important consequences (Table 3.2). Figure 3.1 depicts the effects of a malicious agent
on a process. Red areas correspond to the steps controlled by the malicious agent. In
Sasaki’s model [66] (Figure 3.1b), a single malicious agent can corrupt a process for two
rounds even though it occupies the process only for a single round. In Garay’s model [36]

2In the related models [7, 36, 66], the movement of the malicious agent is defined between compute
step of current round and send step of the next round. In our research, all possible patterns of movement
are investigated. However, to analyze the subtle different of existing models, we use the common pattern
among the models.
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3.3 Intermittent Malicious Fault Model

(Figure 3.1a) a cured process is aware of its current state (cured), which is represented in
green. In our model (Figure 3.1c; defined in Section 3.3) malicious nodes have the same
power as in Garay’s model, but the cured processes may send messages with corrupted
content as in Sasaki’s model.

Model Impossibility Possibility Byzantine vs Cured Game

Garay
open question n > 6t [36] Advantaged Cured
open question n > 4t [7] Advantaged Cured

Sasaki et al. [66] n ≤ 6t n > 6t Advantaged Byzantine Agent
This work n ≤ 5t n > 5t No one advantaged

Buhrman et al. [14] n ≤ 3t n > 3t Virus like propagation

Table 3.2 Lower and upper bounds for Mobile Byzantine Agreement

Contribution. In this model we prove a tight bound for the agreement problem.
We prove in Section 3.5 that the problem has no solution if the size of the network
is n < 5t (where t is an upper bound on the number of faulty agents) and propose
an algorithm that matches this bound in Section 3.6. We also formalize the Mobile
Byzantine Agreement problem in Section 3.4. Following the results proved in [36], our
solution is also asymptotically time optimal.

3.3 Intermittent Malicious Fault Model

We consider a synchronous message-passing system as defined in Chapter 2 including
additional definition of malicious mobile agent and its movement time. Let G(Π, Γ)
represent to the system where Π is the set of processes and Γ is the set of communication
channel. In this chapter, G(Π, Γ) is a complete graph.

Malicious mobile agents

Faults are represented by malicious mobile agents that can move from process to process
between two steps of the same round or between two continuous rounds. There are at
most t malicious agents, with t < n, and any process can be occupied by an agent. A
process is said to be faulty in a given round if it is occupied by an agent in that round.
A process, which is not occupied by a malicious agent but was occupied in the previous
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3.3 Intermittent Malicious Fault Model

round, is called a cured process. A process, which is neither faulty nor cured, is called
a correct process. Fr, Cor, and Cur denote respectively the set of faulty, correct, and
cured processes at round r. For ease of writing, we also consider the combined sets of
correct/cured processes as the set of non-faulty processes Cr = Cor ∪ Cur = Π \ Fr.

Moving time of malicious agents The time when malicious agents can move from
one process to another process is a parameter of the model. We consider three patterns
of the movement of malicious agents as below:

1. Between compute step of the current round and send step of the next round
(Figure 3.2a).

2. Between send step and receive step of the same round (Figure 3.2b).

3. Between receive step and compute step of the same round (Figure 3.2c).

Once the moving time is chosen, it is a parameter of model and is applied for all
malicious agents in the whole execution time of the system. It means that the malicious
agent cannot move with two different patterns and any two malicious agents move with
the same pattern.

r r + 1
rec com send rec

pi

pj

move
(a) compute/send

r r + 1
rec com send rec

pi

pj

move
(b) send/receive

r r + 1
rec com send rec

pi

pj

move
(c) receive/compute

Fig. 3.2 Time where malicious agent moves from pi to pj

The behavior of a faulty process is controlled by the malicious agent. In particular,
the agent can corrupt the local state of its host process, and force it to send arbitrary
messages (potentially different messages to different processes). However, a malicious
agent cannot corrupt the identity of that process (i.e., it cannot send messages using
another identity), and is unable to modify the code of the algorithm (i.e., the process
resumes executing the correct algorithm after the malicious agent moves away). So,
as suggested in [14], we assume a secure, tamper-proof read-only memory where the
identity and the code are stored.

While it is possible for each non-faulty process to rejuvenate its code at the beginning
of each round, local variables may still be corrupted (and of course cannot be recovered).
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3.4 Mobile Byzantine Agreement problem

Therefore, in the case of cured processes the computation may be performed using a
corrupted state.

Comparison with previous models. Our proposed model studies the movement of
malicious agent in all possible cases. In the second case, when malicious agent moves
between send and receive steps of the same round, the malicious agent will move accord-
ing to one of the sent messages. Hence, it is exactly the model proposed by Buhrman
et al. [14].

As explained in Section 3.1 and graphically depicted in Figure 3.1, the above model
differs from Garay’s [36] and Sasaki’s [66] as follows. In Sasaki’s model [66], a single
malicious agent can corrupt a process for more than a round although occupying this
process only for a round. In our model, once the malicious agent leaves a process, that
process will execute the correct code even though the computation will be performed on
a corrupted state. Differently from the Garay’s model [36], where a cured process has
the knowledge of its cured state and exploits it in the algorithm, in our model processes
cannot access and exploit this knowledge.

Notation. In the formal definitions and proofs, varr
i denotes the value of variable var

in process pi at the end of round r. We also use the notation #w(W) to refer to the
number of occurrences of w in tuple W .

3.4 Mobile Byzantine Agreement problem

We now formally define the Mobile Byzantine Agreement problem introduced first by
Garay et al. [36] and refined most recently by Sasaki et al. [66]. The definition presented
here is stronger than the definition proposed by Sasaki [66] (see discussion below).

Each initially-correct process pi has an initial value wi. All processes must decide3 a
value dec such that the following properties hold:

1. BA-Deciding: Eventually, all non-faulty processes during a round terminate the
round with a non-bottom decided value.

∃r, ∀r′ > r ∀i ∈ Cr′ decr′

i ̸= ⊥
3We use a terminology consistent with the classical definition of Byzantine agreement. However, the

action “decide” does not in itself guarantee a permanent decision. Indeed, due to the mobility of the
malicious agents, non-faulty processes must re-decide the decision at the end of each round.
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3.5 Upper bound on the number of faulty processes

2. BA-Agreement: No two non-faulty processes decide different values:

∀r, r′ ∀i ∈ Cr ∀j ∈ Cr′

(
decr

i ̸= ⊥ ∧ decr′

j ̸= ⊥
)
⇒

(
decr

i = decr′

j

)

3. BA-Validity: If all initially-correct processes propose the same value w, correct
processes can decide only w.

∀w (∀i ∈ Co0 wi = w)⇒ (∀r ∀i ∈ Cr decr
i ∈ {⊥, w})

Note that specification of Mobile Byzantine Agreement given in this section is actu-
ally stronger than the definition proposed by Sasaki et al. [66]. They differ in two im-
portant aspects. Firstly, where we require that, after some time, all non-faulty processes
decide a value at every round, their definition requires a decision only from processes
that are not faulty infinitely often. Secondly, where we allow non-faulty processes to
decide only on a unique non-bottom value, Sasaki’s algorithm [66] allows the variable
storing the decision to take arbitrary values for a finite number of rounds. In other
words, our specification requires perpetual consistency whereas Sasaki’s algorithm en-
sures eventually consistency.

We now state two lemmas, proved in earlier models [36,63], which also apply to our
model. The first lemma states a necessary condition. That condition is however not
sufficient; as explained previously, a bound on the number of faults is also required.

Lemma 1 (stated in [36]; formal proof derivable from [63]) Mobile Byzantine Agree-
ment requires that at least one process remains uncorrupted for Ω(n) rounds of commu-
nication.

Lemma 2 (from [36]) Every Mobile Byzantine Agreement protocol requires Ω(n) rounds
in its worst case execution.

3.5 Upper bound on the number of faulty processes

The tight bound of Mobile Byzantine Agreement in the presence of t malicious mobile
agents that can move from one process to another process between send and receive steps
of the same round is proved in [14]. Interestingly, the upper bound and lower bound
on the number of faulty processes given in this chapter is common for two patterns of
moving time of malicious agent where malicious mobile agents can move either between
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compute step of current round and send step of the next round or between receive and
compute step of the same round.

In this section, we prove that, in the presence of t malicious mobile agents that can
move according to the two patterns (compute/send and receive/compute) above, Mobile
Byzantine Agreement cannot be solved with 5t processes or less, even if some process
remains uncorrupted forever.

Sasaki et al. [66] proved a similar result by reduction from a well-known existing
bound. From the classical bound (n ≤ 3t) on synchronous Byzantine agreement, they
could obtain their bound (n ≤ 6t) by considering both faulty and cured processes as
Byzantine.

However, we cannot use the same approach because, in sharp contrast with Sasaki’s
model [66] and as explained in Section 3.3, in our model, the adversary cannot entirely
control cured processes.

Theorem 1 There is no deterministic algorithm that solves Mobile Byzantine Agree-
ment in a synchronous five-process system in the presence of a single mobile Byzantine
agent (even with a permanently correct process).

Proof: The proof is by contradiction. Given a system consisting of five processes
{p0, . . . , p4}, where at least one is permanently correct, let us suppose that there ex-
ists an algorithm that can solve the BA problem in the presence of a single malicious
mobile agent. Suppose that, in this algorithm, processes send the same message to all
processes.4 Note that, during an execution, nothing prevents a faulty processes from
sending different messages to other processes.

General idea. We consider three executions of this algorithm. In executions E0 and
E1, all correct processes propose the same value; 0 and 1 respectively. The BA properties
imply that, eventually, non-faulty processes respectively decide 0 and 1 in these two
executions. The third execution, called E01, brings a contradiction: some processes
decide 0 while others decide 1.

The three executions are represented on Figure 3.3. Red (resp. light red) arrows
correspond to corrupt messages sent by faulty (resp. cured) processes. The values
proposed by correct processes appear on the left. Non-correct processes do not have
proposed values since they may have been corrupted by the malicious agent. Vertical
dashed lines separate successive rounds.

4If not the case, we can trivially define an algorithm that satisfies this property by combining the
set of sent messages into a single message.
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(a) Execution E0 where initially-correct processes p2, p3, and p4 propose value 0.
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(b) Execution E1 where initially-correct processes p0, p1, and p4 propose value 1.
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(c) Execution E01 where initially-correct processes p0 and p1 propose value 1 while
initially-correct processes p2 and p3 propose value 0. Process p4 is faulty and sends

different messages to each process.

Fig. 3.3 Three executions leading to a contradiction of the existence of a BA protocol
in a 5-process system with one mobile malicious agent.

(Legend: Arrows correspond to messages exchanged between processes. Gray boxes
contain the new local state computed by each process at the end of each round, which
is then used to send message in the following round. Red indicates actions taken by
the faulty processes while light red refers to actions taken by cured processes. Vertical
dashed line separate successive rounds.)
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3.5 Upper bound on the number of faulty processes

For each execution, we choose the process occupied by the single malicious agent. As
required, there is at least one process which is permanently non-faulty in each execution.

Executions E0 and E1. In execution E0, the malicious agent alternates between
processes p0 and p1. In execution E1, it alternates between processes p2 and p3. Processes
p2, p3, and p4 are initially correct and propose 0 in E0, while processes p0, p1, and p4

are initially correct and propose 1 in E1.
For non-faulty processes, the messages sent during these executions are computed by

the algorithm based on the local states of processes. For correct processes (i.e., excluding
cured ones), let us denote by s0

i,r (resp. s1
i,r) the local state of process pi at the beginning

of the round r in execution E0 (resp. E1). Based on this local state, let m0
i,r (resp., m1

i,r)
denote the message computed and sent by a correct process pi at round r in execution
E0 (resp., E1).

We now define the behavior of the malicious agent. For the faulty process pi (either
p0 or p1) at round r of execution E0:

• We choose that pi sends the message m1
i,r (i.e., the message it would have sent at

the same round in E1).

• We choose that pi updates of receives message such that its local state is updated
to s1

i,r+1 at the end of the round (i.e., the same state it would have computed in
E1).

- In case of agent moves between compute step of current round and send step
of the next round, pi updates local state to s1

i,r+1.

- In case of agent moves between receive and compute steps of the same round,
agent in pi changes the received messages to m1

i,r+1, so in the compute step
the correct algorithm will compute its local state to s1

i,r+1.

Similarly we choose that the faulty process pi (either p2 or p3) at round r of execution
E1 sends the message m0

i,r and its state is computed to s0
i,r+1.

Execution E01. In execution E01, the malicious agent always occupies process p4.
The four other processes are initially (and forever) correct. As in E0, processes p2 and
p3 propose 0. As in E1, processes p0 and p1 propose 1. In this execution, the faulty
process p4 does not send the same message to all processes. At any round, p4 sends the
message m1

4,r to p0 and p1, but sends m0
4,r to p3 and p4.
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3.5 Upper bound on the number of faulty processes

Indistinguishability. In the sequel, we prove the following claim: E0 and E01 are
indistinguishable for p2 and p3, and similarly E1 and E01 for p0 and p1. This can be
proven by induction on the round number, using the following predicate P(r) for r ≥ 0:

P(r) =



p0 starts round r in E1 and E01 with the same local state
p1 starts round r in E1 and E01 with the same local state
p2 starts round r in E0 and E01 with the same local state
p3 starts round r in E0 and E01 with the same local state

The proof is only for p0. The proofs for p1, p2, and p3 are identical.
Case r = 0. p0 proposes the same value in E1 and E01 and therefore starts round 0

with the same initial local state, namely s0
0,0.

Case r ≥ 0. Let us suppose that predicate P(r) is true.

• p0 is correct in E1 and E01 and, by induction hypothesis, starts round r with the
same local state. Therefore p0 necessarily sends the same message, namely m1

0,r,
to all processes in round r of both E1 and E01.

Similarly, p1 sends the same message m1
1,r to all processes in round r of both E1

and E01.

• p2 is correct in E0 and E01 and, by induction hypothesis, starts round r with the
same local state. Therefore p2 necessarily sends the same message, namely m0

2,r, to
all processes in round r of both E0 and E01. Considering execution E1, there are
two cases to consider; (1) p2 is faulty during round r and then, by construction,
the malicious agent forces p2 to send the message m0

2,r; (2) p2 is cured during round
r, which means that it was faulty in the previous round and the malicious agent
forced p2 to start round r in the local state s0

2,r which implies that p2 still sends
the message m0

2,r. In all cases, p2 sends the same message in round r of both E1

and E01.

Similarly, p3 sends the same message m0
3,r to all processes in round r of both E1

and E01.

• p4 is faulty in E01. By construction, in each round, it sends to p0 the same message
as in E1. It means that p4 sends the same message, namely m0

4,r, to p0 in round r

of both E1 and E01.

Process p0 receives the same messages from all processes in round r of E1 and E01. Since
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p0 is correct in both executions, it computes the same new local state and starts round
r + 1, which prove P(r + 1).

Thus by induction, the predicate P(r) is true for all rounds and therefore the claim
holds. Since p0 and p1 eventually decide 1 in E1, they also decide 1 in E01. Similarly,
since p2 and p3 eventually decide 0 in E0, they also decide 0 in E01. Contradiction. �

When n ≤ 5t, the proof of Theorem 1 can be generalized by replacing any process
appearing in the proof by a group of processes of size at most t.

Corollary 1 There is no deterministic algorithm that solves the Mobile Byzantine Agree-
ment problem in a synchronous n-process system in the presence of t mobile byzantine
agent if n ≤ 5t (even with a permanently correct process).

3.6 Algorithm for Mobile Byzantine Agreement

Given a system with t malicious mobile agents, we introduce an algorithm that solves
Mobile Byzantine Agreement under the following two conditions: (1) there are at least
5t + 1 processes in total, and (2) at least one process remains uncorrupted for 3n con-
secutive rounds (see Lemma 1).

3.6.1 Description of the algorithm

The algorithm builds upon earlier ones [7,36,66] but contains some important improve-
ments; (i) a clear separation between the deciding and the maintaining parts, (ii) a
simplification of the code of the algorithm, and (iii) additional code in order to satisfy
our stricter BA-Agreement property. The algorithm (lines 1− 23) consists of two main
parts:

1. Deciding part: processes execute 3n rounds to agree on a value.

2. Maintaining part: processes execute the same round forever to keep the decided
value.

Maintaining part (lines 18−23) This part is simple and repeats forever from round
3n. The goal is to allow cured processes to recover the decided value from correct ones,
since that value may have been corrupted by the malicious agent. All processes exchange
their current decided values dec and update their variable dec to the value that has been
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Algorithm 1: BA algorithm (code for pi with proposed value wi)
1 Function MBA(wi):
2 vi ← wi;
3 for s = 0 to n− 1 do
4 // proposing round r = 3s

5 vi ← propose(vi);
6 deci ← ⊥;
7 // collecting round r = 3s + 1
8 SVi ← collect(vi);
9 deci ← ⊥;

10 // deciding round r = 3s + 2
11 vi ← decide(s, SVi);
12 deci ← ⊥;
13 end for
14 deci ← vi;
15 for r = 3n to ∞ do
16 // maintaining round
17 send deci to all processes;
18 deci ← the value received at least n− 2t times;
19 end for

20 Function propose(v):
21 PV [1..n]← [⊥, . . . ,⊥];
22 send v to all processes;
23 foreach j ∈ Π do
24 if vj received from j then PV [j]← vj ;
25 if ∃w ̸= ⊥, #w(PV ) ≥ n− 2t then return w;
26 return ⊥;

27 Function collect(v):
28 SV [1..n]← [⊥, . . . ,⊥];
29 send v to all processes;
30 foreach j ∈ Π do
31 if vj received from j then SV [j]← vj ;
32 return SV ;
33 Function decide(s, SV ):
34 EV [1..n][1..n]← [[⊥, . . . ,⊥], . . . , [⊥, . . . ,⊥]];
35 send SV to all processes;
36 foreach j ∈ Π do
37 if SVj received from j then EV [j]← SVj ;
38 RV [1..n]← [⊥, . . . ,⊥];
39 foreach j ∈ Π do
40 if ∃w ̸= ⊥, #w(EV [·][j]) > 2t then RV [j]← w;

41 if ∃w ̸= ⊥, #w(RV ) > 3t then return w;
42 else
43 c← s mod n;
44 if ∃w ̸= ⊥, #w(EV [c][·]) > 2t then return w;
45 return 0;
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received at least n−2t times. During each of these rounds, there must be at least n−2t

correct processes according to the model. If all of them send the same value (which is
guaranteed by the algorithm), all non-faulty processes receive n−2t messages containing
this same value and thus decide accordingly.

Deciding part (lines 3 − 16) This part is complex and consists of n phases of 3
rounds each. The goal is to guarantee that, at the end of round 3n − 1, all non-faulty
processes have the same value v and therefore decide it (line 17). During the first 3n

rounds, v may take different non-bottom values, which is why processes cannot decide
in earlier rounds.5

This part uses the rotating coordinator paradigm. Recall that, in each round, there
are at least n − t non-faulty processes, and at least n − 2t correct ones. Each of the n

phases are divided into 3 rounds:

• Proposing round; all non-faulty processes (at least n − t) end the round with at
most one non-bottom value v. Consequently, it guarantees that the (at least n−2t)
correct processes of the next round start with at most one non-bottom value v.

• Collecting round; processes exchange the values computed in the previous round
and store them in array SV (the set of received values).

• Deciding round; processes try to agree on the same value v using the rotating
coordinator paradigm. If the coordinator of the current round is correct during
the entire phase, non-faulty processes are guaranteed to terminate the phase with
the same value. Such a coordinating round exists since, by assumption, there is
one process which is correct for at least 3n rounds.

In the deciding round, processes exchange the array SV computed during the
previous round. Based on the arrays they received, each process computes a new6

array RV (the vector of reconstructed values). For each non-faulty process, both
SV and RV contain “almost” the same values (SV = RV if all processes are
correct), but, as it appears in the proof, these two arrays are necessary to guarantee
the correctness of our algorithm.

After the phase corresponding to a correct coordinator, all non-faulty processes have
the same value v. This property will continue during all subsequent phases even if the

5This is different from previous papers as already mentioned in Section 3.3.
6Technically, as in [66], it is possible to use the same variable for both SV and RV . We choose to

use two different names for the clarity of the proof.
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corresponding coordinators are faulty (in fact lines 46−49 will not be executed anymore
as shown in the proof).

Additional code (lines 6, 10, 14) Usually, the variable dec is initialized to ⊥ at
the beginning of an algorithm. However, this value may be corrupted for any process
that becomes faulty during the execution. To satisfy the BA-Agreement property, it is
therefore necessary for each non-faulty process to re-initialize its variable dec to ⊥ at
the end of each of the first 3n round.

3.6.2 Proof of the algorithm

In the formal definitions and proofs, varr
i denotes the value of variable var in process

pi at the end of round r. We also use the notation #w(W) to refer to the number of
occurrences of w in tuple W . dH(·, ·) denotes the Hamming distance which corresponds
to the number of different elements between two tuples and X can be any arbitrary set.
In all following lemmas, we suppose that t ≥ 0 and n ≥ 5t + 1. As stated previously, we
also suppose that there exists some process which remains correct for at least 3n rounds.
Moreover, for each round, the proposed algorithm makes each process to send the same
message to all processes. Consequently, in each round, only faulty processes may send
different message to different processes.

We prove first a simple preliminary lemma that will be used in the main proof of the
algorithm.

Lemma 3 Let t ≥ 0, n ≥ 5t+1, and two n-tuples that differ on at most t values. If two
values appear n− 2t times respectively in each tuple, then they are the same. Formally:

∀t ≥ 0 ∀n ≥ 5t + 1 ∀T, T ′ ∈ X n ∀x, x′ ∈ X(
(dH(T, T ′) ≤ t) ∧ (#x(T ) ≥ n− 2t) ∧ (#x′(T ′) ≥ n− 2t)

)
⇒ (x = x′)

Proof: The proof is by contradiction. Let us assume that for some t ≥ 0 and some
n ≥ 5t + 1 there exist two n-tuples T and T ′ such that

(dH(T, T ′) ≤ t) ∧ (#x(T ) ≥ n− 2t) ∧ (#x′(T ′) ≥ n− 2t) ∧ (x ̸= x′)

Since #x(T ) ≥ n− 2t and x ̸= x′, it implies that #x′(T ) ≤ 2t. Then from dH(T, T ′) ≤ t,
we deduce that #x′(T ′) ≤ #x′(T ) + t ≤ 2t + t = 3t. Finally n ≥ 5t + 1 implies that
#x′(T ′) ≤ n− 2t− 1, which is a contradiction. �
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Lemma 4 There exists a phase where all non-faulty processes terminate with the same
(non-bottom) value v. Formally:

∃s ≤ n− 1, ∃w ̸= ⊥, ∀i ∈ C3s+2 v3s+2
i = w

Proof: By assumption, there is a process which remains non-faulty for at least 3n rounds.
Let pc be this process and consider the cth phase where pc is the coordinator (line 47).
We consider sequentially the three rounds of this phase. (To simplify the explanations;
when it is not specified, faulty/non-faulty/correct processes are defined with respect to
the current round.)

• Round 3c. Each non-faulty process updates its variable v at line 5 from the value
returned by the function propose. Since there are at most t faulty processes, the
tuples PV (computed at line 28) of non-faulty processes differ on at most t values.
Function propose returns a non-bottom value (line 29) only if this value appears
at least n − 2t times in the tuple PV . From Lemma 3, it implies that the n − t

non-faulty processes can have only one non-bottom value v at the end of the round.
Formally:

∀i, j ∈ C3c

(
(v3c

i ̸= ⊥) ∧ (v3c
j ̸= ⊥)

)
⇒ (v3c

i = v3c
j ) (3.1)

If any non-faulty process has a non-bottom value v3c
i , let w denote this specific

value.

• Round 3c + 1. All correct processes in this round were non-faulty in the previous
round: Co3c+1 ⊆ C3c. Observation (3.1) implies that all correct processes send
either a bottom value or the value w (if it exists) at line 33. Only cured and faulty
processes may send other values. Therefore, all non-faulty processes receive at
most 2t values which are different from w and ⊥.

It also means that the arrays SV computed at line 35 by non-faulty processes
contain at most 2t elements different from w and ⊥ and these elements are all
located at the same indexes. Formally:

∀j, j′ ∈ C3c+1 ∀k ∈ Co3c+1 SV 3c+1
j [k] = SV 3c+1

j′ [k] ∈ {w,⊥} (3.2)

• Round 3c + 2. All correct processes in this round were non-faulty in the previous
round: Co3c+2 ⊆ C3c+1. Observation (3.2) implies that all correct processes send an
array SV (line 39) satisfying the previous conditions and therefore all non-faulty
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processes update their matrix EV such that:

∀i ∈ C3c+2 ∀j, j′ ∈ Co3c+2 ∀k ∈ Co3c+1 EV 3c+2
i [j][k] = EV 3c+2

i [j′][k] ∈ {w,⊥}

Since |Π \ Co3c+2| ≤ 2t, for all such indexes k, the test of line 44 can be true only
for the value w:

∀i ∈ C3c+2 ∀k ∈ Co3c+1 RV 3c+2
i [k] ∈ {w,⊥}

Since |Π \ Co3c+1| ≤ 2t, it implies that the test of line 45 can be true only for
the value w. (Note that the test of line 45 uses the threshold 3t instead of 2t for
another reason, as explained later in the proof.)

Non-faulty processes update their variable v from the value returned by the func-
tion decide. This value may be returned at lines 45, 48, or 49. There are two
cases to consider:

1. No (non-faulty) process receives the value from line 45. All non-faulty pro-
cesses update their variable v according to the test of line 48. Since, by
hypothesis, the current coordinator pc is correct, it sends the same array
SV 3c+1

c to all processes and thus all non-faulty processes have the same line
EV [c][·], which means that all non-faulty processes terminate the phase with
the same non-bottom value v (returned at line 48 or 49).

2. At least one non-faulty process updates its variable v from a value returned
at line 45. Let pm be such a process. As stated above, pm necessarily updates
vm to the value w and any other non-faulty process that returns from decide
at line 45 also updates its variable v to w. It remains to prove that the
remaining non-faulty processes (if any) that update their variable v from a
value returned at line 48 or 49 also update to the same value w. Since pm

returns from decide at line 45, it means that RVm contains more than 3t

times the value w. Let us called J the set of indexes j corresponding to the
value w:

J = {j, RV 3c+2
m [j] = w}

For all indexes of J , pm has executed line 44 which means that the column
EVm[·][j] contains more than 2t times the value w. Since there are at most
2t non-correct (faulty and cured) processes; it means that at least one correct
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process sends an array SV containing the value w at the jth position for all
indexes j of J . Formally:

∀j ∈ J ∃i ∈ Co3c+2, SV 3c+2
i [j] = w (3.3)

Let us consider the subset J ′ of J that contain all processes of J that are
non-faulty in the round 3c + 1. Since there are at most t faulty processes per
round, |J ′| ≥ |J |−t ≥ 2t. According to Observation (3.3), for each element of
J ′, there is at least one correct process whose corresponding entry in its array
SV contains the value w. This value comes from the execution of line 35 of
round 3c+1. Since, by definition, all processes of J ′ are non-faulty during the
round 3c + 1, it implies that all processes of J ′ sends the value w at line 33
of round 3c + 1. Formally:

∀j′ ∈ J ′ v3c+1
j′ = w

Therefore, all non-faulty processes of round 3c + 1 have received these values
w from processes of J ′. It includes the process pc which is, by assumption,
always correct. It means that pc sends at line 39 of round 3c + 2 an array SVc

that contains at least |J ′| ≥ 2t values w. Consequently, during round 3c + 2,
all non-faulty processes that has not returned from decide at line 45 returns
at line 45 (since the test of line 45 is true). All non-faulty processes update
their variable v to w, which concludes the proof of the lemma.

�

Lemma 5 If all correct processes start a phase with the same variable v, then all non-
faulty processes terminate the phase with this same value. Formally:

∀s ≤ n− 1, ∀w ̸= ⊥,
(
∀i ∈ Co3s v3s−1

i = w
)
⇒

(
∀i ∈ C3s+2 v3s+2

i = w
)

Proof: We consider sequentially the three rounds of phase s:

• Round 3s. All correct processes start the round with the same value v = w. They
all send this value at line 26. Since there are at least n − 2t correct processes,
all non-faulty processes receive the value w at least n− 2t times and therefore all
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non-faulty processes update their variable v to w. Formally:

∀i ∈ C3s v3s
i = w (3.4)

• Round 3s + 1. All correct processes in this round were non-faulty in the previous
round: Co3s+1 ⊆ C3s. Observation (3.4) implies that all correct processes send the
value w at line 33. Therefore all non-faulty processes obtain an array SV which
contains at least n− 2t times the value w at the indexes corresponding to correct
processes. Formally:

∀j ∈ C3s+1 ∀k ∈ Co3s+1 SV 3s+1
j [k] = w (3.5)

• Round 3s + 2. All correct processes in this round were non-faulty in the previous
round: Co3s+2 ⊆ C3s+1. Observation (3.5) implies that all correct processes send
an array SV at line 39 that contains at least n− 2t times the value w. Therefore
all non-faulty processes obtain a variable EV that contains “many” w. Formally:

∀i ∈ C3s+2 ∀j ∈ Co3s+2 ∀k ∈ Co3s+1 EVi[j][k] = w

Since |Co3s+2| > 2t, all non-faulty processes will execute line 44 for all indexes
corresponding to correct processes of the previous round:

∀i ∈ C3s+2 ∀k ∈ Co3s+1 RV 3s+2
i [k] = w

Consequently, for all non-faulty processes, the array RV contains at least |Co3s+1|
times the value w. Since |Co3s+1| ≥ n− 2t > 3t, all non-faulty processes evaluate
positively the test of line 45 and return w, which means that all non-faulty processes
terminate the round 3s+2 with their variable v to value w. It concludes the proof.

�

Theorem 2 Algorithm 1 solves the Mobile Byzantine Agreement problem in a syn-
chronous n-process system in the presence of t mobile Byzantine agents provided that
n ≥ 5t + 1 and that there is at least one process which remains uncorrupted.

Proof: Lemmas 4 and 5 guarantee that all non-faulty processes of round 3n−1 terminate
the round with the same non-bottom value w in variable v. At line 17, all these non-
faulty processes decide the value w. Starting from round 3n, a simple induction shows
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that all non-faulty processes will always decide this same value w since there are at
most 2t non-correct processes during each round. It proves the BA-Termination and
BA-Agreement properties.

To prove the BA-Validity, it is sufficient to apply Lemma 5 directly from the
first round. If all initially-correct processes propose the same value, this value will be
propagated until round 3n− 1 where it will be decided. This concludes the proof. �

3.7 Coping with corruption of the round counter

To the best of our knowledge, all existing algorithms on Mobile Byzantine Agreement [7,
14, 36, 66] rely on the assumption that the round counter is stored in a tamper-proof
register. It is possible to remove this assumption and we propose such an improvement.
However, we still need to assume that, at the beginning, all correct processes start with
the same round counter (initialized at zero). The new algorithm is given in Algorithm 2.

Explanations of the algorithm The algorithm is very similar to Algorithm 1. We
only add a mechanism to recover the round counter from its potential corruptions in the
compute step of each round. Thus, for all rounds, each process includes its round counter
into its sent messages. Furthermore, at every round, since the round counter might be
corrupted until compute step, each process does not know the correct current round
type (proposing, collecting, deciding, or maintaining round), and consequently which
message it is supposed to send. Therefore, each process includes all possible messages,
which consists in variables v, SV , and dec (Line 5 of Algorithm 2).

In the compute step, each non-faulty process deduces the correct value for round
counter from the majority (at least n−2t) of the received value (Line 12 of Algorithm 2).
According to this correct round counter, each non-faulty process is able to decide what
is the current step of the Algorithm and therefore executes the same operations as it
would do in Algorithm 1 (Lines 13-23 of Algorithm 2).

Proof of maintaining correct round counter Remember that during each round,
there are at least n − 2t correct processes. By assumption, all correct processes start
the first round with the same round counter. This property will be easily maintained
for subsequent rounds since n− 2t corresponds to a strict majority of the set consisting
of at least 5t + 1 processes and therefore all non-faulty processes (at least n− t) always
obtain the same value at Line 12.
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Algorithm 2: BA algorithm without tamper-proof on round counter (code for pi)
1 Function MBA2(wi):
2 vi ← wi;
3 ri ← 0;

4 while true do
5 send

〈
ri, vi, SVi, deci

〉
to all processes;

6 foreach j ∈ Π do
7 if

〈
rj , vj , SVj , decj

〉
received from j then

8 RCi[j]← rj ;
9 PVi[j]← vj ;

10 EVi[j]← SVj ;
11 DVi[j]← decj ;
12 ri ← getMajority(RCi, n− 2t);
13 if (ri < 3n) then
14 if (ri mod 3 ≡ 0) then
15 vi ← propose(PVi);
16 else if (ri mod 3 ≡ 1) then
17 SVi ← PVi;
18 else
19 vi ← decide(EVi, ri);

20 if ri = 3n− 1 then deci ← vi;
21 else deci ← ⊥;
22 else
23 deci ← getMajority(DVi, n− 2t);
24 ri ← ri + 1;
25 end

26 Function propose(PV ):
27 if ∃w ̸= ⊥, #w(PV ) ≥ n− 2t then return w;
28 return ⊥;

29 Function decide(EV, r):
30 RV [1..n]← [⊥, . . . ,⊥];
31 foreach j ∈ Π do
32 if ∃w ̸= ⊥, #w(EV [·][j]) > 2t then RV [j]← w;

33 if ∃w ̸= ⊥, #w(RV ) > 3t then return w;
34 else
35 c← (r/3) mod n;
36 if ∃w ̸= ⊥, #w(EV [c][·]) > 2t then
37 return w;
38 return 0;

39 Function getMajority(V, m):
40 return value appearing at least m times in V ;
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3.8 Summary of Mobile Byzantine Agreement

We proposed a new model for Mobile Byzantine Agreement, that balances the power of
correct and malicious agents. In our model, a process cannot detect its own infection
and cannot instantly recover its state after the malicious agent moves away. Hence, our
model gives less power to correct processes than Garay’s model [36]. Recall that, in this
model, a cured process can magically detect the leave of the malicious agent. In contrast,
in our model, a cured process (a process that has been infected by a malicious agent)
will not behave maliciously after the agent left it. That is, a cured process may send
corrupted messages (computed based on a corrupted state) but it will send the same
corrupted message to all neighbors. In this respect, our model gives less power to the
Byzantine agents than Sasaki’s model [66] where a Byzantine agent can prepare messages
and control the sending of these messages even after it left that process. In our model, we
prove that there is no protocol for Mobile Byzantine Agreement in synchronous networks
with n ≤ 5t. We propose then a tight algorithm which can tolerate t mobile Byzantine
agents with at least 5t + 1 processes.

In the following, we list several open questions and non trivial research directions
in this area. The next step in our research is the study on the feasibility of Mobile
Byzantine Agreement on arbitrary topologies. Another interesting direction would be
to decrease, via randomization, the time complexity of the algorithm.

Notice that, even though our model has a self-stabilization flavor, our work is differ-
ent in several aspects from the self-stabilizing Byzantine agreement of [23]. Note that
in the case of self-stabilizing Byzantine agreement the studied model assumes that the
Byzantine set is fixed. That is, it does not change during the execution. Also it is as-
sumed, as in all self-stabilizing algorithms, that the system eventually becomes coherent
(i.e. the communication network and a sufficient fraction of nodes is not faulty for suf-
ficient long time period for the pre-conditions for convergence of the protocol to hold).
More specifically, in self-stabilization it is assumed that during the convergence period
the system does not suffer additional perturbations. In our case the system is perma-
nently stressed due to the mobility of the Byzantine nodes. Note also that the problem
solved in [23] is different since it allows the output of inconsistent decision values during
transient periods.

In our model, a malicious agent can move anywhere in the network, and likely most
work on the subject, we considered a fully connected topology. Sasaki et al. [66] have
considered the case of different topologies. An interesting line of work is to generalize
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to arbitrary topologies, and also to consider when the mobility of the malicious agents
is constrained by a, possibly different, topology.

Finally, to the best of our knowledge, so far no investigation of Mobile Byzantine
Agreement has been done in anonymous settings or networks where node identities are
not unique. In these contexts, algorithms based on a coordinator are not applicable.
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Part III

Propagating Faults
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Chapter 4

Modeling Propagation and
Countermeasures

Model building is the art of selecting those aspects of a
process that are relevant to the question being asked.

— John Henry Holland (b.1929)

A theory has only the alternative of being right or wrong. A
model has a third possibility: it may be right, but irrelevant.

— Manfred Eigen (b.1927)

In previous chapter, we study the Intermittent Malicious Fault abstracted as a mobile
malicious agent in a stationary network. The size of set of faulty agents is bounded,
hence, the number of faulty processes is bounded. However, in a real distributed system
like networks, an important ability of the malicious factor (e.g. malware, virus or worm)
is self-replication. By this ability, the growth of the set of faulty processes can increase
from a single node to the whole network. The left parts of this dissertation discuss the
Propagating Fault model abstracted by a two-side probabilistic game between the fault
propagation and the countermeasure of this propagation.

4.1 A two-side game

Consider the propagation of a worm in a large distributed system (such as the Internet,
a sensor network, or a social network), an epidemic starts with an arbitrary node being
initially infected, then continues with every newly infected node attempting to infect its
neighbors. Obviously, if nothing is done, all connected nodes are eventually infected,
and the time it takes only depends on the infection rate (i.e., the probability of success
for each infection attempt), the topology of the network, and the location of the initial
node.
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Consider now that, upon an unsuccessful attempt at infection, the targeted node
has a chance to detect the attempt and react to it. One simple strategy consists in
propagating the detection information of virus (virus signature) such that all other
nodes can detect virus correctly and the system is immune. However, this mechanism
only works well when a node can always use the receiving information to detect the
infection correctly. Consider, if after receiving detection information, a node cannot
always detect the infection correctly (i.e. an imperfect detection). In this case, another
simple approach is letting targeted node kill itself or cutting the communication channel
with the infected node and, before this, inform some of its neighbors to do the same,
so that the infection can no longer spread through them. The hope is that, given
enough nodes doing the same, they could actually isolate infected nodes from sane
ones, thus containing the spread. The chance of this happening depend mainly on the
following factors: (1) the infection rate, (2) the detection probability, (3) the extent of
the countermeasure upon detection, and (4) the topology of the network.

Such systems are notoriously known to exhibit a critical threshold, that is, the spread
is almost surely contained if the infection rate is below the threshold, but very unlikely
so if it is above that threshold. This is reminiscent of another problem, known as
percolation [10]. Even after half a century of research on the topic, the value of the
percolation threshold is known exactly for only very few classes of graphs. An exact
characterization has turned out to be elusive even for the simplest classes of graphs,
such as the grid (square lattice), for which no exact value is known for the threshold.
The currently best-known approximation is 0.59274598(4) [46] and was obtained through
Monte-Carlo simulations.

In this work, we look at the following question: When detection may possibly be
inaccurate, is it is possible to contain the spread and, if it is, then under what conditions?
Even with a topology as simple and regular as the grid and under the simplest strategy,
it is unlikely that an analytic calculation for exact threshold exists. For this reason,
the study has been originally studied under the impact of several containment strategies
in various topologies, by relying on extensive simulations. We found that containment
strategies do have an impact on the critical threshold of the system, and so does the
topology. Simulation results told us that killing more nodes upon detection could help
increase the critical threshold, and that preventing the spread in some topologies, such
as small-world graphs, was nearly helpless. An important question is whether or not
these observations can be formalized and analyzed mathematically. Interestingly, by
enlarging the network and considering the problem in infinite graphs we can formalize

47



4.2 Existing propagation models

some observations achieved in the simulation.
Therefore, in the following part, after giving an overview of the state-of-the-art on

propagation research, we define the model of propagation versus the countermeasures
with an imperfect detection. Under this model, we study the extensively via simulation
the propagation versus countermeasures in different basic graph topologies including
torus grid, and some realistic topologies such as unit-disk graph representing to sen-
sor network, small-world representing for social network. The arising questions from
simulation are analyzed mathematically in the context of infinite graphs in Chapter 6.
Finally, an application of proposed countermeasures in the Internet is also presented in
Chapter 7.

4.2 Existing propagation models

The propagation has been widely studied from human and biology (epidemiology) to
computer virus (virus spread), and information propagation. In this section, we review
the related work of propagation according to two parts:

• The first part reviews the model includes only propagation in a network. In these
works, researchers try to propose a model that can reflect exactly the evolving of
individuals in a disease or computer in a spread of virus.

• The second part discusses different defense mechanisms based on a perfect de-
tection ability against the propagation. The defense mechanisms are classified into
two classes including proactive and reactive.

4.2.1 Propagation

Epidemiology

Starting from the epidemiology in human community, much research has been conducted
on modeling an epidemic. The first mathematical models appeared in the 18th century,
but modern models were essentially developed in the middle of the 20th century by
different scientists including Kermack et al. [41], Anderson et al. [3, 52]. While original
models did not study the spread according to the geographic distributions, more recent
epidemic models consider it in geographic topologies, such as an infinite grid [37]).

In each model, individuals are assumed to be in various states of the propagating
disease. Letters S, I,R, and E are usually used to denote these states. As being used
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in existing models, in this section, the letters are used to denote:

• S: Susceptible

• I: Infected

• R: Removed from the disease with immunity or death

• E : Exposed disease, in latent period

The original model proposed by Kermack and McKendrick is SIR model in which
an individual during the spread of disease could be consequently in three states:

S → I → R

It means that an individual firstly is susceptible (S), when it is infected by disease, it
changes to infected (I), and finally is removed (R) from the considered group by either
immunization or death. Later, the model is extended in two different directions in which
researchers consider the spread with:

1. The recovery without immunization (SIRS, SIS): The model is extended with
state S at the end representing for the transition from infected (I) or immune (R)
state to susceptible (S). In those models, after recovering from the infection, the
recovered individual finally changes to susceptible state, from which the disease
could infect him again.

2. An incubation period in which individual is invisibly infected by the disease (with
two models of SEIS, SEIR): In these models, the transition S → I is replaced
by S → E → I. It means that individual after getting the disease will be in a
latent period before the infection is exposed.

Computer viruses

In computer virus research, most of works aim to study either the epidemic threshold
based on existing model (SIS) or the exact behavior of virus and worm in the real
network.
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Epidemic threshold: Kephart and White [39] propose a birth-death model, which
is equivalent to SIS model, to study the spread of computer viruses in homogeneous
sparse graphs and conclude that a pandemic occurs only when the infection rate exceeds
a finite threshold that depends on the connectivity of the network (phase transition).
They also extend their model to allow doing a virus scan [40].

Later, many works improve the results on the birth-death model and compute new
epidemic thresholds. Pastor-Satorras and Vespignani [58, 59] look at the dynamics of
epidemics in power-law scale free networks for which they find the critical threshold.
Chakrabarti et al. [18] study an epidemic model in multiple of real computer networks
(network of email accounts, network of Autonomous Systems (AS)) and find that the
propagation threshold related to the eigenvalues of the adjacency matrix of the network.
Lately, Van Mieghem et al. use mean field approximation to transform from individual
random infection rates into an average infection rate [74, 75]. Their model is called
N -intertwined Markov chain.

Modeling actual virus/worms: In another direction, after the incident of Code
Red in 2001, a lot of research look for the most accurate model that reflects the spread
of different kinds of viruses in the Internet. They propose different models from the
scanning worms [72, 77, 80] to the event-based worms [78, 81]. Here, the question is
to predict, as accurately as possible, the evolution of the expected number of infected
entities in the network after the virus starts propagating.

Event-based worms: By the development of the Internet, many large-scale networks
of users (such as social network (e.g. Facebook, Twitter) or public email networks
(e.g. Yahoo! Mail, Google Mail)) are created. Such kinds of networks are exactly the
environment supporting the propagation of event-based worms. Therefore, the event-
based worm is gaining more and more interest of research [78,81]. The stochastic model
proposed in this work helps us studying the possibility to defense the propagation of an
event-based worm.

4.2.2 The defense against a propagation

In virus defense area, there are many works studying how to contain or quarantine the
virus or worms in different network environments [54,79,81]. The containment strategies
can be classified into two main classes; proactive or reactive. In the first one, some nodes
are initially immune to the virus and only other nodes can be infected. In the latter,
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all nodes are initially susceptible, but eventually any node may become immune if it
detects the virus (or receive some informations from other nodes).

Moore et al. [54] proposed a model for scanning worms in complete graph topology
and give a comparison between two reactive strategies; (1) blacklisting, upon detection
of an infection, a node adds the attacker into a blacklist; and (2) filtering-content, upon
detection of a virus, a node transmits its signature to all other nodes. They assume
that when a node detects an infection, the information (blacklisted IP address, or virus’
signature) will be available to all other nodes after some time. They study the efficiency
of both strategies when this delay varies. Under this model, filtering-content strategies
perform better than blacklisting strategies.

Later, Zhou et al. [79] studied the containment of worms in peer-to-peer network
when an infected node randomly selects some of its neighbors to attack. Among the
peers, some are proactively immune (called guardian nodes) and can detect any attack;
the others are always infected (no chance of detection). With this model, by simulation of
some classical peer-to-peer networks (Gnutella and KaZaA), they study the relationship
between the final fraction of infected nodes and the fraction of guardian nodes. Not
surprisingly, they found that choosing for guardians the nodes with a large number of
neighbors helps to contain the infection.

Zou et al. [81] analyze the existing models of computer viruses spread and propose an
event-based model to study the defense of email worms spread in three topologies power-
law, small-world, random graph. They first show that usual mathematical models largely
overestimate epidemic spreading speed, justifying the need of simulations. Moreover
they also introduce and study two proactive strategies: (1) random immunization in
which immune nodes are randomly chosen and (2) selective immunization where a given
percentage of the most connected nodes are immune.

In all these work, immune nodes can always detect virus attack successfully.

Flooding and Percolation This containment problem is equivalent to probabilistic
broadcast (or information flooding) albeit with an opposite objective. Sasson et al. [67]
and later Hu et al. [38] both study the question and show the relationship with the
theory of percolation [10].

4.2.3 A picture of existing propagation models

In summary, the propagation and countermeasure of propagation are studied in both
human and computer community. The researchers try to solve different problems and
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Human
Kermack et al. [41] SIR ✓ ✓

Bailey [6],
Anderson et al. [4]

SIS ✓ ✓ ✓

Anderson et al. [3, 52] SEIS ✓ ✓ ✓

Computer

Kephart & White [39,40],
Pastor-Satorras & Vespignani [58,59],
Chakrabarti et al. [18],
Van Mieghem et at. [74, 75]

SIS ✓ ✓ ✓

Moore et al. [54],
Zhou et al. [79],
Zou et al. [81]

SI ✓ ✓ ✓ Pf

This work SI ✓ ✓ ✓ Im

Table 4.1 Propagation models

Legend: Pf denotes a perfect virus detection. Im denotes an imperfect virus detection

questions related to the epidemic threshold, modeling real worms or viruses, and some
countermeasure against the spread of virus. Table 4.1 provides the overview of this line
of research according to two points of view:

• State transition is the evolution of the state of a member of network during
a spread. In this point of view, the evolution is classified into (1) immediately
infection, (2) infection and recovery, (3) incubation time before really infection.

• Mechanism is the different factors of the problem that are studied. The mech-
anism aspect consists of propagation, detection and countermeasure based on the
detection. In the table, Pf denotes a perfect detection in which after some period,
all nodes or some nodes of network have ability that always detect virus correctly.
While Im denotes an imperfect detection, where all nodes can detect virus but the
detection is not always successful.
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All existing models are widely used in many research of infection propagation in a
long time. Each model is suitable for some specific diseases and problems. The choice
of model is decided by several questions that are summarized as follow:

Immune or not immune (SIR vs SIS and SIRS) Firstly, in human epidemiology,
Kermack and Mc.Kendrick propose SIR as a compartmental differential-equation model
that exactly reflects the state transition of individuals in the spread of many diseases
such as measles, mumps, rubella; where patient’s state changes from S → I → R.
In such kind of infectious disease, the patients either die or become immune with the
infection by a vaccine.

However, SIR does not reflect exactly some other disease such as flu, common cold
in which the patient after recovering from the infected state is not immune with the
disease. This problem is studied under SIS model by Bailey [6] and Anderson et al. [4].
In this model the patient after recover can be immediately affected by the same disease
(S → I → S). Besides, there is another modification called SIRS where an individual
will have a temporary immune period because of the medicine before being susceptible
again (S → I → R → S).

Incubation with SEIS, SEIR: Anderson and May [3,52] found that some parasites
need an incubation period in the hosts before really infected them. In this period, the
individual already has (exposes) the virus but has not yet been infected. The length of
incubation period is varied depending on the ecology of interactions between parasites
and hosts. Therefore, it is necessary to study separately the rate of which virus can locate
in a healthy individual (i.e. transition rate from susceptible to exposed (S → E)), and
then the rate of which virus can really infect a patient (i.e. the transition rate from
exposed to infected (E → I)).

However, unlike a biology virus, a computer virus does not require an incubation
period to infect the hosts, computer is immediately infected after a successful attack.
Therefore, models related to incubation (SEIS, SEIR) are not used in the research area
of computer viruses.

Recovery or non-recovery (SIS or SI): The main difference between different
models of computer virus spread is that if it includes recovery or not. Most of studies in
computer virus that include the recovery use the SIS model. It comes from the reason
that a computer is never completely immune with virus. Thus, SIR is not commonly
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used. On the other hand, with the research that do not study recovery, SI is used as a
simplified model of SIS and SIR. Normally, such research only study how far and how
fast a virus can propagate especially in the presence of virus detection [54,79,81].

Perfect or Imperfect detection: As mentioned in Section 4.2.2, most of existing
works that consider a chance of detecting the infection also study the countermeasure
against the propagation based on a perfect detection [54,79,81]. However, with a poly-
morphic (such as Sality [31]) or metamorphic virus, it may not be always possible to
detect the virus correctly. In this context, several detectors are introduced in [13,42,47].
We call imperfect detection the ability to detect a virus but not always successfully.

If we only have an imperfect detection, what should the network do to mitigate
a spread? We aims to study this question by varying the probability of detection.
Therefore, the proposed model in this work consists of (1) the spread of fault according
to SI model (without recovery mechanism) and (2) possible countermeasure based on
(3) an imperfect detection. One of the open directions of this research is to consider the
problem with the recovery mechanism (i.e. SIS model).

4.3 Model

As a normal distributed system, the network consists of a set of processes and a set of
communication channels. The computation procedure of each process, the properties
of communication channel and the execution of the whole network restrict the system
model defined in chapter 2.

Let G = (Π, Γ) be a (potentially infinite) connected undirected graph, where V is the
set of vertices (also called nodes), and Γ the set of edges. The graph G models a network,
in which node i represents a process and edge eij ∈ Γ represents a communication link
between the two processes i, j ∈ Π. For any node i ∈ Γ, let N [i] be its closed set of
neighbors (i.e. including i itself). By an abuse of notation, for any set S of nodes, let
N [S] be defined as N [S] = ⋃

i∈S
N [i].

Starting from round r = 0 the system evolves for an infinite number of rounds.
Initially, one node is infected by the virus. Then, in each round, the virus can propagate
from infected nodes to their neighbors by sending message in send/receive steps. After
receiving message, in compute step, node will change its state according to the two
probabilistic parameters. The detail of infection propagation is described in section
4.3.3.
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4.3.1 States of nodes

At anytime, a node is in one of the following states; susceptible, infected, killed, or
sane. The state of node i at the end of timeslot r is denoted by si(r) with si(r) ∈
{sus, inf , killed, sane}. The meaning of these states is explained below:

• Infected: a node which is infected with the virus.

• Killed: a deactivated node; it does not participate in the network anymore. De-
activation can be decided by itself or may be triggered by one of its neighbors.
Intuitively, a node decides to deactivate when it detects the infection in order to
mitigate the propagation.

• Susceptible: a node which is neither infected nor killed, but can still be infected in
the future. A susceptible node is either a neighbor of an infected node, or there
exists a path of susceptible nodes toward an infected node.

• Sane: a node which is neither infected nor killed, and has no risk of being infected
in the future. A sane node is isolated from all infected nodes.

The state si(r) of node i at the end of round r also corresponds to the state of i at
the beginning of round r + 1. Initially, only one node is infected and all other nodes are
susceptible.

The model does not consider recovery mechanisms; hence when a node is infected,
killed, or sane; it is a permanent state. At the end of an execution, there is no more
susceptible nodes. Either the entire system is infected, or it is partitioned by killed
nodes into infected and sane components. As stated in the introduction, the goal is to
contain the spread and possibly maximize the number of sane nodes.

4.3.2 States of edges

At any time, an edge is in one of the following two states; active or cut. The state of
edge e at the end of timeslot r is denoted by se(r) with se(r) ∈ {active, cut}.

An edge is considered cut, when one (or both) of its extremities decides to stop using
the corresponding communication link. Such unilateral decision (to cut a link) can be
taken when a node detects or suspects one of its neighbors to be contaminated by the
virus.

The state se(r) of edge e at the end of timeslot r also corresponds to the state of e

at the beginning of timeslot r + 1. Initially, all edges are active.
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4.3.3 Infection propagation

In the network, the worm can propagate from infected nodes to susceptible neighbors by
sending the message via active communication links. The contamination is probabilistic
and relies on two parameters p and q, respectively the infection probability and the de-
tection probability. Both parameters are uniform for all edges. The risk of contamination
of a susceptible node depends on its number of infected neighbors.

Single attack

When, at the beginning of a round r, a susceptible node j has only one infected neighbor
i connected via an active edge, the worm may propagate from i to j. Formally, there
can be a contamination from i to j if:

si(r − 1) = inf ∧ sj(r − 1) = sus ∧ seij
(r − 1) = active

When these conditions are satisfied, there is an attack from i to j which leads to an
infection, a detection, or a status quo:

• The attack is successful with probability p (where 0 ≤ p ≤ 1). In this case, the
node j becomes infected and sj(r) = inf .

• The attack is detected with probability q (where 0 ≤ q ≤ 1 − p). In this case,
the node j detects the attack; it does not become infected. Depending on the
containment strategy, the reaction will change. The node may decide (1) to sacrifice
itself (sj(r) = killed), (2) to cut the infectious link (seij

(r) = cut), or (3) to follow
a more complex strategy, as described later.

• The attack is neither successful nor detected with probability 1− p− q.

Multiple attacks

Multiple attacks can occur when a susceptible node j has more than a single infected
neighbors connected with active edges. In our model, the multiple attacks are considered
sequentially. Since the probabilities p and q are uniform for all edges, the order of attacks
is not relevant.

• If a given attack is successful, the subsequent attacks are not considered. The
targeted node becomes infected.
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• If a given attack is neither successful nor detected, this attack is ignored and the
subsequent attacks have to be considered.

• If an attack is detected, the consideration of subsequent attacks depends on the
containment strategy (countermeasure) followed by the targeted node:

– If it sacrifices itself, this sacrifice is prioritized compared to other attacks:
the subsequent attacks are not considered. The targeted node changes to the
killed state.

– If it does not sacrifice itself (for example, it only cut the link carrying the
attack): the subsequent attacks are considered. The targeted node may detect
other attacks and/or may become infected from another attack.

4.3.4 Countermeasures

This paper studies the possible actions that a susceptible node can take when it detects
an infectious attack. In the following, we call a detector a node that detects an attack.
We propose two families of strategies a detector can follow to mitigate the spread.

• Killing strategies (K-strategies): The detector decides to sacrifice itself by its de-
activation (i.e. it updates to the killed state). In some strategies, it may also
trigger the deactivation of some of its neighbors. The success of these additional
deactivations depends on the state of these neighbors; infected nodes ignore the
deactivation messages and remain in the infected state.

• Cutting strategies: The detector decides to cut the communication link carrying
the attack. In some strategies, it also tries to cut some other links by sending
link-removal messages to its neighbors. Similarly, these additional cuts depend on
the state of the neighbors.

4.3.5 Modeling event-based worms

The stochastic model proposed in this work can be used to model the event-based worms
propagated in the network of user accounts. This paragraph describes the propagating
procedure of email worms as an example. An email worm is sent from a malicious
account to all addresses in its mailing list as a message. Consider this message with a
recipient, this scam message can go across the scam filter, then is checked by a recipient
with a particular infection probability (p), whereas it is detected by the filter and a user
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with a detection probability (q). Whenever successfully attack an account, the email
worm retrieves all addresses in the mailing list of infected account and try to attack all
those addresses. The propagation is continuously occurred until either every account
in network is attacked at least once or a countermeasure is applied for all susceptible
accounts.

4.4 Containment strategies

This section describes the containment strategies that have been analyzed in this dis-
sertation.

4.4.1 Killing strategies

We propose a family of killing strategies that differ in the number of nodes that are
deactivated/killed. For all strategies, the detector deactivates itself, and in addition to
its own sacrifice, it tries to deactivate its neighbors up to a given hop count. The three
main strategies are K0-Hop, K1-Hop, and K2-Hop but it can easily be generalized up
to Kx-Hop as defined in Table 4.2.

Name List of deactivated vertices
K0-Hop detector only
K1-Hop detector and its 1-hop neighbors
K2-Hop detector, its 1-hop and 2-hop neighbors
Kx-Hop detector and all its neighbors up to x-hops

Table 4.2 Description of the killing strategies Kx-Hop

In order to deactivate its neighbors, the detector sends deactivation messages. The
behavior of a node receiving such a message depends on its current state:

• A susceptible node sacrifices itself as requested by the message, after having po-
tentially forwarded the message as requested by the strategy.

• An infected nodes ignores the message; it does not forward the message and does
not sacrifice itself.

• A deactivated node does not receive the message; it does not forward the message
and is already deactivated.
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The Figure 4.1 represents the three main killing strategies on a grid topology (for
simplicity). The green node detects the infection from the red node and tries to deacti-
vate all gray nodes. One should note that these deactivations are not always successful
(see example of Figure 4.2).

sus./sane node,

infected node,

detector node,

deact. node,

infection msg,

strategy msg.

(a) Strategy K0-Hop (b) Strategy K1-Hop (c) Strategy K2-Hop

Fig. 4.1 Representation (in a grid) of the three killing strategies

Figure 4.2 depicts a step-by-step execution of strategy K1-Hop in a 3 × 5 grid. An
infected node attacks its neighbors at time round r; the top neighbor detects the attack,
the right one becomes infected, and the left one is unaffected. Following strategy K1-
Hop, the top neighbor (detector) sends deactivation messages to its own neighbors and
deactivates itself; two of its neighbors (top and left) react accordingly, but the right
neighbor ignores it because it was infected in the meantime. In contrast, during time
round r + 2, a node deactivates itself after receiving both a deactivation and an infected
message. The execution continues until timeslot r + 4 when the network is partitioned
and the spread is contained.

We propose a family of cutting strategies that differ in the number of links that are
cut. For all strategies, the detector cuts the link carrying the infection. It also sends
messages to some of its neighbors to ask them to cut some of their links. The set of
links to be cut depends on the strategy and are the ones located near the infected node.
The main strategies are C0, C1, C2, and Cloc and are defined in Table 4.3.

4.4.2 Cutting strategies

To help understanding the (complex) formal definitions, we represent the main strategies
in Figure 4.3. The node I corresponds to the infected node and D to the detector. In
C0, the detector cuts only the link between I and D. In C1, the detector sends a message
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(a) round r − 1 (b) round r (c) round r + 1

(d) round r + 2 (e) round r + 3 (f) round r + 4

Fig. 4.2 Example of an execution of the strategy K1-Hop

Table 4.3 Description of the cutting strategies

Name Reaction of detector (node D) after infection (from node I)
C0 Cut the link carrying the infectiona

C1 Ask nodes from S1[I] = N [I] ∩N [D] to cut all links between them
C2 Ask nodes from S2[I] = N [S1[I]] ∩ N [D] to cut all links between

them
Cx Ask nodes from Sx[I] = N [Sx−1[I]] ∩ N [D] to cut links between

them
Cloc Ask all local neighborsb of D to cut links between them

aDefining S0 = {I} allow to describe C0 and C1 similarly to CX.
bi.e. the neighbors coming from the underlying unit-disk graph

to nodes A, B, G, and H since they are the common neighbors of I and D. In C2, the
detector sends additional messages to C and F since they are respectively neighbor of B
and G. In all strategies, including Cloc, the detector does not send a message to nodes
X, Y, or Z since they are not close to I.

There are two important notes about these strategies:

• Except C0, other strategies are meaningful only for the unit-disk and small-world
topologies. Indeed, in the grid, two adjacent nodes do not share any common
neighbor; therefore no additional edge will be cut and all strategies are equivalent
to C0

• We consider only cutting strategies where nodes receiving a cutting-request also
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Fig. 4.3 Representation of the main cutting strategies

cuts the link carrying the request. At first glance, this is not a useful property;
in Figure 4.3d, it seems (and it is) not relevant to cut links between D and E or
between D and F. However it is necessary to consider only strategies with this
restriction since otherwise the infected nodes could also send cutting-requests in
order to weaken the network.

4.4.3 Restriction of containment strategies

Containment strategies weaken the connectivity of a network by sacrificing the node and
cutting the communication links. Without any restriction, infected node can exploit to
weaken the healthy part of the network. Therefore, all strategies in this study are
defined with a restriction that upon receiving a killing/cutting message the receiver
must disconnect with the sender by killing itself or cutting its communication link to
the sender. By this restriction, the adversary cannot exploit the strategies because it
has nothing to gain from this because it only contributes in isolating the infected node
from the sane ones. This behavior is equivalent to allow the sane neighbor to detect an
attack with probability 1.
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4.5 Topologies

This dissertation considers to isolate the propagating fault in various theoretical graphs
including square torus, unit-disk graph, small-world, and scale-free graph. Among which,
square torus is a regular graph that allows to understand more easily behaviors of dif-
ferent strategies. Whereas, other three graphs are random topologies which are more
interesting from practical point of view. In particular, unit-disk graph represent to wire-
less sensor networks, while small-world and scale-free graphs are used to model different
types of social networks. We define below more precisely each of these graphs.

Regular square torus: We consider two-dimensional tori of size m × m, with m2

nodes. A torus corresponds to an undirected square grid where the left side is connected
to the right side and, similarly, the top and bottom sides are also connected. Contrary
to a grid, the torus exhibits a uniform structure “without sides.”

Unit-disk graph: We consider two-dimensional random unit-disk graphs UDG(n, x×
y). A set of n nodes are deployed uniformly randomly on an x× y rectangle area. There
is a communication link between two nodes if they are at Euclidean distance at most
1. Let ∆ be the average degree of a UDG(n, x × y), we use the notation GUDG(n, ∆)
to refer to a unit disk graph having average degree ∆. Parameters are chosen such that
the generated graphs are connected with high probability.

Small-world graph: We consider small-world graphs that are generated from unit-
disk graphs. Given a unit-disk graph GUDG(n, ∆), we add ℓ random edges for each node.
These additional edges are chosen uniformly randomly. We use the notation SW (n, ∆, ℓ)
to represent such generated small-world.

Beside normal properties of a graph (e.g. degree, diameter), in this research, we also
concern on another characteristic of graphs that is discussed in the following part.

4.5.1 Locality of edges
Given graph G(Π, Γ):

For any node i, j ∈ Π, let N [i]j be the set of neighbors of i excluding node j, and
dG(i, j) be the hop distance between i and j in graph G, where d(i, j) = ∞ if i and j

are not in the same connected component.
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For any subset S of Π and any node i ∈ Π, let dG(i, S) be the smallest hop distance
between i and an arbitrary node in set S in graph G, dG(i, S) = ∞ if S is empty. We
call dG(i, S) distance from i to set of nodes S in graph G.

∀i ∈ Π,∀S ⊂ Π, dG(i, S) =

min
v∈S

(dG(i, v))if S ̸= ∅

∞ if S = ∅

Locality The locality property of a particular edge is defined by its effect to the
distances between a node and the set of neighbors of the other one. Let G \ eij denote
the graph created from G by removing the edge between i and j (if it exists). Consider
an arbitrary edge eij ∈ Γ that connects two nodes i and j.

• eij is a local edge when the existence of eij does not affect to the smallest distance
between i (respectively j) and an arbitrary other neighbor of j (respectively i).

(dG(j, N [i]j) = dG\eij
(j, N [i]j) ∧ dG(i, N [j]i) = dG\eij

(i, N [j]i))

• eij is a long edge when:

(dG(j, N [i]j) < dG\eij
(j, N [i]j) ∨ dG(i, N [j]i) < dG\eij

(i, N [j]i))
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(b) Long edges added into unit disk graph

Fig. 4.4 Local edge and long edge

Figure 4.4 gives two examples of long-edges and local-edges in two basic graphs
including grid and unit-disk graph. Let us consider neighbors of vertex O in figure 4.4a,
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eOX , eOY are long-edges because removing eOX increases the shortest distance between X

and a neighbor of O from 2 to 5. Similarly, removing eOY increases the shortest distance
between X and a neighbor of O from 2 to 4. Other edges, including eOA, eOB, eOC , eOD,
are local edges. In the same way of explanation, in figure 4.4b, eOX , eOY are long-edges;
while eOA, eOB, . . . , eOI are local edges.

Table 4.4 Degree of long-edges of theoretical graphs

Graph Degree of long-edges (∆ℓ)
Square torus 0

Unit-disk graph UDG(n, ∆) 0
Small-world SW (n, ∆, ℓ) 2ℓ

Degree of long-edges: Given a graph G(Π, Γ), let ∆ℓ be the degree of long-edges in
a graph. ∆ℓ is calculated by the average number of long-edge neighbors of a node. A
given graph G is a locality graph if ∆ℓ ≃ 0. Whereas, it is called a long-edges graph
if ∆ℓ ≥ 1.

Table 4.4 gives the degree of long-edges of some basic theoretical graph defined in
this section (Section 6.1). According to the definition, square torus and unit-disk graph
are locality topologies, and small-world is a long-edge topology.

The degree of long-edges is maybe a good criterion that classifies the graphs into
either possibility or impossibility situation to isolate the propagation and it is worth to
investigate the question.
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Chapter 5

Mitigating Propagating Fault in
Basic Networks

The purpose of simulation experiments is to understand the
behavior of the system or evaluate strategies for the

operation of the system.
— Encyclopedia of Computer Science,

Simulation Article

This chapter provides the extensive simulation result and analysis on three classical
graph topologies; square torus, unit-disk graph, and one kind of small-worlds.

We wrote a discrete simulation in C++ to study our containment strategies. We
measure the number of infected, sacrificed, and sane nodes at the end of the spread.
The number of nodes varies from 100 to 10, 000. For the two random topologies, other
parameters (density, number of long links) also vary. The probability of infection p and
the probability of detection q are changed from 0 to 1 by 0.01 steps. The results are
stated at the 95% confidence interval level for absolute value. In the critical area of the
phase transition, we repeat the simulation until the confidence interval is smaller than
2% of the value.

5.1 In the torus

We study first the simplest killing strategy K0-Hop and then compare the performance
of other strategies.

5.1.1 Strategy K0-Hop

The main results about K0-Hop are summarized on Figure 5.1. Both pictures represent
the number of sane nodes at the end of the propagation.
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(a) Torus 100× 100 (b) Different torus size (with
q = 1− p)

Fig. 5.1 Strategy K0-Hop – Number of sane nodes

Existence of a phase transition

Figure 5.1a shows the evolution of the number of sane nodes in the 100×100 torus when
the probabilities p and q of infection and detection vary.1 The lighter the color is, the
more sane nodes remain at the end of the simulation. As one could expect, the number
of sane nodes increases when the probability of detection increases, and it decreases
when the probability of infection increases.

Less expectedly, there are two clearly delimited regions; (1) the yellow region where
almost all nodes are sane (i.e. very few infected or killed nodes) and (2) the black one
where very few nodes are sane (i.e. mostly infected or killed nodes). The clear border
indicates the existence of a phase transition. This border between the two regions
consists in a line passing through the origin; it means that the transition occurs at
a fixed ratio p

q
. Let ρ0 be this ratio. In order to analyze more precisely this phase

transition, we study the case when q = p − 1 (corresponding to the hypotenuse of the
triangle where the transition is larger).

Effect of the size of the torus on the phase transition

Figure 5.1b shows the evolution of the number of sane nodes for different sizes of toruses
when the probability of infection vary. For all sizes of the system, the transition from a
sane network to an infected network occurs at the same probability of infection, which
is between 0.5 and 0.6. We conclude that the size of the torus has very little effect on

1The unusual triangular shape comes from the condition p + q ≤ 1.
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the phase transition.

Relation to the percolation theory

The value of the critical probability is not surprising since it corresponds to the site
percolation threshold of the square lattice (grid). Indeed, there is an intuitive mapping
from our strategy K0-Hop to the percolation theory. In our model, when q = 1 − p, p

corresponds to the probability that a node with at least one infected neighbor becomes
infected while 1− p corresponds to the probability that this same node sacrifices itself.
Using percolation terminology, this means that the node has probability p of being open
and 1−p of being closed. Percolation theory analyzes the probability that there exists a
“large” connected component of open nodes which, in our model, corresponds to a large
connected component of infected nodes.

Therefore, it is consistent that the phase transition occurs just below p = 0.6 since
the site percolation threshold for the grid has been experimentally calculated to be
θ ≃ 0.593. As mentioned in the introduction, the same behavior appears in probabilistic
flooding protocol where a node decides to forward a message with a fixed probability.

Conclusion 1 For the strategy K0-Hop (and it remains true for other strategies), the
efficiency depends mostly on the ratio p

q
. The exact values of probabilities p and q are

not relevant.

Conclusion 2 The strategy K0-hop can contain efficiently the propagation of a virus
in a square torus provided that the probability of successful infection is less than the per-
colation threshold ρ0 ≃ 0.59. This threshold does not depend on the size of the network.

5.1.2 Other killing strategies

Figure 5.2a and 5.2b show the evolution of the number of sane nodes in the 100 × 100
torus for K1-Hop and K2-Hop when the probabilities of infection and detection vary.
As for K0-Hop, we observe a phase transition which roughly occurs at a fixed ratio p

q
.

Let ρ1 and ρ2 be these ratios.

Shift of the phase transition

Compared to K0-Hop, the surface of the yellow region (few of infected nodes) increases
with K1-Hop and K2-Hop. Said differently, ratios are ordered such that ρ0 < ρ1 < ρ2. It
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(a) Strategy K1-Hop (b) Strategy K2-Hop

Fig. 5.2 Number of sane nodes in the 100× 100 torus

means that killing more nodes mitigate the spread more efficiently when the probability
of infection increases.

Figure 5.3 shows the comparison of K0-Hop, K1-Hop, and K2-Hop in the 100× 100
torus when q = 1 − p. It confirms the previous observation: there is clearly a phase
transition for each strategy, but they do not occur at the same probabilities. Sacrificing
more nodes results in a shift of the critical probability of the phase transition to around
0.7 for K1-Hop and 0.75 for K2-Hop, when compared to 0.59 for the strategy K0-Hop.

Fig. 5.3 Comparison of K0-Hop, K1-Hop, K2-Hop – Number of sane nodes

Conclusion 3 All killing strategies can contain the propagation of a virus in a square
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torus provided that the probability of successful infection is less than a certain thresh-
old.These thresholds increase with the number of killed nodes. However killing many
nodes is not always the best strategy; when the probability of propagation is low, killing
many nodes is counterproductive, especially for a small torus since there remain few
sane nodes.

5.1.3 Cutting strategy C0

Fig. 5.4 Comparison of K0-Hop, C0 – Size of the LCC of sane nodes

To analyze the efficiency of cutting strategies, we need to introduce a new metric.
Counting the number of sane nodes is not relevant. Indeed the trivial strategy “cut-all-
links” would be optimal under this metric since all nodes would be immediately isolated
(and sane). Obviously, this strategy should not be considered as efficient. Therefore,
instead of counting the number of sane nodes, we measure the size of the Largest Con-
nected Component (LCC) of sane nodes.

Figure 5.4 shows the evolution of the size of this largest component for strategies
K0-Hop and C0. Similarly to killing strategies, we observe a threshold after which the
cutting strategy C0 does not contain the propagation anymore. The transition occurs
when the probability of infection is around 0.5. Again, it is possible to relate this value
with results from the percolation theory; it corresponds exactly to the bond percolation
threshold of the square lattice.2

2In bond percolation, each edge has a probability of being open or closed. Contrarily to the site
percolation threshold, the value of the bond percolation threshold is known exactly to be 0.5 for the
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Globally, the strategy C0 is less efficient than K0-Hop (and implicitly K1-Hop and
K2-Hop) since its threshold is lower. Nevertheless, for some very specific cases, the
cutting strategy performs slightly better. When the probability of infection p is very
low, there is a small advantage to use C0 instead of K0-Hop. In these situations, C0
avoids killing the nodes that detects the infection. However since the probability of
detection is high, the propagation stops quickly and therefore the number of spared
nodes is quite small.

Conclusion 4 The cutting strategy C0 can contain the propagation in the square torus,
but is less efficient than any killing strategy. There is only a small advantage to use C0
when the probability of infection is very low.

5.2 In unit-disk graphs

Contrary to the torus, the unit-disk graphs are randomly generated. We choose the
parameters in order to guarantee the connectivity of the network with high probability.
Under this constraint, we generate random graphs with average degree of 8 or 10. Since
results are the same in both cases, we present the figures only for the average degree of
10.

Killing strategies

Figure 5.5a summarizes the simulations of killing strategies in the unit-disk graph
GUDG(10000, 10). We observe results that are similar to the ones obtained for the torus.
Each strategy can contain the propagation until a certain probability of infection. There
exists also a clear phase transition and a threshold after which a given strategy becomes
inefficient. As for the square torus, the values of these thresholds are higher for strategies
that kill more nodes.

Cutting strategies

Figure 5.5a summarizes the simulations of cutting strategies in the unit-disk graph
GUDG(10000, 10). C0 and C1 give the worse performances than K0-Hop. Other an-
alyzed cutting strategies give similar performances. They are better than K0-Hop but
worse than K1-Hop. As for the torus, there is no benefit here to use cutting strategies
instead of killing strategies; they globally perform less efficiently.
square lattice (grid).

70



5.3 In small-world networks

(a) Killing strategies and Cloc (b) Cx and Cloc

Fig. 5.5 Comparison of all strategies in the unit disk graph GUDG(10000, 10)

Conclusion 5 The results for the unit disk graphs are similar to those obtained for the
square torus. More generally, we can expect that it will be the same for all locality-based
topologies.

5.3 In small-world networks

Simulation parameters We study the effects of different strategies on the Small-
world graph defined in Section 6.1 to see how the long-links change the strength of the
propagation and the strategies to isolate propagation. Based on the existing unit-disk
graphs, we vary the number of long edges for each node. The generated small-world
graphs are SW (10000, 8, ℓ), ℓ = 1..6, 8 and SW (10000, 10, ℓ), ℓ = 1..5, 10.

The long links reduce the average diameter of network from 80 in GUDG(10000, 10)
to 7 in SW (10000, 10, 1). Moreover, ℓ long edges added for each node of initial unit-disk
graph increases 2ℓ the average degree of network.

The lack of efficient strategy

The figures 5.6a, 5.6b, 5.6c show the simulation results of K0-Hop, K1-Hop and K2-
Hop respectively in unit-disk graph GUDG(10000, 10) and different small-world graphs
SW (10000, 10, ℓ), where ℓ = 1..5. When long edges are added into unit-disk graph,
the phase transitions of Killing strategies K0-Hop, K1-Hop, K2-Hop are significantly
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5.3 In small-world networks

shifted to the left. We also make the simulation for SW (10000, 8ℓ), where ℓ = 1..6, 8,
the result is similar to figures above.

(a) K0-Hop in Small-world (b) K1-Hop in Small-world

(c) K2-Hop in Small-world

Fig. 5.6 The difference of killing strategies between Unit-disk graph and Small-world
graph

The simulation results confirm the theorem in 6.4 that no strategies can mitigate the
propagation when the probability increases more than 0.2.

Conclusion 6 Contrary to the unit-disk graph and torus, when the infection probability
greater than 0.18, no killing strategy introduced in section 4.4.1 can contain the infection.

Cutting local-edges is better than killing

On the other point of view, because of the small average diameter of small-world graph,
the number of killed nodes in each round is a big fraction of the total number of nodes
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5.3 In small-world networks

in network. When the infection probability is small, for every attack, a node has higher
chance to detect than to be infected. Another question is arisen that whether it is
interesting to save some neighbors of detector from deactivation.

Besides the cutting strategies introduced in section 4.4.2, strategy Kloc using 2-hop
neighborhood information to kill all local neighbors and keep long-edge neighbors alive
is considered. With 2-hop neighborhood information, each node knows all neighbors of
its 1-hop neighbors.

(a) Cx, Cloc in SW (10000, 10, 1) (b) Cx, Cloc in SW (10000, 10, 3)

(c) K-strategies and Cloc in SW (10000, 10, 1) (d) K-strategies and Cloc in SW (10000, 10, 3)

Fig. 5.7 The comparison between K0-Hop, K1-Hop, Kloc and Cloc in small-world

Figures 5.7a and 5.7b show the simulation results of cutting strategies in two small-
world graphs SW (10000, 10, 1) and SW (10000, 10, 3) respectively. We can see that the
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5.4 Summary of simulation results

curve of Cloc is always the last in the right side and the least sloping when compared
with other cutting strategies.

Figures 5.7c and 5.7d show the comparison between killing strategies K0-Hop, K1-
Hop, K2-Hop, Kloc and Cloc small-world graphs SW (10000, 10, 1) and SW (10000, 10, 3)
respectively. We can see that, in both graphs, Cloc has less sloping curve than the other
strategies and its curve also in the right side of other curves. The difference between Cloc

and killing strategies in SW (10000, 10, 3) is more significant than in SW (10000, 10, 1).
While Kloc does not bring any benefit than other killing strategies.

It means that in small-world:

• All local edges should be cut to have the most effective performance in mitigating
the propagation among the cutting strategies.

• The cutting strategy Cloc significantly improves LCC−sane of the network. Con-
sequently, keeping the detectors and the long-edges that connects detectors with
other components except the one having infected nodes help to slowdown the phase
transition.

• If there are more long edges on the top of initial unit-disk graph, the improvement
of cutting strategy Cloc is more significant.

Conclusion 7 When the infection probability is small, cutting all local edges, keeping
detector and all long edges from detector active (except infection edges) by using 2-hop
neighborhood information helps the small-world graph to improve the performance on
LCC−sane especially when the number of long-edges is large.

5.4 Summary of simulation results

We have studied the propagation of a virus in three kinds of graphs (square torus, unit
disk, and small-world) and how local strategies can help contain this propagation.

After verifying the existence of a threshold and a phase transition for all strategies,
we observe that the choice of a strategy introduces a shift of that threshold.

In particular, for the two locality-based topologies, we confirm the intuition that
sacrificing a larger number of nodes helps with containing the propagation, which is
achieved even for higher infection rates (or lower detection probabilities).

Surprisingly, we find that strategies based on cutting communication links are not
necessarily better since, although they may save more nodes (e.g. by not killing the
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detectors), it has no global effect as soon as the probability of infection is not very small
since the saved nodes can be infected from other neighbors.

We find that using some mitigation strategy is somewhat effective in the case of the
torus and the unit disk graph. The choice of strategy is important and killing strategies
are significantly more effective in these two kinds of graphs.

The result is not the same in small-world graphs. The fact that small-world graphs
have a very small diameter clearly plays against them, and little can be done to contain
the propagation. Containment can be achieved only for a small infection probability. In
that case, killing strategies are, in fact, particularly harmful, and only strategies using
some additional topology information about neighbors seem to provide any help, albeit
a small one.
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Chapter 6

Isolating Propagating Fault in
Infinite Graphs

Mathematical reasoning may be regarded rather
schematically as the exercise of a combination

of . . . intuition and ingenuity.
— Alan Turing (1912–1954)

Each potential infinite, if it is rigorously applicable
mathematically, presupposes an actual infinite.

— Georg Cantor (1845–1918)

In the previous chapter, the simulation results give us some brief conclusion about the
situation of mitigating a grid in some basic graphs. The result leads to some conclusion
that the critical threshold exists for torus. In square torus and unit-disk graphs, the
threshold is shifted into higher infection probability when the killing hop increases.
In contrary, in small-world graph, increasing killing hop is helpless because the small
diameter. The question is that whether we can formalize the observation. The limitation
on the size of network does not allow us to consider the extreme case of the spread and
also the countermeasures. To answer the question in formulation, we study the extreme
circumstance of both sides of the game in infinite graphs where there is no limitation on
the size of system.

6.1 Infinite graphs

This chapter considers the propagating faults in three types of infinite graphs: grid,
unit-disk graph, and small-world. While the grid is a regular topology, the other two
graphs are random topologies. It means that they do not denote a specific graph but
correspond to a family of graphs satisfying common properties.
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6.2 Equivalence between site percolation and strategy K0-Hop

Infinite grid The infinite grid corresponds to the graph G = (Π, Γ) where nodes are
located on the square lattice. Each node is connected to the nodes at distance one in
each of the four cardinal directions.Π = Z× Z

Γ = {ei,j | i ∈ Π ∧ j ∈ Π ∧ dist(i, j) = 1}

Infinite unit-disk graph For a given density d > 0, an infinite unit-disk graph
corresponds to a graph G = (Π, Γ) where nodes are deployed uniformly at random on
the two-dimensional plane (Γ ⊂ R × R) with mean density d. There exists an edge
between two nodes if and only if they are at Euclidean distance at most 1:

Γ = {ei,j | i ∈ Π ∧ j ∈ Π ∧ dist(i, j) ≤ 1}

For a given density d, let us define ∆(d) the average number of neighbors of a node.
When there is no ambiguity, we will simply use ∆.

Infinite small-world For a given density d > 0 and a given integer ℓ > 0, an infinite
small-world (denoted by SW (d, ℓ)) corresponds to a graph G = (Π, Γ) built on top of an
infinite unit-disk graph of density d in which each node is connecting to ℓ new neighbors
(uniformly randomly chosen). Since we consider undirected graphs, the average number
of neighbors of a node equals ∆ + 2ℓ.

6.2 Equivalence between site percolation and strat-
egy K0-Hop

In this section, we show that site percolation and strategy K0-Hop have the same thresh-
old, below which propagation is contained with high probability and above which it is
not. Thus, finding the value of the threshold for one is equivalent to finding the thresh-
old for the other. After defining the basic concepts and terminology of site percolation
and strategy K0, we prove the equivalence.

Site percolation Given an infinite graph and a probability p such that any site (i.e.,
node) is occupied with probability p (resp., empty with probability 1−p), let us consider
the following random variable Xp that equals 1 if there is an infinite connected component
of occupied nodes and 0 otherwise.
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6.2 Equivalence between site percolation and strategy K0-Hop

There exists a threshold τ (called the percolation threshold) such that [10,46]:
P[Xp = 1] = 0 if 0 ≤ p < τ

P[Xp = 1] = 1 if τ < p ≤ 1

In other words, with probability 1, there is an infinite connected component of occu-
pied nodes when the probability p is above τ . Respectively, there is no such component
when p is below the threshold. When p exactly equals the threshold, the situation is
unclear.

The value of the percolation threshold depends on the class of graph under consider-
ation. While it is known for some classes of graphs, even after half a century of research,
no exact value is known for the threshold in the case of the infinite square lattice (grid).
The currently best-known approximation for the grid is τ = 0.59274598(4) obtained
through Monte-Carlo simulation.

Instead of considering the existence of an infinite connected component, one may
consider a given occupied node x and the following random variable Zx

p that equals 1 if
x is in an infinite connected component of occupied nodes and 0 otherwise.

This new random variable is closely related to Xp previously defined. Indeed, if there
is no infinite connected component (P[Xp = 1] = 0), it is impossible for node x to belong
to such an infinite component (thus, P[Zx

p = 1] = 0). Conversely, if there is a non-zero
probability that x belongs to an infinite component (P[Zx

p = 1] > 0), then necessarily
there exists an infinite component (P[Xp = 1] = 1). Therefore:

P[Zx
p = 1] = 0 if 0 ≤ p < τ0

P[Zx
p = 1] > 0 if τ0 < p ≤ 1

Strategy K0-Hop Given a probability p of infection and an infinite graph, consider a
spread when K0-Hop is used as the containment strategy. Let Yp be a random variable
that equals to 1 if the spread never stops and 0 if the spread is contained. For the
two extreme values of p, the distribution of Yp is trivial: when p = 0, the spread is
immediately contained and P[Y0 = 1] = 0; conversely, when p = 1, all nodes are infected
and P[Y1 = 1] = 1. Moreover, by a simple coupling argument, it is also clear that the
function p 7→ P [Yp = 1] is non-decreasing. Therefore, there exists a unique threshold τ0

such that: P[Yp = 1] = 0 if 0 ≤ p < τ0

P[Yp = 1] > 0 if τ0 < p ≤ 1
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6.2 Equivalence between site percolation and strategy K0-Hop

strategy K0 site-percolation
infected node occupied node

killed node empty node
sane node — (no equivalent)

initial infected node any occupied node x

(a) Intuition link between K0 and site-percolation

(b) Strategy K0-Hop

x

(c) Site-percolation

Fig. 6.1 “Equivalence” between strategy K0-Hop and site-percolation model

It is important to note the inequality. Contrary to the random variable Xp associated
to site percolation, Yp does not “jump directly from 0 to 1”. In fact, Yp always equals
1 only for p = 1. For any probability of infection p strictly lower than one, there is a
non-zero probability that strategy K0-Hop contains the spread. Indeed, if all neighbors
of the initially infected node detect the infection, the propagation stops immediately.
This case happens with probability (1 − p)δ, where δ > 0 is the degree of the initial
node, and thus P[Yp = 1] ≤ 1− (1− p)δ.

Theorem 3 Site percolation and strategy K0 have the same thresholds: τ = τ0.

Proof: The proof consists in showing that Yp and Zx
p follow the same distribution for

any p and any occupied node x. To prove the claim, consider the following (intuitive)
link between both models in Table 6.1a.

With site percolation, all nodes are randomly set to the occupied state (with prob-
ability p) or to the empty state (with probability 1− p). With strategy K0-Hop, some
nodes are randomly set to the infected state (with probability p) or to the killed state
(with probability 1−p) , but some other nodes are not set in one of these states. Indeed,
any node that is neither an infected node, nor a neighbor of an infected node, remains
in a sane state (see Section 4.3).
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6.3 Propagation always contained in the infinite grid

However, sane nodes do not have any effect on the random variable Yp since they
are disconnected from the initially infected node. The value of Yp depends only on the
infected (red nodes on Figure 6.1b) and killed nodes (gray nodes): all infected nodes are
connected and therefore Yp reflects the infiniteness of this infected component.

With site percolation, for a given occupied vertex x, the same observation applies
to the random variable Zx

p . It depends only on the occupied nodes (black nodes on
Figure 6.1c) that are connected to x or the empty nodes (white nodes) that are around
these occupied nodes. Other nodes (light gray nodes) do not have any effect on Zx

p ; they
could be occupied or empty; it will not change the value of Zx

p .
Since (1) nodes are infected or occupied with the same probability p starting from

an initial infected node or an arbitrary occupied node x, and (2) Yp = Zx
p , it follows that

τ = τ0. �

Corollary 2 Given a graph G = (Π, Γ), finding the site percolation threshold and the
propagation threshold with strategy K0-Hop are equivalent.

6.3 Propagation always contained in the infinite grid

This sections proves that it is always possible to contain the propagation in an infinite
grid, provided that we use a killing strategy that sacrifices enough nodes (i.e., a strategy
Kh-Hop where h large enough). The proof is done by reduction to strategy K0-Hop
so that we can apply Theorem 3 and use the existence of a percolation threshold for a
specific topology.

6.3.1 Definitions and explanations

General idea of the proof Based on the infinite grid, we define the notion of super
nodes to encompass a squared subset of nodes. Super nodes are considered as infected,
killed, or sane depending on the states of their internal nodes. By choosing an appropri-
ate size for the super nodes and an adequate containment strategy, we can show that,
at the super node level, the propagation of the virus behaves similar to when strategy
K0-Hop is executed. From there, we can deduce that the infection is contained at the
super node level, which then implies containment at the lower level.

Super node Given a strictly positive integer h and the infinite grid G(Π, Γ) with
V = Z × Z, we partition the nodes into super nodes of size h. Each super node is a
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6.3 Propagation always contained in the infinite grid

subset of h2 nodes organized in a square of side h. The super node at column x and
row y, denoted g(x, y), corresponds to the following subset of V :

g(x, y) = {(hx + i, hy + j) | 0 ≤ i, j < h}

Similarly to nodes, super nodes may be infected, killed, or sane. We define a super
node as infected if all nodes in at least one of its sides are infected. Otherwise, we define
that a super node is killed or sane whether it contains killed node(s) or not.

Containment strategy Given a super nodes of size h, we study the strategy K2h-
Hop. We consider two additional assumptions compared to the definitions of Sections 4.3
and 4.4:

1. A killing strategy affects only nodes contained in the same super node as the
detector. Nodes do not send killing messages to neighbors belonging to different
super nodes.

2. Within a super node, strategy messages take precedence over infection messages.
It means that if, during a round, a susceptible node receives both an infection
message from an infected neighbor and a strategy message from another neighbor,
it always reacts according to the strategy message and sacrifices itself (after having
potentially forwarded killing messages).

The first assumption favors the propagation; it weakens the containment strategy and
helps the virus propagate and therefore has no impact on our result: if it is possible to
contain a propagation with this assumption, it is also possible to contain a propagation
without the assumption. It is used only for convenience of the proof. Conversely, the
second assumption favors the containment; it weakens the propagation of the virus and
is necessary for our proof. Indeed, with this assumption, it is guaranteed that inside a
super node, nodes on the sides cannot be attacked from internal nodes (see Lemma 6).

Figure 6.2 provides an example of infection with corresponding nodes and super
nodes. It is worth noting that, unlike what happens at node level, at the super node
level, an infection may be transmitted in “diagonal”: in the figure, the central super
node has infected the super node located at the lower left corner.

Small-Four Based on the previous observation, we introduce the notion of “Small
Four”. For any group of four super nodes arranged in a 2 × 2 grid, let us call “Small-
Four” the group of four normal nodes that connect these four super nodes by their
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sane node, infected node, killed node.

x

y

(a) at node level

x

y

(b) at super node level

Fig. 6.2 Example of infection

corners. In Figure 6.2a, the group of four nodes (0, 0), (0,−1), (−1, 0), (−1,−1) locates
in the small black square is an example of the “Small-Four” that connects the four super
nodes g(0, 0), g(0,−1), g(−1, 0), g(−1,−1).

Since an infection can be propagated via the diagonals, the infection in super nodes can
be seen as an infection in the lattice where every node has 8 neighbors. This lattice is
called Moore’s neighborhood [48]. In this section, the neighbors of a super node are the
neighbors according to Moore’s neighborhood and the neighbors of normal node are the
four neighbors in the default model (Von Neumann’s neighborhood).

6.3.2 Proof

Lemma 6 With an original infected node at (0, 0), at any time, in any side of any super
node, if a side node is infected then (1) this node is at a corner, or (2) one of its two
neighbors on this side was already infected in the previous round.

Proof: The Lemma is proved by induction on the round number. At time t = 0, (0, 0)
is an infected node in a side of g(0, 0) and it is a corner. At time t = 1, there are
four nodes could be infected (−1, 0), (0,−1), (0, 1) and (1, 0). Among these four nodes,
(−1, 0) and (0,−1) are corner nodes while (0, 1) and (1, 0) have infected neighbor (0, 0)
that is infected at previous round t = 0. Hence, the Lemma holds with t ≤ 1.
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6.3 Propagation always contained in the infinite grid

Assume that the claim is correct for any t < n− 1, we must prove that it holds for
t = n.

Without loss of generality, consider a newly infected side node vC = (hx, hy + j)
of super node g(x, y) at time t = n. With j = 0 ∨ j = h − 1, vC is a corner, the
claim holds. With 0 < j < h − 1, vC has four neighbors vB = (hx, hy + j − 1), vU =
(hx, hy + j + 1), vL = (hx − 1, hy + j) and vR = (hx + 1, hy + j) at the bottom, the
upper, the left and the right side respectively. We now prove that the infection cannot
come only from vL and vR.

vC

vU

vB

vL vR

vI

j
−

k
−

1

i

Fig. 6.3 An infected node in a side

If node vL is infected at time t = n − 1, according to the induction step, one of two
neighbors (hx − 1, hy + j − 1) and (hx − 1, hy + j + 1) of vL must be infected at
time t = n − 2. Assume that it is (hx − 1, hy + j + 1), then node vU is attacked by
(hx − 1, hy + j + 1) at time t = n − 1. Consequently, vU is either infected or killed
at time t = n − 1. If vU is killed at t = n − 1 then according to the assumption that
killing messages have priority over infection messages, vC is killed at time t = n. If vU

is infected, then the infection comes from both vL and vU .

If node vR is infected at time t = n− 1, then let vI = (hx + i, hy + k) be the first node
in super node g(x, y) that is infected from (hx + 1, hy + j). Let tI be the time when
vI is infected, we have tI < n − 1. Let us call the distances from vi to vc, vb, vu, vr are
dIC = i + |k − j|, dIB = i + |k − j + 1|, dIU = i + |k − j − 1|, dIR = |i − 1| + |k − j|
respectively. Moreover, vi must be in one of four sides of g(x, y):

• If i = 0, then dIR = 1 + |k − j|, while dIC = |k − j| < dIR. dIR is the smallest
latency for vR to be infected from vI , so vR is infected at time t ≥ tI + |k− j|+ 1.
Consider, the attack from vI to vC , dIC = |k − j| ≤ h,
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6.3 Propagation always contained in the infinite grid

If there is any detection by a node between vI and vC , by applying K2h-Hop, all
vC is either killed at time tI + |k− j| or it is killed or infected by an earlier attack
at time t < tI . Therefore, vC is either infected or killed before vR.

• If (i > 0 ∧ k ≤ j − 1), then dIR = dIB = i + j − k − 1 < dIC = i + j − k <

dIU = i + j − k + 1. In this case, it is the earliest time for vR to be infected
from vI is tI + dIR. Consider the state of vB according to the attack from vI ,
dIB = i + j − k − 1 ≤ h + h− 1 = 2h− 1,

– If there is any detection by a node having coordinates (hx+r, hy+s),∀r,∀s, 0 ≤
r ≤ i, k ≤ s ≤ j − 1, then by strategy K2h-Hop, vB is killed at time
tI + dIB = tI + dIR. This is because all nodes on the shortest path between
vI and vB are killed (there are always less than 2h such nodes).
It means that vB is killed at the same time or before vR is killed or infected.
Then, by the assumption that killing messages are faster than infection mes-
sages, vC is killed by a killing message from vB. A contradiction.

– If there no detection, then vB is infected at time tI +dIB = tI +dIR; the same
time as vR. Then, vC is infected by both vR and vB.

• If (i > 0 ∧ k ≥ j + 1), then dIR = dIU = i− j + k − 1 < dIC = i− j + k < dIB =
i− j + k + 1. Similar to the previous case, either vC is killed by a killing message
from vU or it is infected by both vR and vU .

• If (i > 0 ∧ k = j), then dIR = i − 1 < dIC = i < dIB = dIU = i + 1. In
this case, with 0 < j < h − 1, vI is a non-corner node in a side of g(x, y) and
vI = (hx+h−1, hy +j). vI is a side node infected at time ti < n−1. According to
the assumption of the induction step, one of the two neighbors (hx+h−1, hy+j−1)
and (hx + h− 1, hy + j + 1) must be infected at time ti − 1. A contradiction.

The claim holds for t = n, thus proving the induction. �

Corollary 3 Given a super node, a side node is only infected by external attacks starting
at corners. Other external attacks are irrelevant since they infect no sooner.

Proof: If a side node is infected, by Lemma 6, either it is a corner or one of its neighbors
on the same side is infected in the previous round. It implies that, with any non-corner
node on a side of a supper node, the attack from its neighbor on the same side occurs
always first. Recursively, we can deduce that the attack originates from a corner. �
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6.3 Propagation always contained in the infinite grid

Corollary 4 For any node of a super node, either (1) it is attacked by an attack origi-
nating at a corner or (2) it is killed.

Proof: According to Corollary 3, for any side node, it is only infected by external attacks
starting at a corner. Necessarily, for any non-side node, if it is not killed, it must be
attacked from an infection starting at a side node. Consequently, all nodes of a super
node are either attacked by an infection starting at corners or killed. �

Lemma 7 Except for the “Small-Four” containing the first infected node (0, 0), the first
infected node in a “Small-Four” must belong to an infected super node.

Proof: Consider the “Small-Four”, (0, 0), (0,−1), (−1, 0), (−1,−1), because the first in-
fected node is at (0, 0), the three direct super node neighbors (−1, 0), (0,−1), (−1,−1)
could be infected while super node g(0, 0) is not infected (i.e., no entire side of g(0, 0)
consists uniquely of infected nodes).

Consider any “Small-Four” other than the “Small-Four” discussed in the previous
case, and call it (hx, hy), (hx − 1, hy), (hx − 1, hy − 1), and (hx, hy − 1). Assume that
(hx, hy) is the first infected node among the four nodes. Because the three other nodes
are not infected, the infection must come from inside super node g(x, y). According to
Corollary 4, all nodes inside a super node must be attacked by an infection starting from
a corner, thus another corner node was infected. This means that, at least one side of
super node g(x, y) must consist entirely of infected nodes. Hence, g(x, y) is infected. �

Lemma 8 A super node may be infected only if it is a direct or diagonal neighbor of
g(0, 0) or of a super node infected previously. Moreover, in this situation, the probability
of being infected is bounded by 4ph.

Proof: A super node g(x, y) can only be firstly attacked at a corner (Corollary 3), let
this corner be (hx, hy). This means that the attack comes from one of its neighbors in
the “Small-Four” (hx− 1, hy), (hx− 1, hy − 1), (hx, hy − 1).

According to Lemma 7, one of the three neighbors of node (hx, hy) must belong to an
infected super node (or to g(0, 0)). Finally, g(x, y) must be attacked either from g(0, 0)
or from an infected super node from Moore’s neighborhood.

Let us recall that p is the probability that a normal node in the grid is infected. To
become infected, a super node must have one of its sides entirely infected. For a given
side, the probability that it becomes infected is bounded by ph since any of the h nodes
has at most a probability p of being infected. Since there are four sides, and even if the
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probabilities are not independent, for any super node, it is still possible to bound by 4ph

the probability of infection. �

Theorem 4 Given a virus spread with infection probability p, where 0 ≤ p < 1, there
exists always a killing strategy that contains the virus spread.

Proof: According to Lemma 8, only an infected super node can attack another super
node, so every infected super node is connected to the infected component.

Since every super node neighbor to the infected component has a bounded probability
to be infected, the infection spreads through super nodes can be seen as strategy K0 on
an infinite lattice with Moore’s neighborhood.

According to Theorem 3, percolation and strategy K0 are equivalent in the sense
that they have the same critical probability (or percolation threshold). According to
Malaz and Galam [48], there exists a percolation threshold in an infinite lattice with
Moore’s neighborhood. Hence, K0-Hop in an infinite lattice with Moore’s neighborhood
necessarily has the same threshold.

Let ρMoore
c be the percolation threshold in an infinite lattice with Moore’s neighbor-

hood.
Let h ∈ N be such that h > log(ρMoore

c /4)
log p

. The virus spreading with infection proba-
bility p against the K2h-Hop strategy can be seen as the propagation of virus via super
nodes of size h with probability ρ < 4ph < ρMoore

c against strategy K0-Hop.
In a model with super nodes of size h, the main connected component of the per-

colation with infection probability ρ < ρMoore
c is finite, therefore the virus propagation

with infection probability p is contained by strategy K2h-Hop in an infinite grid. �

6.4 Analysis for the infinite small-world networks

Theorem 5 Given a small-world graph SW (d, ℓ) and the infection probability p >√
(ℓ−1)2+2∆ℓ−(ℓ−1)

2∆ℓ
, there is no killing strategy such that propagation is contained with

probability 1.

Proof: According to the definition of small-world graphs given in Section 6.1, each
node SW (d, ℓ) is connected on average to ∆+2ℓ other nodes, decomposed into two sets:
(1) ∆ nodes are short-neighbors coming from the underlying unit-disk graph, and (2) (2ℓ)
nodes are long-neighbors, randomly selected. Long-neighbors are randomly chosen from
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6.5 Summary of propagation in infinite graphs

an infinite set, so these two sets intersect with probability 0. We construct the argument
based on infections that occur through long-neighbors.

Let us consider an arbitrary execution starting from an initial infected node n. As
any node, it has on average 2ℓ long-neighbors. Since each attack is independent, in
expectation, 2ℓp long-neighbors are infected during the first timeslot. These newly
infected node are “independent” (i.e. for any distance d < ∞, there is a probability 0
that any two of them are at Euclidean distance less than d). During the second timeslot,
each of these newly infected nodes infects on average (2ℓ−1)p of its long-neighbors, which
means that, on average, there are 2ℓp × (2ℓ − 1)p newly infected long-neighbors at the
end of the timeslot. The same behavior repeats forever, and the average number of
newly infected nodes increases when (2ℓ− 1)p > 1, which implies that the propagation
can not be contained if p > 1

2ℓ−1 .
We now refine the bound by also considering the possible infections of the long-

neighbors of short-neighbors. Indeed, in addition to the (2ℓ − 1)p “long-infections”,
a node infected from one of its long-neighbor also infects ∆p of its short-neighbors in
expectation. In turn, each of these short-neighbors infects 2ℓp of its long-neighbors in
expectation. Therefore, a node infected from one of its long-neighbor propagates the
virus an expected number of (2ℓ−1)p+∆p×2ℓp different nodes. Solving the inequality
2p(ℓ− 1) + 2∆p2ℓ > 1 gives us

p >

√
(ℓ− 1)2 + 2∆ℓ− (ℓ− 1)

2∆ℓ
.

Hence, if p >

√
(ℓ−1)2+2∆ℓ−(ℓ−1)

2∆ℓ
, it is impossible, with probability 1, to contain the

propagation of the virus. Since the killing strategy is irrelevant to the argument, this
proves the theorem. �

6.5 Summary of propagation in infinite graphs

In this chapter, by considering the problem in some infinite graphs, we confirm and for-
malize the observations that are risen in chapter 5 from the simulation. Firstly, we prove
the equivalence between site percolation and strategy K0-hop in the arbitrary infinite
graphs. Secondly, we prove that the spread of infection is always possible to contain
in an infinite grid, provided that we use a killing strategy that sacrifices enough nodes.
Finally, we prove that there is no killing strategy that always contain the propagation
when infection probability p >

√
(ℓ−1)2+2∆ℓ−(ℓ−1)

2∆ℓ
.
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6.5 Summary of propagation in infinite graphs

The interesting question arises that what is the situation of the two-side game in a
real networks such as the Internet, email network and social network? Is it close to the
regular locality graph (like grid or unit-disk graph) or close to the small diameter graph
with long-edges that are not created by locality?
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Chapter 7

An application in the Internet

It is the weight, not numbers of experiments that is to be
regarded.

— Isaac Newton (1643–1727)

Nowadays, our society is built upon many kinds of overlay networks such as social
networks, e-banking systems, health care sensor networks, ubiquitous network and cloud-
based systems. All of these networks are built on the top of the Internet’s infrastructure.
In itself, the Internet turns out to be vulnerable to attacks because it facilitates an
infection starting from some particular location to quickly propagate and corrupt the
whole network. Moreover, when a mechanism can attack different types of networks, due
to their heterogeneity, recovering from the attack is more difficult. So, planetary-scale
systems based on the Internet are vulnerable, not only because of their infrastructure,
but also because of their heterogeneity and complexity.

Following the increasing impact of computer into the human life, many self-replicating
computer viruses have been created. Among them, worms are a very serious threat to
Internet security. For example, the CodeRed [53] and Nimda incidents of 2001 pointed
out how vulnerable our Internet can be and how fast a worm can propagate through
it. More recently, the Heartbleed issue in OpenSSH introduces an even more serious
threat because many kinds of devices, servers, and clients relied on vulnerable versions
of this protocol. At the scale of nations, cyber-attacks become a weapon in warfare
between different countries. From the viewpoint of companies, an infection occurring at
a world-scale of a big company can threaten or at least affect millions (or even billions)
of users. The more heterogeneous and complex a system is, the more difficult it is to
defend it against virus attacks and to prevent cascading failures.

An interesting question that arises how the two-side probabilistic game between
propagation vs countermeasure is in the realistic network like the Internet. Is whether
there exists a “last-line-of-defense” mechanism to contain the virus propagation at a
local scale, provided that failed attack attempts can be detected, but not necessarily
with perfect accuracy? And, if it is, then under what conditions are required?
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7.1 The Caida topology

This chapter introduces the experiment with a real trace data of the Internet topology
collected by Caida project [15].

7.1 The Caida topology

This section focuses on a real network given by the IPv4 Internet topology collected by
CAIDA project. We consider the network topology at router level in which a node in
the network represents to a router on the Internet.

The topology consists of about 3 million IPv4 routers. Among them, the highest
node degree is about 13 thousand, and there are more than 55 thousand nodes that
have a degree higher than 50. We call these nodes “high-degree” nodes. On the other
hand, there are more than 2 million nodes with degree lower than 3, among which more
than 1.5 million nodes have degree 1. We designate nodes having degree smaller than 3
as “low-degree” nodes.

7.2 The experiment

7.2.1 Simulation settings

With the discrete simulation written in C++ we study our containment strategies. We
measure the number of infected, sacrificed, and sane nodes at the end of the spread.
Because of the wide variance of the node degree, we analyze the difference when the
infection starting from a ‘low-degree’ node and from a ‘high-degree’ node.

The probability of infection p and the probability of detection q are changed from
0 to 1 by 0.01 steps. The results are stated at the 95% confidence interval level for
absolute value.

7.2.2 Choice of a metric

Figure 7.1a shows the performance of strategy K1-Hop in term of the number of sane
nodes and the largest connected component of sane nodes (LCC-sane) at the end of
the propagation starting from a ‘high-degree’ node. The number of sane nodes is much
greater than the largest connected component. It means that there are many small
independent components as islands when the number of ‘low-degree’ nodes is large.
There are several reasons. Firstly, with the large number of low-degree nodes, there is a
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Fig. 7.1 The comparison of metrics when infection starts from a ‘high-degree’ node

high probability to have the case in which the deactivation of a high-degree node makes
all low-degree neighbors that are still alive but disconnected to each other. Secondly,
when there is a ‘high-degree’ infected node connecting to many nodes having degree 1,
the probability of any of its neighbor to be infected linearly depends on the infection
probability of each attack. Therefore, the number of sane nodes is not an exact metric to
evaluate the performance of strategies at the end of the virus propagation. And we use
the largest connected component of sane nodes (LCC-sane) to analyze the performance
of different containment strategies.

Moreover, Figure 7.1b, 7.1c show the wide variant distribution of ‘LCC-sane’. Hence,
the average of ‘LCC-sane’ does not reflect correctly the performance of strategy. The
greater number of hops are deactivated, the wider variance of data are. In order to
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Fig. 7.2 The comparison of different strategies on LCC-sane

increase the reliability of the system evaluation, we consider the 90th-percentile and
95th-percentile of data generated by 40, 000 times of running the simulation. The value
of each percentile is stated at the level of 95% confidence interval.

7.3 The effect of countermeasures

Figure 7.2 presents the performance comparison of four strategies K0-Hop, K1-Hop,
K2-Hop and C0 against the virus propagation in Caida in both cases when the infection
starts from a “low-degree” and “high-degree” node. According to that Figure, the only
place having a large confidence interval is at the epidemic threshold.
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7.3 The effect of countermeasures

An epidemic threshold exists

We can see that, in both cases, there is an epidemic threshold where “LCC-sane” de-
creases sharply as the infection probability increases. The threshold is however less clear
when the infection starts from a “high-degree” node. The reason is that as soon as there
are some infected nodes and detectors; a large number of nodes and links will be killed
or cut by the containment strategy. Therefore, when the infection probability is small,
the infection starting from a “low-degree” node is less harmful than the infection start-
ing from a “high-degree” node. However, when the infection probability increases, the
consequences in both cases are similar.

Cutting strategies are ineffective in containing the spread

In other works [54, 79, 81], the most common strategy is used to mitigate virus prop-
agation are blacklisting or cutting communication links with infected nodes, which is
similar to strategy C0 in this paper. Surprisingly, it is not effective to contain the virus
propagation. In other words, blacklisting is not enough to prevent the propagation of
virus. Deactivating the detector and its neighbors is more effective than cutting the link
carrying the infection.

Killing more than 1-Hop is pointless

In contrast, due to the small diameter of Caida, increasing the number of killed hop up
to 2 does not bring benefit in isolating the virus spread. In fact, it kills too much nodes of
the network. Figure 7.2b shows that when the infection starts from “high-degree” node,
K2-Hop strategy kills more than a half of network nodes even the infection probability
is around 0. When the infection starts from “low-degree” node, according to Figure 7.2a,
the number of killed nodes is reduced but still a lot when compared with other strategies.
Therefore, in the Internet, we can strictly limit the killing hop less than or equal to 1 in
order to prevent the attack exploiting the killing strategy to do DoS attack.

Killing detector itself effective with small infection probability

When the infection probability is small, by saving a larger connected component at the
end of spread, strategy K0-Hop is better than cutting strategies and K1-Hop. However,
the difference between K0-Hop and K1-Hop is not so significant as the different with
cutting strategies.
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7.4 Summary of propagation in the Internet

Killing 1-Hop neighbors is effective with greater infection probability

Figure 7.2 shows that, from the infection probability 0.2 with the infection starting “low-
degree” node and 0.05 with the infection starting from “high-degree” node, the “LCC-
sane” of K0-Hop sharply decreases while K1-Hop can still maintain a larger connected
component of sane nodes. Interestingly, the difference between two strategies is more
significant when the infection starts from the “low-degree” node. It means that K1-Hop
strategy helps to mitigate the virus propagation by shifting the propagation threshold
to higher infection probability.
Therefore, the benefit of using the K1-Hop strategy is clearer than the benefit of using
the K0-Hop strategy. The advantage of K1-Hop is less significant when we consider an
infection starting from a “high-degree” node with 95th percentile of data.

7.4 Summary of propagation in the Internet

We have studied (1) how last-line-of-defense strategies can contain the spread of a virus
against an imperfect virus detector over Caida, and (2) how local strategies can help
contain this propagation to prevent cascading failures.

After verifying the existence of a threshold and a phase transition for all strategies,
we analyzed the effect of different factors on the choice of an effective strategy to shift
that critical threshold to higher infection rate.

Surprisingly, we find that cutting communication links with infected nodes are not
effective to isolate the infection. It is better to deactivate the node that detects the
attack and possibly also its direct neighbors (K1hop). On the other hand, killing more
than 1-hop neighbors from the detector is pointless because of the small diameter of
the Caida topology. Killing up to 1-hop neighbors of detector helps mitigate the virus
spread. In general, K1-Hop brings more significant benefit than K0-Hop.

The starting point of an infection seriously affects the chance to mitigate it. An
infection starting from a “low-degree” node is less harmful to the network than one
starting from a “high-degree” node when infection probability is small. However, when
the infection probability increases, the effects are similar in both cases.

Containment can be achieved only for a small infection probability. Therefore, to be
robust, a system must necessarily be well constructed in order to increase the detection
ability of virus. After all, the mitigating strategies based on deactivating neighbors
around the detector node should be considered as a last line of defense, to tolerate the
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7.4 Summary of propagation in the Internet

failure caused by the incompetence of the virus detection.
The tolerance to incompetence fault of a virus attack is concerned when several

classes of smart viruses in real systems are introduced. These viruses have a wide range
of different attack mechanisms or can always evolve to change the virus signature (such
as polymorphic virus) such that the virus detector becomes unreliable quickly. Our
model aims to model such kinds of viruses. When the virus detection cannot always
detect the signature, it leads to a probabilistic model of infection and detection. With
the virus having the wide range of attack, the infection probability can be bounded by
the successful rate of the strongest attack. In reality, we can use multiple detection
mechanisms at different defense layers, the first layer is the weakest mechanism, and
the final layer is the strongest mechanism. When a virus can attack the weaker layer,
the stronger inner layer that detects the attack can know the strength of the virus.
Therefore, detector node will decide whether any strategy should be used to mitigate
that virus.
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Chapter 8

Conclusion

There is nothing permanent except change.

— Heraclitus (525–475 B.C.)

8.1 Research assessment

This dissertation includes the three following main contributions. The first contribution
is the definition of dynamicity property of fault in distributed systems which provides
the formal approach to study the change of the set of failed processes in system ac-
cording to execution time. The second contribution is a fairer and more general model
of Intermittent Malicious Fault created by malicious mobile agents as well as the tight
bound on the number of faulty processes in this model to solve the agreement problem.
The third contribution is the two-side probabilistic games between infection propagation
against the countermeasure based on the imperfect infection detector. Some fundamen-
tal questions of the game are answered by both simulation and mathematical analysis,
some other interesting questions are still open for the future research.

8.1.1 Dynamicity of fault

The change of the set of failed processes is systematically defined with three levels in-
cluding Permanent fault, Intermittent fault, and Propagating fault. The permanent fault
includes most of traditional failure models in term of both processes and communication
channel failure. The Intermittent fault is a natural form of failure in communication
channel.

Malicious mobile agent We model the malicious fault occurring in process as the
malicious mobile agent. The goal is to separate the logical fault and the process. The
fault with malicious agent can move from one process to another process. Our malicious
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mobile agent is a generalization of the existing one. It has two properties that lead
to different models: the time of movement in which agent moves from one process to
another one; and the self-replication property which defines the ability of agent to create
the copied versions of itself and attach into all sending messages to other processes. The
self-replication defines the difference of Intermittent Malicious Fault and Propagating
Fault.

8.1.2 Tight bound on Mobile Byzantine Agreement

In the presence of Intermittent malicious fault, we study Byzantine Agreement problem,
a building block of distributed systems. We prove the tight bound on the total number of
processes needed to tolerate a given number of malicious mobile agents whose movement
time is alternatively defined in different models. In general, the value of this tight bound
varies depending on the movement time of t malicious mobile agents:

• A larger number of correct processes (5t+1 in total number of processes) is required
to tolerate the malicious agents when they move either between compute/send steps
of two continuous rounds or between receive/compute steps of the same round.

• Differently, a smaller number of correct processes (3t + 1 in total number of pro-
cesses) is required when the malicious agent moves between send/receive steps of
the same round. The tight bound of this model is proved by Buhrman et al. [14].

The difference is due to the number of processes whose messages can be corrupted
by malicious agent in one sending effort.

The proposed model more realistic than the previous models based on the malicious
mobile agent because it balances the power of the correct algorithm and the malicious
agent. In this model, the malicious fault coming from the mobile agent can only control
communication and computation activities of process but do not have the full permission
in the memory. It is common in many modern authenticated computation machines and
can be applied to some dynamic sensor networks or vehicle network.

8.1.3 Propagating fault

When malicious agent can self-replicate to duplicate itself into the sending message,
the number of failed processes can grow from one to the whole system. In this case,
the objective is to save some correct processes to maintain the availability of system.
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8.2 Open questions and future research directions

This circumstance leads to a two-side probabilistic game between infection propagation
and the countermeasure based on imperfect detection. The effect of countermeasure in
containing the infection propagation is varied in different graph topologies.

The proposed model is the first one that considers a complete situation in the problem
of defense an infection propagation. While the other models only consider two extreme
cases where infection propagates without the countermeasure or the countermeasure
can always detect the infection. This point becomes important especially when the
current techniques cannot guarantee the perfect detection for some polymorphism and
metamorphism virus.

Regular locality graphs In the graphs where the connectivity between two pro-
cesses are based on the locality property such as grid/torus and unit-disk graph, the
countermeasure based on killing strategy can contain the infection. When the infection
probability increases, the increasing of hop to be killed helps to contains the infection.
This conclusion is discovered by simulation and proved for the case of infinite grid.

Graph with long-edge Reversely, in the graphs where the connectivities between
processes are not based on the locality such as small-world, because of the small di-
ameter and the effect of long-edges, the infection cannot be contained. The similar
situation applies for the case information propagation in social network and Internet, it
is impossible for countermeasure to contain the spam content of worm.

Therefore, the countermeasures based on an imperfect detection should be only con-
sidered as the last line of defense after increasing the filtering of firewall and successful
rate of detection.

8.2 Open questions and future research directions

The proposed models of Intermittent and Propagating faults with malicious mobile agent
in this dissertation still have interesting open questions that lead to multiple directions
of research.

8.2.1 Separated communication and moving topologies

In both models of Intermittent and Propagating fault, the topology in which messages
are exchanged and the topology in which malicious agents move are unified. More
specifically, the communication topology is a complete graph, and the graph where
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malicious agents move is generalized for arbitrary graph with a simple characteristic
that is directly implied from the impossibility proof.

The more general question about the characteristic of the two arbitrary graphs such
that the agreement is possible to solve. It is interesting to consider these two graphs
separately because in reality, the malicious agent can move independently to the com-
munication graphs. For example, in mobile robot network or mobile sensor network, the
agent or robot can move in a specific graph of a stationary graph of sensor or station.

8.2.2 Agreement in asynchronous/anonymous system

In this dissertation, the agreement problem is considered in authenticated synchronous
system where the identity of process is unique and is not corrupted by malicious agent;
and the communication is executed in synchronous round. The situation of Agreement
is completely changed in asynchronous system while in static asynchronous system it is
impossible even with one crash failure [33]. Similarly, in the model of malicious mobile
agent, the question is that what synchrony level is required to do the agreement. In
addition, another open question for anonymous distributed system is that how many
correct processes are required to tolerate t malicious agents.

Looking for the weakest synchrony level or the anonymous makes the model become
more realistic and enable to create some real application.

8.2.3 Multiple propagations in the same graph

Besides the generalization for separated topologies where malicious agent moves and
where messages are exchanged, it would be interesting to see how the containment
change if infected processes can recover then propagate that recovery to other infected
processes. This additional ability gives more options to the defense side to contain
the infection. The two-side game becomes the game of two or more propagations with
tunable success probabilities versus one or two countermeasures.
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