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Abstract

In practice, most of the multiple attribute decision making (MADM) problems involve both kinds of qualitative

and quantitative attributes, which may be represented by a hierarchy. While quantitative attributes can be

measured by means of numeric scales in the form of numbers, intervals or fuzzy numbers, qualitative attributes

which are often associated with imprecise, vagueness and uncertain information perhaps can only be assessed by

linguistic information. In such situations, how to represent and aggregate linguistic information essentially plays

an important role in decision analysis. In the literature, one of reasonable ways is the use of “fuzzy linguistic

approach which provides tools to model and represent qualitative attributes by means of linguistic values of

linguistic variables” (Zadeh, 1975). The use of linguistic information implies the necessity of operating with the

mechanism for “computing with words (CW)” (Zadeh, 1996) so as to fusion linguistic information and then

provide an evaluation for decision making.

In this research, we first briefly recall some key concepts of CW. Then, through a further study on CW and

fuzzy linguistic approach, we analyze the relationship between MADM with linguistic information and CW, and

the mechanism that how fuzzy linguistic approach is used to deal with linguistic information in the decision making

process. Further, according to three categories of linguistic computational models based on fuzzy linguistic approach

in the literature, we review the main features of several classic linguistic computational models in detail, including

“linguistic computational model based on membership functions”, “linguistic computational model based on ordinal

scales”, “linguistic computational model based on 2-tuple representation” and “linguistic computational model based

on proportional 2-tuple representation”. Meanwhile, the limitations and restrictions of these previous models have

been found during the review process, such as loss of information during the evaluation process, with too much

requirements when applied to MADM problems, without considering uncertain subjective judgments represented

by linguistic distributions over the linguistic term set, without taking into account incomplete linguistic information

and so on.

Inspired by providing more efficient measures to represent and aggregate linguistic information, three evaluation

models, i.e., proportional 3-tuple fuzzy linguistic representation model, proportional fuzzy linguistic distribution

model, interval fuzzy linguistic distribution model, are developed in this research aiming at overcoming the main

limitations and restrictions of previous models, and meanwhile, providing some new ways to deal with more

general cases of linguistic assessments. Some related concepts, such as preference-preserving proportional 3-tuple

transformation, which is used for the transformation and unification of linguistic assessments represented by

proportional 3-tuplse between two different linguistic term sets, expected utility in proportional or interval fuzzy

linguistic distribution, which is employed for obtaining an ranking order among different alternatives provided to

decision makers as a reference for their final decisions are proposed in this research. Further, some corresponding

aggregation operators are developed for the three evaluation models respectively according to their own

representation forms of linguistic information. Besides, three practical application examples taken from the

literature as well as a simple illustration example are used respectively in order to compare the results with

previous models, and also for the purpose of illuminating the features and capabilities of the proposed models.

After illustration by examples, it is shown that the proposed evaluation models in this research not only overcome
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the limitations and restrictions of previous models, but are also inherent with some special features, such as no loss

of information during the evaluation process, ease operation in the complicated linguistic context, flexible operation

space for evaluators under uncertainty, taking the ignoring information into account and so forth. These features of

the three evaluation models can help decision makers to easily deal with MADM problems with incomplete linguistic

information, largely improve the precision, reasonability and reliability of final results, and finally, provide a more

comprehensive guidance for decision makers.

Finally, four interesting aspects for future work are explored, which can be as the directions for continuing this

research in order to extend the applicability of these three evaluation models proposed in this research. Meanwhile,

the contributions of this research to Knowledge Science are summarized.

Keywords: Computing with words, decision making, incomplete assessments, linguistic modeling, multiple

attribute.
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Chapter 1

Introduction

1.1 Research Background and Research Purpose

Computing with words (CW) was proposed by Zadeh [93] aiming at capturing the concept

of automated reasoning involving linguistic terms, of which the idea was actually rooted from

his previous work on linguistic variables, fuzzy constraints and fuzzy if-then rules [90], [91], [92].

Since the conception of CW, it has already attracted great attentions from the fuzzy-set research

community.

So far, numerous models have been developed for reasoning and CW in the literature.

Especially, CW approaches have also been applied to a wide range of decision making problems

involving vague and imprecise information expressed linguistically. In decision making

applications, the main problem for CW is how to represent and aggregate linguistic information

for evaluation of alternatives. One of reasonable ways is the use of fuzzy linguistic approach.

However, most previously developed linguistic computational models based on fuzzy linguistic

approach have various limitations and restrictions, such as loss of information, without involving

ignoring information and so on. These limitations and restrictions seriously affect the precision,

reasonability and reliability of final results, even leading to diametrically opposite evaluation

conclusions. Consequently, these irrational results can make decision makers afford huge cost

sometimes, which can be avoided originally. Therefore, it is critically important of finding some

effective measures to deal with or avoid the limitations mentioned above during the evaluation

process.
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1.2 Research Motivation

Basically, most early work on decision making with linguistic information were making use

of fuzzy sets as a tool for modeling linguistic information and aggregation methods were then

developed based on “Zadeh’s extension principle”, e.g., [66]. Typically also, another approach

aimed to develop the “linguistic symbolic computational model based on ordinal scales” [80].

Because of the inherent operation mechanism of these two linguistic computational models, the

results of a computational process usually don’t exactly match any of the initial linguistic terms

and, hence, a process of linguistic approximation must be applied to convert the computational

results into linguistic terms of the initial linguistic domain. This linguistic approximation process

causes a loss of information and consequently leads to the lack of precision in the final results

[10]. As for overcoming this limitation in the computational stage for CW, Herrera and Mart́ınez

developed a “2-tuple fuzzy linguistic representation model” based on the concept of symbolic

translation so as to improve precision of the final results [28]. Although their approach has no loss

of information when it was applied, they also pointed out that “it was only suitable for linguistic

variables with equidistant labels” [28].

In order to overcome the limitation of “2-tuple fuzzy linguistic representation model” [28],

Wang and Hao proposed “a proportional 2-tuple fuzzy linguistic representation model” for CW

making use of the canonical characteristic values (CCV ) of linguistic terms determined by their

corresponding semantics [70]. Wang and Hao’s “proportional 2-tuple fuzzy linguistic

representation model” interestingly provides a suitable and more flexible space in a computation

stage for CW, which could allow evaluators to flexibly evaluate the performances of alternatives

by not only one label but with the form of proportional 2-tuples (αA, βB), where A and B are

two consecutive linguistic terms, and α, β ∈ [0, 1], α + β = 1. However, as we can see from the

definition, this model cannot deal with the decision situations where alternative performances are

generally assessed by means of uncertain judgments represented by probability distributions over

the linguistic term set. In addition, due to the premise that the summation of a pair of symbolic

proportions must equal to 1, this model cannot handle ignoring information. In other words, it is

only applicable under the context that all the linguistic assessments are complete. As a matter of

fact, incomplete assessments emerge commonly when evaluators are lack of confidence, especially

in the case of facing with uncertain, vague and imprecise information.

As such, it would be desirable that an appropriate extension of Wang and Hao’s “proportional

2-tuple fuzzy linguistic representation model” [70] could be developed. Therefore, modifying and

2



extending Wang and Hao’s “proportional 2-tuple fuzzy linguistic representation model” [70], and

then developing new models for MADM problems motive our current research.

1.3 Research Objectives

According to the three categories of linguistic computational models in the literature, we will

analyze and investigate the main features and limitations of these linguistic computational

models in this research. Then, we will correspondingly develop three evaluation models for

MADM problems, aiming at not only overcoming the limitations of the three categories of

models, such as loss of information during the approximation process, without directly

considering the underlying vagueness of linguistic terms, without involving the ignoring

information and so on, but also being able to deal with more general cases of linguistic

assessments possibly associated with uncertainty and incomplete information. Meanwhile, the

three evaluation models developed in this research will also be associated with some other

features, such as ease operation in the complicated linguistic context, flexible operation space for

evaluators under uncertainty and so forth. These features can be regarded as some measures for

evaluators to deal with MADM problems under uncertainty. Consequently, these linguistic

computational models developed in this research can improve the precision, reasonability and

reliability of the final results, and give decision makers a more comprehensive guidance.

1.4 Related Knowledge

The main work of this research is to develop linguistic computational models for MADM

problems. Hence, it is necessary to introduce some basic knowledge regarding to decision making

and CW.

1.4.1 Decision making

Decision making is a multi-discipline comprising philosophy, psychology, business, operations

research, system engineering and management science. “It includes many procedures, methods,

and tools for identifying, clearly representing, and formally assessing important aspects of a

decision” [64]. Decision making is also a typical human mental process, resulting in the selection

3



of an alternative among several alternative possibilities. Because “decision making is an inherent

human ability which is not necessarily rationally guided, it does not necessarily need precise and

complete information about the set of feasible alternatives” [20]. Actually, we cannot acquire the

exact information about each alternative that we are considering in most situation when we make

a decision, and many respects of different objectives in the reality cannot be evaluated in a

precise form but rather in an approximate way, which is often with vague, imprecise and

uncertain knowledge. Traditionally, these decision situations are often defined under uncertain

frameworks that could be managed by probabilistic models when assuming that any uncertainty

can be represented by a probabilistic distribution. However, it is common that uncertainty does

not always have a probabilistic nature. This fact has resulted in a reaction that many scholars

and researchers apply “fuzzy sets theory” [89] to model the vagueness, imprecision and

uncertainty in decision making processes [12], [21], [38], [46].

1.4.2 Multiple attribute decision making problems

In practice, most decision making problems involve multiple attribute of both quantitative and

qualitative nature, “which may be represented by a hierarchy” [5], [61]. While quantitative

attributes can be measured by means of numeric scales in the form of numbers, intervals or fuzzy

numbers, qualitative attributes which are often associated with uncertain information cannot be

assessed in the same way. In such case, we often prefer to use words in natural language instead

of numerical values. These situations may appear due to different reasons [12]. For example,

because of the inherent nature, some information cannot be quantified, but only by means of

linguistic terms (e.g., when we look at a picture, the linguistic terms, such as “fair”, “beautiful”,

“excellent” can be used). In other cases, it is quite difficult to state precise quantitative

information because sometimes we cannot obtain such kind of information or the cost of

obtaining it is too high and an “approximate value” can be tolerated (e.g., we can use linguistic

terms like “cold”, “warm”, “hot” to describe the temperature instead of numeric values). In

these situations, it is reasonable and necessary to make use of fuzzy linguistic approach which

provide tools to model and represent qualitative attributes by means of linguistic values of

linguistic variables [90]. The use of linguistic information implies the necessity of operating with

the mechanism for CW [93] so as to fusion linguistic information and then provide an evaluation

for decision making.
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1.4.3 Computing with words

Computing with words, that is, “the methodology that uses words and propositions from a

natural language as its main objects of computation, was firstly introduced in the seminal paper

by Zadeh” [93], aiming at capturing the concept of automated reasoning involving linguistic terms,

rather than numerical quantities. In fact, the idea of CW, also known as granular computing, is

rooted from Zadeh’s earlier work on fuzzy constraints and linguistic variables [90], [91], [92].

About granule, Zadeh explained that “a granule is a clump of objects (or points) which are drawn

together by indistinguishability, similarity, proximity or functionality” [94]. Generally speaking,

granules can be seen from two perspectives. On the one hand, the granules can be explained from

the crisp perspective, i.e., they can be easily differentiated because the decomposition process

is made into disjoint granules. This aspect is often used in various computational methods and

techniques, such as rough set theory, divide and conquer, decision trees and so on. On the other

hand, the granules are related to fuzzy rather than crisp especially when we deal with the aspects

associated with human reasoning and concept formation [23], [94]. Thus, “a granule can be seen

as a fuzzy set of points drawn together by similarity in a lot of situations” [23]. So far, a number

of researchers have extensively studied the concept of fuzzy granulation in the literature, such

as [4], [17], [30], [56], [57] and so on.

In CW, there is another basic assumption, i.e., “information is conveyed by constraining the value

of variables, which take possible values as linguistic ones” [23]. “A linguistic variable is variable

whose values are not numbers but words or sentences in a natural or artificial language” [90].

Generally speaking, although linguistic values are less specific than numerical values, they are

much closer to human cognitive processes. Thus, humans can easily express and use their linguistic

knowledge to successfully solve decision making problems with uncertainty.

Formally, “a linguistic variable is characterized by a quintuple (H,T (H), U,G,M) in which H

is the name of the variable; T (H) (or simply T ) denotes the term set of H, i.e., the set of names

of linguistic values of H, with each value being a fuzzy variable that is denoted generically by X

and ranging across a universe of discourse U , which is associated with the base variable u; G is

a syntactic rule (which usually takes the form of a grammar) for the generation of the names of

values of H; and M is a semantic rule for associating its meaning with each H, M(X), which is a

fuzzy subset of U” [90]. Since its foundations [90], [91], [92], [93], lots of researchers have carried

out a number of studies on linguistic variables and the CW methodology, such as [28], [37], [39],

[40], [43], [45], [52], [68], [69], [70], [78], [88] and so on.
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Figure 1.1. Computing with words scheme [59]

It is worth mentioning that CW has attracted great attention from the fuzzy-set research

community not only since Zadeh [93] coined it, but also since the early 1980s, when different

researchers such as [62], [66], [80] started to propose different computing schemes to operate with

linguistic information. Such schemes are quite similar and keep a structure in which the input

linguistic information should be mapped into fuzzy set models and the results should be

expressed into linguistic information, which are easy to understand by human beings (see Figure

1.1) [59].

1.4.4 Fuzzy linguistic approach

CW has been and still is a key methodology in linguistic decision making problems, while

fuzzy linguistic approach is a common approach to manage the uncertainty, model the linguistic

information, and deal with linguistic variable. Generally speaking, it is necessary to choose

appropriate linguistic term set and the associated semantics before dealing with linguistic

variables. To do so, an important task is to determine the granularity of uncertainty, i.e., the

level of discrimination among different counts of uncertainty, in the other words, the cardinality

of the linguistic term set used to assess the linguistic variables. As mentioned in [8], “the

cardinality of the term set must be small enough so as not to impose useless precision on the

users, and it must be rich enough in order to allow a discrimination of the assessments in a

limited number of degrees”. Usually, the values of cardinality are odd ones, such as 7 or 9.

Sometimes, we also use even cardinality in order to satisfy special requirements. If odd

cardinality is used in the linguistic model, the middle linguistic term often represents an

assessment of “approximately 0.5”, while the other terms are around it symmetrically [7]. “These

classical cardinality values seem to satisfy the Miller’s observation regarding the fact that human

beings can reasonably manage to bear in mind seven or so items” [54].

Syntactically, there are two main approaches to generate a linguistic term set.

(1) Context-free grammar approach: This approach uses a a context-free grammar G to define

the linguistic term set. As a result, the linguistic terms are the sentences which are generated by
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the grammar G [6], [9], [90], [91], [92]. “A grammar G is a 4-tuple (VN , VT , I, P ), where VN is the

set of nonterminal symbols, VT is the set of terminals’ symbols, I is the starting symbol, and P is

the production rules that are defined in an extended BackusCNaur form” [9]. “Among the terminal

symbols of G, we can find primary terms (e.g., low, medium, high), hedges (e.g., not, much, very),

relations (e.g., lower than, higher than), conjunctions (e.g., and, but), and disjunctions (e.g., or).

Thus, choosing I as any nonterminal symbol and using P could be generated linguistic expressions,

such as, {lower than medium, greater than high, . . . }”. It is worth mentioning that using this

approach may yield an infinite term set.

(2) An ordered structure approach: The linguistic term set is defined with finite and ordered

structure of terms. All terms are regarded as primary ones and are distributed on a scale on which

a total order has been defined [25], [82]. For instance, a linguistic term set S which includes seven

linguistic terms could be given as follows:

S = { s0 = Very Low, s1 = Low, s2 = Fairly Low, s3 = Medium,

s4 = Fairly High, s5 = High, s6 = Very High}

in which the existence of the following is usually required.

1) A negation operator Neg(si) = sj so that j = g− i (g+1 is the granularity of the term set).

2) A maximization operator: Max(si, sj) = si if si ≥ sj.

3) A minimization operator: Min(si, sj) = si if si ≤ sj.

After determining the mechanism of generating a linguistic term set, the procedure of defining

its associated semantics should be carried out. We can find three main approaches for defining the

semantics of linguistic term set in the literature.

(1) Semantics based on membership functions and a semantic rule: By the use of this

approach, the meaning of each linguistic term is determined by a fuzzy subset defined in the

interval [0, 1], which is described by membership functions [9]. Usually, this semantic approach is

used when the linguistic descriptors are generated by means of a context-free grammar. “This

approach consists of two elements: the primary fuzzy sets designed as associated semantics of the
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Figure 1.2. A set of seven terms with its semantics

primary linguistic terms, and a semantic rule M that provides the fuzzy sets of the non-primary

linguistic terms” [90], [91], [92]. “Often, while the primary terms are labels of primary fuzzy sets

which are defined subjectively and context-dependently, the semantic rule M defines linguistic

hedges and connectives as mathematical operations on fuzzy sets aimed at modifying the

meaning of linguistic terms applied” [32].

(2) Semantics based on an ordered structure of a finite linguistic term set: The semantics is

defined over linguistic term set with finite and ordered structure of terms. Therefore, the evaluators

supply their linguistic assessments by the use of an ordered linguistic term set [67], [82]. The

distribution of a linguistic term set in the interval [0, 1] can be distributed either symmetrically [82]

or non-symmetrically [26], [67] depending on a particular situation.

(3) Mixed semantics: This is a mixed approach which uses two semantic approaches mentioned

above, that is, an ordered structure of the primary linguistic terms and a fuzzy set representation

of linguistic terms (see, e.g., [24], [32], [60]) for more details).

After the linguistic term set and associated semantics have been elaborately defined and

established, experts or evaluators can give their linguistic assessments according to the semantics

of linguistic terms. Generally speaking, it is good enough if we use linear trapezoidal membership

functions to capture the vagueness and uncertainty of linguistic assessments [16]. “The

parametric representation is achieved by the 4-tuple (a, b, d, c), where b and d indicate the

interval in which the membership value is 1, a and c are the left and right limits of the definition
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domain of the trapezoidal membership function respectively” [7]. A special case of fuzzy numbers

are triangular membership functions denoted by a 3-tuple (a, b, c), i.e., b = d. Figure 1.2 shows an

example which is a linguistic term set, and the semantics of their terms could be represented as

Very High = (0.8, 1, 1),High = (0.6, 0.8, 1),Fairly High = (0.5, 0.65, 0.8),

Medium = (0.3, 0.5, 0.7),Fairly Low = (0.2, 0.35, 0.5),Low = (0, 0.2, 0.4),

Very Low = (0, 0, 0.2).

1.4.5 Linguistic decision making resolution scheme

It is necessary to analyze the phases of a linguistic decision scheme when the linguistic

information is formally modelled. In linguistic decision analysis, a common decision resolution

scheme, which is shown in Figure 1.3 must comply with the following three steps [24].

1) Defining the linguistic term set: This step requires us to establish the linguistic expression

domain that is used to supply evaluators with an instrument by which they can assess

the linguistic performance values about alternatives according to the different attributes.

Basically, one has to choose the granularity of the linguistic term set, its labels, and their

associated semantics.

2) Developing the aggregation operator for linguistic information: According to different

situations, develop appropriate aggregation operators for obtaining the aggregated values of

the linguistic performance values provided by evaluators.

3) Selecting the best alternatives, including two phases:

• Aggregation phase: Obtain the aggregated linguistic preferences of alternatives by the

use of developed aggregation operator.

• Exploitation phase: Make a ranking order among the alternatives according to the

aggregated linguistic preferences and then choosing the best one(s).

Essentially, “the first two steps serve the aggregation phase in the third step, while the

exploitation phase is determined depending on the choice of the semantic description of the

linguistic term set” [32].
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Figure 1.3. The scheme of a linguistic decision making problem

1.5 Organization of the Dissertation

This dissertation is composed of six chapters. The detailed explanation is shown as follow:

Chapter 1 first introduces research background, research purpose, research motivation, and

research objective. Then, the related knowledge of this dissertation are briefly introduced for the

purpose of conveniently carrying out subsequent chapters.

Chapter 2 recalls some main fuzzy linguistic approaches applied to the applications of multiple

attribute decision making problems.

Chapter 3 proposes a proportional 3-tuple fuzzy linguistic representation model for multiple

attribute decision making with incomplete linguistic information. Besides, an important notion,

called preference-preserving proportional 3-tuple transformation, will be proposed serving for

transforming linguistic assessments between two different linguistic term sets without loss of

information. An illustration example taken from previous literature will be used in order to

illustrate the proposed model.

Chapter 4 develops a proportional fuzzy linguistic distribution model for multiple attribute

decision making with incomplete linguistic information. Several aggregation operators and expected

utility in proportional fuzzy linguistic distribution will be proposed. An illustration example taken

from previous literature will be employed so as to illustrate the proposed model.

Chapter 5 develops an interval fuzzy linguistic distribution model for multiple attribute decision

making with incomplete linguistic information. Several interval aggregation operators and expected

utility in interval fuzzy linguistic distribution will be proposed. Two illustration examples will
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be used for the purpose of illustrating the proposed model from both a easily comprehensible

perspective and a practical perspective.

Chapter 6 presents conclusions of this research. Meanwhile, the contributions of this research

and future work will be discussed.
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Chapter 2

A Survey on Decision Making with

Fuzzy Linguistic Models

In decision making applications, the main problem for CW is how to represent and aggregate

linguistic information for evaluation of alternatives. For this respect, lots of linguistic computational

models have been proposed in the literature. In this chapter, we make a review of several main

linguistic computational models based on fuzzy linguistic approach.

2.1 Linguistic Computational Model Based on

Membership Functions

This kind of linguistic computational model is based on fuzzy linguistic approach and uses the

extension principle to make the computations directly on the membership functions of the linguistic

terms [7], [13]. “The use of extended arithmetic based on the extension principle increases the

vagueness of the results. Therefore, the results obtained by the fuzzy linguistic operators based

on the extension principle are fuzzy numbers that usually do not match with any linguistic term

in the initial term set” [10]. According to different purposes, the results can be present either

by means of the fuzzy numbers themselves (ranking purposes) [2], [22], or by means of linguistic

labels which are computed from the fuzzy numbers that are obtained by the use of a linguistic

approximation process (an interpretable and linguistic result purpose) [13], [51], [83].
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Figure 2.1. Retranslation problem [23]

If latter purpose is required, then an approximation function app1(·) is applied to associate the

fuzzy result F (R) with a label in S:

Sn F̃−→ F (R)
app1−−→ (·)S,

where Sn symbolizes the n Cartesian product of S, F̃ is an aggregation function based on the

extension principle, and F (R) is the set of fuzzy sets over the set of real numbers R [59].

It is worth noting that there is a loss of information when the approximation process is applied

leading to the lack of accuracy of the results [10], which can be easily found in the following

example of retranslation problem, shown in Figure 2.1. The obtained fuzzy number F (R)

(highlighted in the figure) does not have an associated linguistic label on a particular term set

S = {N, V L, L,M,H, V H, P}. Because we need to obtain a linguistic value in the end, an

approximation function app1(·) that will assign one of the L or M labels to F (R) needs to be

applied [23].
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2.2 Linguistic Symbolic Computational Models Based on

Ordinal Scales

This kind of linguistic computational models makes direct computations on labels and uses the

ordered structure of the linguistic term set to accomplish symbolic computations. Basically, there

are three kinds of linguistic symbolic computational models that are based on ordinal scales [23]

in the literature: “a linguistic symbolic computational model based on ordinal scales and max-

min operators” [80], “a linguistic symbolic computational model based on indexes” [15], and “a

linguistic symbolic computational model based on continuous term sets” [79].

In the first linguistic symbolic computational model, an ordered linguistic scale S = {s0, . . . , sg}
with a linear ordering is defined. The classical operators Max, Min and Neg which were introduced

in Section 1.44 of Chapter 1 are used in order to be able to aggregate information expressed as

linguistic labels in that ordered linguistic scale.

In the second linguistic symbolic computational model, a convex combination of linguistic labels

is used during the aggregation process. “The convex combination of linguistic labels directly acts

over the label indexes of the linguistic terms set S = {s0, . . . , sg} in a recursive way, and produces a

real value on the granularity interval of the linguistic terms set S” [15]. Usually, this model assumes

odd cardinality of the linguistic term set with linguistic labels symmetrically distributed around

the middle linguistic term [23]. Because the aggregation results are numeric values, γ ∈ [0, g],

which usually don’t match with any linguistic labels in the initial linguistic term set, they must be

approximated in each step of the process by means of an approximation function app2 : [0, g] →
{0, . . . , g}. By this way, a numeric value can be obtained which indicates the index of the associated

linguistic term, sapp2(γ) ∈ S [59]. Formally, it can be expressed as

Sn C−→ [0, g]
app2(·)−−−−→ {0, . . . , g} → S,

where C is a symbolic linguistic aggregation operator, app2(·) is an approximation function used

to obtain an index {0, . . . , g} associated with a term in S = {s0, . . . , sg} from a value in [0, g] [59].

In the third linguistic symbolic computational model, the linguistic term set S = {s0, . . . , sg}
which is discrete is extended into a linguistic term set S̄ = {sα | s0 < sα ≤ sg, α ∈ [0, g]}
which is continuous. In the continuous term set, if sα ∈ S, then sα is called an original linguistic

term, otherwise, sα is called a virtual linguistic term. Generally speaking, evaluators use original
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Figure 2.2. Example of the third linguistic symbolic computational model [23] [79]

linguistic terms to assess the performances of alternatives, while the virtual linguistic terms only

appear in the operation process [79].

Figure 2.2 is an example that a discrete term set S = {s−3, . . . , s3} (original linguistic terms) is

extended into a continuous term set. From Figure 2.2 we can find that the virtual linguistic terms

s−0.3 ∈ [−3, 3] can be obtained after linguistic information aggregation in order to avoid loss of

information [23], [79].

It is worth noting that since the virtual terms, which are quite different range than the original

ones are created in the aggregation process, the interpretability of this computational model is

limited. Therefore, as Herrera et al. points out [23], “this model also presents a retranslation

problem if the results of the operations are virtual linguistic terms (and they will usually be

virtual ones) and the final results must be expressed in the original linguistic term set. However,

as the linguistic symbolic computational model based on linguistic terms is simple, as it avoids loss

of information and as virtual linguistic terms can be used to rank alternatives and thus, to select

the best of them, its use can be convenient in particular situations”. (For more information about

linguistic symbolic computational models based on ordinal scales, interested readers can refer to,

e.g., [23].)

2.3 Linguistic Symbolic Computational Models Based on

2-Tuple Representation

Generally speaking, when “linguistic computational models based on extension principle” [7],

[13] and “linguistic symbolic computational models based on the ordered structure of linguistic

term sets” [15], [80] (except “the linguistic symbolic computational model based on continuous

term sets” [79]), are used in decision making for CW, the results of a computational process
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usually don’t exactly match any of the initial linguistic terms and, hence, a process of linguistic

approximation must be applied to convert the computational results into linguistic terms of the

initial linguistic domain. This linguistic approximation process causes a loss of information and

consequently leads to the lack of precision in the final results [10]. In order to avoid this limitation

in the computational stage for CW and improve the precision of the final results, Herrera and

Mart́ınez [28] developed the so-called “2-tuple fuzzy linguistic representation model based on the

concept of symbolic translation”.

This symbolic model “extends the use of indexes modifying the fuzzy linguistic approach

representation by adding a parameter to the basic linguistic representation in order to improve

the accuracy of the linguistic computations after the retranslation step keeping in the CW

scheme and the interpretability of the results” [49].

2.3.1 Representation model

Formally, let S = {s0, s1, . . . , sn} be a linguistic term set, and the term si with i = 0, . . . , n,

represents a possible value for a linguistic variable. The total order on S is defined as: si ≤ sj ⇔
i ≤ j. There is a negation operator: Neg (si) = sj such that j = n−i, where n+1 is the cardinality

of S. In general, using a symbolic method to aggregate linguistic information, we often get a value

β ∈ [0, n], and β /∈ {0, . . . , n}. Then, an approximation function is used in order to conveniently

express the index of the result in S.

To avoid any approximation process which causes a loss of information in the process of

computing with words, the 2-tuple (si, α) that expresses the equivalent information to β is

obtained with the following function:

△ : [0, n] → S × [−0.5, 0.5)

△ (β) = (si, α),with

 si, i = round(β)

α = β − i, α ∈ [−0.5, 0.5)

where round (·) is the usual round operation, si has the closest index label to β, and α is the value

of the symbolic translation.

Inversely, a 2-tuple (si, α) ∈ S × [−0.5, 0.5) can also be equivalently represented by a numerical

value in [0, n] by means of the following transformation:
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△−1 : S × [−0.5, 0.5) → [0, n]

△−1 (si, α) = i+ α = β.

2.3.2 Computational model

Based on the functions △ and △−1, 2-tuple fuzzy linguistic representation model is with the

following operations:

(1) Comparison of 2-tuple

According to an ordinary lexicographic order, the comparison of linguistic information

represented by 2-tuple is carried out as follows [23].

Let (sk, α1) and (sl, α2) be two 2-tuples with each one representing a counting of information,

then

1) if k < l then (sk, α1) < (sl, α2)

2) if k = l then

• if α1 = α2 then (sk, α1), (sl, α2) represents the same information

• if α1 < α2 then (sk, α1) < (sl, α2)

• if α1 > α2 then (sk, α1) > (sl, α2).

(2) The negation operator of 2-tuple

The negation operator over 2-tuples is defined by

Neg((si, α)) = △(n− (△−1(si, α)))

where n+ 1 is the cardinality of S, S = {s0, s1, . . . , sn}.

(3) 2-tuple aggregation operators
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Because 2-tuples can be transformed into numerical values without loss of information,

theoretically, conventional aggregation operators can be extended for 2-tuples.

Let x = {(s1, α1), . . . , (sn, αn)} be a set of 2-tuples, and W = {ω1, . . . , ωn} be their associated

weights. Then, the 2-tuple weighted average x̄ is computed by

x̄ = △
(∑n

i=1△−1(si, αi) · ωi∑n
i=1 ωi

)
= △

(∑n
i=1 βi · ωi∑n

i=1 ωi

)
.

In the literature, many other 2-tuple aggregation operators have also been proposed, such as

2-tuple arithmetic mean, 2-tuple ordered weighted average operator. (For more details, see, e.g.,

[27], [28].)

2.3.3 The use of the 2-tuple linguistic representation model

Because the advantages of “2-tuple fuzzy linguistic representation model” [28], such as “its

accuracy, its usefulness for improving linguistic solving processes in different applications, its

interpretability, its ease managing of complex frameworks” [49] and so forth, it has been

extensively and intensively researched and widely used as basis for different models employed in

various decision making problems. Recently, several methodologies that are based on linguistic

2-tuples have been developed to deal with decision making problems under complex frameworks.

In [25], Herrera et al. proposed an approach to fusion multi-granular information in decision

making, in which a basic linguistic term set is selected with maximum granularity, and a

transformation function that represents each linguistic performance value as a fuzzy set is defined

in this basic linguistic term set. Herrera and Mart́ınez [29] extend this methodology and using a

linguistic hierarchies term sets to unify multi-granular hierarchical linguistic information using

the 2-tuple linguistic model without loss of information. Huynh et al. also extended this model

for MEDM in general multigranular linguistic contexts [35]. Herrera and Mart́ınez [26] presented

a 2-tuple based methodology to deal with unbalanced linguistic information, which provided an

algorithm to represent the linguistic terms and a computational model to accomplish processes of

CW based on the 2-tuple linguistic model. Wang and Hao [70], [71] proposed “a proportional

2-tuple fuzzy linguistic representation model” to deal with linguistic term sets that are not

uniformly and symmetrically distributed. By defining the concept of the numerical scale, Dong et

al. [18] proposed an integration of Herrera and Mart́ınez’s model and Wang and Hao’s model.

Dong et al. [19] proposed “an interval version of the 2-tuple fuzzy linguistic representation
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model”, which generalizes the numerical scale approach to set the interval numerical scale, by

considering the context where semantics of linguistic terms are defined by interval type-2 fuzzy

sets.

Although 2-tuple fuzzy linguistic representation model are inspired by the symbolic models used

in decision making [15], [80], [81], [82], it and its extensions have been employed in numerous

applications, such as supply chain management [72], screening new product projects [33], sensory

evaluation [47], [48], engineering evaluation processes [50], intelligent agent system [14], research

resources management [58], risk evaluation [11] and so on. A recent overview on the 2-tuple

linguistic model, its extensions, specific methodologies, and applications can be found in [49].

2.4 Linguistic Symbolic Computational Models Based on

Proportional 2-Tuple Representation

In last section, we recalled Herrera and Mart́ınez’s “2-tuple fuzzy linguistic representation

model” [28], which aimed at avoiding loss of information caused by linguistic approximation

process in the computational stage for CW. However, they also pointed out that “this model was

only suitable for linguistic variables with equidistant labels”. In addition, as argued by

Lawry [43], “although Herrera and Mart́ınez’s symbolic approach offered a computationally much

more feasible method than those approaches using the extension principle in CW, it did not

directly take into account the underlying vagueness of linguistic terms”. In an attempt to

improve Herrera and Mart́ınez’s 2-tuple fuzzy linguistic representation model so as to be able to

deal with unbalanced linguistic term sets while simultaneously taking the underlying semantics of

terms into account, Wang and Hao [70] proposed a so-called “proportional 2-tuple fuzzy

linguistic representation model for CW making use of the canonical characteristic values (CCV )

of linguistic terms determined by their corresponding semantics”. Because our inspiration of

developing a proportional 3-tuple fuzzy linguistic representation model for MADM problems

comes from this symbolic linguistic computational model, we review it in this section on the one

hand for appreciation, on the other hand for paving the way for next chapter.
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2.4.1 Representation model

Formally, let S = {s0, s1, . . . , sn} be an ordinal term set with s0 < s1 < · · · < sn (“<” represents

order relation. si < sj if and only if i < j), I = [0, 1] and

IS ≡ I × S = {(α, si) : α ∈ [0, 1] and i = 0, 1, . . . , n}.

Given a pair (si, si+1) of two successive ordinal terms of S, any two elements (α, si), (β, si+1) of

IS are called a symbolic proportion pair and α, β are called a pair of symbolic proportions of

the pair (si, si+1) if α + β = 1. A symbolic proportion pair (α, si), (1 − α, si+1) is denoted by

(αsi, (1 − α)si+1) and the set of all the symbolic proportion pairs is denoted by S∗, i.e., S∗ =

{(αsi, (1−α)si+1) : α ∈ [0, 1] and i = 0, 1, . . . , n−1}. The set S∗ is called the ordinal proportional

2-tuple set generated by S and the members of S∗ are called ordinal proportional 2-tuples.

Remark : For i = {1, . . . , n − 1}, ordinal term si can use either (0si−1, 1si) or (1si, 0si+1) as its

representative in S∗, by abuse of notation.

Compared with 2-tuple representation, the presentation of proportional 2-tuple provides a

suitable and more flexible space in a computation stage for CW. It could allow evaluators in

various situations to flexibly evaluate performances of alternatives by not just one label but with

the form of (αsi, (1− α)si+1).

2.4.2 Computational model

(1) Comparison of proportional 2-tuple

The comparison of linguistic information represented by proportional 2-tuple is carried out as

follows:

Let S = {s0, s1, . . . , sn} be an ordinal term set and S∗ be the ordinal proportional 2-tuple set

generated by S. For any (αsi, (1− α)si+1), (βsj, (1− β)sj+1) ∈ S∗, define

(αsi, (1− α)si+1) < (βsj, (1− β)sj+1) ⇔ αi+ (1− α)(i+ 1)

< βj + (1− β)(j + 1) ⇔ i+ (1− α) < j + (1− β).
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Thus, for any two proportional 2-tuple (αsi, (1− α)si+1) and (βsj, (1− β)sj+1), we obtain:

1) if i < j, then

• (αsi, (1−α)si+1), (βsj, (1− β)sj+1) represent the same information when i = j− 1 and

α = 0, β = 1,

• (αsi, (1− α)si+1) < (βsj, (1− β)sj+1) otherwise.

2) if i = j, then

• if α = β then (αsi, (1− α)si+1), (βsj, (1− β)sj+1) represents the same information,

• if α < β then (αsi, (1− α)si+1) > (βsj, (1− β)sj+1),

• if α > β then (αsi, (1− α)si+1) < (βsj, (1− β)sj+1).

(2) Negation operator of a proportional 2-tuple

The negation over proportional 2-tuples is defined as

Neg(αsi, (1− α)si+1) = ((1− α)sn−i−1, αsn−i),

where n+ 1 is the cardinality of S, S = {s0, s1, . . . , sn}.

(3) Canonical characteristic values of proportional 2-tuple

Wang and Hao introduced the so-called “canonical characteristic values (CCV )” to represent

fuzzy number based semantics of linguistic terms and developed an efficient method for CW based

on the proportional 2-tuple fuzzy linguistic representation. Specifically, “let F (R) be the set of

fuzzy numbers defined on R (the real numbers set). Each fuzzy number, yi ∈ F (R), has associated

a membership function, uyi : R → [0, 1]. For each fuzzy number, yi, there is a set of characteristic

values, CVyi = {C1
i , C

2
i , . . . , C

z
i }, which are crisp values that summarize the information given by

yi, i.e., they support its meaning” [70]. Wang and Hao have enumerated some CCV for representing

the related information of proportional 2-tuples, such as expected value, center of gravity, mean

of maxima. Particularly, if the semantics of linguistic terms is defined by symmetrical triangular

fuzzy numbers in [0, 1], i.e, yi = [c− δ, c, c + δ], then the expected value (EV ) of yi is defined by

EV (yi) = c and used as CCV of yi.
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With the notions of proportional 2-tuple and CCV , the computation operator used for

transforming a proportional 2-tuple into a numerical value belonging to [0, 1] is defined as

follows.

Let ci ∈ [0, 1] with c0 < c1 < · · · < cn be the canonical characteristic values of si, i.e., CCV (si) =

ci for all i = 0, 1, . . . , n. Then, define the function CCV on S∗ by

CCV : S∗ → [0, 1]

CCV ((αsi, (1− α)si+1)) = αCCV (si) + (1− α)CCV (si+1)

= αci + (1− α)ci+1

= z ∈ [0, 1]

and call it the corresponding canonical characteristic value function on S∗ generated by CCV on

S. It has been proved by Wang and Hao [70] that the CCV is a bijection from S∗ to [c0, cn].

Specifically, let us define f : [0, n] → [c0, cn] by

f(x) = ci + β(ci+1 − ci)

where i = E(x), E is the integral part function and β = x− i. Then f is a bijection. Since,

CCV (((1− β)si, βsi+1)) = (1− β)ci + βci+1

= ci + β(ci+1 − ci)

= f(i+ β)

= f(π((1− β)si, βsi+1))

for all i = 0, 1, . . . , n− 1, β ∈ [0, 1], thus CCV = f ◦ π. Here, “π is the position index function of

ordinal 2-tuples” [70], i.e.,

π : S∗ → [0, n] by

π((αsi, (1− α)si+1)) = i+ (1− α).
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Under the identification convention, the position index function π becomes a bijection from S∗

to [c0, cn], and its inverse π−1 : [0, n] → S∗ is defined by

π−1(x) = ((1− β)si, βsi+1))

where i = E(x), E is the integral part function and β = x − i. So, CCV is a bijection, and its

inverse will be denoted by CCV −1.

(4) Proportional 2-tuple aggregation operators

Based on CCV and CCV −1, proportional 2-tuples can be transformed into numerical values, and

vise versa, without loss of information. Thus, conventional aggregation operators can be extended

easily for proportional 2-tuples.

Let y = {y1, . . . , yj, . . . , ym} be a set of proportional 2-tuples, where yj = (αsi, (1 − α)si+1)j.

W = {ω1, . . . , ωm} is the set of their associated weights. Then, the proportional 2-tuple weighted

average ȳ is computed by

ȳ = CCV −1
(∑m

j=1CCV ((αsi, (1− α)si+1)j) · ωj∑m
j=1 ωj

)
.

In the literature, many other proportional 2-tuple aggregation operators have also been

proposed, such as proportional 2-tuple arithmetic mean, proportional 2-tuple ordered weighted

average operator. (For more details, see [70].)

2.5 Conclusion

In this chapter, we made a review of several main fuzzy linguistic computational models,

including “linguistic computational model based on membership functions, linguistic symbolic

computational models based on ordinal scales”, which were further classified into “a linguistic

symbolic computational model based on ordinal scales and max-min operators, a linguistic

symbolic computational model based on indexes, and a linguistic symbolic computational model
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based on continuous term sets”. Meanwhile, we briefly introduced the characteristics of these

models.

Particularly, we recalled 2-tuple fuzzy linguistic representation model in detail because of its

numerous extensions and extensive applications. In addition, as the inspiration of our own model

proposed in the next chapter, we made a comprehensive analysis on proportional 2-tuple fuzzy

linguistic representation model.

After this review, it is not difficult to find that all of the above-mentioned linguistic

computational models cannot handle ignoring information. In other words, these models are only

applicable under the context that all the linguistic assessments are complete. Apparently, it is

common that evaluators cannot supply complete linguistic assessments when lack of information

or facing with complex nature of decision environments in real world. Therefore, it would be

desirable that an appropriate model could be developed to deal with MADM problems with

incomplete linguistic information. This is our motivation of extension of Wang and Hao’s

“proportional 2-tuple fuzzy linguistic representation model” [70] in Chapter 3.
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Chapter 3

A Proportional 3-Tuple Fuzzy Linguistic

Representation Model

In this chapter, we develop a proportional 3-tuple fuzzy linguistic representation model for

MADM with incomplete linguistic information. Because this model is extended from

“proportional 2-tuple fuzzy linguistic representation model” [70], it inherits all the advantages of

this model. For instance, when proportional 3-tuple fuzzy linguistic representation model is

applied to linguistic decision making, it is not only without loss of information, but is also

capable of reflecting evaluators’ confidence levels, which are represented by proportions,

indicating their belief degrees that each linguistic term fits a linguistic variable. Meanwhile, there

is no requirement that the linguistic labels have to be symmetrically distributed around a

medium label and without the traditional requirement of having equal distance between them.

Further, based on “canonical characteristic values (CCV ) of linguistic labels, which are easy to

determine by the corresponding semantics of linguistic labels, the computational technique is not

only easy and efficient but also takes into account the underlying definitions of the words” [71].

Moreover, by involving a new variable representing the extent of ignoring information, the

proposed model can deal with incomplete linguistic information. Thus, evaluators can avoid the

dilemma that they have to supply complete linguistic assessments when they face with uncertain

information. Based on these features, there are not too many restrictions and requirements for

evaluators when they apply proportional 3-tuple fuzzy linguistic representation model to MADM

problems, and the precision of final result will be largely improved.
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3.1 Proportional 3-Tuple

Let S = {s0, s1, . . . , sn} be an ordinal term set with s0 < s1 < · · · < sn (“<” represents order

relation, i.e., si < sj if and only if i < j), I = [0, 1] and

IS ≡ I × S = {(α, si) : α ∈ [0, 1] and i = 0, 1, . . . , n}.

Given a pair (si, si+1) of two successive ordinal terms of S, any two elements (α, si), (β, si+1) of

IS are called a symbolic proportion pair and α, β are called a pair of symbolic proportions of the

pair (si, si+1) if α + β ≤ 1. A symbolic proportion pair (α, si), (β, si+1) will be denoted by

(αsi, βsi+1, 0) if α + β = 1

(αsi, βsi+1, ε) if α + β < 1
(3.1)

where ε represents the extent of ignoring information. The set of all the symbolic proportion

sequences is denoted by S∗, i.e., S∗ = {(αsi, βsi+1, ε) : α, β ∈ [0, 1], ε = 1 − α − β and i =

0, 1, . . . , n− 1}. The set S∗ is called the proportional 3-tuple set generated by S and the members

of S∗ are called proportional 3-tuples, which are designed for representing evaluators’ linguistic

assessments. α and β indicate the confidence levels that evaluators believe a linguistic term fits a

linguistic variable.

An linguistic assessment (αsi, βsi+1, ε) is called complete if α + β = 1, and correspondingly

incomplete if α+β < 1. Because we will apply proportional 3-tuple fuzzy linguistic representation

model to a new product project screening problem in Section 3.6, we use the following types of

uncertain subjective judgments as examples to explain how to represent a linguistic assessments by

proportional 3-tuples. Supposing an evaluator gives his/her linguistic assessments towards criteria

“functional competency”, “featured differentia”, and “design quality”as follows:

1) The functional competency is best with a confidence degree of 1.

2) The featured differentia is evaluated to be very good with a confidence degree of 0.6 and to

be best with a confidence degree of 0.3.
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3) The design quality is evaluated to be very good with a confidence degree of 0.4, and to be

best with a confidence degree of 0.6.

Then, the three linguistic assessments 1)–3) given above can be represented in the form of

proportional 3-tuples defined by (3.1) as

S∗(functional competency) = (0s5, 1s6, 0)

S∗(featured differentia) = (0.6s5, 0.3s6, 0.1)

S∗(design quality) = (0.4s5, 0.6s6, 0)

where s5 and s6 are linguistic terms of the term set S1 as shown in (3.16). It is easy to find that

the second linguistic assessment is incomplete, while others are complete.

Remark : For i = 1, 2, . . . , n− 1, by abuse of notion, the term si can use either (0si−1, αsi, ε) or

(αsi, 0si+1, ε) as its representation in S∗.

As we know, how to represent and aggregate linguistic information essentially plays an important

role in linguistic decision analysis. Therefore, it would be interesting if we consider whether we

can use 2-tuple mentioned in “2-tuple fuzzy linguistic representation model” [28] and proportional

2-tuple mentioned in “proportional 2-tuple fuzzy linguistic representation model” [70] to represent

the three linguistic assessments. According to their definitions, we cannot represent the linguistic

assessments 2) and 3) by 2-tuple because each linguistic assessment includes two linguistic terms.

Similarly, we cannot represent the linguistic assessment 2) by proportional 2-tuple because this

linguistic assessment is incomplete. If these two models are impossible to represent all the linguistic

assessments, let alone using them to deal with the decision making problem with such kinds of

linguistic assessments mentioned above. Therefore, we propose proportional 3-tuple, which has

obvious advantage to represent the related linguistic assessments in order to solve such problem.

3.2 Canonical Characteristic Values

In Chapter 2, we briefly recalled canonical characteristic values (CCV ) which was used to

represent fuzzy number based semantics of linguistic terms. Considering that a symmetrical

triangular fuzzy number T = [c− δ, c, c + δ] is used in this chapter, without loss of generality, its

expected value, EV (T ) = c, will be used as a CCV of T in this research.
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It is worth mentioning that there are two meanings about CCV . Besides the first meaning of

CCV , i.e., using expected value to represent a symmetrical triangular fuzzy number, the other

meaning of CCV is used as a function to transform a proportional 3-tuple into the form of (h, ε),

where h is a numerical value, and ε represents the extent of ignoring information. In the following

section, we will introduce the CCV function in detail.

3.3 Computation Operator of Proportional 3-Tuple

MADM problems usually need to unify and aggregate the information. Therefore, for the

unification and aggregation of linguistic information represented by proportional 3-tuples, the

related computation operator on proportional 3-tuple has to be defined.

Formally, let S = {s0, s1, . . . , sn} be an ordinal term set with s0 < s1 < · · · < sn, and S∗ is

the proportional 3-tuple set generated by S. Define CCV of proportional 3-tuple (αsi, βsi+1, ε) as

follows:

CCV ((αsi, βsi+1, ε)) = (αCCV (si) + βCCV (si+1), ε)

= ((αci + (1− α− ε)ci+1), ε)

= (h, ε) (3.2)

where h is a numerical value, and h ∈ [0, 1]. ε represents the extent of ignoring information.

Formula (3.2) is called the corresponding canonical characteristic value function on S∗ generated

by CCV on S. Here, ci ∈ [0, 1] with c0 < c1 < · · · < cn is the CCV of si, i = 0, 1, . . . , n.

Proposition: Let S = {s0, s1, . . . , sn} be an ordinal term set, S∗ is the proportional 3-tuple set

generated by S, and (h, ε) is the result obtained by CCV of proportional 3-tuple (αsi, βsi+1, ε) ∈
S∗. Then, there is always a CCV −1 function such that from any given (h, ε) it returns to a

proportional 3-tuple (αsi, βsi+1, ε) ∈ S∗ and CCV (αsi, βsi+1, ε) = (h, ε).

Proof : Indeed, given (h, ε), there exists i such that h ∈ [ci, ci+1], as shown in Figure 3.1. If (h, ε)

is the CCV of proportional 3-tuple (αsi, βsi+1, ε) ∈ S∗ then we have

h = αci + βci+1.
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Figure 3.1. The representation of the information h of a proportional 3-tuple

Because β = (1− α− ε), we get

h = αci + (1− α− ε)ci+1

= (1− ε)ci+1 − α(ci+1 − ci) (3.3)

and hence

α =
(1− ε)ci+1 − h

ci+1 − ci
. (3.4)

This means that

CCV −1(h, ε) = (αsi, βsi+1, ε)

where α is determined by formula (3.4), and β = (1 − α − ε). This completes the proof of the

Proposition.

Thus, a proportional 3-tuple can be transformed into the form of (h, ε), and vice versa, without

loss of information by the use of the functions of CCV and CCV −1.
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It is worth mentioning that there is always a CCV −1 function to transform (h, ε) back into the

original proportional 3-tuple in the same ordinal term set. However, if we use CCV −1 function

to transform (h, ε) back into a proportional 3-tuple which belongs to a different ordinal term set,

the labels and proportions of the the proportional 3-tuple may be correspondingly changed. This

is because different linguistic term sets may have different fuzzy number semantics. However, the

information h and the extent of ignoring information ε don’t change. Based on this feature, we

propose a notion of preference-preserving proportional 3-tuple transformation.

3.4 Preference-Preserving Proportional 3-Tuple

Transformation

The unification of the linguistic assessments represented by proportional 3-tuples of different

linguistic term sets usually need to be carried out before attributes aggregation due to

“inhomogeneous nature of different measurement scales/units used for different attributes in the

evaluation process” [33]. Therefore, how to unify the linguistic assessments represented by

proportional 3-tuples from different linguistic term sets is critically important. For this reason,

we define a notion of preference-preserving proportional 3-tuple transformation serving for the

unification of proportional 3-tuples between two different linguistic term sets.

Formally, let S1 = {s10, s11, . . . , s1g} and S2 = {s20, s21, . . . , s2g′} be two ordinal linguistic term sets,

with s10 < s11 < · · · < s1g and s20 < s21 < · · · < s2g′ . S∗
1 , S

∗
2 are the ordinal proportional 3-tuple

sets generated by S1 and S2 respectively. The preference order on S1 denoted by < s is either “in

agreement with” or “reverse to” the preference order on S2, denoted by ≺ s. Suppose that we

would like to transform the proportional 3-tuples in S∗
1 into related proportional 3-tuples in S∗

2 .

Then, for the case of “in agreement with”, the greater a linguistic value in S1, by transformation,

the greater a linguistic value will be in S2. However, for the case of “reverse to”, the situation is

counter, i.e., the greater a linguistic value in S1, the smaller a linguistic value will be in S2.

In addition, we believe the extent of ignoring information ε of a proportional 3-tuple doesn’t

change after transformation. In other words, once an evaluator makes a subjective judgment

towards a basic attribute, the extent of ignoring information is constant, even though the

transformation process has been carried out between two different linguistic term sets. One

reasonable explanation is that the subjective judgment including given information and ignoring

information supplied by an evaluator has already been an established fact. The established fact
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cannot change. The changing parts are labels and associated probabilities due to using different

linguistic term sets with different semantics. But the given information h and the extent of

ignoring information ε are constant. This prerequisite gives us a guarantee so that the

preference-preserving proportional 3-tuple transformation can be carried out. Having these

considerations in mind, we can define the preference-preserving proportional 3-tuple

transformation. Supposing we would like to transform a proportional 3-tuple in S∗
1 into the

corresponding proportional 3-tuple in S∗
2 , i.e.,

∧ : S∗
1 → S∗

2

(αs1i , βs
1
i+1, ε) 7→ ∧((αs1i , βs1i+1, ε))

= (θs2j , (1− ε− θ)s2j+1, ε) (3.5)

with i ∈ [0, g − 1], j ∈ [0, g′ − 1], 0 < α + β ≤ 1− ε, 0 ≤ θ ≤ 1− ε.

According to formula (3.2), CCV of proportional 3-tuple (αs1i , βs
1
i+1, ε) in S

∗
1 is

CCV ((αs1i , βs
1
i+1, ε)) = (αCCV (s1i ) + βCCV (s1i+1), ε)

= ((αc1i + βc1i+1), ε)

= (h, ε).

(1) In the case of < s is in agreement with ≺ s, i.e., < s ≡ ≺ s. Define

CCV ((θs2j , (1− ε− θ)s2j+1)) = h (3.6)

i.e., CCV of the two proportional 3-tuples both equal to h. Then,

h = θc2j + (1− ε− θ)c2j+1

θ =
(1− ε)c2j+1 − h

c2j+1 − c2j
. (3.7)
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Because ε doesn’t change after transformation, h ∈ [0, 1], and 0 ≤ θ ≤ 1 − ε, we can obtain one

and only one θ.

(2) In the case of < s is reverse to ≺ s, i.e., < s−1 ≡ ≺ s. Define a new ordinal linguistic term

set St = {st0, st1, . . . , stg}, which has the same semantics with S1, and reversed ranking order of

linguistic terms with S1, i.e., s
t
0 = s1g, s

t
1 = s1g−1, . . . , s

t
g = s10. The linguistic term set St is called

transition set. The preference order on St is denoted by < st, such that < s−1 ≡< st ≡≺ s. S∗
t is

the ordinal proportional 3-tuple set generated by St. Now, the proportional 3-tuple (αs
1
i , βs

1
i+1, ε)

in S∗
1 can be easily represented by a proportional 3-tuple (βstg−i−1, αs

t
g−i, ε) in S

∗
t . Because of the

preference order < st ≡≺ s, we can easily transform the proportional 3-tuple (βstg−i−1, αs
t
g−i, ε)

in S∗
t into the corresponding proportional 3-tuple in S∗

2 by formula (3.2), (3.6) and (3.7). Thus,

the proportional 3-tuple can be transformed between different linguistic term sets without loss of

information. Therefore, the preference-preserving proportional 3-tuple transformation can be used

as a tool for unification of proportional 3-tuples between different linguistic term sets.

3.5 The Procedure of Proportional 3-Tuple Fuzzy

Linguistic Representation Model

Huynh and Nakamori (2011) proposed “a screening evaluation procedure based on 2-tuple

linguistic representation” [33], which demonstrated the effectiveness for managers to make their

decisions regarding to screening new product development (NPD) projects under uncertainty.

Considering its advantage, we combine this evaluation framework with proportional 3-tuples, and

propose the procedure of proportional 3-tuple fuzzy linguistic representation model. Since we will

apply proportional 3-tuple fuzzy linguistic representation model to a new product project

screening problem in Section 3.6, for convenience and consistence, but without loss generality, we

will introduce the procedure of proportional 3-tuple fuzzy linguistic representation model

combined with this new product project screening problem. Specifically, the procedure of

proportional 3-tuple fuzzy linguistic representation model is described as follows:

(1) Proportional 3-tuple linguistic transformation and unification: “This step aims at

transforming original linguistic information of a NPD project assessed by evaluators towards a

set of basic attributes into a unified representation” [33], i.e., the form of proportional 3-tuples,

by using the symbolic translation value si and associated representation method, such as 1)–3)
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discussed in Section 3.1. It includes converting original linguistic assessments of merit/risk

ratings and weights. After converting evaluators’ linguistic assessments into corresponding

proportional 3-tuples, unification operation should be carried out in order to pave the way for

multiple attribute aggregation.

In the problem of screening new product projects, as shown in Section 3.6, because the

preference order is counter between merit rating set (represented by S1 in (3.16)) and risk rating

set (represented by S2 in (3.17)), the proportional 3-tuples in S∗
1 and S∗

2 should be unified.

According to the preference-preserving proportional 3-tuple transformation, the ordinal

proportional 3-tuple set S∗
t generated by the linguistic term set St as shown in (3.20) is chosen as

a transition set used for transforming the proportional 3-tuples in S∗
2 , and the ordinal

proportional 3-tuple set S∗
p generated by the preference set Sp as shown in (3.21) is chosen as a

unification set of proportional 3-tuples. Then, the unification process can be denoted by

∧ : S∗
1 → S∗

p ; S
∗
2 → S∗

t → S∗
p

where ∧ is preference-preserving proportional 3-tuple transformation.

(2) Aggregating the average important weights and the average preferences of attributes:

Because this NPD project employs multi-experts to supply their linguistic assessments including

merit/risk ratings and weights to criteria, and the linguistic assessments are represented by

means of proportional 3-tuples, the average mechanism for proportional 3-tuples has to be

defined. According to conventional arithmetic mean, the computation and aggregation of the

average weight and the average preference represented by proportional 3-tuples are defined as

follows.

In terms of the weights (µpωp,j, ρpωp,j+1, ε
′
p)d, the average weight (µωj, ρωj+1, ε

′)d is given by

(µωj, ρωj+1)d = CCV −1
( q∑

p=1

CCV (µpωp,j, ρpωp,j+1)d
q

)

= CCV −1
( q∑

p=1

(µpCCV (ωp,j) + (1− µp − ε′p)CCV (ωp,j+1))d

q

)
(3.8)

ε′d =
q∑

p=1

(ε′p)d

q
(3.9)
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with p representing the evaluator, p ∈ [1, q], d representing the No. d criterion, and ω representing

the weights of attributes.

In terms of the preferences (αpsp,i, βpsp,i+1, εp)d, the average preference (αsi, βsi+1, ε)d is given

by

(αsi, βsi+1)d =CCV −1
( q∑

p=1

CCV (αpsp,i, βpsp,i+1)d
q

)

=CCV −1
( q∑

p=1

(αpCCV (sp,i) + (1− αp − εp)CCV (sp,i+1))d
q

)
(3.10)

εd =
q∑

p=1

(εp)d
q

. (3.11)

(3) Computing the overall figure of merit: After obtaining the average preferences and average

weights, the overall figure of merit (λrt, ηrt+1, ε) typically expressing the preference regarding the

NPD project under consideration is given by

(λrt, ηrt+1, ε) = CCV −1
(∑k

d=1CCV (αsi, βsi+1)d · CCV (µωj, ρωj+1)d∑k
d=1CCV (µωj, ρωj+1)d

)
(3.12)

and the extent of ignoring information can be obtained approximately by

ε =

∑k
d=1

εd+ε′d
2

k
(3.13)

with r representing the overall figure of merit and d ∈ [1, k].

(4) Proportional 3-tuple linguistic conversion: After obtaining the overall figure of merit

(λrt, ηrt+1, ε) in S∗
p , convert it into the corresponding proportional 3-tuple in linguistic success
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levels of the set S∗
4 by the use of the preference-preserve proportional 3-tuple transformation, i.e.,

∧ : S∗
p → S∗

4 . Thus, we arrive at the final result, which will be provided to the decision maker as

a reference for his/her final screening decision.

It is worth mentioning that we use the formulas (3.12) and (3.13) to compute the the overall figure

of merit and related extent of ignoring information because this NPD project screening problem

employs multi-expert to supply linguistic weights. Actually, formula (3.12) is a linguistic weight

average operator designed for the agreation of decision making problems with linguistic weights.

If the weights are numerical values, the weighted average operator for proportional 3-tuples is give

by

(λrt, ηrt+1, ε) = CCV −1
(∑k

d=1CCV (αsi, βsi+1)d · ωd∑k
d=1 ωd

)
(3.14)

and the extent of ignoring information can be obtained approximately by

ε =

∑k
d=1 εd
k

(3.15)

with ωd representing the weight and d ∈ [1, k].

3.6 An Illustration Example

In this section, we will consider an illustration example of screening new product project taken

from [44] in order to explain the practical application of proportional 3-tuple fuzzy linguistic

representation model.

3.6.1 The description of new product project screening problem

TV is an internationally recognized CNC machine-tool company, which plans to launch a new

product, called TV center-HX, in order to compete in the 21st century. However, with the
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limitations imposed by both nature and the timing of new product development, there is

ambiguity and uncertainty about technology and the competitive environment. So, this new

product project faces with the risk of failure. In such situations, the decision makers want to

make a decision whether it is appropriate to launch this new product. Because of the uncertainty,

evaluators prefer to make linguistic assessments with confidence levels rather than numerical

values towards the selected factors. For further detailed information related to this case, please

refer to [44].

3.6.2 Selecting evaluation criteria

New product development project is very complex and cumbersome that are characterized by

various of features of both quantitative and qualitative in nature. Selecting a set of criteria that

can reflect a variety of features of new products and other indispensable traits is really difficult.

Previous researchers have identified criteria for assessing and screening new product projects,

which “provide a gauge for companies to assess design approaches and, in turn, select the most

suitable design” [3], [31]. By reference to previous literatures, 13 criteria have been selected and

categorized into four groups including the factors of competitive marketing advantages, superiority,

technological suitability, and the unfavorable factor of risk, as shown in Table 3.1.

3.6.3 Selecting linguistic term sets and associated semantics

After selecting evaluation criteria, linguistic term sets and associated semantics should be

defined, which can be used as tools for evaluators to naturally express their subjective judgments

against different criteria. One of main approaches in the literature is to adopt and modify the

linguistic terms and corresponding membership functions from previous studies so as to satisfy

the particular requirements of respective applications. Another often used approach is to directly

define a finite and ordinal linguistic term set with associated fuzzy set semantics. The latter one

is Lin and Chen [44] used. Specifically, the linguistic term sets and associated fuzzy set semantics

for the evaluation of TV center-HX are described as follows.

(1) The first term set is used to linguistically evaluate the merit ratings of favorable criteria:
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Table 3.1. The evaluation criteria of new product project

Criteria

Competitive

marketing

advantages (C1)

Marketing timing (C11)

Price superiority (C12)

Marketing competencies (C13)

Marketing attractiveness (C14)

Superiority (C2)
Functional competency (C21)

Featured differentia (C22)

Technological

suitability (C3)

Design quality (C31)

Material specialization (C32)

Manufacturing compatibility (C33)

Supply benefit (C34)

Risk (C4)

Market competitiveness (C41)

Technological uncertainty (C42)

Monetary risk (C43)

S1 = {s10 (Worst), s11(Very Poor), s12(Poor), s
1
3(Fair),

s14 (Good), s15(Very Good), s16(Best)} (3.16)

and the associated fuzzy set semantics is shown in Figure 3.2. The preference order on S1 is

s16(Best) ≻ s15(Very Good) ≻ · · · ≻ s10(Worst).

(2) The second term set, which has the reversed preference order compared with other term sets,

is used to linguistically evaluate the risk ratings of unfavorable criteria:

S2 = {s20 (Low), s21(Fairly Low), s22(Medium), s23(Fairly High),

s24 (High), s
2
5(Very High), s26(Extremely High)} (3.17)

and the associated fuzzy set semantics is shown in Figure 3.3. The preference order on S2 is

s20(Low) ≻ s21(Fairly Low) ≻ · · · ≻ s26(Extremely High).

37



(3) The third term set is used to linguistically evaluate the relative importance of criteria:

S3 = {s30 (Very Low), s31(Low), s
3
2(Fairly Low),

s33 (Fairly High), s34(High), s
3
5(Very High)} (3.18)

and the associated fuzzy set semantics is shown in Figure 3.4.

(4) The fourth term set is used to linguistically express the success levels of the new product

project:

S4 = {s40 (Very Low), s41(Low), s
4
2(Fairly Low),

s43 (Fairly High), s44(High), s
4
5(Very High)} (3.19)

and the associated fuzzy set semantics is also shown in Figure 3.4. The preference order on S4 is

s45(Very High) ≻ s44(High) ≻ · · · ≻ s40(Very Low).

3.6.4 Assessing merit/risk ratings and weights of criteria

Once the criteria have been carefully chosen, linguistic variables and associated membership

functions have been elaborately defined, four evaluators denoted by p = {E1, E2, E3, E4} need

to give linguistic assessments of merit/risk ratings and weights towards criteria. In this chapter,

we first use the original linguistic assessments as in [44] in order to compare the final result

with previous models. Then, we abandon the original linguistic assessments and assume more

general case of linguistic assessments in order to illustrate the capability of proportional 3-tuple

fuzzy linguistic representation model. For the original linguistic assessments, the corresponding

proportional 3-tuples are shown in Table 3.2 and Table 3.3.
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Figure 3.2. Linguistic merit rating values and associated fuzzy number semantic

Figure 3.3. Linguistic risk rating values and their associated fuzzy number semantics
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Figure 3.4. Linguistic weights (success levels) and associated fuzzy number semantics

Table 3.2. Original linguistic assessments

of merit/risk ratings of criteria represented by proportional 3-tuples

Criteria
Evaluators

E1 E2 E3 E4

C11 (1s14, 0s
1
5, 0) (0s15, 1s

1
6, 0) (0s15, 1s

1
6, 0) (0s14, 1s

1
5, 0)

C12 (0s12, 1s
1
3, 0) (0s13, 1s

1
4, 0) (1s12, 0s

1
3, 0) (0s12, 1s

1
3, 0)

C13 (0s12, 1s
1
3, 0) (1s12, 0s

1
3, 0) (1s12, 0s

1
3, 0) (0s12, 1s

1
3, 0)

C14 (1s15, 0s
1
6, 0) (1s15, 0s

1
6, 0) (0s15, 1s

1
6, 0) (0s15, 1s

1
6, 0)

C21 (0s15, 1s
1
6, 0) (0s15, 1s

1
6, 0) (1s15, 0s

1
6, 0) (0s15, 1s

1
6, 0)

C22 (1s15, 0s
1
6, 0) (1s15, 0s

1
6, 0) (0s15, 1s

1
6, 0) (1s15, 0s

1
6, 0)

C31 (1s15, 0s
1
6, 0) (1s15, 0s

1
6, 0) (1s15, 0s

1
6, 0) (0s15, 1s

1
6, 0)

C32 (1s14, 0s
1
5, 0) (0s14, 1s

1
5, 0) (1s14, 0s

1
5, 0) (0s14, 1s

1
5, 0)

C33 (0s15, 1s
1
6, 0) (1s15, 0s

1
6, 0) (1s15, 0s

1
6, 0) (1s14, 0s

1
5, 0)

C34 (1s13, 0s
1
4, 0) (0s13, 1s

1
4, 0) (1s13, 0s

1
4, 0) (0s13, 1s

1
4, 0)

C41 (1s24, 0s
2
5, 0) (0s24, 1s

2
5, 0) (1s24, 0s

2
5, 0) (0s24, 1s

2
5, 0)

C42 (1s24, 0s
2
5, 0) (0s24, 1s

2
5, 0) (0s23, 1s

2
4, 0) (0s23, 1s

2
4, 0)

C43 (1s22, 0s
2
3, 0) (0s23, 1s

2
4, 0) (0s22, 1s

2
3, 0) (1s22, 0s

2
3, 0)
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Table 3.3. Original linguistic assessments

of weights of criteria represented by proportional 3-tuples

Criteria
Evaluators Average

E1 E2 E3 E4 Ē

C11 (0s34, 1s
3
5, 0) (1s34, 0s

3
5, 0) (0s34, 1s

3
5, 0) (0s34, 1s

3
5, 0) (0.25s34, 0.75s

3
5, 0)

C12 (1s32, 0s
3
3, 0) (0s33, 1s

3
4, 0) (0s33, 1s

3
4, 0) (1s33, 0s

3
4, 0) (0.75s33, 0.25s

3
4, 0)

C13 (0s34, 1s
3
5, 0) (0s34, 1s

3
5, 0) (1s34, 0s

3
5, 0) (1s34, 0s

3
5, 0) (0.5s34, 0.5s

3
5, 0)

C14 (1s34, 0s
3
5, 0) (0s34, 1s

3
5, 0) (0s34, 1s

3
5, 0) (0s34, 1s

3
5, 0) (0.25s34, 0.75s

3
5, 0)

C21 (0s34, 1s
3
5, 0) (1s34, 0s

3
5, 0) (0s34, 1s

3
5, 0) (1s34, 0s

3
5, 0) (0.5s34, 0.5s

3
5, 0)

C22 (0s32, 1s
3
3, 0) (1s32, 0s

3
3, 0) (0s32, 1s

3
3, 0) (0s32, 1s

3
3, 0) (0.25s32, 0.75s

3
3, 0)

C31 (1s34, 0s
3
5, 0) (1s34, 0s

3
5, 0) (0s34, 1s

3
5, 0) (0s34, 1s

3
5, 0) (0.5s34, 0.5s

3
5, 0)

C32 (0s33, 1s
3
4, 0) (1s33, 0s

3
4, 0) (1s33, 0s

3
4, 0) (1s32, 0s

3
3, 0) (1s33, 0s

3
4, 0)

C33 (0s33, 1s
3
4, 0) (1s33, 0s

3
4, 0) (1s32, 0s

3
3, 0) (0s32, 1s

3
3, 0) (0s32, 1s

3
3, 0)

C34 (1s33, 0s
3
4, 0) (0s33, 1s

3
4, 0) (1s33, 0s

3
4, 0) (1s33, 0s

3
4, 0) (0.75s33, 0.25s

3
4, 0)

C41 (0s34, 1s
3
5, 0) (1s34, 0s

3
5, 0) (0s34, 1s

3
5, 0) (0s34, 1s

3
5, 0) (0.25s34, 0.75s

3
5, 0)

C42 (1s34, 0s
3
5, 0) (1s34, 0s

3
5, 0) (0s34, 1s

3
5, 0) (1s34, 0s

3
5, 0) (0.75s34, 0.25s

3
5, 0)

C43 (1s33, 0s
3
4, 0) (0s33, 1s

3
4, 0) (0s32, 1s

3
3, 0) (1s32, 0s

3
3, 0) (1s33, 0s

3
4, 0)

3.6.5 The unification of original linguistic assessments represented by

proportional 3-tuples

As mentioned in preceding section, because we used different linguistic term sets for different

criteria, the assessment results of merit and risk ratings must be unified in the evaluation process.

The seven-term set St as shown in (3.20) is selected as transition set for proportional 3-tuples

in S∗
2 , and its associated fuzzy set semantics is shown in Figure 3.5. The preference order on

St is s
t
6(Low) ≻ st5(Fairly Low) ≻ · · · ≻ st0(Extremely High). Thus, we can easily transform the

proportional 3-tuples of criteria C41, C42 and C43 in S∗
2 into related proportional 3-tuples in S∗

t ,

which are shown in Table 3.4. “The seven-term set Sp of linguistic preferences as shown in (3.21)

is selected for unifying information, and its associated fuzzy set semantics is also shown in Figure

3.2” [33]. The preference order on Sp is sp6(Most Preference) ≻ sp5(Very Much Preference) ≻ · · · ≻
sp0(No Preference). Because the preference orders on S1, St and Sp are the same, the overall unified

information of proportional 3-tuples can be obtained via preference-preserve proportional 3-tuple

transformation, and finally is showed in Table 3.5. It is worth noting that the final result of unified

information doesn’t depend on the granularity of Sp.
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Table 3.4. Original linguistic assessments of risk ratings of criteria

represented by proportional 3-tuples in transition linguistic term set

Criteria
Evaluators

E1 E2 E3 E4

C41 (0st1, 1s
t
2, 0) (1st1, 0s

t
2, 0) (0st1, 1s

t
2, 0) (1st1, 0s

t
2, 0)

C42 (0st1, 1s
t
2, 0) (1st1, 0s

t
2, 0) (1st2, 0s

t
3, 0) (1st2, 0s

t
3, 0)

C43 (0st3, 1s
t
4, 0) (1st2, 0s

t
3, 0) (1st3, 0s

t
4, 0) (0st3, 1s

t
4, 0)

Figure 3.5. Transition linguistic term set and associated fuzzy number semantics

St = {st0 (Extremely High), st1(Very High), st2(High), s
t
3(Fairly High),

st4 (Medium), st5(Fairly Low), st6(Low)} (3.20)

Sp = {sp0(No Preference), sp1(Very Little Preference), sp2(Little Preference),

sp3(Moderate Preference), sp4(Much Preference), sp5(Very Much Preference),

sp6(Most Preference)} (3.21)
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Table 3.5. Original linguistic preferences

of criteria represented by proportional 3-tuples

Criteria
Evaluators Average

E1 E2 E3 E4 Ē

C11 (1sp4, 0s
p
5, 0) (0sp5, 1s

p
6, 0) (0sp5, 1s

p
6, 0) (0sp4, 1s

p
5, 0) (0.6875sp5, 0.3125s

p
6, 0)

C12 (0sp2, 1s
p
3, 0) (0sp3, 1s

p
4, 0) (1sp2, 0s

p
3, 0) (0sp2, 1s

p
3, 0) (0sp2, 1s

p
3, 0)

C13 (0sp2, 1s
p
3, 0) (1sp2, 0s

p
3, 0) (1sp2, 0s

p
3, 0) (0sp2, 1s

p
3, 0) (0.5sp2, 0.5s

p
3, 0)

C14 (1sp5, 0s
p
6, 0) (1sp5, 0s

p
6, 0) (0sp5, 1s

p
6, 0) (0sp5, 1s

p
6, 0) (0.5sp5, 0.5s

p
6, 0)

C21 (0sp5, 1s
p
6, 0) (0sp5, 1s

p
6, 0) (1sp5, 0s

p
6, 0) (0sp5, 1s

p
6, 0) (0.25sp5, 0.75s

p
6, 0)

C22 (1sp5, 0s
p
6, 0) (1sp5, 0s

p
6, 0) (0sp5, 1s

p
6, 0) (1sp5, 0s

p
6, 0) (0.75sp5, 0.25s

p
6, 0)

C31 (1sp5, 0s
p
6, 0) (1sp5, 0s

p
6, 0) (1sp5, 0s

p
6, 0) (0sp5, 1s

p
6, 0) (0.75sp5, 0.25s

p
6, 0)

C32 (1sp4, 0s
p
5, 0) (0sp4, 1s

p
5, 0) (1sp4, 0s

p
5, 0) (0sp4, 1s

p
5, 0) (0.5sp4, 0.5s

p
5, 0)

C33 (0sp5, 1s
p
6, 0) (1sp5, 0s

p
6, 0) (1sp5, 0s

p
6, 0) (1sp4, 0s

p
5, 0) (0.9375sp5, 0.0625s

p
6, 0)

C34 (1sp3, 0s
p
4, 0) (0sp3, 1s

p
4, 0) (1sp3, 0s

p
4, 0) (0sp3, 1s

p
4, 0) (0.5sp3, 0.5s

p
4, 0)

C41 (0sp1, 1s
p
2, 0) (1sp1, 0s

p
2, 0) (0sp1, 1s

p
2, 0) (1sp1, 0s

p
2, 0) (0.5sp1, 0.5s

p
2, 0)

C42 (0sp1, 1s
p
2, 0) (1sp1, 0s

p
2, 0) (1sp2, 0s

p
3, 0) (1sp2, 0s

p
3, 0) (0.25sp1, 0.75s

p
2, 0)

C43 (0sp3, 1s
p
4, 0) (1sp2, 0s

p
3, 0) (1sp3, 0s

p
4, 0) (0sp3, 1s

p
4, 0) (0.75sp3, 0.25s

p
4, 0)

3.6.6 Computing the evaluation result via proportional 3-tuple fuzzy

linguistic representation model

According to the procedure of proportional 3-tuple fuzzy linguistic representation model, the

aggregation of proportional 3-tuples should be carried out after information unification. Then, the

average important weights and the average preferences as well as the average extent of ignoring

information of criteria represented by proportional 3-tuples can be obtained via (3.8) and (3.10),

(3.9) and (3.11) respectively, as shown in the last columns of Table 3.3 and Table 3.5. After that,

the overall value of preference reflecting the overall figure of merit regarding the new product

development project can be obtained by (3.12) and (3.13), i.e.,

(0.945sp4, 0.055s
p
5, 0)

= (94.5% Much Preference, 5.5% Very Much Preference, 0)

which is then converted into the corresponding proportional 3-tuple of linguistic success levels in

S∗
4 , i.e.,

∧((0.945sp4, 0.055s
p
5, 0)) = (0.709s43, 0.291s

4
4, 0)

= (70.9% Fairly High, 29.1% High, 0).

43



Now, we obtain the final result. This proportional 3-tuple indicates that the possible success

level of TV center-HX project is 70.9% fairly high and 29.1% high, which gives the decision makers

a reference whether it is suitable to launch this new product project or not.

3.6.7 Comparative study

It would be interesting if we compare the final result with previous models. By using the same

linguistic assessments, the final result obtained by “fuzzy-logic-based approach” [44] is a fuzzy

number (0.439, 0666, 0.852), which represents its approximated linguistic expression of s43 = Fairly

High. In fact, we can easily find that the associated fuzzy number semantics of s43 is (0.4, 0.6, 0.8),

as shown in Figure 3.4. Obviously, there is loss of information when “Fairly High” is as the

final result provided to decision makers, and ‘Fairly High” as the final result is lack of precision.

Further, the final result obtained by “2-tuple fuzzy linguistic representation model is a 2-tuple (s43

= Fairly High, 0.32)” [33], which means the possible success level of this new product project is a

little more than fairly high. Although there is no loss of information when “2-tuple fuzzy linguistic

representation model” [33] was used to deal with this new product project screening problem, there

is some vagueness about “0.32” in the final result so that we can only explain it as “a little more

than”. Apparently, it increases the vagueness but reduces the comprehension when the 2-tuple (s43

= Fairly High, 0.32) is as the final result provided to decision makers. In contrast, there is no loss

of information in the final result obtained by proportional 3-tuple fuzzy linguistic representation

model and it indicates much more information which is very comprehensible to decision makers

than the obtained results by previous models. Moreover, the final result obtained by proportional

3-tuple fuzzy linguistic representation model provides more guidance to decision makers for their

final screening decisions. Besides, the computation process of proportional 3-tuple fuzzy linguistic

representation model is much simpler than “fuzzy-logic-based approach” [44], which needs to use

other approaches to approximately construct the membership function of final result.

3.6.8 New product project screening problem with revised linguistic

assessments

In order to compare the final result with previous models, we used original linguistic assessments

in the preceding part. Due to the limitations of previous model, the original linguistic assessments

must be complete and can only use one linguistic term to evaluate a criterion. Obviously, this is
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Table 3.6. Revised linguistic assessments

of merit/risk ratings of criteria represented by proportional 3-tuples

Criteria
Evaluators

E1 E2 E3 E4

C11 (0.6s14, 0.3s
1
5, 0.1) (0.2s15, 0.7s

1
6, 0.1) (0.2s15, 0.8s

1
6, 0) (0.4s14, 0.6s

1
5, 0)

C12 (0.3s12, 0.7s
1
3, 0) (0.2s13, 0.6s

1
4, 0.2) (0.8s12, 0.1s

1
3, 0.1) (0.4s12, 0.5s

1
3, 0.1)

C13 (0s12, 1s
1
3, 0) (0.7s12, 0.2s

1
3, 0.1) (1s12, 0s

1
3, 0) (0.3s12, 0.6s

1
3, 0.1)

C14 (0.6s15, 0.4s
1
6, 0) (0.6s15, 0.2s

1
6, 0.2) (0.2s15, 0.7s

1
6, 0.1) (0.4s15, 0.5s

1
6, 0.1)

C21 (0.3s15, 0.6s
1
6, 0.1) (0.2s15, 0.8s

1
6, 0) (0.7s15, 0.2s

1
6, 0.1) (0s15, 1s

1
6, 0)

C22 (0.7s15, 0.2s
1
6, 0.1) (0.5s15, 0.3s

1
6, 0.2) (0.2s15, 0.8s

1
6, 0) (0.6s15, 0.3s

1
6, 0.1)

C31 (0.8s15, 0.1s
1
6, 0.1) (0.8s15, 0.2s

1
6, 0) (0.6s15, 0.3s

1
6, 0.1) (0.4s15, 0.6s

1
6, 0)

C32 (0.7s14, 0.2s
1
5, 0.1) (0.3s14, 0.6s

1
5, 0.1) (0.8s14, 0.2s

1
5, 0) (0.4s14, 0.6s

1
5, 0)

C33 (0.2s15, 0.7s
1
6, 0.1) (0.5s15, 0.4s

1
6, 0.1) (0.7s15, 0.2s

1
6, 0.1) (0.6s14, 0.3s

1
5, 0.1)

C34 (0.6s13, 0.3s
1
4, 0.1) (0.2s13, 0.7s

1
4, 0.1) (0.7s13, 0.2s

1
4, 0.1) (0.3s13, 0.6s

1
4, 0.1)

C41 (0.8s24, 0.2s
2
5, 0) (0.3s24, 0.6s

2
5, 0.1) (0.6s24, 0.3s

2
5, 0.1) (0.2s24, 0.8s

2
5, 0)

C42 (0.8s24, 0.1s
2
5, 0.1) (0.3s24, 0.6s

2
5, 0.1) (0.3s23, 0.6s

2
4, 0.1) (0.2s23, 0.7s

2
4, 0.1)

C43 (0.7s22, 0.2s
2
3, 0.1) (0.4s23, 0.5s

2
4, 0.1) (0.3s22, 0.7s

2
3, 0) (0.6s22, 0.4s

2
3, 0)

not reasonable. Because the nature of human judgments on uncertainty response a basic bias with

probability, and sometimes evaluators cannot supply complete linguistic assessments, it is necessary

and reasonable to modify the original linguistic assessments by allowing evaluators to supply more

general case of linguistic assessments as discussed in Section 3.1. Besides, the revised linguistic

assessments can better reflect the capability of proportional 3-tuple fuzzy linguistic representation

model for dealing with MADM problems with incomplete linguistic information.

It is worth mentioning that we keep the information of original data as much as possible during

the modification. For example, in [44], the evaluator E1 supplied s14 as the linguistic assessment

for criterion C11. We then correspondingly modify it into proportional 3-tuple as (0.6s14, 0.3s
1
5, 0.1),

which not only keeps the most information of original assessment, i.e., s14, but also indicates the

extent of ignoring information, i.e., 0.1. With this principle, we correspondingly modify evaluators’

final linguistic assessment results of merit/risk ratings and important weights according to the

original data in [44], which are shown in Table 3.6 and Table 3.7 respectively.
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Table 3.7. Revised linguistic assessments

of weights of criteria represented by proportional 3-tuples

Criteria
Evaluators Average

E1 E2 E3 E4 Ē

C11 (0.4s34, 0.5s
3
5, 0.1) (0.8s34, 0.2s

3
5, 0) (0.1s34, 0.9s

3
5, 0) (0.3s34, 0.6s

3
5, 0.1) (0.4s34, 0.55s

3
5, 0.05)

C12 (0.6s32, 0.4s
3
3, 0) (0.3s33, 0.6s

3
4, 0.1) (0.2s33, 0.8s

3
4, 0) (0.5s33, 0.4s

3
4, 0.1) (0.65s33, 0.3s

3
4, 0.05)

C13 (0.3s34, 0.6s
3
5, 0.1) (0.3s34, 0.7s

3
5, 0) (0.8s34, 0.2s

3
5, 0) (0.7s34, 0.2s

3
5, 0.1) (0.525s34, 0.425s

3
5, 0.05)

C14 (0.6s34, 0.4s
3
5, 0) (0.3s34, 0.7s

3
5, 0) (0.2s34, 0.7s

3
5, 0.1) (0.3s34, 0.6s

3
5, 0.1) (0.35s34, 0.6s

3
5, 0.05)

C21 (0.3s34, 0.6s
3
5, 0.1) (0.5s34, 0.4s

3
5, 0.1) (0s34, 1s

3
5, 0) (0.6s34, 0.2s

3
5, 0.2) (0.35s34, 0.55s

3
5, 0.1)

C22 (0.3s32, 0.6s
3
3, 0.1) (0.6s32, 0.3s

3
3, 0.1) (0.2s32, 0.8s

3
3, 0) (0.4s32, 0.6s

3
3, 0) (0.375s32, 0.575s

3
3, 0.05)

C31 (0.7s34, 0.2s
3
5, 0.1) (0.8s34, 0.2s

3
5, 0) (0.2s34, 0.7s

3
5, 0.1) (0.1s34, 0.7s

3
5, 0.2) (0.45s34, 0.45s

3
5, 0.1)

C32 (0.3s33, 0.6s
3
4, 0.1) (0.7s33, 0.3s

3
4, 0) (0.7s33, 0.2s

3
4, 0.1) (0.6s32, 0.4s

3
3, 0) (0.825s33, 0.125s

3
4, 0.05)

C33 (0.2s33, 0.7s
3
4, 0.1) (0.6s33, 0.3s

3
4, 0.1) (0.7s32, 0.3s

3
3, 0) (0.4s32, 0.6s

3
3, 0) (0.025s32, 0.925s

3
3, 0.05)

C34 (0.7s33, 0.2s
3
4, 0.1) (0.3s33, 0.6s

3
4, 0.1) (0.8s33, 0.2s

3
4, 0) (0.6s33, 0.4s

3
4, 0) (0.6s33, 0.35s

3
4, 0.05)

C41 (0.2s34, 0.8s
3
5, 0) (0.6s34, 0.3s

3
5, 0.1) (0.2s34, 0.8s

3
5, 0) (0.4s34, 0.5s

3
5, 0.1) (0.35s34, 0.65s

3
5, 0.05)

C42 (0.7s34, 0.3s
3
5, 0) (0.7s34, 0.3s

3
5, 0) (0.2s34, 0.7s

3
5, 0.1) (0.6s34, 0.3s

3
5, 0.1) (0.55s34, 0.4s

3
5, 0.05)

C43 (0.6s33, 0.4s
3
4, 0) (0.2s33, 0.8s

3
4, 0) (0.1s32, 0.7s

3
3, 0.2) (0.6s32, 0.2s

3
3, 0.2) (0.775s33, 0.125s

3
4, 0.1)

Table 3.8. Revised linguistic assessments of risk ratings of criteria

represented by proportional 3-tuples in transition linguistic term set

Criteria
Evaluators

E1 E2 E3 E4

C41 (0.2st1, 0.8s
t
2, 0) (0.6st1, 0.3s

t
2, 0.1) (0.3st1, 0.6s

t
2, 0.1) (0.8st1, 0.2s

t
2, 0)

C42 (0.1st1, 0.8s
t
2, 0.1) (0.6st1, 0.3s

t
2, 0.1) (0.6st2, 0.3s

t
3, 0.1) (0.7st2, 0.2s

t
3, 0.1)

C43 (0.2st3, 0.7s
t
4, 0.1) (0.5st2, 0.4s

t
3, 0.1) (0.7st3, 0.3s

t
4, 0) (0.4st3, 0.6s

t
4, 0)

3.6.9 The unification of the revised linguistic assessments represented

by proportional 3-tuples

Similarly, we can easily transform the proportional 3-tuples of criteria C41, C42 and C43 in Table

3.6 into related proportional 3-tuples in S∗
t , which are shown in Table 3.8. Then, the overall unified

information of proportional 3-tuples can be obtained via preference-preserve proportional 3-tuple

transformation, and is finally showed in Table 3.9.
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Table 3.9. Revised linguistic preferences

of criteria represented by proportional 3-tuples

Criteria
Evaluators Average

E1 E2 E3 E4 Ē

C11 (0.6sp4, 0.3s
p
5, 0.1) (0.2sp5, 0.7s

p
6, 0.1) (0.2sp5, 0.8s

p
6, 0) (0.4sp4, 0.6s

p
5, 0) (0.7625sp5, 0.1875s

p
6, 0.05)

C12 (0.3sp2, 0.7s
p
3, 0) (0.2sp3, 0.6s

p
4, 0.2) (0.8sp2, 0.1s

p
3, 0.1) (0.4sp2, 0.5s

p
3, 0.1) (0.225sp2, 0.675s

p
3, 0.1)

C13 (0sp2, 1s
p
3, 0) (0.7sp2, 0.2s

p
3, 0.1) (1sp2, 0s

p
3, 0) (0.3sp2, 0.6s

p
3, 0.1) (0.5sp2, 0.45s

p
3, 0.05)

C14 (0.6sp5, 0.4s
p
6, 0) (0.6sp5, 0.2s

p
6, 0.2) (0.2sp5, 0.7s

p
6, 0.1) (0.4sp5, 0.5s

p
6, 0.1) (0.45sp5, 0.45s

p
6, 0.1)

C21 (0.3sp5, 0.6s
p
6, 0.1) (0.2sp5, 0.8s

p
6, 0) (0.7sp5, 0.2s

p
6, 0.1) (0sp5, 1s

p
6, 0) (0.3sp5, 0.65s

p
6, 0.05)

C22 (0.7sp5, 0.2s
p
6, 0.1) (0.5sp5, 0.3s

p
6, 0.2) (0.2sp5, 0.8s

p
6, 0) (0.6sp5, 0.3s

p
6, 0.1) (0.5sp5, 0.4s

p
6, 0.1)

C31 (0.8sp5, 0.1s
p
6, 0.1) (0.8sp5, 0.2s

p
6, 0) (0.6sp5, 0.3s

p
6, 0.1) (0.4sp5, 0.6s

p
6, 0) (0.65sp5, 0.3s

p
6, 0.05)

C32 (0.7sp4, 0.2s
p
5, 0.1) (0.3sp4, 0.6s

p
5, 0.1) (0.8sp4, 0.2s

p
5, 0) (0.4sp4, 0.6s

p
5, 0) (0.55sp4, 0.4s

p
5, 0.05)

C33 (0.2sp5, 0.7s
p
6, 0.1) (0.5sp5, 0.4s

p
6, 0.1) (0.7sp5, 0.2s

p
6, 0.1) (0.6sp4, 0.3s

p
5, 0.1) (0.6875sp5, 0.2125s

p
6, 0.1)

C34 (0.6sp3, 0.3s
p
4, 0.1) (0.2sp3, 0.7s

p
4, 0.1) (0.7sp3, 0.2s

p
4, 0.1) (0.3sp3, 0.6s

p
4, 0.1) (0.45sp3, 0.45s

p
4, 0.1)

C41 (0.2sp1, 0.8s
p
2, 0) (0.6sp1, 0.3s

p
2, 0.1) (0.3sp1, 0.6s

p
2, 0.1) (0.8sp1, 0.2s

p
2, 0) (0.475sp1, 0.475s

p
2, 0.05)

C42 (0.1sp1, 0.8s
p
2, 0.1) (0.6sp1, 0.3s

p
2, 0.1) (0.6sp2, 0.3s

p
3, 0.1) (0.7sp2, 0.2s

p
3, 0.1) (0.05sp1, 0.85s

p
2, 0.1)

C43 (0.2sp3, 0.7s
p
4, 0.1) (0.5sp2, 0.4s

p
3, 0.1) (0.7sp3, 0.3s

p
4, 0) (0.4sp3, 0.6s

p
4, 0) (0.675sp3, 0.275s

p
4, 0.05)

3.6.10 The evaluation result of revised linguistic assessments

After information unification, the average revised important weights and the average revised

preferences as well as the average extent of ignoring information of criteria represented by

proportional 3-tuples can be obtained easily and are shown in the last columns of Table 3.7 and

Table 3.9. Then, the overall value of preference of the new product development project can be

obtained by (3.12) and (3.13), i.e.,

(0.915sp4, 0.018s
p
5, 0.067 )

= (91.5% Much Preference, 1.8% Very Much Preference, 6.7%)

which is then converted into the related proportional 3-tuple of linguistic success levels in S∗
4 , i.e.,

∧((0.915sp4, 0.018s
p
5, 0.067)) = (0.687s43, 0.246s

4
4, 0.067)

= (68.7% Fairly High, 24.6% High, 6.7%).

This is the final result of the revised linguistic assessments. This proportional 3-tuple indicates

that the possible success level of TV center-HX project is 68.7% fairly high, 24.6% high, and 6.7%
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ignoring information, which gives the decision makers a reference whether it is suitable to launch

this new product project or not.

It is obvious proportional 3-tuple fuzzy linguistic representation model is very flexible to deal with

MADM problems with incomplete linguistic information. However, the previous models cannot

be used in such situations, such as “fuzzy-logic-based approach” [44], “2-tuple fuzzy linguistic

representation model” [28], and “proportional 2-tuple fuzzy linguistic representation model” [70].

3.7 Conclusion

In this chapter, we introduced a proportional 3-tuple fuzzy linguistic representation model for

MADM problems with incomplete linguistic information. In this model, we first defined a notion of

proportional 3-tuple, by which evaluators could express their linguistic assessments with confidence

levels, and meanwhile, evaluators could directly supple incomplete assessments when the complete

linguistic information was not acceptable. Then, we proposed a proportional 3-tuple computation

operator and a so-called preference-preserving proportional 3-tuple transformation based on CCV

so as to unify different information represented by proportional 3-tuples.

Without loss of generality, we put forward a proportional 3-tuple fuzzy linguistic representation

model combined with a new product project screening problem, which was taken from previous

literature. After application, we can find the special features of this model, such as no loss of

information during the evaluation process, ease operation in the complicated linguistic context,

flexible operation space for evaluators under uncertainty, taking the ignoring information into

account and so on. Based on these features, the proportional 3-tuple fuzzy linguistic representation

model can be applied to much more complicated MADM problems, while previous models cannot

deal with such problems. In addition, the final result obtained by proportional 3-tuple fuzzy

linguistic representation model provides much more information which could give decision makers

a more comprehensive guidance than that of previous models.
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Chapter 4

A Proportional Fuzzy Linguistic

Distribution Model

In this chapter, we introduce a proportional fuzzy linguistic distribution model for MADM

problem with incomplete linguistic information. In this model, we use proportions as evaluators’

confidence levels indicating their belief degrees that each linguistic term fits a linguistic variable.

Further, “since the uncertainty may be assigned not only to any single evaluation grade but also

to their rational combinations” [85], “each attribute can be directly evaluated using subjective

judgments with the uncertainty being assigned to any number of adjacent single evaluation

grades”. Thus, when this model is employed in linguistic information, there is no obligatory

requirement that evaluators have to supply the subjective judgments which are constituted by

fixed number of linguistic terms. Moreover, with introducing a variable representing the extent of

ignoring information, the proportional fuzzy linguistic distribution model is capable of dealing

with incomplete linguistic assessments. Hence, facing with uncertain and incomplete information,

evaluators can directly supply incomplete linguistic assessments. Due to these special features,

evaluators can flexibly express their linguistic assessments without too many restrictions, which

leave much operation space for evaluators to handle uncertainty.

4.1 Proportional Fuzzy Linguistic Distribution

Let S = {s0, s1, . . . , sn} be an ordinal term set with s0 < s1 < · · · < sn (“<” represents order

relation, i.e., si < sj if and only if i < j), I = [0, 1] and
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IS ≡ I × S = {(α, si) : α ∈ [0, 1] and i = 0, 1, . . . , n}.

Given a sequence (si, si+1, . . . , si+m) of (m+1) successive ordinal terms of S, any (m+1) elements

(αi, si), (αi+1, si+1), . . . , (αi+m, si+m) of IS are called a symbolic proportion sequence, and it will

be denoted by

 (αisi, αi+1si+1, . . . , αi+msi+m, 0) if
∑i+m

j=i αj = 1

(αisi, αi+1si+1, . . . , αi+msi+m, ε) if
∑i+m

j=i αj < 1
(4.1)

where ε represents the extent of ignoring information. The set of all the symbolic proportion

sequences is denoted by S∗, i.e., S∗ = {(αisi, αi+1si+1, . . . , αi+msi+m, ε) : αi ∈ (0, 1], αi+m ∈
(0, 1], 0 <

∑i+m
j=i αj ≤ 1, ε = 1−∑i+m

j=i αj, 0 ≤ i, and i+m ≤ n}. The set S∗ is called proportional

fuzzy linguistic distribution set generated by S and the members of S∗ are called proportional

fuzzy linguistic distributions.

In the sequel, a proportional fuzzy linguistic distribution (αisi, αi+1si+1, . . . , αi+msi+m, ε) will

be used to represent an evaluator’s subjective judgment. Here, i is called the starting label; si is

the No. i linguistic term; αj is the proportional coefficient in front of the related linguistic term.

It represents the confidence levels that to which degree the evaluator believes a linguistic term fits

a linguistic variable. Similarly, i+m is called the ending label.

An assessment (αisi, αi+1si+1, . . . , αi+msi+m, ε) is called complete if
∑i+m

j=i αj = 1, or ε = 0, and

incomplete if
∑i+m

j=i αj < 1, or, ε > 0. For example, we will use proportional fuzzy linguistic

distribution model to evaluate the performance of four types of motorcycles [87] in this chapter.

Then, for the attributes, “responsiveness”, “fuel economy”, “maneuverability”, “gearbox

operation”, the following types of uncertain subjective judgments of a motorcycle, for example,

“Yamaha”, are frequently used.

1) The responsiveness of engine is evaluated to be good with a confidence degree of 0.3, and to

be excellent with a confidence degree of 0.6.

2) The fuel economy of engine is evaluated to be indifferent with a confidence degree of 1.

3) The maneuverability of handling is excellent with a confidence degree of 0.9.

50



4) The gearbox operation of transmission is evaluated to be indifferent with a confidence degree

of 0.5, and to be average with a confidence degree of 0.5.

The four assessments 1)–4) given in the above can be represented in the form of proportional

fuzzy linguistic distributions defined by (4.1) as

S∗(responsiveness) = (0.3s3, 0.6s4, 0.1)

S∗(fuel economy) = (1s1, 0)

S∗(maneuverability) = (0.9s4, 0.1)

S∗(gearbox operation) = (0.5s1, 0.5s2, 0)

where si with i = 1, 2, 3 and 4 are the linguistic terms of the set of evaluation grades S1 as shown

in (4.14), and the linguistic assessments 2) and 4) are complete, while the linguistic assessments

1) and 3) are incomplete.

It is worth mentioning that we quoted original data from [87] in order to compare the final

result obtained by proportional fuzzy linguistic distribution model with that obtained by evidential

reasoning approach. Hence, the above four linguistic assessments used two linguistic terms at most

to describe a linguistic variable (e.g. the linguistic assessments 1) and 4)). As a matter of fact,

evaluators can use the combination of any number of linguistic terms to describe a linguistic

variable if they believe it is reasonable and appropriate to capture the uncertainty in some special

situations. Let’s still take Yamaha as an example. Supposing that the evaluator assesses the fuel

economy of Yamaha based on mountain road, ordinary road and highway, the following uncertain

statement perhaps can be considered to use.

The fuel economy of Yamaha is evaluated to be indifferent on mountain roads, to be average

on ordinary roads, to be good on highways, and unclear on the other kinds of roads. Then the

uncertain subjective judgment can be represented in the form of proportional fuzzy linguistic

distribution as:

S∗(fuel economy) = (0.25s1, 0.25s2, 0.25s3, 0.25).
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4.2 The Comparison of Proportional Fuzzy Linguistic

Distributions

Let S = {s0, s1, . . . , sn} be an linguistic term set and S∗ be the proportional fuzzy linguistic

distribution set generated by S. For any (αisi, αi+1si+1, . . . , αi+msi+m, ε)1, (βgsg, βg+1sg+1, . . . ,

βg+fsg+f , ε)2 ∈ S∗, the comparison of proportional fuzzy linguistic distributions is described as

follows.

(1) If ε1 =0 and ε2 = 0, define (αisi, αi+1si+1, . . . , αi+msi+m, ε)1 < (βgsg, βg+1sg+1, . . . , βg+fsg+f ,

ε)2

⇔ αi · i+ αi+1 · (i+ 1) + · · ·+ αi+m · (i+m)

< βg · g + βg+1 · (g + 1) + · · ·+ βg+f · (g + f)

⇔
i+m∑
j=i

(αj · j) <
g+f∑
k=g

(βk · k). (4.2)

(2) If ε1 = 0 and ε2 ̸= 0, the latter will generate an interval value (φ, ψ) because it includes

ignoring information. Thus, we need to allocate ε2 in order to obtain the minimum value φ and

maximum value ψ.

For the minimum value φ, we can consider an extreme situation that ε2 is allocated to s0

completely, i.e.,

φ = βg · g + βg+1 · (g + 1) + · · ·+ βg+f · (g + f) + ε2 · 0

=
g+f∑
k=g

(βk · k). (4.3)

For the maximum value ψ, we can consider an extreme situation that ε2 is allocated to sn

completely, i.e.,
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Figure 4.1. The relationship between a complete

and an incomplete proportional fuzzy linguistic distribution

Figure 4.2. The relationship between two

incomplete proportional fuzzy linguistic distributions

ψ = βg · g + βg+1 · (g + 1) + · · ·+ βg+f · (g + f) + ε2 · n

=
g+f∑
k=g

(βk · k) + ε2 · n. (4.4)

Then, the interval value can be represented as (
∑g+f

k=g(βk · k),
∑g+f

k=g(βk · k) + ε2 · n), and the

relationship between the two proportional fuzzy linguistic distributions can be described in Figure

4.1. A,B and C represent the possible relative locations of the former proportional fuzzy linguistic

distribution. (φ2, ψ2) is the interval value generated by the latter proportional fuzzy linguistic

distribution.

(3) If ε1 ̸= 0 and ε2 ̸= 0, the two proportional fuzzy linguistic distributions will respectively

generate an interval value (φ1, ψ1), (φ2, ψ2). Similarly, the relationship between the two

proportional fuzzy linguistic distributions can be described in Figure 4.2.
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4.3 Computation Operator of Proportional Fuzzy

Linguistic Distribution

Proportional fuzzy linguistic distribution model is a kind of symbolic model, which is very easy

to operate. We can carry out the related calculations directly on the labels and proportional

coefficients in most instances. This leaves us much convenience even though we use it to deal

with MADM problems under complex situations. However, we have to transform a complete

proportional fuzzy linguistic distribution into a numerical value first before we aggregate a set of

proportional fuzzy linguistic distributions in the situation that the linguistic weights are employed

during the evaluation process. In other words, the weights are represented not by numerical values

but by complete proportional fuzzy linguistic distributions. Therefore, the related computation

operator that transforms a linguistic weight represented by complete proportional fuzzy linguistic

distribution into a numerical value has to be defined.

Formally, let S = {s0, s1, . . . , sn} be an ordinal term set with s0 < s1 < · · · < sn, and S∗

is the proportional fuzzy linguistic distribution set generated by S. Define CCV of a complete

proportional fuzzy linguistic distribution (αisi, αi+1si+1, . . . , αi+msi+m, 0) as follows:

CCV (αisi, αi+1si+1, . . . , αi+msi+m, 0)

= (αiCCV (si), αi+1CCV (si+1), . . . , αi+mCCV (si+m), 0)

= (αici, αi+1ci+1, . . . αi+mci+m, 0)

= zi + zi+1 + · · ·+ zi+m

=
∑i+m

j=i zj (4.5)

with j = i, i + 1, . . . , i +m. We call it the corresponding canonical characteristic value function

on S∗ generated by CCV on S. ci < ci+1 < · · · < ci+m ∈ [0, 1] is the CCV of si, si+1, . . . , si+m

respectively.

With the function of CCV , we can easily transform a complete linguistic weight into a numerical

value without loss of information. Thus, proportional fuzzy linguistic distribution model is capable

of dealing with MADM problems with linguistic weights.
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4.4 Expected Utility in Proportional Fuzzy Linguistic

Distribution

Because of the operation mechanism of proportional fuzzy linguistic distribution model, it

provides an aggregated distribution assessment for each alternative, which is different from most

of the other MADA approaches. For the aggregated distribution assessments, it is very difficult

to precisely describe the ranking order among them. In such case, the notion of expected utility,

which is often associated with evidential reasoning approach [87] can be employed here to

compare or rank alternatives.

“Suppose a set of alternativesX with a single-valued function u(x) onX, which is called expected

utility” [34]. One can represent the preference relation on X, such that for any x, y ∈ X, x ≽ y if

and only if u(x) ≥ u(y). As for u(x), it may be estimated using the methods mentioned in [86], [87],

such as “probability assignment method” [42], [76], “constructing regression models by using partial

rankings or pairwise comparisons” and so on. Then, the way used for solving the problem of

choosing x can be got by maximization of u(x).

Suppose a set of evaluation grades

S = {s0, s1, . . . , sn}

which are used as an instrument supplied to evaluators for evaluating the attribute. For a

proportional fuzzy linguistic distribution (αisi, αi+1si+1, . . . , αi+msi+m, ε), assume a utility

function

u′ : S → [0, 1]

satisfying

u′(si+1) > u′(si), if si+1 is preferred to si.

Supposing alternatives a and b have a two level hierarchy with only an attribute y on the first

level, and its basic attributes E = {e1, e2, . . . , en} which is a finite set at the bottom level, as shown
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Figure 4.3. Two level hierarchy

in Figure 4.3. If all assessments for attributes are complete, i.e.,
∑i+m

j=i αj = 1, or ε = 0, then, the

expected utility of the alternative a or b on the only attribute y is defined by

u(y) =
i+m∑
j=i

αju
′(sj). (4.6)

If and only if u(y(a)) > u(y(b)), we can say that the alternative a is preferred to another

alternative b.

If there is any incomplete assessment for the basic attribute, i.e.,
∑i+m

j=i αj < 1, or ε > 0, then

the assessment for y is also incomplete. In such case, the confidence interval [αj, (αj + ε)] provides

“the range of the likelihood to which y may be assessed to the evaluation grades” [87]. Without

loss of generality, s0 is supposed to be the least preferred grade which has the lowest utility and

sn is supposed to be the most preferred grade which has the highest utility. Then, the maximum,

minimum and average expected utilities on y in proportional fuzzy linguistic distributions are given

by

umax(y) =
n−1∑
j=0

αju
′(sj) + (αn + ε)u′(sn) (4.7)

umin(y) = (α0 + ε)u′(s0) +
n∑

j=1

αju
′(sj) (4.8)

uavg(y) =
umax(y) + umin(y)

2
. (4.9)

If all original assessments are complete, then ε = 0, and u(y) = umax(y) = umin(y) = uavg(y).

If the original assessments include incomplete information, then the ranking of two alternatives a

and b on y is based on their utility intervals and carried out by [34]
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• a ≻y b if and only if umin(y(a)) > umax(y(b))

• a ∼y b if and only if umin(y(a)) = umin(y(b)) and umax(y(a)) = umax(y(b)).

Otherwise, the average expected utility can be used to generate a ranking, i.e.,

• a ≻y b on an average basis, if uavg(y(a)) > uavg(y(b)).

What we should note is that the ranking order is not reliable if the average expected utility is

used. This is because there is a possibility that the special situation could happen, i.e., uavg(y(a)) >

uavg(y(b)), but umax(y(b)) > umin(y(a)).

Further, if selecting a best alternative is not the only purpose of decision analysis, but also

providing a ranking order, then, “the minimax regret approach (MRA)” [74], which is used to

“calculate the maximum loss of expected utility”, can be employed to get such a ranking order.

The ranking principle is that one alternative is selected as the best alternative if this alternative has

the smallest maximum loss of expected utility. Then, exclude the best alternative, and calculate

the maximum loss of expected utilities of other alternatives. Operate the MRA again and again

until we get the ranking order of final two alternatives. Thus, the overall ranking order is also

obtained. (For more details, see, e.g., [74].)

4.5 Proportional Fuzzy Linguistic Distribution

Aggregation Operator

When we deal with MADA problems, we usually need to aggregate different information of

attributes so as to obtain an integrated value that summarizes a set of values. The result of

the aggregation of a set of proportional fuzzy linguistic distributions is also a proportional fuzzy

linguistic distribution. To do so, we need to define several appropriate aggregation operators for

proportional fuzzy linguistic distributions. Particularly, we defined the function CCV within the

proportional fuzzy linguistic distribution framework which could transform complete proportional

fuzzy linguistic distributions into numerical values in previous section. Combined with the function

CCV , we are able to define a linguistic weighted aggregation operator so that the proportional

fuzzy linguistic distribution model is capable of dealing with MADM problems with linguistic

weights.
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Let S∗ = {(αisi, αi+1si+1, . . . , αi+msi+m, ε)1, (αgsg, αg+1sg+1, . . . , αg+fsg+f , ε)2, . . . , (αjsj, αj+1

sj+1, . . . , αj+qsj+q, ε)p} be a set of proportional fuzzy linguistic distributions. Here are some

remarks that we should consider before introducing the aggregation operators.

• The number of proportional fuzzy linguistic distributions is p.

• It is unknown whether the starting labels of proportional fuzzy linguistic distributions are

the same. For example, i perhaps doesn’t equal g, but g perhaps equals j.

• It is unknown whether the ending labels of proportional fuzzy linguistic distributions are the

same.

• In order to aggregate proportional fuzzy linguistic distributions more easily and directly, we

will artificially make all the proportional fuzzy linguistic distributions symbolically have the

same labels by adding “0” as proportional coefficients.

Taking these considerations into mind, the procedure of proportional fuzzy linguistic distribution

aggregation operators is described as follows.

4.5.1 Arithmetic mean

Definition 4.1 : Let S∗ = {(αisi, αi+1si+1, . . . , αi+msi+m, ε)1, (αgsg, αg+1sg+1, . . . , αg+fsg+f , ε)2,

. . . , (αjsj, αj+1sj+1, . . . , αj+qsj+q, ε)p} be a set of proportional fuzzy linguistic distributions, and

(γksk, γk+1sk+1, . . . , γk+hsk+h, ε̄) be the arithmetic mean represented by proportional fuzzy

linguistic distribution. Then, the procedure of calculating the arithmetic mean (γksk, γk+1sk+1,

. . . , γk+hsk+h, ε̄) is as follows.

1) Take the minimum of the starting labels of proportional fuzzy linguistic distributions in S∗,

i.e., k = min (i, g, . . . , j).

2) Take the maximum of the ending labels of proportional fuzzy linguistic distributions in S∗,

i.e., k + h = max (i+m, g + f, . . . , j + q).

3) Compare the proportional fuzzy linguistic distributions in S∗ with arithmetic mean

(γksk, γk+1sk+1, . . . , γk+hsk+h, ε̄). For any proportional fuzzy linguistic distribution in S∗, if

it is lack of corresponding linguistic terms, add “0” as symbolic proportional coefficients in

front of the related linguistic terms. Thus, all the proportional fuzzy linguistic distributions
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in S∗ have the same starting labels and ending labels with arithmetic mean, i.e., S∗ =

{(αksk, αk+1sk+1, . . . , αk+hsk+h, ε)1, (αksk, αk+1sk+1, . . . , αk+hsk+h, ε)2, . . . , (αksk, αk+1sk+1,

. . . , αk+hsk+h, ε)p}.

4) The calculating process of arithmetic mean is given by



γksk =
(∑p

l=1 (αk)l
p

)
sk

...

γk+hsk+h =
(∑p

l=1 (αk+h)l
p

)
sk+h

ε̄ =

∑p
l=1 εl
p

(4.10)

where l is the No. of proportional fuzzy linguistic distributions in S∗.

4.5.2 Weighted average operator

In the MADA problems, each attribute may have different weight, implying the importance of

corresponding attribute. In this respect, weighted average operator is often used because it allows

each attribute to be associated with a weight. The equivalent operator for proportional fuzzy

linguistic distributions is defined as follows.

Definition 4.2 : Let S∗ = {(αisi, αi+1si+1, . . . , αi+msi+m, ε)1, (αgsg, αg+1sg+1, . . . , αg+fsg+f , ε)2,

. . . , (αjsj, αj+1sj+1, . . . , αj+qsj+q, ε)p} be a set of proportional fuzzy linguistic distributions,

W = {ω1, ω2, . . . , ωp} be their associated weights, and (γksk, γk+1sk+1, . . . , γk+hsk+h, ε̄) be the

weighted average of the set of proportional fuzzy linguistic distributions. Then, the computation

and aggregation of the weighted average (γksk, γk+1sk+1, . . . , γk+hsk+h, ε̄) is as follows.

1) Take the minimum of the starting labels of proportional fuzzy linguistic distributions in S∗,

i.e., k = min (i, g, . . . , j).

2) Take the maximum of the ending labels of proportional fuzzy linguistic distributions in S∗,

i.e., k + h = max (i+m, g + f, . . . , j + q).
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3) Compare the proportional fuzzy linguistic distributions in S∗ with the weighted average

(γksk, γk+1sk+1, . . . , γk+hsk+h, ε̄). For any proportional fuzzy linguistic distribution in S∗, if

it is lack of corresponding linguistic terms, add “0” as symbolic proportional coefficients in

front of the related linguistic terms in order to make sure all the proportional fuzzy linguistic

distributions in S∗ have the same starting labels and ending labels with weighted average, i.e.,

S∗ = {(αksk, αk+1sk+1, . . . , αk+hsk+h, ε)1, (αksk, αk+1sk+1, . . . , αk+hsk+h, ε)2, . . . , (αksk, αk+1

sk+1, . . . , αk+hsk+h, ε)p}.

4) The calculating process of weighted average is given by



γksk =
(∑p

l=1 (αk)l · ωl∑p
l=1 ωl

)
sk

...

γk+hsk+h =
(∑p

l=1 (αk+h)l · ωl∑p
l=1 ωl

)
sk+h

ε̄ =

∑p
l=1 εl · ωl∑p

l=1 ωl

(4.11)

where l is the No. of proportional fuzzy linguistic distributions in S∗.

4.5.3 Linguistic weighted average operator

This is an extended version of weighted average operator, in which the weights are expressed by

means of linguistic values instead of numerical values.

Definition 4.3 : Let S∗ = {(αisi, αi+1si+1, . . . , αi+msi+m, ε)1, (αgsg, αg+1sg+1, . . . , αg+fsg+f , ε)2,

. . . , (αjsj, αj+1sj+1, . . . , αj+qsj+q, ε)p} be a set of proportional fuzzy linguistic distributions, and

W ∗ = {(βtωt, βt+1ωt+1, . . . , βt+dωt+d, 0)1, . . . , (βuωu, βu+vωu+v, . . . , βu+vωu+v, 0)p} be the set of

their associated linguistic weights which are represented by the form of complete proportional

fuzzy linguistic distributions. Then, the procedure of calculating the linguistic weighted average

(γksk, γk+1sk+1, . . . , γk+hsk+h, ε̄) of proportional fuzzy linguistic distributions is as follows.

1) Take the minimum of the starting labels of proportional fuzzy linguistic distributions in S∗,

i.e., k = min (i, g, . . . , j).
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2) Take the maximum of the ending labels of proportional fuzzy linguistic distributions in S∗,

i.e., k + h = max (i+m, g + f, . . . , j + q).

3) Compare the proportional fuzzy linguistic distributions in S∗ with the linguistic weighted

average (γksk, γk+1sk+1, . . . , γk+hsk+h, ε̄). For any proportional fuzzy linguistic distribution

in S∗, if it is lack of corresponding linguistic terms, add “0” as symbolic proportional

coefficients in front of the related linguistic terms in order to make sure all the proportional

fuzzy linguistic distributions in S∗ have the same starting labels and ending labels with

linguistic weighted average (γksk, γk+1sk+1, . . . , γk+hsk+h, ε̄), i.e., S
∗={(αksk, αk+1sk+1, . . . ,

αk+hsk+h, ε)1, (αksk, αk+1sk+1, . . . , αk+hsk+h, ε)2, . . . , (αksk, αk+1sk+1, . . . , αk+hsk+h, ε)p}.

4) Transform linguistic weights represented by complete proportional fuzzy linguistic

distributions into numerical values by formula (4.5), i.e.,



CCV (βtωt, βt+1ωt+1, . . . , βt+dωt+d, 0)1 = (
t+d∑
b=t

Zb)1 = Z1

...

CCV (βuωu, βu+1ωu+1, . . . , βu+vωu+v, 0)p = (
u+v∑
b=u

Zb)p = Zp

(4.12)

where Z is the numerical values transformed by CCV over linguistic weights.

5) Thus, the calculating process of linguistic weighted average is given by



γksk =
(∑p

l=1 (αk)l · Zl∑p
l=1 Zl

)
sk

...

γk+hsk+h =
(∑p

l=1 (αk+h)l · Zl∑p
l=1 Zl

)
sk+h

ε̄ =

∑p
l=1 εl · Zl∑p

l=1 Zl

(4.13)

where l is the No. of proportional fuzzy linguistic distributions in S∗.

In order to clarify the procedure of calculating the linguistic weighted average of proportional

fuzzy linguistic distributions, we give an example here.
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Example: Suppose a set of proportional fuzzy linguistic distributions S∗
1 = {(0.4s2, 0.4s3, 0.2),

(0.6s3, 0.2s4, 0.2)}. Its associated linguistic weights are S∗
2 = {(0.3s4, 0.7s5, 0), (0.5s4, 0.5s5, 0)}. S∗

1

and S∗
2 are the proportional fuzzy linguistic distribution sets generated by S1 and S2 respectively.

S1 and S2 are linguistic term sets as shown in (4.14) and (4.15). The associated fuzzy number

semantics of S2 is shown in Figure 4.7. Then, the procedure of calculating the linguistic weighted

average (γksk, γk+1sk+1, . . . , γk+hsk+h, ε̄) is as follows.

1) For S∗
1 , k = min(2, 3) = 2.

2) For S∗
1 , k + h = max(3, 4) = 4.

3) For any proportional fuzzy linguistic distribution in S∗
1 , add “0” as symbolic proportional

coefficients in front of the related linguistic terms if it is lack of the corresponding linguistic

terms. Then, S∗
1 = {(0.4s2, 0.4s3, 0s4, 0.2), (0s2, 0.6s3, 0.2s4, 0.2)}.

4) Transform linguistic weights of S∗
2 into numerical values by formula (4.12), i.e.,


CCV (0.3s4, 0.7s5, 0) = 0.3× 0.8 + 0.7× 1 = 0.94

CCV (0.5s4, 0.5s5, 0) = 0.5× 0.8 + 0.5× 1 = 0.9

5) The linguistic weighted average can be obtained by



γ2s2 =
(
0.4× 0.94 + 0× 0.9

0.94 + 0.9

)
s2 = 0.204s2

γ3s3 =
(
0.4× 0.94 + 0.6× 0.9

0.94 + 0.9

)
s3 = 0.498s3

γ4s4 =
(
0× 0.94 + 0.2× 0.9

0.94 + 0.9

)
s4 = 0.098s4

ε̄ =
0.2× 0.94 + 0.2× 0.9

0.94 + 0.9
= 0.2

Therefore, the linguistic weighted average of the 2 proportional fuzzy linguistic distributions is

(0.204s2, 0.498s3, 0.098s4, 0.2).
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4.6 An Illustration Example

In this section, we apply proportional fuzzy linguistic distribution model to deal with a MADA

problem with incomplete linguistic information taken from [87]. In order to compare the final

result with [87], which used evidential reasoning approach to evaluate motorcycles, we first use

the original data including distinct evaluation grades and weights. Then, we abandon the original

weights and suppose a set of linguistic weights represented by complete proportional fuzzy linguistic

distributions so that we can further analyze the capability of handling linguistic weights of this

model.

4.6.1 Motorcycle evaluation problem

Simply speaking, “the problem is to evaluate the performances of four types of motorcycles,

namely, Kawasaki, Yamaha, Honda, and BMW” [87]. Therefore, we have to know the overall

performance of each motorcycle. “The overall performance of each motorcycle is based on

evaluating three major qualitative attributes, which are quality of engine, operation, and general

finish, although quantitative attributes may also be included” [84], [86]. Because the three major

qualitative attributes are too general to assess easily and directly, we need to decompose them

into more detailed sub-attributes so as to facilitate the assessment [87]. As a result of

decomposition, an attribute hierarchy for evaluation of motorcycles is graphically depicted in

Figure 4.4, where ωi, ωij and ωijk are the weights of corresponding attributes at level 1, level 2,

and level 3 respectively.

It is necessary and essential to define linguistic term set as well as associated semantics to supply

evaluator for assessing the attributes of the operation of a motorcycle naturally. In this example,

we use the same linguistic term set of distinct evaluation grades as in [87] for the purpose of

comparing the final result, which is defined as

S1 = {s10 (Poor), s11(Indifferent), s
1
2(Average),

s13 (Good), s14(Excellent)} (4.14)

With considering the five evaluation grades, the subjective judgments for qualitative attributes

can be easily expressed and summarized in Table 4.1, “where P, I, A, G, E are the abbreviations
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Figure 4.4. Evaluation hierarchy for motorcycle performance assessment [87]
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of the evaluation grades of Poor, Indifferent, Average, Good, and Excellent, respectively, and a

number in a bracket denotes a degree of belief to which an attribute is assessed to a grade” [87].

For the purpose of comparing the final result, but without loss of generality, we also suppose

“all relevant attributes to be equal relative importance” as in [87], that is,

ω1 = ω2 = ω3 = 0.333

ω11 = ω12 = ω13 = ω14 = ω15 = 0.2

ω21 = ω22 = ω23 = 0.333

ω211 = ω212 = ω213 = ω214 = 0.25

ω221 = ω222 = 0.5

ω231 = ω232 = ω233 = 0.333

ω31 = ω32 = ω33 = ω34 = ω35 = 0.2.

4.6.2 Aggregating assessments by proportional fuzzy linguistic

distribution model

Once the evaluator expresses all the linguistic assessments for the basic attributes, the

evaluation procedure based on proportional fuzzy linguistic distribution model should be carried

out. Specifically, the evaluation procedure is described as following.

(1) Proportional fuzzy linguistic distributions transformation: According to the linguistic term

set of distinct evaluation grades, the original linguistic assessments shown in Table 4.1 should be

converted into corresponding proportional fuzzy linguistic distributions by using symbolic

translation value of si, i = 0, 1, . . . , 4 and associated representation method, such as 1)-4)

discussed in Section 4.1. After transformation, the general decision matrix for motorcycle

assessment represented by proportional fuzzy linguistic distributions is shown in Table 4.2. In

Table 4.2, s0, s1, s2, s3 and s4 are the representatives of Poor, Indifferent, Average, Good and

Excellent, respectively. Besides, the numerical coefficients in front of s0, s1, s2, s3 and s4 denote

the confidence levels to which degree an attribute is assessed to a grade.

(2) Proportional fuzzy linguistic distributions computation and aggregation: According to the

evaluation hierarchy of attributes, we first need to aggregate the third level attributes via formula
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Table 4.3. The overall performances

represented by proportional fuzzy linguistic distributions

The overall performances

Kawasaki (0.07s0, 0.066s1, 0.314s2, 0.398s3, 0.125s4, 0.027)

Yamaha (0s0, 0.16s1, 0.213s2, 0.457s3, 0.151s4, 0.019)

Honda (0s0, 0.061s1, 0.079s2, 0.401s3, 0.393s4, 0.066)

BMW (0.164s0, 0.092s1, 0.128s2, 0.168s3, 0.437s4, 0.011)

Table 4.4. Distributed assessments on four types of motorcycles

Poor

(P)

Indifferent

(I)

Average

(A)

Good

(G)

Excellent

(E)
ε

Kawasaki 0.07 0.066 0.314 0.398 0.125 0.027

Yamaha 0 0.16 0.213 0.457 0.151 0.019

Honda 0 0.061 0.079 0.401 0.393 0.066

BMW 0.164 0.092 0.128 0.168 0.437 0.011

(4.11). Then, aggregate the second level attributes and the first level attributes in proper order.

After finishing the process of aggregation, we can obtain the final results of the overall performances

of four types of motorcycles represented by proportional fuzzy linguistic distributions, as shown in

Table 4.3.

(3) Proportional fuzzy linguistic distributions conversion: This step aims to convert the overall

value of performances of four types of motorcycles represented by proportional fuzzy linguistic

distributions into the corresponding linguistic terms of distinct evaluation grades, which are shown

in Table 4.4. The distributed assessments on the four types of motorcycles can be shown graphically

as in Figure 4.5.

4.6.3 Computing the expected utilities of four types of motorcycles

Proportional fuzzy linguistic distribution model supplies a distribution assessment for each

alternative, as shown in Table 4.4 and in Figure 4.5, which is very difficult to precisely describe

the related ranking order. Because the final purpose is to obtain such a ranking order among

alternatives, the expected utilities of four types of motorcycles should be calculated. Therefore,

the utilities of the five individual evaluation grades need to be estimated first. Assume a utility

function u′ : S1 → [0, 1] and define the same utilities of five individual evaluation grades as

in [87], i.e.,
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Figure 4.5. The distributed assessments on the four types of motorcycles

u′ (P ) = 0, u′(I) = 0.35, u′(A) = 0.55,

u′ (G) = 0.85, u′(E) = 1.

We can easily obtain the expected utilities of four types of motorcycles, which are shown in Table

4.5 and in Figure 4.6 by using formula (4.7), (4.8) and (4.9). In Table 4.5, it is very obvious that

the minimum expected utility of Honda is larger than the maximum expected utilities of the other

three types of motorcycles. Hence, according to the ranking principle of expected utility, Honda

is selected as the most preferred among the four types of motorcycles. Similarly, after excluding

Honda, the minimum expected utility of Yamaha is larger than the maximum expected utilities

of the other two types of motorcycles. Therefore, Yamaha is preferred to BMW and Kawasaki.

In addition, although the minimum expected utility of BMW is not larger than the maximum

expected utility of Kawasaki, they are very close, and the average utility of BMW is also larger

than that of Kawasaki. Therefore, we believe that the overall performance of BMW is preferred to

Kawasaki. Thus, based on the ranking principle of expected utility, the final ranking of the four

types of motorcycles is given by

Honda ≻ Yamaha ≻ BMW ≻ Kawasaki.
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Table 4.5. The expected utilities of four types of motorcycles

Maximum utility Minimum utility Average utility

Kawasaki 0.6861 0.6591 0.6726

Yamaha 0.7316 0.7126 0.7221

Honda 0.86465 0.79865 0.83165

BMW 0.6934 0.6824 0.6879

Figure 4.6. The expected utilities of four types of motorcycles

It is very clear there is not much difference between the results obtained by the proportional fuzzy

linguistic distribution model and those obtained by the modified evidential reasoning approach

[87]. As we can see, the expected utilities of four types of motorcycles obtained by proportional

fuzzy linguistic distribution model are very similar with those obtained by the modified evidential

reasoning approach [87], and the ranking order of the four types of motorcycles is the same.

However, it is worth noticing that, because the proportional fuzzy linguistic distributions employ

weighted average operator to aggregate multiple attribute, it clearly has a linear behavior. “While

the modified evidential reasoning approach exhibits a quasi-linear behavior with equal weights and

strongly nonlinear behavior with unequal weights” [34].
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Figure 4.7. Linguistic weights and associated fuzzy number semantics

4.6.4 Motorcycle assessment problem with linguistic weights

In order to further analyze the capability of dealing with linguistic weights of proportional

fuzzy linguistic distribution model, we assume a set of linguistic weights represented by means of

complete proportional fuzzy linguistic distributions. To do so, a distinctive evaluation set which

collectively provides a complete set of standards for evaluating the importance of each attribute

need to be defined first.

Specifically, define a linguistic term set which is used to linguistically evaluate the relative

importance of different attributes as S2,

S2 = {s20 (Very Low), s21(Low), s
2
2(Fairly Low),

s23 (Fairly High), s24(High), s
2
5(Very High)} (4.15)

and the associated fuzzy set semantics is shown in Figure 4.7.

With the instrument of the linguistic weight term set and associated fuzzy number semantics, the

evaluator can express the relative importance of different attributes of each motorcycle by the form

of uncertain statements as discussed in Section 4.1, which are then represented by proportional
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Table 4.6. Linguistic weights represented

by proportional fuzzy linguistic distributions

Attributes The third level Linguistic weights

handling ω21

steering ω211 (0.4s3, 0.6s4, 0)

bumpy bends ω212 (1s4, 0)

maneuverability ω213 (0.5s4, 0.5s5, 0)

top speed stability ω214 (1s3, 0)

transmission ω22

clutch operation ω221 (0.5s3, 0.5s4, 0)

gearbox operation ω222 (0.5s3, 0.5s4, 0)

brakes ω23

stopping power ω231 (1s5, 0)

braking stability ω232 (1s5, 0)

feel at control ω233 (0.5s4, 0.5s5, 0)

Attributes The second level Linguistic weights

engine ω1

responsiveness ω11 (0.4s4, 0.6s5, 0)

fuel economy ω12 (0.3s3, 0.3s4, 0.4s5, 0)

quietness ω13 (1s3, 0)

vibration (1s3, 0)

starting ω15 (0.5s3, 0.5s4, 0)

operation ω2

handling ω21 (0.4s4, 0.6s5, 0)

transmission ω22 (1s5, 0)

brakes ω23 (1s5, 0)

general ω3

quality of finish ω31 (1s3, 0)

seat comfort ω32 (0.6s1, 0.4s2, 0)

headlight ω33 (0.2s3, 0.8s4, 0)

mirrorsω34 (1s2, 0)

horn ω35 (1s2, 0)

Attributes The first level Linguistic weights

overall performance

engine ω1 (0.4s4, 0.6s5, 0)

operation ω2 (0.4s4, 0.6s5, 0)

general ω3 (1s4, 0)

fuzzy linguistic distributions as shown in Table 4.6, where s0, s1, s2, s3, s4 and s5 are the expressions

of Very Low, Low, Fairly Low, Fairly High, High and Very High, respectively.

Similarly, according to the aggregation procedure of proportional fuzzy linguistic distribution

model mentioned above, the final results of the overall performances of four types of motorcycles

represented by proportional fuzzy linguistic distributions can be obtained easily by formula (4.12)
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Table 4.7. The overall performances represented by

proportional fuzzy linguistic distributions by using linguistic weights

The overall performances

Kawasaki (0.074s0, 0.066s1, 0.307s2, 0.384s3, 0.136s4, 0.033)

Yamaha (0s0, 0.166s1, 0.234s2, 0.434s3, 0.143s4, 0.023)

Honda (0s0, 0.072s1, 0.086s2, 0.386s3, 0.402s4, 0.054)

BMW (0.164s0, 0.115s1, 0.13s2, 0.166s3, 0.414s4, 0.011)

Table 4.8. Distributed assessments

on four types of motorcycles by using linguistic weights

Poor

(P)

Indifferent

(I)

Average

(A)

Good

(G)

Excellent

(E)
ε

Kawasaki 0.074 0.066 0.307 0.384 0.136 0.033

Yamaha 0 0.166 0.234 0.434 0.143 0.023

Honda 0 0.072 0.086 0.386 0.402 0.054

BMW 0.164 0.115 0.13 0.166 0.414 0.011

and (4.13), as shown in Table 4.7. Then, the overall performances of four types of motorcycles are

converted into the corresponding linguistic terms of distinct evaluation grades, as shown in Table

4.8 and graphically depicted in Figure 4.8. By using the same utilities of five individual evaluation

grades mentioned above, the expected utilities of four types of motorcycles can be obtained by

formula (4.7), (4.8) and (4.9) as shown in Table 4.9 and Figure 4.9. Thus, we can easily obtain the

ranking order of the four types of motorcycles based on the ranking principle of expected utility.

It is obvious that Honda is still the most preferred among the four types of motorcycles, and the

ranking of the four types of motorcycles is given by

Honda ≻ Yamaha ≻ BMW ≻ Kawasaki.

Interestingly, the same ranking result was obtained. This is probably because under the

corresponding weights, the performances of some attributes of Honda are really better than those

of the other three types of motorcycles. Besides, the three kinds of expected utilities of each

motorcycle obtained by linguistic weighted aggregation operator are very similar with those

obtained by weighted average operator. One of the possible reasons is because linguistic weighted

aggregation operator is an extended version of weighted average operator.
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Figure 4.8. The distributed assessments on

the four types of motorcycles by using linguistic weights

Table 4.9. The expected utilities of

four types of motorcycles by using linguistic weights

Maximum utility Minimum utility Average utility

Kawasaki 0.68735 0.65435 0.67085

Yamaha 0.7217 0.6987 0.7102

Honda 0.8566 0.8026 0.8296

BMW 0.67785 0.66685 0.67235
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Figure 4.9. The expected utilities of

four types of motorcycles by using linguistic weights

4.7 Conclusion

In this chapter, we introduced a proportional fuzzy linguistic distribution model for MADM

problems with incomplete linguistic information. In this model, we used proportions as

evaluators’ confidence levels indicating their belief degrees that each linguistic term fits a

linguistic variable. Further, by relaxing the restrictions, the rational combinations of any number

of linguistic terms associated with corresponding proportions can be used as evaluator’s

subjective judgments. This feature can be regarded as a measure for evaluators to handle

uncertainty during the evaluation process. Moreover, with introducing a new variable

representing the extent of ignoring information, incomplete linguistic assessment can be involved

in this model. These new features could give evaluator more flexible operation space, largely

reduce the evaluator’s pressure during the evaluation process, and finally, improve the

reasonability and precision of the final result.

In this chapter, we also developed the computation operator for transforming a complete

proportional fuzzy linguistic distribution into a numerical value so that the proportional fuzzy

linguistic distribution model was capable of dealing with MADM problems with linguistic

weights. Besides, we introduced arithmetic mean, weighted average operator and linguistic

weighted average operator for aggregating proportional fuzzy linguistic distributions. Also, the
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expected utilities in proportional fuzzy linguistic distributions were proposed for ranking the

alternatives and making a final decision. Finally, a motorcycle assessment problem with

numerical weights and linguistic weights was used to illustrate the proposed model. It is shown

that this model has some advantages, such as accuracy, no loss of information, little restriction to

evaluators in the process of evaluation, ease operating under the complex context and so forth.

76



Chapter 5

An Interval Fuzzy Linguistic

Distribution Model

In this chapter, we propose an interval fuzzy linguistic distribution model for the purpose of

supplying a new way for dealing with MADM problems with incomplete linguistic information.

In this model, intervals are used as evaluators confidence levels indicating their belief degrees

that a linguistic term fits a linguistic variable. Similarly with proportional fuzzy linguistic

distribution model, when interval fuzzy linguistic distribution model is employed to deal with

linguistic information, there is no obligatory requirement that evaluators have to supply the

subjective judgments which are constituted by fixed number of linguistic terms. Each attribute

can be directly evaluated by using the subjective judgment that contains any number of adjacent

evaluation grades. Besides, with introducing a variable representing the extent of ignoring

information, the interval fuzzy linguistic distribution model is also capable of dealing with

incomplete linguistic assessments. As a matter of fact, proportion can be regarded as a special

interval with left limit equaling right limit. Therefore, interval fuzzy linguistic distribution model

is a generalization of proportional fuzzy linguistic distribution model. It inherits all the

advantages of proportional fuzzy linguistic distribution model. Moreover, compared with

proportions, intervals are able to reflect uncertain information more efficiently and

comprehensively. Hence, when evaluators feel difficult to express their confidence levels exactly

by proportions under uncertain and complicated situations, intervals could be considered as an

alternative measure for reflecting their confidence levels.

It is worth mentioning that the final result obtained by interval fuzzy linguistic distribution
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model might be lack of precision compared with proportional fuzzy linguistic distribution model.

This is because intervals contain much more uncertain information than proportions. Therefore,

if proportions are enough to reflect evaluators’ confidence levels, proportional fuzzy linguistic

distribution model should always be considered to use firstly.

5.1 Linguistic Assessments with Intervals

5.1.1 Basic interval arithmetic

Generally speaking, an interval number can be denoted by A = [αL, αR] = {α|αL ≤ α ≤ αR, α ∈
R}, where αL and αR are the left limit and right limit of interval A respectively. Specially, if

αL = αR, then, interval A reduces to a real number.

The basic interval operation rules are described as follows. Specifically, let A and B be two

positive interval numbers, then,

A⊕B = [αL, αR]⊕ [βL, βR] = [αL + βL, αR + βR] (5.1)

A⊖B = [αL, αR]⊖ [βL, βR] = [αL − βL, αR − βR] (5.2)

A⊗B = [αL, αR]⊗ [βL, βR] = [αLβL, αRβR] (5.3)

λ× A =

 [λαL, λαR] if λ ≥ 0

[λαR, λαL] if λ ≤ 0
(5.4)

where λ is a scalar.

In the literature, we can find several comparison operators between two interval numbers such

as [16], [36], [55], [63]. Particularly, Ishibuchi and Tanaka [36] defined a comparison operator as
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A ≤ B ⇔ αL ≤ βL, αR ≤ βR. (5.5)

Without loss of generality, we use Ishibuchi and Tanaka’s approach for comparison of interval fuzzy

linguistic distribution in this chapter.

Besides, it is not difficult to find some aggregation operators with interval uncertainty in the

literature, e.g., [1], [19], [53], [95]. Especially, some aggregation operators with interval uncertainty

have been used in the linguistic computational model (see, e.g., [19], [53]). For the purpose of

developing “interval weighted average operator (IWA)” and “interval ordered weighted average

operator (IOWA)” for interval fuzzy linguistic distributions in the following section, we need to

briefly recall the general IWA and IOWA.

Let Ai = [αL, αR]i be the interval attributes, with i = 1, 2, . . . , n, and Wi = [ωL, ωR]i be the

associated interval weights. Then, the result of the general IWA, YIWA = [yL, yR], is defined as

follows:



yL = min∀ωi∈[ωL,ωR]i

n∑
i=1

(αL)i · ωi

n∑
i=1

ωi

yR = max∀ωi∈[ωL,ωR]i

n∑
i=1

(αR)i · ωi

n∑
i=1

ωi

. (5.6)

Let Aσi
be the ith largest elements of {A1, A2, . . . , An}. Then, the result of the general IOWA,

ZIOWA = [zL, zR], is defined as follows:

zL = min∀ωi∈[ωL,ωR]i

n∑
i=1

(αL)σi
· ωi

n∑
i=1

ωi

zR = max∀ωi∈[ωL,ωR]i

n∑
i=1

(αR)σi
· ωi

n∑
i=1

ωi

. (5.7)
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Karnik and Mendel (KM) [41] developed “iterative algorithms, which are known as KM

algorithms”. Wu and Mendel [77] further introduced “enhanced KM algorithms”. Based on the

use of the “KM algorithms” (or “the enhanced KM algorithms”), the values of yL, yR, zL and zR

can be easily obtained [19].

5.1.2 Interval fuzzy linguistic distribution

Let S = {s0, s1, . . . , sn} be an ordinal term set with s0 < s1 < · · · < sn (“<” represents order

relation, i.e., si < sj if and only if i < j), I = [0, 1] and

IS ≡ I × S = {([αL, αR], si) : 0 ≤ αL ≤ αR ≤ 1, and i = 0, 1, . . . , n}.

Given a sequence (si, si+1, . . . , si+m) of (m + 1) successive ordinal terms of S, any (m + 1)

elements ([αL, αR]i, si), ([αL, αR]i+1, si+1), . . . , ([αL, αR]i+m, si+m) of IS are called a symbolic

interval sequence, and it will be denoted by

 ([αL, αR]isi, [αL, αR]i+1si+1, . . . , [αL, αR]i+msi+m, 0) if
∑i+m

j=i (αL)j = 1

([αL, αR]isi, [αL, αR]i+1si+1, . . . , [αL, αR]i+msi+m, ε) if
∑i+m

j=i (αL)j < 1
(5.8)

where ε represents the extent of ignoring information, and it is an interval number usually. The

set of all the symbolic interval sequences is denoted by S∗, i.e., S∗ = {([αL, αR]isi, [αL, αR]i+1si+1,

. . . , [αL, αR]i+msi+m, ε) : 0 ≤ αLi ≤ αRi ≤ 1, αRi ̸= 0, 0 ≤ αLi+m ≤ αRi+m ≤ 1, αRi+m ̸=
0,

∑i+m
j=i (αL)j ≤ 1,

∑i+m
j=i (αR)j ≥ 1, 0 ≤ i, i + m ≤ n}. The set S∗ is called interval fuzzy

linguistic distribution set generated by S and the members of S∗ are called interval fuzzy linguistic

distributions. If
∑i+m

j=i (αL)j > 1 or
∑i+m

j=i (αR)j < 1, then this interval linguistic distribution is said

to be invalid. “Invalid interval linguistic distribution cannot be interpreted as probability and thus

need to be revised or adjusted” [75].

It is worth mentioning that because an interval linguistic distribution includes interval-valued

belief structure, it involves a problem whether it is normalized or non-normalized interval-valued

belief structure. “For a non-normalized interval-valued belief structure, it usually means that some

intervals of probability masses are too wide to be reached” [75]. Although a valid interval-valued

belief structure is not necessarily to be normalized, it can avoid too wide intervals and improve
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the precision in final result if we normalize all the interval-valued belief structure in advance. The

following equations [65], [73], [75] can be used to verify whether an interval linguistic distribution

is normalized interval-valued belief structure or not.

i+m∑
k=i

(αR)k −
(
(αR)j − (αL)j

)
≥ 1 and

i+m∑
k=i

(αL)k +
(
(αR)j − (αL)j

)
≤ 1 (5.9)

for ∀j ∈ {i, . . . , i + m}. If (αL)j and (αR)j satisfy these requirements, it is called a normalized

interval-valued belief structure. Otherwise, the following equations can be employed to normalize

it so that we can screen out all infeasible belief structures [75].

max

(αL)j, 1−
∑
k ̸=j

(αR)k

 ≤ (αL)j and (αR)j ≤ min

(αR)j, 1−
∑
k ̸=j

(αL)k

 (5.10)

j = i, . . . , i+m, and k = i, . . . , i+m. (For more details, please see [75].)

An interval fuzzy linguistic distribution ([αL, αR]isi, [αL, αR]i+1si+1, . . . , [αL, αR]i+msi+m, ε) can

be used to represent an evaluator’s subjective judgment. Here, i is called the starting label; si is

the No. i linguistic term; [αL, αR]j is the interval coefficient in front of the related linguistic term.

It represents the confidence levels that to which degree evaluators believe a linguistic term fits a

linguistic variable. Similarly, i+m is called the ending label.

A linguistic assessment ([αL, αR]isi, [αL, αR]i+1si+1, . . . , [αL, αR]i+msi+m, ε) is called complete

interval fuzzy linguistic distribution if
∑i+m

j=i (αL)j = 1, and incomplete interval fuzzy linguistic

distribution if
∑i+m

j=i (αL)j < 1. For an incomplete linguistic assessment ([αL, αR]isi, [αL, αR]i+1

si+1, . . . , [αL, αR]i+msi+m, ε), the extent of ignoring information ε can be obtained by [74]

(αL)ε = max
(
0, 1−

i+m∑
j=i

(αR)j
)

(5.11)

(αR)ε = 1−
i+m∑
j=i

(αL)j. (5.12)

For example, an evaluator assesses a cargo ship selection problem [74] and gives linguistic

assessments for Ship 1 as follows:
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1) The load factor of Ship 1 is evaluated to be very good with a confidence degree of [0.2, 0.4],

and to be excellent with a confidence degree of [0.7, 0.8].

2) The effective load factor of Ship 1 is evaluated to be very good with a confidence degree of

[0.1, 0.2], and to be excellent with a confidence degree of [0.8, 0.9].

Then for Ship 1, the two linguistic assessments 1)-2) given in above can be represented in the

form of interval fuzzy linguistic distributions defined by (5.8) as

S∗(load factor) = ([0.2, 0.4]s3, [0.7, 0.8]s4, ε1)

S∗(effective load factor) = ([0.1, 0.2]s3, [0.8, 0.9]s4, ε2)

where si with i = 3 and 4 are linguistic terms of the term set S2 as shown in (5.29). ε1 and ε2 can

be obtained by

(αL)ε1 = max
(
0, 1−

4∑
j=3

(αR)j
)
= max(0, 1− 0.4− 0.8) = 0,

(αR)ε1 = 1−
4∑

j=3

(αL)j = 1− 0.2− 0.7 = 0.1,

(αL)ε2 = max
(
0, 1−

4∑
j=3

(αR)j
)
= max(0, 1− 0.2− 0.9) = 0,

(αR)ε1 = 1−
4∑

j=3

(αL)j = 1− 0.1− 0.8 = 0.1.

Thus, the two interval fuzzy linguistic distributions can be formally represented by

S∗(load factor) = ([0.2, 0.4]s3, [0.7, 0.8]s4, [0, 0.1])

S∗(effective load factor) = ([0.1, 0.2]s3, [0.8, 0.9]s4, [0, 0.1]).
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5.2 Comparison of Interval Fuzzy Linguistic Distributions

Let S = {s0, s1, . . . , sn} be an ordinal term set and S∗ be the interval fuzzy linguistic

distribution set generated by S. For any ([αL, αR]isi, [αL, αR]i+1si+1, . . . , [αL, αR]i+msi+m, ε)1,

([βL, βR]gsg, [βL, βR]g+1sg+1, . . . , [βL, βR]g+fsg+f , ε)2 ∈ S∗, the comparison of interval fuzzy

linguistic distributions is described as follows.

(1) If ε1 = 0 and ε2 = 0, define ([αL, αR]isi, [αL, αR]i+1si+1, . . . , [αL, αR]i+msi+m, 0)1 > ([βL, βR]g

sg, [βL, βR]g+1sg+1, . . . , [βL, βR]g+fsg+f , 0)2

⇔ [αL, αR]i · i+ [αL, αR]i+1 · (i+ 1) + · · ·+ [αL, αR]i+m · (i+m)

> [βL, βR]g · g + [βL, βR]g+1 · (g + 1) + · · ·+ [βL, βR]g+f · (g + f)

⇔
[ i+m∑

j=i

(
(αL)j · j

)
,
i+m∑
j=i

(
(αR)j · j

)]
>

[ g+f∑
k=g

(
(βL)k · k

)
,
g+f∑
k=g

(
(βR)k · k

)]

⇔
i+m∑
j=i

(
(αL)j · j

)
>

g+f∑
k=g

(
(βL)k · k

)
,
i+m∑
j=i

(
(αR)j · j

)
>

g+f∑
k=g

(
(βR)k · k

)
. (5.13)

(2) If ε1 = 0 and ε2 ̸= 0, ε2 is an interval value [βL, βR]ε. We need to allocate ε2 in order to

obtain the left limit φ and right limit ψ.

For the left limit φ , we can consider an extreme situation that ε2 is allocated to s0 completely,

i.e.,

φ = [βL, βR]g · g + [βL, βR]g+1 · (g + 1) + · · ·+ [βL, βR]g+f · (g + f) + [βL, βR]ε · 0

=
g+f∑
k=g

(
(βL)k · k

)
. (5.14)

For the right limit ψ, we can consider an extreme situation that ε2 is allocated to sn completely,

i.e.,

ψ = [βL, βR]g · g + [βL, βR]g+1 · (g + 1) + · · ·+ [βL, βR]g+f · (g + f) + [βL, βR]ε · n

=
g+f∑
k=g

(
(βR)k · k

)
+ (βR)ε · n. (5.15)
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Then, the left limit and right limit of the second interval fuzzy linguistic distribution can be

represented as
[∑g+f

k=g

(
(βL)k · k

)
,
∑g+f

k=g

(
(βR)k · k

)
+ (βR)ε · n

]
, and ([αL, αR]isi, [αL, αR]i+1si+1,

. . . , [αL, αR]i+msi+m, 0)1 > ([βL, βR]gsg, [βL, βR]g+1sg+1, . . . , [βL, βR]g+fsg+f , ε)2 is denoted by

i+m∑
j=i

(
(αL)j · j

)
>

g+f∑
k=g

(
(βL)k · k

)
,

i+m∑
j=i

(
(αR)j · j

)
>

g+f∑
k=g

(
(βR)k · k

)
+ (βR)ε · n. (5.16)

(3) If ε1 ̸= 0 and ε2 ̸= 0, we need to respectively allocate ε1, ε2 in order to obtain the left limit φ

and right limit ψ. Similarly, ([αL, αR]isi, [αL, αR]i+1si+1, . . . , [αL, αR]i+msi+m, ε)1 > ([βL, βR]gsg,

[βL, βR]g+1sg+1, . . . , [βL, βR]g+fsg+f , ε)2 is denoted by

i+m∑
j=i

(
(αL)j · j

)
>

g+f∑
k=g

(
(βL)k · k

)
,

i+m∑
j=i

(
(αR)j · j

)
+ (αR)ε · n >

g+f∑
k=g

(
(βR)k · k

)
+ (βR)ε · n. (5.17)

5.3 Expected Utility in Interval Fuzzy Linguistic

Distribution

Because interval fuzzy linguistic distribution model provides an aggregated distribution

assessment for each alternative, it is difficult for decision makers to precisely describe the ranking

order among them. In such case, the notion of expected utility can be employed to compare or

rank alternatives.

Similarly with expected utility in proportional fuzzy linguistic distribution, “suppose a set of

alternatives X with a single-valued function u(x) on X, which is called expected utility” [34].
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One can represent the preference relation on X, such that for any x, y ∈ X, x ≽ y if and only if

u(x) ≥ u(y). Then, the solution to the problem of selecting x can be got by maximization of u(x).

Suppose a set of evaluation grades

S = {s0, s1, . . . , sn}

which are used as an instrument supplied to evaluators for evaluating the attribute. For an

interval fuzzy linguistic distribution ([αL, αR]isi, [αL, αR]i+1si+1, . . . , [αL, αR]i+msi+m, ε), assume a

utility function

u′ : S → [0, 1]

satisfying

u′(si+1) > u′(si), if si+1 is preferred to si.

Supposing alternatives a and b have a two level hierarchy with only an attribute y on the first

level, and its basic attributes E = {e1, e2, . . . , en} which is a finite set at the bottom level, as shown

in Figure 5.1. If all assessments for attributes are complete, i.e.,
∑i+m

j=i (αL)j = 1, or ε = 0, then,

the expected utility of an alternative on the only attribute y is defined by

umin(y) =
i+m∑
j=i

(αL)j · u′(sj) (5.18)

umax(y) =
i+m∑
j=i

(αR)j · u′(sj) (5.19)

uavg(y) =
umax(y) + umin(y)

2
. (5.20)

If there is any incomplete assessment for the basic attribute, i.e.,
∑i+m

j=i (αL)j < 1, or ε > 0, then

the assessment for y is also incomplete. In such case, we need to allocate ε in order to obtain

“the range of the likelihood to which y may be assessed to the evaluation grades” [87]. Without

loss of generality, s0 is supposed to be the least preferred grade which has the lowest utility and
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Figure 5.1. Two level hierarchy

sn is supposed to be the most preferred grade which has the highest utility. Then, the minimum,

maximum and average expected utilities on y in interval fuzzy linguistic distributions are given by

umin(y) = [(αL)0 + (αL)ε] · u′(s0) +
n∑

j=1

(αL)j · u′(sj) (5.21)

umax(y) =
n−1∑
j=0

(αR)j · u′(sj) + [(αR)n + (αR)ε] · u′(sn) (5.22)

uavg(y) =
umax(y) + umin(y)

2
. (5.23)

From formula (5.18) to formula (5.23) we can find that no matter whether the original

assessments are complete or not, we can always obtain a minimum, a maximum and an average

expected utility. Then, the ranking of two alternatives a and b on y is based on their utility

intervals and carried out by [34]

• a ≻y b if and only if umin(y(a)) > umax(y(b))

• a ∼y b if and only if umin(y(a)) = umin(y(b)) and umax(y(a)) = umax(y(b)).

Otherwise, the average expected utility can be used to generate a ranking, i.e.,

• a ≻y b on an average basis, if uavg(y(a)) > uavg(y(b)).

Again, we should note that the ranking order is not reliable if the average expected utility is

used. This is because there is a possibility that the special situation could happen, i.e., uavg(y(a)) >

uavg(y(b)), but umax(y(b)) > umin(y(a)).
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5.4 Interval Fuzzy Linguistic Distribution Aggregation

Operators

MADM problems usually need to aggregate attributes in order to obtain an integrated value

for further analysis. In this section, we introduce several aggregation operators for interval fuzzy

linguistic distributions.

5.4.1 Arithmetic mean

Definition 5.1 : Let S∗ = {([αL, αR]isi, [αL, αR]i+1si+1, . . . , [αL, αR]i+msi+m, ε)1, ([αL, αR]gsg,

[αL, αR]g+1sg+1, . . . , [αL, αR]g+fsg+f , ε)2, . . . , ([αL, αR]jsj, [αL, αR]j+1sj+1, . . . , [αL, αR]j+qsj+q, ε)p}
be a set of interval fuzzy linguistic distributions, and ([γL, γR]ksk, [γL, γR]k+1sk+1, . . . , [γL, γR]k+h

sk+h, ε̄) be the arithmetic mean represented by interval fuzzy linguistic distribution. Then, the

procedure of calculating the arithmetic mean ([γL, γR]ksk, [γL, γR]k+1sk+1, . . . , [γL, γR]k+hsk+h, ε̄)

is as follows.

1) Take the minimum of the starting labels of interval fuzzy linguistic distributions in S∗, i.e.,

k = min (i, g, . . . , j).

2) Take the maximum of the ending labels of interval fuzzy linguistic distributions in S∗, i.e.,

k + h = max (i+m, g + f, . . . , j + q).

3) Compare the interval fuzzy linguistic distributions in S∗ with arithmetic mean

([γL, γR]ksk, [γL, γR]k+1sk+1, . . . , [γL, γR]k+hsk+h, [γL, γR]ε̄). For any interval fuzzy linguistic

distribution in S∗, if it is lack of corresponding linguistic terms, add “[0, 0]” as symbolic

interval coefficients in front of the related linguistic terms. Thus, all the interval fuzzy

linguistic distributions in S∗ have the same starting labels and ending labels with

arithmetic mean ([γL, γR]ksk, [γL, γR]k+1sk+1, . . . , [γL, γR]k+hsk+h, [γL, γR]ε̄), i.e., S
∗ = {([αL,

αR]ksk, [αL, αR]k+1sk+1, . . . ,[αL, αR]k+hsk+h, [αL, αR]ε)1,([αL, αR]ksk, [αL, αR]k+1sk+1, . . . ,[αL,

αR]k+hsk+h, [αL, αR]ε)2, . . . , ([αL, αR]ksk, [αL, αR]k+1sk+1, . . . , [αL, αR]k+hsk+h, [αL, αR]ε)p}.

4) The calculating process of arithmetic mean is given by
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(γL)ksk =
(∑p

x=1 [(αL)k]x
p

)
sk

(γR)ksk =
(∑p

x=1 [(αR)k]x
p

)
sk

...

(γL)k+hsk+h =
(∑p

x=1 [(αL)k+h]x
p

)
sk+h

(γR)k+hsk+h =
(∑p

x=1 [(αR)k+h]x
p

)
sk+h

(γL)ε̄ =

∑p
x=1 (αL)εx

p

(γR)ε̄ =

∑p
x=1 (αR)εx

p

(5.24)

where x is the No. of interval fuzzy linguistic distributions in S∗.

5.4.2 Weighted average operator

The weight average operator for interval fuzzy linguistic distributions is defined as follows.

Definition 5.2 : Let S∗ = {([αL, αR]isi, [αL, αR]i+1si+1, . . . , [αL, αR]i+msi+m, ε)1, ([αL, αR]gsg,

[αL, αR]g+1sg+1, . . . , [αL, αR]g+fsg+f , ε)2, . . . , ([αL, αR]jsj, [αL, αR]j+1sj+1, . . . , [αL, αR]j+qsj+q, ε)p}
be a set of interval fuzzy linguistic distributions, W = {ω1, ω2, . . . , ωp} be their associated

weights, and ([γL, γR]ksk, [γL, γR]k+1sk+1, . . . , [γL, γR]k+hsk+h, ε̄) be the weighted average of the

set of interval fuzzy linguistic distributions. Then, the procedure of computation and aggregation

of the weighted average ([γL, γR]ksk, [γL, γR]k+1sk+1, . . . , [γL, γR]k+hsk+h, ε̄) is as follows.

1) Take the minimum of the starting labels of interval fuzzy linguistic distributions in S∗, i.e.,

k = min (i, g, . . . , j).

2) Take the maximum of the ending labels of interval fuzzy linguistic distributions in S∗, i.e.,

k + h = max (i+m, g + f, . . . , j + q).

3) Compare the interval fuzzy linguistic distributions in S∗ with weighted average

([γL, γR]ksk, [γL, γR]k+1sk+1, . . . , [γL, γR]k+hsk+h, [γL, γR]ε̄). For any interval fuzzy linguistic

distribution in S∗, if it is lack of corresponding linguistic terms, add “[0, 0]” as symbolic
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interval coefficients in front of the related linguistic terms. Thus, all the interval fuzzy

linguistic distributions in S∗ have the same starting labels and ending labels with weighted

average ([γL, γR]ksk, [γL, γR]k+1sk+1, . . . , [γL, γR]k+hsk+h, [γL, γR]ε̄), i.e., S
∗ = {([αL, αR]ksk,

[αL, αR]k+1sk+1, . . . ,[αL, αR]k+hsk+h, [αL, αR]ε)1, ([αL, αR]ksk, [αL, αR]k+1sk+1, . . . ,[αL, αR]k+h

sk+h, [αL, αR]ε)2, . . . , ([αL, αR]ksk, [αL, αR]k+1sk+1, . . . , [αL, αR]k+hsk+h, [αL, αR]ε)p}.

4) The calculating process of weighted average is given by



(γL)ksk =
(∑p

x=1 [(αL)k]x · ωx∑p
x=1 ωx

)
sk

(γR)ksk =
(∑p

x=1 [(αR)k]x · ωx∑p
x=1 ωx

)
sk

...

(γL)k+hsk+h =
(∑p

x=1 [(αL)k+h]x · ωx∑p
x=1 ωx

)
sk+h

(γR)k+hsk+h =
(∑p

x=1 [(αR)k+h]x · ωx∑p
x=1 ωx

)
sk+h

(γL)ε̄ =

∑p
x=1 (αL)εx · ωx∑p

x=1 ωx

(γR)ε̄ =

∑p
x=1 (αR)εx · ωx∑p

x=1 ωx

(5.25)

where x is the No. of interval fuzzy linguistic distributions in S∗.

In order to clearly describe the procedure of calculating the weighted average of interval fuzzy

linguistic distributions, we give an example here.

Example: Suppose a set of interval fuzzy linguistic distributions S∗ = {([0.2, 0.4]s2, [0.7, 0.8]s3,
[0, 0.1]), ([0.1, 0.2]s3, [0.8, 0.9]s4, [0, 0.1])}. Its associated weights are W = {0.4, 0.6}. Then, the

procedure of calculating the weighted average ([γL, γR]ksk, [γL, γR]k+1sk+1, . . . , [γL, γR]k+hsk+h, [γL,

γR]ε̄) is as follows.

1) k = min (2, 3) = 2.

2) k + h = max (3, 4) = 4.

3) For any interval fuzzy linguistic distribution in S∗, add “[0, 0]” as symbolic interval

coefficients in front of the related linguistic terms if it is lack of corresponding linguistic
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terms. Then, S∗ = {([0.2, 0.4]s2, [0.7, 0.8]s3, [0, 0]s4, [0, 0.1]), ([0, 0]s2, [0.1, 0.2]s3, [0.8, 0.9]s4,
[0, 0.1])}.

4) The weighted average can be obtained by



(γL)2s2 =
(
0.2× 0.4 + 0× 0.6

0.4 + 0.6

)
s2 = (0.08)Ls2

(γR)2s2 =
(
0.4× 0.4 + 0× 0.6

0.4 + 0.6

)
s2 = (0.16)Rs2

(γL)3s3 =
(
0.7× 0.4 + 0.1× 0.6

0.4 + 0.6

)
s3 = (0.34)Ls3

(γR)3s3 =
(
0.8× 0.4 + 0.2× 0.6

0.4 + 0.6

)
s3 = (0.44)Rs3

(γL)4s4 =
(
0× 0.4 + 0.8× 0.6

0.4 + 0.6

)
s4 = (0.48)Ls4

(γR)4s4 =
(
0× 0.4 + 0.9× 0.6

0.4 + 0.6

)
s4 = (0.54)Rs4

(γL)ε̄ =
0× 0.4 + 0× 0.6

0.4 + 0.6
= (0)L

(γR)ε̄ =
0.1× 0.4 + 0.1× 0.6

0.4 + 0.6
= (0.1)R

Therefore, the weighted average of the two interval fuzzy linguistic distributions is ([0.08, 0.16]

s2, [0.34, 0.44]s3, [0.48, 0.54]s4, [0, 0.1]).

5.4.3 Interval weighted average operator

According to the general interval weighted average operator (5.6), the interval weighted average

operator for interval fuzzy linguistic distributions is defined as follows.

Definition 5.3 : Let S∗ = {([αL, αR]isi, [αL, αR]i+1si+1, . . . , [αL, αR]i+msi+m, ε)1, ([αL, αR]gsg,

[αL, αR]g+1sg+1, . . . , [αL, αR]g+fsg+f , ε)2, . . . , ([αL, αR]jsj, [αL, αR]j+1sj+1, . . . , [αL, αR]j+qsj+q, ε)p}
be a set of interval fuzzy linguistic distributions, W = {[ωL, ωR]1, [ωL, ωR]2, . . . , [ωL, ωR]p} be the

associated interval weights, and ([γL, γR]ksk, [γL, γR]k+1sk+1, . . . , [γL, γR]k+hsk+h, ε̄) be the

interval weighted average of the set of interval fuzzy linguistic distributions. Then, the procedure

of computation and aggregation of the interval weighted average ([γL, γR]ksk, [γL, γR]k+1sk+1,

. . . , [γL, γR]k+hsk+h, ε̄) is as follows.

1) Take the minimum of the starting labels of interval fuzzy linguistic distributions in S∗, i.e.,

k = min (i, g, . . . , j).
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2) Take the maximum of the ending labels of interval fuzzy linguistic distributions in S∗, i.e.,

k + h = max (i+m, g + f, . . . , j + q).

3) Compare the interval fuzzy linguistic distributions in S∗ with the interval weighted average

([γL, γR]ksk, [γL, γR]k+1sk+1, . . . , [γL, γR]k+hsk+h, [γL, γR]ε̄). For any interval fuzzy linguistic

distribution in S∗, if it is lack of corresponding linguistic terms, add “[0, 0]” as symbolic

interval coefficients in front of the related linguistic terms in order to make all the interval

fuzzy linguistic distributions in S∗ have the same starting labels and ending labels with

interval weighted average ([γL, γR]ksk, [γL, γR]k+1sk+1, . . . , [γL, γR]k+hsk+h, [γL, γR]ε̄), i.e., S
∗

= {([αL, αR]ksk, [αL, αR]k+1sk+1, . . . , [αL, αR]k+hsk+h, [αL, αR]ε)1, ([αL, αR]ksk, [αL, αR]k+1

sk+1, . . . , [αL, αR]k+hsk+h, [αL, αR]ε)2, . . . , ([αL, αR]ksk, [αL, αR]k+1sk+1, . . . , [αL, αR]k+hsk+h,

[αL, αR]ε)p}.

4) The calculating process of interval weighted average is given by



(γL)ksk = min
∀ωx∈[ωL,ωR]x

(∑p
x=1 [(αL)k]x · ωx∑p

x=1 ωx

)
sk

(γR)ksk = max
∀ωx∈[ωL,ωR]x

(∑p
x=1 [(αR)k]x · ωx∑p

x=1 ωx

)
sk

...

(γL)k+hsk+h = min
∀ωx∈[ωL,ωR]x

(∑p
x=1 [(αL)k+h]x · ωx∑p

x=1 ωx

)
sk+h

(γR)k+hsk+h = max
∀ωx∈[ωL,ωR]x

(∑p
x=1 [(αR)k+h]x · ωx∑p

x=1 ωx

)
sk+h

(γL)ε̄ = min
∀ωx∈[ωL,ωR]x

∑p
x=1 (αL)εx · ωx∑p

x=1 ωx

(γR)ε̄ = max
∀ωx∈[ωL,ωR]x

∑p
x=1 (αR)εx · ωx∑p

x=1 ωx

(5.26)

where x is the No. of interval fuzzy linguistic distributions in S∗.

5) Make use of KM algorithms [41] or Enhanced KM algorithms [77], the interval weighted

average for interval fuzzy linguistic distributions can be easily obtained.
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5.4.4 Interval ordered weighted average operator

According to the general interval ordered weighted average operator (5.7), the interval ordered

weighted average operator for interval fuzzy linguistic distributions is defined as follows.

Definition 5.4 : Let S∗ = {([αL, αR]isi, [αL, αR]i+1si+1, . . . ,[αL, αR]i+msi+m, ε)1, ([αL, αR]gsg, [αL,

αR]g+1sg+1, . . . , [αL, αR]g+fsg+f , ε)2, . . . , ([αL, αR]jsj, [αL, αR]j+1sj+1, . . . , [αL, αR]j+qsj+q, ε)p} be

a set of ordered interval fuzzy linguistic distributions, with ([αL, αR]isi, [αL, αR]i+1si+1, . . . , [αL,

αR]i+msi+m, ε)1 > ([αL, αR]gsg, [αL, αR]g+1sg+1, . . . , [αL, αR]g+fsg+f , ε)2 > · · · > ([αL, αR]jsj,

[αL, αR]j+1sj+1, . . . , [αL, αR]j+qsj+q, ε)p, W = {[ωL, ωR]1, [ωL, ωR]2, . . . , [ωL, ωR]p} be their

associated interval weights, and ([γL, γR]ksk, [γL, γR]k+1sk+1, . . . , [γL, γR]k+hsk+h, ε̄) be the

interval ordered weighted average of the set of interval fuzzy linguistic distributions. Then, the

procedure of computation and aggregation of the interval ordered weighted average ([γL, γR]ksk,

[γL, γR]k+1sk+1, . . . , [γL, γR]k+hsk+h, ε̄) is as follows.

1) Take the minimum of the starting labels of interval fuzzy linguistic distributions in S∗, i.e.,

k = min (i, g, . . . , j).

2) Take the maximum of the ending labels of interval fuzzy linguistic distributions in S∗, i.e.,

k + h = max (i+m, g + f, . . . , j + q).

3) Compare the interval fuzzy linguistic distributions in S∗ with the interval ordered weighted

average ([γL, γR]ksk, [γL, γR]k+1sk+1, . . . , [γL, γR]k+hsk+h, [γL, γR]ε̄). For any interval fuzzy

linguistic distribution in S∗, if it is lack of corresponding linguistic terms, add “[0, 0]” as

symbolic interval coefficients in front of the related linguistic terms in order to make all the

interval fuzzy linguistic distributions in S∗ have the same starting labels and ending labels

with the interval ordered weighted average ([γL, γR]ksk, [γL, γR]k+1sk+1, . . . , [γL, γR]k+hsk+h,

[γL, γR]ε̄), i.e., S
∗ = {([αL, αR]ksk, [αL, αR]k+1sk+1, . . . ,[αL, αR]k+hsk+h, [αL, αR]ε)1, ([αL, αR]k

sk, [αL, αR]k+1sk+1, . . . , [αL, αR]k+hsk+h, [αL, αR]ε)2, . . . ,([αL, αR]ksk, [αL, αR]k+1sk+1, . . . ,[αL,

αR]k+hsk+h, [αL, αR]ε)p}.

4) The calculating process of interval ordered weighted average is given by
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(γL)ksk = min
∀ωx∈[ωL,ωR]x

(∑p
x=1 [(αL)k]x · ωx∑p

x=1 ωx

)
sk

(γR)ksk = max
∀ωx∈[ωL,ωR]x

(∑p
x=1 [(αR)k]x · ωx∑p

x=1 ωx

)
sk

...

(γL)k+hsk+h = min
∀ωx∈[ωL,ωR]x

(∑p
x=1 [(αL)k+h]x · ωx∑p

x=1 ωx

)
sk+h

(γR)k+hsk+h = max
∀ωx∈[ωL,ωR]x

(∑p
x=1 [(αR)k+h]x · ωx∑p

x=1 ωx

)
sk+h

(γL)ε̄ = min
∀ωx∈[ωL,ωR]x

∑p
x=1 (αL)εx · ωx∑p

x=1 ωx

(γR)ε̄ = max
∀ωx∈[ωL,ωR]x

∑p
x=1 (αR)εx · ωx∑p

x=1 ωx

(5.27)

where x is the No. of interval fuzzy linguistic distributions in S∗.

5) Make use of KM algorithms [41] or Enhanced KM algorithms [77], the interval weighted

average for interval fuzzy linguistic distributions can be easily obtained.

5.5 Illustration Examples

In this section, we apply interval fuzzy linguistic distribution model to deal with two illustration

examples so as to demonstrate its capability of dealing with MADA problems. Because this model

is complicated, we first use a simple example to explain it. Then, we use this model to deal with a

practical application, a cargo ship selection problem taken from [74], in order to compare the final

result with the extended evidential reasoning approach [74].

5.5.1 The description of the first example

Supposing an evaluator wants to choose an alternative between E1 and E2, which are compared

on the basis of three basic attributes, as shown in Table 5.1. The relative weights of the three

basic attributes are given as: (0.4, 0.3, 0.3). The evaluator assesses these attributes according to

the linguistic term set of distinct evaluation grades which is defined as follows:
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Table 5.1. Interval fuzzy linguistic distribution assessments for two alternatives

Attributes E1 E2 Weights

C1 ([0.2, 0.3]s2, [0.7, 0.8]s3, [0, 0.1]) ([0.1, 0.3]s1, [0.7, 0.8]s2, [0, 0.2]) 0.4

C2 ([0.1, 0.2]s3, [0.6, 0.9]s4, [0, 0.3]) ([0.5, 0.6]s3, [0.4, 0.5]s4, [0, 0.1]) 0.3

C3 ([0.3, 0.5]s0, [0.5, 0.7]s1, [0, 0.2]) ([0.1, 0.2]s0, [0.8, 0.9]s1, [0, 0.1]) 0.3

Table 5.2. The aggregation results of two alternatives

The overall aggregation results

E1 ([0.09, 0.15]s0, [0.15, 0.21]s1, [0.08, 0.12]s2, [0.31, 0.38]s3, [0.18, 0.27]s4, [0, 0.19])

E2 ([0.03, 0.06]s0, [0.28, 0.39]s1, [0.28, 0.32]s2, [0.15, 0.18]s3, [0.12, 0.15]s4, [0, 0.14])

Table 5.3. The distributed assessments on two alternatives

Poor Indifferent Average Good Excellent ε

E1 [0.09, 0.15] [0.15, 0.21] [0.08, 0.12] [0.31, 0.38] [0.18, 0.27] [0, 0.19]

E2 [0.03, 0.06] [0.28, 0.39] [0.28, 0.32] [0.15, 0.18] [0.12, 0.15] [0, 0.14]

S1 = {s0(Poor), s1(Indifferent), s2(Average),

s3(Good), s4(Excellent)}. (5.28)

Because of the uncertainty, the evaluator may use intervals as his/her confidence levels if he/she

feels difficult to give precise assessments. Then, the linguistic assessments presented by interval

linguistic distributions are shown in Table 5.1.

5.5.2 Aggregating assessments of the first example via interval fuzzy

linguistic distribution model

According to the weighted average operator for interval fuzzy linguistic distributions, aggregate

the three attributes by formula (5.25). Thus, we can obtain the aggregation results of two

alternatives represented by interval fuzzy linguistic distributions, as shown in Table 5.2. Then,

convert the aggregation results of two alternatives into the corresponding linguistic terms of

distinct evaluation grades, which are shown in Table 5.3.
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Table 5.4. The expected utilities of two alternatives

Minimum utility Maximum utility Average utility

E1 0.490 0.858 0.674

E2 0.443 0.683 0.563

5.5.3 Computing the expected utilities of the first example

It is very difficult to precisely describe the ranking orders among the two alternatives from their

distinct evaluation grades as shown in Table 5.3. In such situation, the expected utilities of two

alternatives should be calculated. Define the utilities of the five individual evaluation grades as

u′ (P ) = 0, u′(I) = 0.25, u′(A) = 0.5,

u′ (G) = 0.75, u′(E) = 1.

Then, the expected utilities of two alternatives can be obtained via formula (5.21), (5.22) and

(5.23), which are shown in Table 5.4, and graphically in Figure 5.2. We can find that the average

expected utility of E1 is larger than that of E2 from Table 5.4. Therefore, according to average

expected utility, E1 is preferred to E2. However, as we mentioned in previous section, this is not

reliable because the maximum expected utility of E2 is larger than the minimum expected utility

of E1.

We just used a very simple example to explain interval fuzzy linguistic distribution model from a

easily comprehensible perspective. In order to test its capability of dealing with MADM problems

with incomplete information from a practical perspective, we apply this model to a cargo ship

selection problem taken from [74].

5.5.4 The description of a cargo ship selection problem

The problem is to “consider a cargo ship selection problem with six competing cargo ship designs,

which are compared on the basis of nine basic attributes shown in Table 5.5, where Load factor

and Effective load factor are two qualitative attributes and Bale capacity, Deadweight, Speed,

Capital investment, Annual M & R and manning costs, Sea fuel consumption and Off-hire are
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Figure 5.2. The expected utilities of two alternatives

seven quantitative attributes. Among the nine basic attributes, the first five are benefit attributes

and the others are cost attributes” [74]. Because the exact values of Sea fuel consumption and

Off-hire are not known, they are estimated by using interval numbers. “The relative weights of

the nine basic attributes are given as: (12, 15, 10, 10, 12, 15, 10, 10, 6), which are normalized as:

(0.12, 0.15, 0.1, 0.1, 0.12, 0.15, 0.1, 0.1, 0.06)” [74].

The linguistic term set of distinct evaluation grades used for assessing a cargo ship is defined as

follows:

S2 = {s0 (Poor), s1(Average), s2(Good),

s3 (Very Good), s4(Excellent)}. (5.29)

“Two qualitative attributes, Load factor and Effective load factor, are both assessed by the above

set of assessment grades” [74]. Meanwhile, evaluator may use intervals as his/her confidence levels

if he/she feels difficult to give precise assessments. Then, the linguistic assessments and original

quantitative data are presented in Table 5.5, “where P, A, G, V and E are the abbreviations of

the evaluation grades of Poor, Average, Good, Very Good and Excellent respectively” [74].

The quantitative data in Table 5.5 have to be modeled using proportional or interval confidence
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levels first. In [74], the authors have modeled these quantitative data according to principle of

utility equivalence (for more details, see [74]), which are shown in Table 5.6, where I1, I2 are two

0-1 integer variables generated during the process of modeling quantitative data, with I1 + I2 = 0,

and I1, I2 = 0 or 1; H, which represents the extent of ignoring information in [74] will be replaced

by ε in the sequel.

5.5.5 Aggregating assessments of ship selection problem via interval

fuzzy linguistic distribution model

After modeling the quantitative data using proportional or interval confidence levels, the

evaluation procedure based on interval fuzzy linguistic distribution model should be carried out

and is described as follows.

(1) Interval fuzzy linguistic distributions transformation: According to the linguistic term set

of distinct evaluation grades, the distribution assessment matrix shown in Table 5.6 should be

converted into corresponding interval fuzzy linguistic distributions by using symbolic translation

value of si, i = 0, 1, . . . , 4 and the statements with the associated representation method such as

1)-2) discussed in Section 5.1.2. Then, the decision matrix for the six cargo ships represented

by interval fuzzy linguistic distributions is shown in Table 5.7, where s0, s1, s2, s3, and s4 are the

expressions of Poor, Average, Good, Very Good, and Excellent, respectively, and the numerical or

interval coefficients in front of s0, s1, s2, s3, and s4 denote the confidence levels to which degree an

attribute is assessed to a grade.

(2) Interval fuzzy linguistic distributions computation and aggregation: According to formula

(5.25), aggregate these nine attributes from ship 1 to ship 6. Finally, we can obtain the final results

of the overall belief degrees of six cargo ships represented by interval fuzzy linguistic distributions,

which are shown in Table 5.8.

(3) Interval fuzzy linguistic distributions conversion: Convert the overall belief degrees of six

cargo ships represented by interval fuzzy linguistic distributions into the corresponding linguistic

terms of distinct evaluation grades, which are shown in Table 5.9.
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Table 5.8. The overall belief degrees of six

cargo ships represented by interval fuzzy linguistic distributions

The overall belief degrees of six cargo ships

Ship 1
(0.303s0, 0.047s1, [0.073, 0.073 + 0.03I1]s2,

[0.209, 0.351]s3, [0.311, 0.381 + 0.06I2]s4, [0, 0.024])

Ship 2
(0.060s0, [0.138, 0.150]s1,

[0.362, 0.508]s2, [0.300, 0.422]s3, [0, 0.03])

Ship 3
([0.192, 0.213 + 0.02I1]s0, [0.125, 0.218]s1,

[0.306, 0.342 + 0.06I2]s2, [0.259, 0.271]s3, [0, 0.036])

Ship 4
([0.050, 0.05 + 0.04I1]s0, [0.263, 0.323]s1,

[0.037, 0.037 + 0.06I2]s2, [0.201, 0.254]s3, [0.330, 0.395]s4, [0, 0.018])

Ship 5
([0.105, 0.187]s0, [0.326, 0.432]s1,

[0.351, 0.375]s2, 0.080s3, 0.020s4, [0, 0.036])

Ship 6
([0.230, 0.282]s0, [0.306, 0.363 + 0.06I1]s1,

[0.049, 0.109]s2, [0.182, 0.182 + 0.03I2]s3, 0.128s4, [0, 0.024])

Table 5.9. Distributed assessments on six cargo ships

Poor Average Good Very Good Excellent ε

Ship 1 0.303 0.047
[0.073,

0.073 + 0.03I1]
[0.209, 0.351]

[0.311,

0.381 + 0.06I2]
[0, 0.024]

Ship 2 0.060 [0.138, 0.150] [0.362, 0.508] [0.300, 0.422] 0 [0, 0.03]

Ship 3
[0.192,

0.213 + 0.02I1]
[0.125, 0.218]

[0.306,

0.342 + 0.06I2]
[0.259, 0.271] 0 [0, 0.036]

Ship 4
[0.050,

0.05 + 0.04I1]
[0.263, 0.323]

[0.037,

0.037 + 0.06I2]
[0.201, 0.254] [0.330, 0.395] [0, 0.018]

Ship 5 [0.105, 0.187] [0.326, 0.432] [0.351, 0.375] 0.080 0.020 [0, 0.036]

Ship 6 [0.230, 0.282]
[0.306,

0.363 + 0.06I1]
[0.049, 0.109]

[0.182,

0.182 + 0.03I2]
0.128 [0, 0.024]
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Table 5.10. The expected utilities of six cargo ships

Minimum utility Maximum utility Average utility

Ship 1 0.541 0.808 0.675

Ship 2 0.512 0.732 0.622

Ship 3 0.441 0.582 0.512

Ship 4 0.618 0.846 0.732

Ship 5 0.425 0.518 0.472

Ship 6 0.425 0.544 0.485

5.5.6 Computing the expected utilities of six cargo ships

It is very difficult to precisely describe the ranking orders among the six cargo ships from their

distinct evaluation grades as shown in Table 5.9. In such situation, the expected utilities of six

cargo ships should be calculated. In order to compare the final results with [74], we define the

same utilities of the five individual evaluation grades as in [74] i,e.,

u′ (P ) = 0, u′(A) = 0.4, u′(G) = 0.6,

u′ (V ) = 0.8, u′(E) = 1.

Then, the expected utilities of six cargo ships can be obtained via formula (5.21), (5.22) and

(5.23), which are shown in Table 5.10, and graphically in Figure 5.3. From Table 5.10 we can

find that the minimum utility of cargo ship 4 is larger than the maximum utilities of cargo ship 3,

cargo ship 5, and cargo ship 6. Hence, the cargo ship 4 is definitely better than them. However,

for cargo ship 1 and cargo ship 2, it is difficult to compare them with cargo ship 4 by the same

principle. Then, according to the average expected utilities, the ranking order can be obtained

easily, and is given as Ship 4 ≻ Ship1 ≻ Ship2 ≻ Ship3 ≻ Ship6 ≻ Ship5, which is the same with

the final result of [74]. However, as we mentioned in Section 5.3, this result is not reliable.
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Figure 5.3. The expected utilities of six cargo ships

5.5.7 Ranking the expected utilities using the minimax regret

approach

Due to the existence of overlap of expected utilities of six cargo ships, the ranking order based

on average expected utilities is not reliable. In order to make a ranking order more precisely, “the

minimax regret approach (MRA)” [74] can be employed here to “calculate the maximum loss of

expected utility that each cargo ship may suffer”. The ranking principle is that one alternative

is selected as the best alternative if this alternative has the smallest maximum loss of expected

utility. Then, exclude the best alternative, and calculate the maximum loss of expected utilities

of other alternatives. Operate the MRA again and again until we get the ranking order of final

two alternatives. Thus, the overall ranking order can be obtained. For the cargo ship selection

problem, the calculation process is given as follows.
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R(Ship 1) = max[max(0.732, 0.582, 0.846, 0.518, 0.544)− 0.541, 0] = 0.846− 0.541

= 0.305,

R(Ship 2) = max[max(0.808, 0.582, 0.846, 0.518, 0.544)− 0.512, 0] = 0.846− 0.512

= 0.334,

R(Ship 3) = max[max(0.808, 0.732, 0.846, 0.518, 0.544)− 0.441, 0] = 0.846− 0.441

= 0.405,

R(Ship 4) = max[max(0.808, 0.732, 0.582, 0.518, 0.544)− 0.618, 0] = 0.808− 0.618

= 0.19,

R(Ship 5) = max[max(0.808, 0.732, 0.582, 0.846, 0.544)− 0.425, 0] = 0.846− 0.425

= 0.421,

R(Ship 6) = max[max(0.808, 0.732, 0.582, 0.846, 0.518)− 0.425, 0] = 0.846− 0.425

= 0.421.

It is easily to find that Ship 4 has the smallest maximum loss of expected utility. So, Ship 4 is

selected as the best cargo ship. Then, exclude Ship 4, and calculate the maximum loss of expected

utility of the other 5 ships.

R(Ship 1) = max[max(0.732, 0.582, 0.518, 0.544)− 0.541, 0] = 0.732− 0.541

= 0.191,

R(Ship 2) = max[max(0.808, 0.582, 0.518, 0.544)− 0.512, 0] = 0.808− 0.512

= 0.296,

R(Ship 3) = max[max(0.808, 0.732, 0.518, 0.544)− 0.441, 0] = 0.808− 0.441

= 0.367,

R(Ship 5) = max[max(0.808, 0.732, 0.582, 0.544)− 0.425, 0] = 0.808− 0.425

= 0.383,

R(Ship 6) = max[max(0.808, 0.732, 0.582, 0.518)− 0.425, 0] = 0.808− 0.425

= 0.383.
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It is obvious that Ship 1 has the smallest maximum loss of expected utility. So, Ship 1 is selected

as the best cargo ship. Then, exclude Ship 1, and calculate the maximum loss of expected utility

of the other 4 ships. Based on this approach, we can finally obtain the ranking order as Ship 4

≻ Ship1 ≻ Ship2 ≻ Ship3 ≻ Ship6 ≻ Ship5. The same ranking order has been obtained again,

i.e., the final result obtained by interval fuzzy linguistic distribution model is the same with that

obtained by evidential reasoning approach [74].

5.6 Conclusion

In this chapter, we introduced an interval fuzzy linguistic distribution model for MADM problems

with incomplete linguistic information. In this model, we used intervals as evaluators’ confidence

levels indicating their belief degrees that each linguistic term fits a linguistic variable. Compared

with proportions, the use of intervals leaves more operation space for evaluators to handle uncertain

and incomplete information. In interval fuzzy linguistic distribution model, we also introduced a

variable to represent the extent of ignoring information. However, different from proportional fuzzy

linguistic distribution model, of which the extent of ignoring information is obvious, the extent of

ignoring information of interval fuzzy linguistic distribution model needs to be calculated. This

is determined by the inherent nature of interval. Besides, the expected utility in interval fuzzy

linguistic distribution is also different from that in proportional fuzzy linguistic distribution model.

No matter the interval fuzzy linguistic distribution is complete or incomplete, the expected utility

is always an interval, while, the expected utility is a numerical value if the proportional fuzzy

linguistic distribution is complete.

In this chapter, we also developed several aggregation operators for interval fuzzy linguistic

distributions, such as arithmetic mean, weighted average operator, interval weighted average

operator, and interval ordered weighted average operator. These aggregation operators can help

decision makers to respond most MADM problems. Finally, we used two examples to illustrate

the proposed model from both a easily comprehensible perspective and a practical perspective.

In the second example, we used the original data of the cargo ship selection problem in order to

compare the final results with extended evidential reasoning approach [74]. However, due to the

restrictions of the original data and the approach used to model quantitative data in the cargo

ship selection problem, two 0-1 integer variables I1, I2 were generated. This slightly affected the
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explanation of distribution results of distinct evaluation grades in the cargo ship selection problem,

but didn’t involve the expected utilities and ranking order. This problem doesn’t exist in the first

example. This is another reason that we used two examples in this chapter.

In addition, there are two aspects that are worth mentioning. First, the nature of interval fuzzy

linguistic distribution model is a symbolic model with the advantage of easy operating in the

linguistic solving process. In order to inherent this advantage, we developed this model based on

the traditional interval arithmetic rules. Therefore the proposed model is computationally simple

compared with “the nonlinear optimization models used in evidential reasoning approach, which is

quite computationally complicated and leaves decision makers lots of inconvenience, even they have

to use software package to solve practical problems sometimes” [74], [75]. However, the intervals

might become too wide to be reached after calculation based on traditional interval arithmetic

rules. Especially when computing the expected utility, the situation that the maximum expected

utility is larger than 1 sometimes might happen. In such case, we should artificially adjust related

utilities.

The other aspect is that proportional fuzzy linguistic distribution model can be regarded as a

special form of interval fuzzy linguistic distribution model actually. Hence, the latter inherits all

the advantages of the former, and can be employed to deal with decision making problems under

more complicated situations. However, if proportions are enough to capture the vagueness and

uncertainty, it is better to use proportional fuzzy linguistic distribution model. This is because

proportion is more precise than interval so that the result obtained by proportional fuzzy linguistic

distribution model is also more accurate than that obtained by interval fuzzy linguistic distribution

model.
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Chapter 6

Conclusion

In this research, we first recalled some basic knowledge about decision making and computing

with words, and discussed the relationship between multiple attribute decision making and

computing with words, mainly focusing on fuzzy linguistic approach and linguistic decision

making resolution scheme. Then, according to the traditional classification of linguistic

computational models, we analyzed the different characteristics of “linguistic computational

models based on membership functions, based on ordinal scales and based on 2-tuple

representation” respectively. Meanwhile, as one of the inspirations of this research, we reviewed

“proportional 2-tuple fuzzy linguistic representation model” [70] in detail in order to pave the

way for proposing an extended version of linguistic computational model in Chapter 3. Finally, a

proportional 3-tuple fuzzy linguistic representation model, a proportional fuzzy linguistic

distribution model and an interval fuzzy linguistic distribution model were proposed in Chapter

3, Chapter4, and Chapter 5 respectively. Four illustration examples were used to explain how

these three models dealt with MADM problems with incomplete linguistic information.

6.1 The Main Contributions

The main contributions of this research can be summarized as follows:

(1) Developed a proportional 3-tuple fuzzy linguistic representation model.

Considering that “2-tuple fuzzy linguistic representation model” [28] and “proportional

2-tuple fuzzy linguistic representation model” [70] don’t involve incomplete linguistic
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assessments, while incomplete linguistic assessments emerge commonly when evaluators

might not be able to compare some alternatives or evaluators might prefer to avoid

introducing inconsistency in their linguistic assessments, we developed a proportional

3-tuple fuzzy linguistic representation model to solve this problem. Essentially, our idea

was to introduce a new variable that represented the extent of ignoring information. Thus,

the incomplete information could be considered during the calculation process. Other

contributions include:

1) A notion of preference-preserving proportional 3-tuple transformation. It is very

common that evaluators might use different linguistic term sets to express their

preferences during the evaluation process. In such case, the linguistic assessments

coming from different linguistic term sets have to be unified before aggregation. The

notion of preference-preserving proportional 3-tuple transformation was proposed in

order to unify linguistic assessments between two different linguistic term sets without

loss of information.

2) Aggregation operators for proportional 3-tuples. We developed arithmetic mean,

weighted average operator and linguistic weighted average operator for proportional

3-tuples so that proportional 3-tuple fuzzy linguistic representation model could be

applied to multi-expert decision making (MEDM) and MADM problems.

(2) Developed a proportional fuzzy linguistic distribution model.

“Since uncertainty may be assigned not only to any single evaluation grades but also to

their rational combinations, each attribute can be directly evaluated using subjective

judgments with the uncertainty being assigned to any number of adjacent evaluation grades

simultaneously” [85]. Therefore, we developed a proportional fuzzy linguistic distribution

model to deal with linguistic distribution assessments and incomplete linguistic

information. Other contributions include:

1) Aggregation operators for proportional fuzzy linguistic distribution. We developed

arithmetic mean, weighted average operator and linguistic weighted average operator

for proportional fuzzy linguistic distributions. Thus, proportional fuzzy linguistic

distribution model is capable of dealing with MEDM and MADM problems with

linguistic distribution assessments, with incomplete linguistic information, as well as

with linguistic weights.

2) Expected utility in proportional fuzzy linguistic distribution. The use of proportional

fuzzy linguistic distribution model with linguistic distribution assessments leaves an
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aggregated distribution assessment for each alternative, which is very difficult to

precisely describe the ranking order among them. Therefore, we introduced the notion

of expected utility in proportional fuzzy linguistic distribution aiming at supplying a

way to conveniently compare or rank alternatives.

(3) Developed an interval fuzzy linguistic distribution model.

Due to the fact that proportions might not be enough to capture the uncertainty when

evaluators face with uncertain, vague and imprecise information, while interval or the

combination of proportion and interval could better reflect evaluators’ confidence levels, we

developed an interval fuzzy linguistic distribution model to deal with MADM problems

under complicated situations. Other contributions include:

1) Aggregation operators for interval fuzzy linguistic distribution. We developed

arithmetic mean, weighted average operator, interval weighted average operator and

interval ordered weighted average operator for interval fuzzy linguistic distribution

model. With these aggregation operators, interval fuzzy linguistic distribution model

is able to deal with MEDM and MADM problems with linguistic distribution

assessments and incomplete linguistic information under complicated situations.

2) Expected utility in interval fuzzy linguistic distribution. For the same purpose with

expected utility in proportional fuzzy linguistic distribution, we introduced the expected

utility in interval fuzzy linguistic distribution. However, the difference is that no matter

whether interval fuzzy linguistic distribution is complete or not, its expected utility is

always an interval. Therefore, other accessorial methods may be considered to use in

order to improve the reliability of final ranking order.

(4) The contribution to Knowledge Science

The three evaluation models developed in this research supply new ways of modeling

evaluators’ knowledge regarding the field of linguistic decision analysis, and meanwhile,

they can be regarded as new tools for representing and handling tacit knowledge in decision

making. Further, different aggregation operators proposed in this research can be looked as

new ways for integrating personal knowledge. Moreover, the three evaluation models

themselves can be as the created knowledge for decision analysis. In addition, the obtained

results of this research also provide new techniques for solving multi-expert and MADM

problems in practical applications.
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6.2 Discussion and Future work

In this research, we developed a notion of preference-preserving proportional 3-tuple

transformation in order to transform proportional 3-tuples between two different linguistic term

sets without loss of information. However, we don’t develop similar notions for proportional and

interval fuzzy linguistic distributions. One of main problems is that linguistic assessment

distributions consist of different numbers of linguistic terms. Therefore, one interesting aspect for

future work is how to transform proportional and interval fuzzy linguistic distributions

constituted by different numbers of linguistic terms between two different linguistic term sets

without too many restrictions and without loss of information.

We developed several aggregation operators in this research. All these aggregation operators

are extended from conventional linear aggregation operators. As we know, adopting linear

additive method to synthesize and aggregate assessment information requires all the attributes to

be additively independent. However, linear additive independence assumption may not always be

acceptable in reality. Therefore, some non-linear aggregation operators may be considered to

develop for the evaluation models proposed in this research.

In addition, we develop an interval fuzzy linguistic distribution model, which is based on

traditional interval operation rules for the purpose of providing a computationally simple way to

deal with MADM problems with incomplete linguistic information. However, when computing

the expected utility, intervals might become too wide to be reached based on traditional interval

arithmetic rules. Sometimes, the situation that the maximum expected utility is larger than 1

might happen. In such situation, besides artificially adjust related utilities, another interesting

aspect for future work is how to define more efficient interval arithmetic rules to avoid the

appearance of the situation mentioned above, and meanwhile, keep the advantage of ease

operation in the complicated linguistic context.

In the future, we plan to continue our research in order to extend the applicability of these

evaluation models.
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