
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Automated Complexity Analysis Based on Context-

Sensitive Rewriting

Author(s) Hirokawa, Nao; Moser, Georg

Citation Lecture Notes in Computer Science, 8560: 257-271

Issue Date 2014-07

Type Journal Article

Text version author

URL http://hdl.handle.net/10119/12801

Rights

This is the author-created version of Springer,

Nao Hirokawa and Georg Moser, Lecture Notes in

Computer Science, 8560, 2014, 257-271. The

original publication is available at

www.springerlink.com,

http://dx.doi.org/10.1007/978-3-319-08918-8_18

Description

Joint International Conference, RTA-TLCA 2014,

Held as Part of the Vienna Summer of Logic, VSL

2014, Vienna, Austria, July 14-17, 2014

Automated Complexity Analysis Based on
Context-Sensitive Rewriting?

Nao Hirokawa1 and Georg Moser2

1 School of Information Science, JAIST, Japan
hirokawa@jaist.ac.jp

2 Institute of Computer Science, University of Innsbruck, Austria
georg.moser@uibk.ac.at

Abstract. In this paper we present a simple technique for analysing
the runtime complexity of rewrite systems. In complexity analysis many
techniques are based on reduction orders. We show how the monotonic-
ity condition for orders can be weakened by using the notion of context-
sensitive rewriting. The presented technique is very easy to implement,
even in a modular setting, and has been integrated in the Tyrolean Com-
plexity Tool. We provide ample experimental data for assessing the via-
bility of our method.

Keywords: term rewriting, complexity analysis, context-sensitive rewriting,
automation

1 Introduction

This paper is concerned with runtime complexity analysis of term rewrite sys-
tems. In recent years the field of complexity analysis of rewrite systems has been
dramatically revived. Nowadays this area provides a wide range of different tech-
niques to analyse the time complexity of rewrite systems, fully automatically.
Techniques range from direct methods, like polynomial interpretations, matrix in-
terpretations of polynomial path orders (e.g. [1–3]) to transformation techniques,
like adaptions of the dependency pair method [4, 5] or modular techniques [6,7].
See [8] for an overview of complexity analysis methods for term rewrite systems.
Furthermore the connection between (runtime) complexity analysis and implicit
computational complexity [9] is by now well-understood, cf. [10]. Despite this
wealth of results, very simple examples cannot be handled and in particular the
enormous power of today’s termination provers for rewrite systems is still far
beyond the ability of today’s complexity analysers. Modern termination provers
provide termination or non-termination certificates for upto 90 % of the prob-
lems Termination Problem Database (TPDB for short), while with respect to

? This research is partly supported by JSPS KAKENHI Grant Number 25730004 and
FWF (Austrian Science Fund) project I 963-N15.

automated polynomial runtime complexity analysis of rewrite systems, we see a
success rate of 38 %.3

Consider Example 1 below. The example encodes division in a natural way.
It can be analysed with the techniques mentioned above, but the optimal linear
bound on the runtime complexity is not attainable.

Example 1. Consider the following TRS Rdiv4

1: x− 0→ x 3: 0÷ s(y)→ 0

2: s(x)− s(y)→ x− y 4: s(x)÷ s(y)→ s((x− y)÷ s(y)) .

The example also clarifies a difference between the derivational and the run-
time complexity of rewrite systems. The derivational complexity function with
respect to a terminating TRS relates the maximal derivation height to the size of
the initial term, cf. [12, 13]. On the other hand the runtime complexity function
with respect to a terminating TRS restricts the derivational complexity function
so that only basic terms are considered as starting terms. Here basic terms refer
to terms that contain a defined symbol only at root. This terminology was sug-
gested in [4]. Related notions have been studied in [1, 14]. It is easy to see that
the derivational complexity with respect to Rdiv bounded from below by an ex-
ponential function, while the runtime complexity is linear. Essentially this is due
to the fact that, in the computation of division, no contraction is ever required
below the second argument. Furthermore, dependency on the first argument is
linear.

An inspection of the motivating example in the context of runtime complex-
ity analysis reveals that direct methods are not applicable as the monotonicity
constraints are too restrictive. While monotonicity is no longer an issue for trans-
formation techniques, neither the weak dependency pair method [4] nor the de-
pendency tuple method [5] can deduce the linear (innermost) runtime complexity,
as essential constraints cannot be met. In this paper we extend the applicabil-
ity of direct techniques for complexity results by showing how the monotonicity
constraints can be significantly weakened through the employ of usable replace-
ment maps, which govern those argument position actually used in rewriting.
As usable replacement maps are not computable in general, we provide suffi-
ciently expressive approximations of usable replacement maps. More generally,
we show how notions from context-sensitive rewriting can be made applicable in
the context of complexity analysis.

This paper is structured as follows. In the next section we cover basics. In
Section 3 we define usable replacement maps. In Section 4 we provide experimen-
tal data that verifies that the proposed technique makes a difference in practice.
Furthermore, in Section 5 we present related work and conclude in Section 6.

3 We base the comparison on last year’s run of TERMCOMP, where we consider the
categories TRS Standard and Runtime Complexity – Innermost Rewriting. Note that
for termination YES and NO answers have been counted.

4 This is Example 3.1 in Arts and Giesl’s collection of TRSs [11].

2 Runtime Complexity Analysis Based on Matrix
Interpretations

We assume familiarity with term rewriting [13, 15] but briefly review basic con-
cepts and notations from term rewriting, context-sensitive rewriting and recall
matrix interpretations. In particular we will adapt triangular matrix interpreta-
tions for runtime complexity analysis.

Let V denote a countably infinite set of variables and F a signature, such
that F contains at least one constant. The set of terms over F and V is denoted
by T (F ,V). The set of positions Pos(t) of a term t is defined as usual. We
write PosG(t) ⊆ Pos(t) for the set of positions of subterms whose root symbol is
contained in G ⊆ F . The subterm of t at position p is denoted as t|p, and t[u]p
denotes the term that is obtained from t by replacing the subterm at p by u. The
subterm relation is denoted as E. Var(t) denotes the set of variables occurring
in a term t. The size |t| of a term is defined as the number of symbols in t.

A term rewrite system (TRS) R over T (F ,V) is a finite set of rewrite rules
l → r. In the sequel, R always denotes a TRS. The rewrite relation is denoted
as→R and we use the standard notations for its transitive and reflexive closure.
We simply write → for →R if R is clear from context. Let s and t be terms. If
exactly n steps are performed to rewrite s to t, we write s→n t. With NF(R) we
denote the set of all normal forms of a term rewrite system R. The innermost
rewrite relation i−→R of a TRS R is defined on terms as follows: s i−→R t if there
exist a rewrite rule l → r ∈ R, a context C, and a substitution σ such that
s = C[lσ], t = C[rσ], and all proper subterms of lσ are normal forms of R.
Defined symbols of R are symbols appearing at root in left-hand sides of R. The
set of defined function symbols is denoted as D, while the constructor symbols
F \ D are collected in C. We call a term t = f(t1, . . . , tn) basic or constructor
based if f ∈ D and ti ∈ T (C,V) for all 1 6 i 6 n. The set of all basic terms are
denoted by Tb. We call a TRS (innermost) terminating if no infinite (innermost)
rewrite sequence exists.

A replacement map µ is a function with µ(f) ⊆ {1, . . . , n} for all n-ary
functions with n > 1 [16]. The set Posµ(t) of µ-replacing positions in t is defined
as follows:

Posµ(t) :=

{
{ε} if t is a variable ,

{ε} ∪ {ip | i ∈ µ(f) and p ∈ Posµ(ti)} if t = f(t1, . . . , tn) .

A µ-step s
µ−→ t is a rewrite step s → t whose rewrite position is in Posµ(s).

The set of all non-µ-replacing positions in t is denoted by Posµ(t); namely,
Posµ(t) := Pos(t) \ Posµ(t).

A monotone F-algebra is a pair (A,�) where A is an F-algebra and �
is a proper order such that for every function symbol f ∈ F , fA is strictly
monotone in all coordinates with respect to �. A (monotone) F-algebra (A,�
) is called well-founded if � is well-founded. Any monotone F-algebra (A, R)
induces a binary relation RA on terms: define s RA t if [α]A(s) R [α]A(t) for all
assignments α. We say A is compatible with a TRS R if R ⊆ RA. Let µ denote a

replacement map. Then we call a well-founded algebra (A,�) µ-monotone if for
every function symbol f ∈ F , fA is strictly monotone on µ(f), i.e. fA is strictly
monotone with respect to every argument position in µ(f). Similarly a relation
R is called µ-monotone if it is strictly monotone on µ(f) for all f ∈ F . Let R be
a TRS compatible with a µ-monotone relation R. Then clearly any µ-step s

µ−→ t
implies s R t.

We recall the concept of matrix interpretations on natural numbers (see [17]
but compare also [18]). Let F denote a signature. We fix a dimension d ∈ N
and use the set Nd as the carrier of an algebra A, together with the following
extension of the natural order > on N: (x1, x2, . . . , xd) > (y1, y2, . . . , yd) :⇐⇒
x1 > y1 ∧ x2 > y2 ∧ . . . ∧ xd > yd. Let µ be a replacement map. For each n-
ary function symbol f , we choose as an interpretation a linear function of the
following shape:

fA : (v1, . . . ,vn) 7→ F1v1 + · · ·+ Fnvn + f ,

where v1, . . . ,vn are (column) vectors of variables, F1, . . . , Fn are matrices (each
of size d× d), and f is a vector over N. Moreover, suppose for any i ∈ µ(f) the
top left entry (Fi)1,1 is positive. Then it is easy to see that the algebra A forms a
µ-monotone well-founded algebra Let A be a matrix interpretation, let α0 denote
the assignment mapping any variable to 0, i.e. α0(x) = 0 for all x ∈ V, and let
t be a term. In the following we write [t], [t]j as an abbreviation for [α0]A(t), or
([α0]A(t))j (1 6 j 6 d), respectively, if the algebra A is clear from the context.

The derivation height of a term s with respect to a well-founded, finitely
branching relation → is defined as: dh(s,→) = max{n | ∃t s→n t}.

Definition 2. We define the runtime complexity function rcR(n) and the in-
nermost runtime complexity function rciR(n) as follows:

rcR(n) := max{dh(t,→R) | t is basic and |t| 6 n}
rciR(n) := max{dh(t, i−→R) | t is basic and |t| 6 n} .

We may say the (innermost) runtime complexity of R is linear, quadratic,
or polynomial if there exists a (linear, quadratic) polynomial p(n) such that

rc
(i)
R (n) 6 p(n) for sufficiently large n.

Note that dh(t,�) is undefined, if the relation � is not well-founded or not
finitely branching. In fact compatibility of a constructor TRS with the polyno-
mial path order >pop∗ ([3]) induces polynomial innermost runtime complexity,
whereas f(x) >pop∗ gn(x) >pop∗ · · · >pop∗ · · · >pop∗ g2(x) >pop∗ g(x) >pop∗ x
holds for all n ∈ N, when precedence f > g is used. Hence dh(t, >pop∗) is un-
defined, while the order >pop∗ can still be employed in complexity analysis. Let
R be a binary relation over terms, let � be a proper order on terms, and let
G denote a mapping associating a term with a natural number. Then � is G-
collapsible on R if G(s) > G(t), whenever s R t and s � t holds. An order � is
collapsible (on R), if there is a mapping G such that � is G-collapsible (on R).

Lemma 3. Let R be a finitely branching and well-founded relation. Further,
let � be a G-collapsible order with R ⊆ �. Then dh(t, R) 6 G(t) holds for all
terms t.

If a TRS R and a µ-monotone matrix interpretation A are compatible, G(t)
can be given by [t]1. In order to estimate derivational or runtime complexity,
one needs to associate [t]1 to |t|. For this sake we define degrees of matrix inter-
pretations.

Definition 4. A matrix interpretation is of (basic) degree k if there is a con-
stant c such that [t]i 6 c · |t|k for all (basic) terms t and i, respectively.

An upper triangular complexity matrix is a matrix M in Nd×d such that we
have Mj,k = 0 for all 1 6 k < j 6 d, and Mj,j 6 1 for all 1 6 j 6 d. We say that a
(µ-)monotone well-founded algebra A is a triangular matrix interpretation (TMI
for short) if A is a matrix interpretation (over N) and all matrices employed are
of upper triangular complexity form. The following result can be easily distilled
from the literature, cf. [19, 20].

Theorem 5. Let A be a TMI and let M denote the component-wise maximum
of all matrices occurring in A. Further, let k denote the number of ones occurring
along the diagonal of M . Then, �A is O(nk)-collapsible.

In order to cope with runtime complexity, a similar idea to restricted poly-
nomial interpretations (see [1]) can be integrated to triangular matrix interpre-
tations. We call A a restricted matrix interpretation (RMI for short) if A is a
matrix interpretation, but for each constructor symbol f ∈ C, the interpreta-
tion fA of f employs upper triangular complexity matrices, only. The following
theorem is obtained from the combination of existing results [1, 2, 19].

Theorem 6. Let A be an RMI and let t be a basic term. Further, let M de-
note the component-wise maximum of all matrices used for the interpretation
of constructor symbols, and let k denote the number of ones occurring along the
diagonal of M . Then A is of basic degree k. Furthermore, if M is the unit matrix
then A is of basic degree 1.

It is not difficult to see that Theorem 6 also holds for RMIs based on lower
triangular complexity matrices. We refrain from given the formal details, but
rather exemplify the definition below.

Example 7. Consider the TRS Rsum5

1: sum(0)→ 0 3: sum1(0)→ 0

2: sum(s(x))→ sum(x) + s(x) 4 : sum1(s(x))→ s(sum1(x) + (x+ x))

5 The TRS is Example 2.17 in Steinbach and Kühler’s collection of TRSs [21].

where, sum and sum1 are defined symbols, and 0, s, and + are constructor sym-
bols. Consider the 2-dimensional RMI A (based on lower triangular complexity
matrices) with

0A =

(
0
1

)
sumA(x) =

(
1 2
1 3

)
x +

(
0
1

)
sA(x) =

(
1 0
1 1

)
x +

(
2
2

)
sum1A(x) =

(
1 2
0 3

)
x

+A(x,y) =

(
1 0
0 0

)
x +

(
1 0
0 0

)
y .

The rules in Rsum are interpreted and ordered as follows.

1 :

(
2
4

)
>

(
0
1

)
3:

(
2
3

)
>

(
0
1

)
2:

(
3 2
4 3

)
x +

(
6
9

)
>

(
2 2
0 0

)
x +

(
2
0

)
4:

(
3 2
3 3

)
x +

(
6
6

)
>

(
3 2
3 2

)
x +

(
2
2

)
.

Therefore, Rsum ⊆ >A holds. By an application of Theorem 6 we conclude that
the runtime complexity is quadratic. As we see later, there is a tighter bound.

3 Usable Replacement Maps

Unfortunately, there is no RMI compatible with the TRS of our running ex-
ample (Example 1). The reason is that the monotonicity requirement of matrix
interpretations is too severe for complexity analysis. Inspired by the idea of
Fernández [22], we show how context-sensitive rewriting is used in complexity
analysis. Here we briefly explain our idea. Let n denote the numeral sn(0). Con-
sider the derivation from 4÷ 2:

4÷ 2→ s((3− 1)÷ 2)→ s((2− 0)÷ 2)→ s(2÷ 2)→ · · ·

where redexes are underlined. Observe that e.g. any second argument of ÷ is
never rewritten. More precisely, any derivation from a basic term consists of
only µ-steps with the replacement map µ: µ(s) = µ(÷) = {1} and µ(−) = ∅.

Recall that Posµ(t) denotes the set of µ-replacing positions in t and Posµ(t) =
Pos(t) \ Posµ(t). Further, a term t is a µ-replacing term with respect to a TRS
R if p ∈ Posµ(t) implies t|p ∈ NF(R). The set of all µ-replacing terms is denoted
by T (µ). Below [L](→∗) denotes the set {t | s→∗ t for some s ∈ L}.

The above observation is cast in the following definition, borrowed from [23].
Usable replacement maps satisfy a desired property for runtime complexity anal-
ysis, as detailed in this section.

Definition 8. Let → denote a binary relation. A replacement map µ is called
a usable replacement map with respect to → and the set of starting terms Tb if
[Tb](→∗) ⊆ T (µ).

The main result of this section is the definition of suitable approximations
of usable replacement maps. For that we adapt the cap-function ICAP suitably,
cf. [24]. Let µ be a replacement map. Clearly the function µ is representable as
set of ordered pairs (f, i). Below we often confuse the notation of µ as a function
or as a set.

Definition 9. Let R be a TRS and let µ be a replacement map. We define the
operator ΥR as follows:

ΥR(µ) := {(f, i) | l→ C[f(r1, . . . , rn)] ∈ R and CAPlµ(ri) 6= ri} .

Here CAPsµ(t) is inductively defined on t as follows:

CAPsµ(t) =

t if t = s|p for some p ∈ Posµ(s) ,

u if t = f(t1, . . . , tn) and u and l unify for no l→ r ∈ R ,

y otherwise ,

where, u = f(CAPsµ(t1), . . . ,CAPsµ(tn)), y is a fresh variable, and we assume
that Var(l) ∩ Var(u) = ∅ holds.

We define the approximated innermost usable replacement map µRi as follows
µRi := ΥR(∅) and let the approximated usable replacement map µRf denote the
least fixed point of ΥR. The existence of ΥR follows from the monotonicity
of ΥR. If R is clear from context, we simple write µi, µf , and Υ , respectively.
In the remainder of the section we establish that µi and µf constitute usable
replacement maps for i−→ and → respectively. Suppose s ∈ T (µ): observe that
the function CAPsµ(t) replaces a subterm u of t by a fresh variable if uσ is a
redex for some sσ ∈ T (µ). This is exemplified below.

Example 10. Consider the TRS Rdiv. Let l→ r be rule 4, namely, l = s(x)÷s(y)
and r = s((x− y)÷ s(y)). Suppose µ(f) = ∅ for all functions f and let w and z
be fresh variables. The next table summarises CAPlµ(t) for each proper subterm t
in r. To see the computation process, we also indicate the term u in Definition 9.

t x y x− y s(y) (x− y)÷ s(y)

CAPlµ(t) x y w s(y) z
u – – x− y s(y) w ÷ s(y)

By underlining proper subterms t in r such that CAPlµ(t) 6= t, we have

s((x− y)÷ s(y))

which indicates (s, 1), (÷, 1) ∈ Υ (µ).

The next lemma clarifies the rôle played by the cap function CAPsµ(t).

Lemma 11. Let s and t be terms, and σ a substitution such that sσ ∈ T (µ)
and CAPsµ(t) = t. Then tσ ∈ NF(R).

Proof. We use induction on t. Suppose sσ ∈ T (µ) and CAPsµ(t) = t. If t = s|p
for some p ∈ Posµ(s) then tσ = (sσ)|p ∈ NF follows by definition of T (µ).

We can assume that t = f(t1, . . . , tn). Assume otherwise that t = x ∈ V,
then CAPsµ(x) = x entails that xσ occurs at a non-µ-replacing position in sσ.
Hence xσ ∈ NF follows from sσ ∈ T (µ). Moreover, by assumption we have:

1. CAPsµ(ti) = ti for each i, and
2. there is no rule l→ r ∈ R such that t and l unify.

Due to 2) lσ is not reducible at the root, and the induction hypothesis yields
tiσ ∈ NF because of 1). Therefore, we obtain tσ ∈ NF. ut

For a smooth inductive proof of the key lemma, Lemma 14, we develop an
alternative characterisation of the set of µ-replacing terms T (µ).

Definition 12. The set {(f, i) | f(t1, . . . , tn) E t and ti 6∈ NF(R)} is denoted
by υ(t).

The next lemma shows that the set of µ-replacing terms T (µ) can be char-
acterised through the above definition.

Lemma 13. T (µ) = {t | υ(t) ⊆ µ}.

Proof. For the inclusion from left to right, let t ∈ T (µ) and let (f, i) ∈ υ(t).
We show (f, i) ∈ µ. By Definition 12 there is a position p ∈ Pos(t) with t|p =
f(t1, . . . , tn) and t|pi 6∈ NF. Thus pi ∈ Posµ(t) and i ∈ Posµ(t|p). Hence (f, i) ∈ µ
is concluded.

Next we consider the opposite direction {t | υ(t) ⊆ µ} ⊆ T (µ). Let t be a
minimal counter-example such that υ(t) ⊆ µ and t 6∈ T (µ). One can write
t = f(t1, . . . , tn). Then, there exists a position p ∈ Posµ(t) such that t|p 6∈ NF.
Because ε 6∈ Posµ(t) by definition, p = iq with i ∈ N. As iq ∈ Posµ(t) one of
(f, i) 6∈ µ or q ∈ Posµ(t|i) must hold. Consider the first alternative. Then by
Definition 12, (f, i) ∈ υ(t) ⊆ µ and we obtain a contradiction. Now, consider
the second alternative. Note that t|iq 6∈ NF implies t|i 6∈ NF. In conjunction with
q ∈ Posµ(t|i) this yields that ti is counter-example which is smaller than t. This
contradicts the definition of t. ut

The next lemma about the operator Υ is a key for the main theorem. Note
that every subterm of a µ-replacing term is a µ-replacing term.

Lemma 14. If l→ r ∈ R and lσ ∈ T (µ) then rσ ∈ T (µ ∪ Υ (µ)).

Proof. Let l→ r ∈ R and suppose lσ ∈ T (µ). By Lemma 13 we have

T (µ) = {t | υ(t) ⊆ µ} T (µ ∪ Υ (µ)) = {t | υ(t) ⊆ µ ∪ Υ (µ)} .

Hence it is sufficient to show υ(rσ) ⊆ µ ∪ Υ (µ). Let (f, i) ∈ υ(rσ). There is
p ∈ Pos(rσ) with rσ|p = f(t1, . . . , tn) and ti 6∈ NF. If p is below some variable
position of r, rσ|p is a subterm of lσ, and thus υ(rσ|p) ⊆ υ(lσ) ⊆ µ. Otherwise, p
is a non-variable position of r. We may write r|p = f(r1, . . . , rn) and riσ = ti 6∈
NF. Due to Lemma 11 we obtain CAPlµ(ri) 6= ri. Therefore, (f, i) ∈ Υ (µ). ut

Lemma 15. For the approximated usable replacement maps T (µi) and T (µf),
the following implications hold:

1. If s ∈ T (µi) and s i−→ t then t ∈ T (µi).
2. If s ∈ T (µf) and s→ t then t ∈ T (µf).

Proof. We show property 1). Suppose s ∈ T (µi) and s i−→ t is a rewrite step
at p. Due to the definition of innermost rewriting, we have s|p ∈ T (∅). Hence,
t|p ∈ T (µi) is obtained by Lemma 14. Because s ∈ T (µi) we have p ∈ Posµi(s).
Hence due to t|p ∈ T (µi) we conclude t = s[t|p]p ∈ T (µi) due to the above remark.
The proof of 2) proceeds along the same pattern and is left to the reader. ut

We arrive at the main result of this section.

Theorem 16. The inclusions [T (∅)](i−→∗R) ⊆ T (µi) and [T (∅)](→∗R) ⊆ T (µf)
hold. In particular µi and µf constitute usable replacement maps for i−→ and →,
respectively.

Proof. We focus on the second part of the theorem, where we have to prove that
t ∈ T (µf), whenever there exists s ∈ T (∅) such that s→∗R t. As T (∅) ⊆ T (µf)
this follows directly from Lemma 15.

Note that T (∅) is the set of all argument normalised terms. Therefore, Tb ⊆
T (∅). Hence the second half of the theorem follows. ut

Given a TRS R we write
µi−→ for the µi-step relation of R, and

µf−→ for the
µf -step relation. The following corollary to Theorem 16 is immediate.

Corollary 17. We have dh(t, i−→R) 6 dh(t,
µi−→) and dh(t,→R) = dh(t,

µf−→) for
all terminating terms t ∈ Tb.

An advantage of the use of context-sensitive rewriting is that the compati-
bility requirement of monotone algebra in termination or complexity analysis is
relaxed to µ-monotone algebra. We illustrate its use in the next examples.

Example 18. Recall the TRS Rdiv given in Example 1 above. The usable re-
placement maps are as follows:

µi(−) = ∅ µi(s) = µi(÷) = {1} µf(s) = µf(−) = µf(÷) = {1} .

Consider the 1-dimensional RMI A (i.e. linear polynomial interpretations) with
0A = 1, sA(x) = x + 2, −A(x, y) = x + 1, and ÷A(x, y) = 3x; A is strictly
µi-monotone and µf -monotone. The rules in Rdiv are interpreted and ordered as
follows.

1 : x+ 1 > x 3: 3 > 1

2: x+ 3 > x+ 1 4: 3x+ 6 > 3x+ 5 .

Therefore, Rdiv ⊆ >A holds. Applying Theorem 6 in the context of usable re-
placement maps, we conclude that the (innermost) runtime complexity is linear,
which is optimal.

Example 19. Recall the TRS Rsum of Example 7. The usable replacement map
for full rewriting is as follows:

µf(sum) = µf(sum1) = ∅ µf(s) = µf(+) = {1} .

Consider the 1-dimensional RMI A with

0A = 2 sA(x) = x+ 2 +A(x, y) = x sumA(x) = 2x sum1(x, y) = 2x .

which is strictly µf -monotone. The rules in Rdiv are interpreted and ordered as
follows.

1 : 4 > 2 3: 4 > 2

2: 2x+ 4 > 2x 4: 2x+ 4 > 2x+ 2 .

Therefore, Rdiv ⊆ >A holds. By an application of Theorem 6 we conclude that
the runtime complexity is linear, which is optimal.

We cast the observations in the example into another corollary to Theo-
rem 16.

Corollary 20. Let R be a TRS and let A be a d-degree µi-monotone (or µf-
monotone) RMI compatible with R. Then the (innermost) runtime complexity

function rc
(i)
R with respect to R is bounded by a d-degree polynomial.

Proof. It suffices to consider the case for full rewriting. Let s, t be terms such
that s →R t. By the theorem, we have s

µf−→ t. Furthermore, by assumption
R ⊆ �A and for any f ∈ F , fA is strictly monotone on all µf(f). Thus s �A t
follows. Finally, the corollary follows by application of Theorem 6. ut

4 Experiments

The usable replacement map method has been incorporated into the Tyrolean
Complexity Tool TCT [25]. We note that the established method can easily com-
bined with existing modular frameworks and the implementation in TCT makes
(essential) use of this. In this section we present an experimental evaluation
of the technique based on version 8.0.6 of the Termination Problems Database
(TPDB for short). We consider TRSs without theory annotation, where the run-
time complexity analysis is non-trivial, that is the set of basic terms is infinite.
This testbed comprises 1249 TRSs.

All experiments were conducted on a machine that is identical to the official
competition server (8 AMD Opteron® 885 dual-core processors with 2.8GHz,
8x8 GB memory). As timeout we use 60 seconds. The complete experimen-
tal data can be found at http://cl-informatik.uibk.ac.at/software/tct/

experiments/rtatlca14, where also the testbed employed is detailed.
Table 1 summarises the experimental results of the use of usable replacement

maps for full and innermost runtime complexity analysis. The tests employ one-

http://cl-informatik.uibk.ac.at/software/tct/experiments/rtatlca14
http://cl-informatik.uibk.ac.at/software/tct/experiments/rtatlca14

full innermost

result RMI(1-3),(−) RMI(1-3), (+) RMI(1-3), (−) RMI(1-3), (+)

O(n) 103 134 104 140
O(n2) 174 209 174 226

O(nk) 183 225 183 247

timeout (60s) 113 109 113 117

Table 1. Experimental results I (one- to three-dimensional RMIs)

to three-dimensional RMIs.6 The tests clearly indicate the power of the estab-
lished technique. This power is not only in the absolute number of examples, but
more importantly in the precision of the analysis. We note that our tests only
make use of the simplest notion of RMIs for runtime complexity analysis cf. [26].
This is a rather mundane method, more sophisticated methods have been re-
ported in [2, 19]. However, to assess the power of the established technique this
restriction is insignificant.

In Table 2 we present the overall power obtained for the automated runtime
complexity analysis. Here we test the current version of TCT using a strategy
that avoids the new method, in contrast to its standard strategy. It is to be ex-
pected that the effect of the proposed technique is smaller than in Table 1. This
is due to the presence of transformation techniques, like the weak dependency
pair method [4] or the dependency tuple method [5] and the use of a modular
framework [7]. While the usable argument method is still effective for weak de-
pendency pairs, as it may lighten the weight gap constraint, the dependency tuple
method allows to remove all monotonicity constraints. Note that the dependency
tuple method is only applicable for innermost runtime complexity.

Despite these theoretical facts, the method has a significant impact on full
and innermost rewriting. While the overall effect is a lot smaller than for direct
techniques, we emphasise that the method allows to win some examples that
can be handled with linear rather than with quadratic complexity. The alert
reader may wonder, why there is a positive effect at all in the innermost case,
as transformation techniques do not require monotonicity. This is due to the
case that even for innermost runtime complexity analysis, direct methods are
currently not superseded by transformational techniques.

5 Related Work

Usable replacement maps Usable replacement maps were originally introduced
by Fernández [22] for proving termination of innermost rewriting. This notion

6 Note that matrix interpretations, that is the test “RMI(1-3)”, cannot discern between
innermost versus full rewriting. Hence the practical differences noted in the table are
coincidental.

full innermost

result TCT (−) TCT (+) TCT (−) TCT (+)

O(1) 92 100 326 325
O(n) 408 421 500 508
O(n2) 423 428 554 555
O(n3) 424 429 564 565

O(nk) 426 431 568 569

timeout (60s) 714 711 617 615

Table 2. Experimental results II (overall effect)

is already applicable for analysing innermost runtime complexity. More pre-
cisely, we link Theorem 16 to Fernández’ work. In [22] an application of context-
sensitive rewriting for innermost termination has been established.

Proposition 21 ([22]). A TRS R is innermost terminating if
µi−→ is terminat-

ing.

Proof. We show the contraposition. If R is not innermost terminating, there is
an infinite sequence t0

i−→ t1
i−→ t2

i−→ · · · , where t0 ∈ T (∅). From Theorem 16
and Lemma 15 we obtain t0

µi−→ t1
µi−→ t2

µi−→ · · · . Hence,
µi−→ is not terminating.

ut
We lifted Fernández’ notion to full rewriting, exploiting the cap function

ICAP in [24]. Realisation of a fixed point calculation of usable replacement maps
is considered as a primary result of this paper. Note that Proposition 21 does
not generalise to full termination, even if one replaces the innermost replacement
map µi, by the replacement map µf .

Example 22. Consider the famous Toyama’s example R

f(a, b, x)→ f(x, x, x) g(x, y)→ x g(x, y)→ y .

The replacement map µf is empty. Thus, the algebra A over N

fA(x, y, z) = max{x− y, 0} gA(x, y) = x+ y + 1 aA = 1 bA = 0 .

is µf -monotone and we have R ⊆ >A. However, we should not conclude termi-
nation of R, because f(a, b, g(a, b)) is non-terminating.

Cap functions In [22] usable replacement maps for innermost rewriting are de-
fined as {(f, i) | l→ C[f(r1, . . . , rn)] ∈ R and ri|p 6C l, for some p ∈ PosD(r)}.
This and our definition µi coincide if the following cap function is used during
the computation of ΥR:

CAPsµ(t) =

t if t C s ,

u if t = f(t1, . . . , tn) and f ∈ C ,

y otherwise ,

where, u = f(CAPsµ(t1), . . . ,CAPsµ(tn)) and y is a fresh variable. In the light of
this reformulation one can (easily) verify that the usable replacement map µi in
Section 3 is always a subset of the above set.

There exists a cap function for context-sensitive rewriting, introduced by
Alarcón et al. [27] for termination analysis. Their definition is the following:

CAPsµ(t) =

t if t is a variable ,

u if t = f(t1, . . . , tn) and u and l unify for no l→ r ∈ R ,

y otherwise ,

where, y is a fresh variable and u = f(u1, . . . , un). Each ui stands for CAPsµ(ti)
if i ∈ µ(f), and ti otherwise. This definition cannot be used for calculation of
usable replacement maps: It is designed for exploiting a given replacement map µ
to ignore potential rewrite positions, while our cap function is aimed at detecting
potential reducible positions to build a usable replacement map.

Dependency pairs Weak dependency pairs [4] and dependency tuples [5] are
transformational approaches that split a rewrite relation into two relations. This
split allows us to weaken the monotonicity condition. Although these approaches
exploit dependencies of defined symbols, they do not analyse how variables in
rewrite rules or dependency pairs (tuples) are instantiated in rewriting.7 As a
consequence, the transformations do not resolve the problem of variable duplica-
tion addressed in the introduction. We emphasise that usable replacement maps
and dependency pairs (tuples) are complementary and the combination is bene-
ficial, as seen in Section 4. A similar observation holds for techniques employing
modularity.

6 Conclusion

In this paper we have defined the notion of usable replacement maps. It is a
straightforward observation that only usable arguments need to be considered
for monotonicity conditions. In a nutshell, we have shown how monotonicity
conditions for orders can be weakened by using the notion of context-sensitive
rewriting.

The presented technique is very easy to implement and has been integrated
in the Tyrolean Complexity Tool. Above we have provided ample experimen-
tal data for assessing the viability of our method. The positive experimental
evaluation, even in the innermost case, is somewhat surprising. One might have
assumed that transformation techniques, as for example the dependency tuple
method introduced in [5] supersede direct methods and thus refrain us from
concerns about monotonicity. Our experiments clearly show that this is not the
case. We emphasise that the here proposed method directly extends to modular
frameworks and our implementation in TCT makes essential use of this fact.

7 Approximation techniques for dependency graphs may be considered an exception.

minus : (nat , nat) -> nat

minus (m, n) = match m with

| 0 -> 0

| S m’ -> match n with

| 0 -> m

| S n’ -> minus (m’, n’);

quot : (nat , nat) -> nat

quot (m, n) = match m with

| 0 -> 0

| S m’ -> match n with

| 0 -> 0

| S n’ ->

(quot (minus (m’, n’), n)) + 1;

Fig. 1. Division in RaML

Apart from its practical value the proposed technique allows to incorporate
features of complexity analysis of functional programs into rewrite systems. We
consider a reformulation of our motivating example in an ML-like language,
cf. Figure 1. This functional program is subject to the analysis of the RaML-
prototype, developed by Hoffmann et al. [28]. The prototype is based on an
amortised resource analysis that employs a potential-based type system. Appli-
cation of the method on the example yields the optimal linear bound on the
innermost runtime complexity. Inspection of the complexity proof reveals that
the method assigns zero potential to the second argument of minus and div,
which is related to the fact that these arguments can be safely ignored in our
setting, cf. Example 18. However, the potential-based method depends on the
presence of types as detailed in [29]. We emphasise that the usable arguments
method allows a similar fine-grained control for the runtime complexity analysis,
even without the introduction of types.

Acknowledgments. We would like to thank the anonymous reviewers for
their valuable comments that greatly helped in improving the presentation.

References

1. Bonfante, G., Cichon, A., Marion, J.Y., Touzet, H.: Algorithms with polynomial
interpretation termination proof. JFP 11(1) (2001) 33–53

2. Middeldorp, A., Moser, G., Neurauter, F., Waldmann, J., Zankl, H.: Joint spectral
radius theory for automated complexity analysis of rewrite systems. In: Proc. 4th
CAI. Volume 6742 of LNCS. (2011) 1–20

3. Avanzini, M., Moser, G.: Polynomial path orders. LMCS 9(4) (2013)
4. Hirokawa, N., Moser, G.: Automated complexity analysis based on the dependency

pair method. In: Proc. 4th IJCAR. Number 5195 in LNAI (2008) 364–380
5. Noschinski, L., Emmes, F., Giesl, J.: Analyzing innermost runtime complexity of

term rewriting by dependency pairs. JAR 51(1) (2013) 27–56

6. Zankl, H., Korp, M.: Modular complexity analysis via relative complexity. LMCS
10(1:19) (2014) 1–33

7. Avanzini, M., Moser, G.: A combination framework for complexity. In: Proc. 24th
RTA. Volume 21 of LIPIcs. (2013) 55–70

8. Moser, G.: Proof Theory at Work: Complexity Analysis of Term Rewrite Systems.
CoRR abs/0907.5527 (2009) Habilitation Thesis.

9. Baillot, P., Marion, J.Y., Rocca, S.R.D.: Guest editorial: Special issue on implicit
computational complexity. TOCL 10(4) (2009)

10. Avanzini, M., Moser, G.: Closing the gap between runtime complexity and polytime
computability. In: Proc. 21st RTA. Volume 6 of LIPIcs. (2010) 33–48

11. Arts, T., Giesl, J.: A collection of examples for termination of term rewriting using
dependency pairs. Technical Report AIB-2001-09, RWTH Aachen (2001)

12. Hofbauer, D., Lautemann, C.: Termination proofs and the length of derivations.
In: Proc. 3rd RTA. Number 355 in LNCS (1989) 167–177

13. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University
Press (1998)

14. Choppy, C., Kaplan, S., Soria, M.: Complexity analysis of term-rewriting systems.
TCS 67(2–3) (1989) 261–282

15. TeReSe: Term Rewriting Systems. Volume 55 of Cambridge Tracks in Theoretical
Computer Science. Cambridge University Press (2003)

16. Lucas, S.: Context-sensitive rewriting strategies. IC 178(1) (2002) 294–343
17. Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving ter-

mination of term rewriting. JAR 40(3) (2008) 195–220
18. Hofbauer, D., Waldmann, J.: Termination of string rewriting with matrix inter-

pretations. In: Proc. 17th RTA. Volume 4098 of LNCS. (2006) 328–342
19. Neurauter, F., Zankl, H., Middeldorp, A.: Revisiting matrix interpretations for

polynomial derivational complexity of term rewriting. In: Proc. the 17th LPAR.
Volume 6397 of LNCS (ARCoSS). (2010) 550–564

20. Waldmann, J.: Polynomially bounded matrix interpretations. In: Proc. 21st RTA.
Volume 6 of LIPIcs. (2010) 357–372

21. Steinbach, J., Kühler, U.: Check your ordering – termination proofs and open
problems. Technical Report SR-90-25, Universität Kaiserslautern (1990)

22. Fernández, M.L.: Relaxing monotonicity for innermost termination. Information
Processing Letters 93(1) (2005) 117–123

23. Avanzini, M.: Verifying Polytime Computability Automatically. PhD thesis, Uni-
versity of Innsbruck (2013)

24. Giesl, J., Thiemann, R., Schneider-Kamp, P.: Proving and disproving termination
of higher-order functions. In: Proc. 5th FROCOS. Volume 3717 of LNAI. (2005)
216–231

25. Avanzini, M., Moser, G.: Tyrolean Complexity Tool: Features and usage. In: Proc.
24th RTA. Volume 21 of LIPIcs. (2013) 71–80

26. Moser, G., Schnabl, A., Waldmann, J.: Complexity analysis of term rewriting
based on matrix and context dependent interpretations. In: Proc. 28th FSTTCS.
Volume 2 of LIPIcs. (2008) 304–315

27. Alarcón, B., Gutiérrez, R., Lucas, S.: Context-sensitive dependency pairs. IC
208(8) (2010) 922–968

28. Hoffmann, J., Aehlig, K., Hofmann, M.: Resource aware ML. In: Proc. 24th CAV.
Volume 7358 of LNCS. (2012) 781–786

29. Hofmann, M., Moser, G.: Amortised resource analysis and typed polynomial in-
terpretations. In: Proc. of 25th RTA & 12th TLCA. LNCS (ARCoSS) (2014) to
appear.

	Automated Complexity Analysis Based on Context-Sensitive Rewriting

