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Abstract: Computational modeling of the speech organs is able to improve our understanding of
human speech motor control. In order to investigate muscle activation in speech motor control, we
have developed an automatic estimation method based on a 3D physiological articulatory model. In
this method, the articulatory target was defined by the entire posture of the tongue and jaw in the
midsagittal plane, which was reduced to a six-dimensional space by principal component analysis
(PCA). In the PCA space, the distance between an articulatory target and the model was gradually
minimized by automatically adjusting muscle activations. The adjustment of muscle activations was
guided by a dynamic PCA workspace that was used to predict individual muscle functions in a given
position. This dynamic PCA workspace was estimated on the basis of an interpolation of eight
reference PCA workspaces. The proposed method was assessed by estimating muscle activations for
five Japanese vowel postures that were extracted from magnetic resonance images. The results showed
that the proposed method can generate muscle activation patterns that can control the model to realize
given articulatory targets. In addition, the estimated muscle activation patterns were consistent with
anatomical knowledge and previously reported measurement data.

Keywords: Physiological articulatory model, Muscle activation, Speech production, Motor control
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1. INTRODUCTION

Speech organs are driven by coordinated muscle

activations to produce vocal tract shapes during speech

production. In order to improve the understanding of speech

motor control, many physiological articulatory models have

been constructed since the 1970s [1–5]. To investigate

muscle activations with a physiological articulatory model,

Fang et al. [4] and Buchaillard et al. [5] used the ‘‘trial-and-

error’’ method, where muscle activation patterns were

obtained by manually adjusting muscle activations to

minimize the distance between the model simulation and

target posture. Because the ‘‘trial-and-error’’ method de-

pends on the experiential knowledge of the researcher, it is

difficult to estimate muscle activation patterns for specific

postures. To avoid the disadvantages of the ‘‘trial-and-

error’’ method, some automatic strategies have been

proposed to estimate muscle activation patterns. Dang and

Honda constructed a set of maps from the equilibrium

position of three control points (tongue tip, tongue dorsum,

and jaw) to muscle activations and used these maps to

estimate muscle activations according to the target of the

control points [3]. Stavness et al. estimated muscle acti-

vations from movements of the tongue tip [6]. However, in

speech production, the phonetic qualities of speech sounds

depend on the whole vocal tract shape rather than only the

size and location of the vocal tract constriction at the tongue

tip or tongue dorsum. Therefore, the automatic estimation

of muscle activations for a given articulatory posture is

necessary for exploring speech motor control.

Articulatory organs that combine musculoskeletal (jaw)

and muscular-hydrostat (tongue) structures are complex
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biomechanical systems. For musculoskeletal systems,

inverse estimation techniques have been applied to auto-

matically predict muscle activations for prescribed kine-

matics, including lower limb [7,8] and hand [9] move-

ments. For muscular-hydrostat systems, Stavness et al.

predicted coordination of muscle activations using for-

ward-dynamics tracking simulation [6]. Estimating muscle

activations for articulatory postures that are shaped by

muscular-hydrostat and musculoskeletal systems is difficult

because 1) coupling effects cause the activation of one

muscle to affect not only a specific component but also the

whole system, and 2) different muscle activation patterns

may generate the same articulatory posture (the ‘‘one-to-

many’’ problem).

The purpose of this study is to develop a method to

automatically estimate muscle activations according to

given articulatory postures. To do so, we first describe our

physiological articulatory model, which has been upgraded

from discrete FEM to continuum FEM. We then describe

the proposed method to estimate muscle activations using

the model. Finally, we report an evaluation of muscle

activation patterns estimated for five Japanese vowel

postures extracted from magnetic resonance images.

2. PHYSIOLOGICAL
ARTICULATORY MODEL

The original version of the physiological articulatory

model was a partial 3D model constructed by Dang and

Honda and was based on discrete FEM [3]. This model was

developed to a full 3D model by Fujita et al. [10]. In this

study, the physiological articulatory model was extended

to a continuum FE model using the ArtiSynth 3D Bio-

mechanical Modeling Toolkit (www.artisynth.org, Univer-

sity of British Columbia, Vancouver, Canada). ArtiSynth

improved a number of aspects of the physiological

articulatory model, including volume constraint and com-

putational efficiency. The profile of the constructed model

is shown in Fig. 1, where the appearance of the model is

shown in the left panel and a sagittal cut-away view is

shown in the right panel.

2.1. Dynamic Simulation

The ArtiSynth toolkit was used to generate dynamic

simulations with the physiological articulatory model. In

this section, we describe the pertinent equations and

parameters used in this physiological articulatory model.

A complete description of the dynamic simulation formu-

lation in ArtiSynth has been published elsewhere (see

Section 4 in [11]).

According to Newton’s second law, the equations of

motion that govern the dynamic response of the finite

element system are given by

M _u ¼ f ðq;u; tÞ; ð1Þ

where t is time, q and u are the generalized position and

velocity of all dynamical components in the mechanical

system, f ðq;u; tÞ is the total forces acting on the dynamic

components, and M is the block-diagonal mass matrix.

The system dynamics are also constrained by bilateral

and unilateral constraints. Bilateral constraints are used to

attach the tongue to the jaw and hyoid bone, as well as to

enforce FEM incompressibility in the FE models (through a

mixed u-P formulation [12]). Bilateral constraints form an

equality condition on the system velocity u:

GðqÞu ¼ 0: ð2Þ

Unilateral constraints are used to handle contact between

the tongue tip, the jaw, and palate. Unilateral constraints

form an inequality condition on the system velocity u:

NðqÞu � 0: ð3Þ

Bilateral and unilateral constraints generate reaction forces

GT� and NTz, respectively, where � and z are the

Lagrange multipliers. These reaction forces add to the

system forces in Eq. (1).

The dynamic equations are solved numerically using a

semi-implicit second-order Newmark integrator [13]. The

update rules for this integration scheme are

ukþ1 ¼ uk þ
h

2
ð _uk þ _ukþ1Þ; ð4Þ

and

qkþ1 ¼ qk þ
h

2
ðuk þ ukþ1Þ; ð5Þ

where h is the time step.

Solving the equations of motion requires integrating

Eq. (1) with the update steps given in Eqs. (4) and (5)

Fig. 1 Lateral (left) and mid-sagittal cutaway (right)
views of the physiological articulatory model.
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subject to the conditions given in Eqs. (2) and (3). This

requires solving the following mixed linear complemen-

tarity problem:

M̂
k �GkT �NkT

Gk 0 0

Nk 0 0

0
BB@

1
CCA

ukþ1

�

z

0
B@

1
CAþ

�b

0

0

0
B@

1
CA ¼

0

0

w

0
B@

1
CA;

0 � z ? w � 0; ð6Þ

where b �Muk þ h f̂
k
, w is the slack variable under the

complementarity condition, and M̂ and f̂ are the mass

matrix and force vector augmented with Jacobian terms

due to the implicit integration scheme (see [11] for a full

derivation). The complementarity condition, 0 � z ?
w � 0, ensures that the unilateral constraint forces are

nonzero only when those constraints are active, i.e., z is

positive if and only if w is zero and vice versa.

2.2. Model Structure

The morphological structures of the tongue, the jaw,

and the vocal tract wall were extracted from magnetic

resonance (MR) images. The jaw and the vocal tract wall

were superimposed with the images of the lower and upper

teeth at intervals of 0.4 cm in the transverse dimension.

The initial shape of the tongue was obtained from the

volumetric MR images taken while producing the Japanese

vowel /e/, which is close to the neural position in vowel

space. The mesh structure of the tongue in the lateral view

consists of eleven layers with nearly equal intervals

fanning out to the tongue surface from the attachment

on the mandible, and seven layers in the perpendicular

direction. In the front view, the tongue was divided into 5

layers at equal intervals. Totally, the tongue tissue consists

of 240 hexahedrons. For more details of morphological

data and mesh segmentation of the tongue tissue, refer to

the previous studies [4,10].

2.3. Mechanical Properties

In the present physiological articulatory model, Ray-

leigh damping was implemented in the form

DF ¼ �MF þ �KF; ð7Þ

where MF is the portion of the mass matrix associated with

the FEM nodes and KF is the FEM stiffness matrix. DF is

embedded into the overall system Eq. (6) by DF ¼ @ f=@u.

In the present model, � and � were set to 40 s�1 and 0.03 s,

respectively, in order for a damping to be close to the

critical one in the range of modal frequency from 3 to

10 Hz [5]. For details on how to integrate Rayleigh

damping into Eq. (6), refer to paper the paper by Stavness

et al. [14].

A Poisson coefficient of tongue tissue was set to 0.49

since it was considered to be quasi-incompressible. The

density of tongue tissue was set to be 1,040 kg m�3, and

the density of the mandible and hyoid bone was set at

2,000 kg m�3. Young’s modulus of the tongue tissue was

set at 20 kPa and the bone structures (mandible and hyoid)

were approximated as rigid bodies. These parameters were

consistent to those of the previous model [3].

2.4. Muscle Structures

Since the model is driven by muscle activation, the

accuracy of muscle implemention is very important. Three

extrinsic muscles, the genioglossus, styloglossus, and

hyoglossus were arranged mainly on the basis of the

results of high-resolution MRI analysis [15]. The intrinsic

muscles (superior longitudinal, inferior longitudinal, trans-

verse, and vertical) were defined according to the anatom-

ical data [16]. The tongue floor muscles, mylohyoid and

geniohyoid, were arranged referring to the anatomical

literature [17]. The muscles that control jaw movements

were defined in the same way as that in our previous partial

3D model [3].

The muscle model implemented in this study was

proposed by Morecki [18] and is an extended model of

Hill’s model [19]. Forces generated by muscles include two

components: active muscle force that depends on muscle

activation and passive muscle force that is independent of

muscle activation.

In model computations, the active stress of the muscle

sarcomere was generated using the force-length function,

which was derived by matching the simulation and

empirical data by the least-squares method [18]. In this

function, shown in Eq. (8), the active stress (�act) was

calculated using a fourth-order polynomial of the stretch

ratio of the muscles, which had a similar shape to that used

by Wilhelms-Tricarico [20]. In Eq. (8), the muscle length

change rate " ¼ ðl� l0Þ=l0 was valid for the range of

�0:185 < " < 0:49, where l and l0 are the present muscle

length and original muscle length, respectively. Therefore,

the active force was set to 0 when " was out of the given

range.

�act ¼ 1:161"4 þ 0:243"3 � 1:376"2 þ 0:235"þ 0:164 ð8Þ

The ability to generate muscle force varies from muscle

fiber to muscle fiber depending on their thickness. There-

fore, the parameter ‘‘thickness’’ of the muscle fiber was

introduced as a coefficient for all the muscles, and the

thickness governs the capacity of force generation. The

thickness of individual muscles was determined by making

the maximum force (Fmax) of the muscles consistent with

empirical data [21,22]. The control variable of individual

muscle activation, a, was normalized within the interval

[0; 1], where 0 means no muscle activation and 1 means

that the muscle is fully activated and generates maximum

force. The activated muscle force was calculated as

X. WU et al.: MUSCLE ACTIVATION ESTIMATION BASED ON ARTICULATORY MODEL
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Fact ¼ Fmax�acta; ð9Þ

where Fmax is the maximum isometric force capacity of the

muscle, �act is the active muscle stress (see Eq. (8)), and a

is muscle activation.

Passive muscle force is generated by passive length-

ening of muscle. According to common sense, if a muscle

is lengthened to become equal to or longer than a threshold

lp max, the passive muscle force will no longer continue

increasing with lengthening and reach the maximum

passive force (Fp max) that the muscle can generate. In the

present physiological articulatory model, lp max was set to

1.25 times the original muscle length and Fp max was

related to Fmax by Fp max ¼ 0:015Fmax according to

Morecki’s muscle model [18]. The passive muscle force

is described by

Fpas ¼
0 if l < l0

Fp max½ðl� l0Þ=ðlp max � l0Þ� if l0 < l < lp max

Fp max if l � lp max.

8><
>:

ð10Þ
The final muscle force was the sum of active muscle force

Fact and passive muscle force Fpas.

2.5. Muscle Units for Model Control

Muscles in the model were arranged on the basis of

their anatomical partitions where different parts of the

same muscle may have different functions. In order to

simulate fine-grained tongue movements with the model,

the muscles were divided into a number of smaller control

units according to articulation purposes. Figure 2 illustrates

the layout of the extrinsic and intrinsic muscles (original

or divided) in the 3D physiological articulatory model in

a sagittal cut-away view. The genioglossus muscle was

divided into three units: anterior (GGa), middle (GGm),

and posterior (GGp). This division conforms to those of

previous physiological articulatory models [3–5]. Different

from the previous studies [3–5], the intrinsic muscles were

also divided into several control units according to their

functions. The vertical and transverse muscles were func-

tionally divided into three units: anterior (Va, Ta), middle

(Vm, Tm), and posterior (Vp, Tp). The superior longitu-

dinal was divided into two units: anterior (SLa) and

posterior (SLp). The styloglossus (SG), mylohyoid (MH),

geniohyoid (GH), and inferior longitudinal (IL) were

controlled as independent units.

The muscles used to control the translation and rotation

of the jaw were classified into two muscle groups: the jaw

opener (JO) and jaw closer (JC). In Fig. 3, the arrange-

ments of muscles used to control the jaw are described.

According to the description of the muscles used to control

the jaw [23], the jaw opening muscles include the anterior

digastrics, posterior digastrics, and lateral pterygoid mus-

cles. The strap muscle sternohyoid also assists jaw opening.

The main function of the lateral pterygoid is to move the

jaw forward, but the current version of the jaw model only

Fig. 2 Arrangement of muscles in the tongue model. GGa, GGm and GGp: anterior, middle, and posterior portions of
genioglossus muscle, respectively; HG: hyoglossus muscle; SG: styloglossus muscle; SLa and SLp: the anterior and posterior
portions of the superior longitudinal muscle; IL: inferior longitudinal muscle; Va, Vm and Vp: anterior, middle, and posterior
portions of vertical muscle, respectively. Ta, Tm and Tp: anterior, middle, and posterior portions of transverse muscle,
respectively; MH: mylohyoid muscle; GH: geniohyoid muscle.
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permits hinge-like jaw opening. Therefore, in this study,

the JO group consists of the anterior digastrics, posterior

digastrics, and sternohyoid. When JO was activated, the

muscles in the group were active with the same activation

level. The jaw closing muscles include the temporalis,

masseter, and median pterygoid muscles. Among those

muscles, comparatively small muscles are used for speech

articulation, while larger muscles play major roles in biting

and chewing [23]. The medial pterygoid plays the main

role in speech production, while the temporalis and

masseter contribute less. According to our simulation, the

activation level for the temporalis and masseter were the

fourth and fifth of that for the medial pterygoid, respec-

tively. To control the physiological articulatory model at a

higher degree of freedom, some muscles were divided into

smaller units, while some muscles were combined into

groups. Altogether, 18 muscle control units were used in

this study.

2.6. Muscle Functions

The activity of each muscle contributes to local

deformation or displacement of the articulatory organs.

The estimation of muscle activation patterns relies on the

function of individual muscle units. For this reason, we

investigated the functions of the muscle units individually.

In the simulations, each muscle was activated individually

for the duration of 200 ms, which was sufficient for the

model to reach its equilibrium position. The functions of

the extrinsic and intrinsic muscles were qualitatively

assessed on the basis of anatomical description. These

assessments show that the role of individual muscles in our

model was consistent with anatomical knowledge [24–26].

The difference in muscle control units between the present

and previous models [4,5] was that, in the present model

some intrinsic individual muscles were divided into smaller

control units according to their functions. Figure 4 shows

the functions of some intrinsic individual muscle units

on the midsagittal plane. From Fig. 4, one can see that

different portions of the vertical muscles have different

functions (refer to the functions of Va, Vm and Vp).

Similarly, the control units Ta, Tm and Tp have different

functions although they belong to the same muscle (trans-

verse muscle). These imply that the divisions of the muscle

units were effective.

There is a common feature of FEM-based physiological

articulatory models: when a muscle activation pattern is

maintained, the model reaches a certain equilibrium

position. This equilibrium position is determined only by

Fig. 4 Function of part of individual muscles in the physiological articulatory model. Black solid lines show the equilibrium
position after the muscle is activated for a 200 ms duration, dotted gray lines correspond to the shape in its rest position.
Horizontal and vertical axes are ‘anteroposterior’ and ‘vertical,’ respectively.

Fig. 3 Arrangement of muscles in the jaw model.
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muscle activation itself, no matter where its initial position

is. Figure 5 shows the changes in the equilibrium position

when the activation level is changed. In this figure, GGa,

GGm, SG, and SLa are active with the activation levels

of 0.002, 0.01, 0.03, 0.1 and 0.4. After 200 ms, the model

reaches its equilibrium position. From this figure, one can

see that the muscle activation level determines a unique

equilibrium position.

Previous model simulations have shown that the

relationship between muscle activation level and displace-

ment of the tongue is quasi-logarithmic [3]. To generate

displacements with approximately the same increment,

muscle activation was discretized into 11 levels of 0,

0.002, 0.005, 0.01, 0.02, 0.03, 0.05, 0.1, 0.2, 0.4 and

0.8. Section 3.1 provides details on the chosen activation

levels.

3. MUSCLE ACTIVATION
ESTIMATION METHOD

In the previous studies, articulatory targets were

defined by isolated control points (tongue tip, tongue

dorsum, and jaw), and these points were used to control

the constriction position of the vocal tract [3,27]. Since

the acoustic characteristics of speech sounds depend on

the whole vocal tract configuration, the contour of the

tongue and jaw is a proper target for model control. In this

study, we use the midsagittal contour to describe the

articulatory posture, which can represent most the pho-

nemes, except some lateral ones. In addition, it is

convenient to measure articulatory movement on the

midsagittal plane since this is the output of many common

observation techniques, such as electromagnetic articulog-

raphy (EMA), X-ray microbeam, and MR imaging.

Therefore, the articulatory posture defined in the mid-

sagittal plane will facilitate the comparison of model

shapes with the measurement data. Consequently, eleven

points on the tongue surface and one point on the lower

incisor are used to represent the articulatory posture of our

model, as seen in Fig. 6.

3.1. Principal Component Analysis of Articulatory

Posture

As described previously, each articulatory posture is

depicted by 12 points with the horizontal and vertical

coordinates. However, these points have significant redun-

dancy and correlativity. To reduce redundancy, principal

component analysis (PCA) was adopted to analyze the

posture patterns of the model in the midsagittal plane.

To generate a data set for PCA, our objective was to

create simulations that cover most of the possible postures

by using reasonable muscle combinations considering the

agonist-antagonist properties of muscles. With reference to

the previous study [28] concerning the agonist-antagonist

muscles and muscle combinations, 9,703 articulatory

postures that cover most of the possible postures were

obtained for PCA.

The variance of each component and the accumulated

explanations of variance are shown in Table 1. From this

table, one can see that the first six components can explain

Fig. 6 Representation of articulatory posture in the
midsagittal plane.

Table 1 Variance of PCA components (%). C1 to C6
are the first six components, VC is the variance of the
components, and AVC is the accumulative variance
from the first component to the current component.

Component C1 C2 C3 C4 C5 C6

VC 79.58 12.54 3.01 2.32 1.42 0.46
AVC 79.58 92.12 95.13 97.45 98.87 99.33

Fig. 5 Muscle activation and equilibrium position.
Black thick lines are the rest position of the tongue;
gray lines are the equilibrium position driven at
different activation levels [0:002; 0:01; 0:03; 0:1; 0:4].
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99.33% of the variance, which indicates that the articu-

latory posture can be determined by the first six compo-

nents within 0.7% error. The contribution of the first four

components is shown in Fig. 7. Figure 8 shows the

functions of individual muscles by transforming the

articulatory postures, which resulted from the individual

muscle activation, into the PCA space consisting of the first

three components, where some muscles with small impact

are not shown. In this figure, each curve shows the function

of a single muscle unit in PCA space, where the dots on the

curves indicate the results using different muscle activation

levels. From this figure, one can see that the equilibrium

positions shift from the rest position in PCA space as the

activation level increases. There is a monotonic relation-

ship between the muscle activation level and displacement

increment: increasing the activation level will drive the

articulator to move away from the rest position, whereas

decreasing the activation level will make the model return

towards the rest position. This monotonicity is crucial for

the estimation of muscle activation because we can

increase activation if the realized position does not reach

the target and decrease the activation if the realized

position exceeds the target.

In the PCA space, the relationship between the module

of the six-dimensional PCA vector and the activation of

individual muscle is quasi-logarithmic according to the

results of simulations. This relationship can be represented

by the fitted curve described by Eq. (11), where x and y are

two undetermined coefficients, a is the activation, and ML

is the module of the PCA vector. In order to calculate the

undetermined coefficients of Eq. (11) for each muscle, the

individual muscles were activated at 20 equal intervals

between 0 and 1 to obtain the corresponding data pair of

muscle activation and PCA vector module. According to

these results, the undetermined coefficients were obtained

for individual muscles. Figure 9 shows a fitted curve for

GGa muscle, where x ¼ 0:53501 and y ¼ 230:8211. For

each muscle, 1/10 of the PCA vector module generated by

0.8 activation was defined as a scale unit. The increase in

muscle activation that causes the vector module to increase

by one scale unit is defined as a unit increment of muscle

activation. The unit increment of muscle activation for

each muscle can be calculated using Eq. (11). In Fig. 9,

stars show the ten unit increments of muscle activation and

their PCA modules of GGa muscle.

ML ¼ x logeðyaþ 1Þ ð11Þ

3.2. Procedure of Muscle Estimation

An iteration method was used to find muscle activation

patterns by gradually minimizing the difference between

the target posture and realized position. The distance (D)

between the target posture and realized posture was

calculated using Eq. (12), where Rxp and Ryp were the

horizontal and vertical coordinate values of the pth point

used to represent the realized posture, and Txp and Typ
were the coordinate values of the corresponding target

points.

Fig. 7 Effect of the PCA components. Gray lines show
the rest position, dashed lines and dashed lines with
squares show the directions of each component with
positive and negative coefficients, respectively.

Fig. 8 Function of individual muscle units in 3D PCA space.

Fig. 9 Relationship between muscle activation and PCA
vector module (GGa).
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D ¼
1

12

X12

p¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRxp � TxpÞ2 þ ðRyp � TypÞ2

q
ð12Þ

The flowchart of the estimation procedure is shown in

Fig. 10. A target posture is projected into the 6-dimen-

sional PCA space described above in order to obtain a PCA

vector. The muscle activation pattern is initialized using

the difference between the rest posture and target posture,

and the Counter used to count the failed iteration times is

initialized to 0. The muscle activation initiation method

will be introduced in Sect. 3.3. The muscle activation is

input to the physiological articulatory model, and then the

model moves to a certain position and reaches equilibrium.

If the distance in the kth iteration Dk is smaller than the

distance generated from the previous iteration Dk�1, the

muscle activation is accepted and we move on to decision

(2), otherwise we increase the failed counter and go to

the Muscle Activation Adjuster module. In decision (2), we

output the muscle activation if the distance is smaller than

the threshold (Dk < TH) or the Counter is greater than the

number of muscle units Counter � n ¼ 18; if the output

conditions are not satisfied, set the Counter to 0 and go to

the Muscle Activation Adjuster module. The most impor-

tant module in this procedure is the Muscle Activation

Adjuster, which will be introduced in the next section.

3.3. Dynamic PCA Workspace

In each iteration step, the muscle activation is adjusted

by

ak ¼ ak�1 þ�ak; ð13Þ

where ak and ak�1 are the muscle activations used in

current and previous iteration steps, respectively. The

muscle activation vector a � ½a1a2 . . . an�T is constituted

by the activation of individual muscle ai and the number of

muscle units n ¼ 18.

The main work in each iteration step is to find the

adjustive muscle vector �ak � ½�ak1 �ak2 . . .�akn�T. �aki is

related to the contribution of individual muscle function

vectors to the target vector Ck
i as follows:

Ck
i ¼ jV

k
mij cos � ¼ jV k

mij
V k

mi � V
k
t

jV k
mijjV

k
t j
¼
V k

mi � V
k
t

jV k
t j

: ð14Þ

Ck
i is calculated by projecting individual muscle

function vectors to the target vector, where V k
mi is the

individual muscle function vector of the ith muscle, V k
t is

the target vector and � is the angle between V k
mi and V k

t .

Target vector V k
t is defined as

V k
t ¼ P t � Pk�1

r ; ð15Þ

where P t is the target posture and Pk�1
r is the realized

posture after the previous iteration.

The muscle function vector V k
mi is defined by the effect

of the activation of the ith muscle with a unit increment:

V k
mi ¼ P iþ1 � Pk�1

r ; ð16Þ

where Pk�1
r is the posture realized by activation ak�1, and

P iþ1 is the posture realized by a unit increment of muscle

activation for the ith muscle in ak�1. Unit increment was

explained in Sect. 3.1.

It should be noted that the posture used here is defined

by a six-dimensional PCA vector. The ith muscle (i ¼
arg maxiðCk

i Þ) with the maximum contribution Ck
max ¼

maxðCk
i Þ, will have a unit increment. For the other muscles,

the increased activations are less than a unit increment

and their proportion to the unit increment is calculated by

(Ck
i =C

k
max). The increment of muscle activation of a unit

increment is calculated by the constructed fitting curve for

individual muscle using Eq. (11). Note that, after adding

�ak to ak�1 in Eq. (13), if the activation of muscle aki is

smaller than 0, it will be set to 0, because there is no

negative muscle activation.

In the rest position, the individual muscle function

vector V k
mi was built by activating individual muscles, as

shown in Fig. 8. However, during articulation, muscle

orientations vary along with the movement of the jaw and

tongue, which will result in the variation of the muscle

function vector. To solve this problem, Dang and Honda

[27] proposed a method for estimating the muscle function

orientation dynamically. Following their idea, we con-

structed a set of reference PCA workspaces in some

extreme locations by moving the origin to given extreme

locations. When speech organs move to an arbitrary

position, a dynamic PCA workspace can be interpolated

on the basis of the reference PCA workspace.

We first construct seven reference PCA (r-PCA)

workspaces by the following procedures: 1) move the

PCA center to seven extreme locations in PCA space by a

set of selected muscle activation patterns; 2) in a given

Fig. 10 Flowchart of muscle activation estimation.
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PCA center, construct a r-PCA workspace by a unit

increment of individual muscle (refer to Sect. 3.1). To-

gether with the r-PCA workspace in the rest position, we

have eight r-PCA workspaces. The r-PCA workspaces in

3D PCA are shown in Fig. 11, where No. 1 is the original

PCA workspace in the rest position, and Nos. 2–8 show the

other r-PCA workspaces in different reference positions. In

order to show the r-PCA workspace clearly, only four

r-PCA workspaces with extrinsic muscles are shown in this

figure.

The dynamic PCA workspace (d-PCA) for a given

position is interpolated from their distance to the eight

reference PCA workspace using the following equation:

V k
mi ¼

Pw
s¼1 LsV siPw
s¼1 Ls

; Ls ¼
Yw
j¼1
j 6¼s

l2j ; ð17Þ

where V k
mi denotes a muscle function vector in d-PCA, V si

is the muscle function vector in the sth r-PCA workspace, lj
is the Euclidean distance from the current position to the

origin of the jth r-PCA workspace, and w ¼ 8 is the

number of reference PCA workspaces. The coefficient Ls of

the sth r-PCA is the product of the distance from the

current position to the origin of the other (w� 1) r-PCA

workspace. The characteristic of the interpolation method

is shown in Fig. 12, and demonstrates that the interpolation

has a quadratic surface with a relatively flat characteristic

surrounding the reference points. Figure 11 shows an

example of the d-PCA workspace in the dash lines, which

was generated by the interpolation method. The d-PCA

workspace reflects the individual muscle function vector

in the current position. Occasionally, when the addition of

the adjustive muscle vector �ak cannot control the model

to be closer to the target, the adjusted vector �ak ¼
½�ak1 �ak2 . . . �akn� will be adjusted by setting �aki to 0,

where j�aki j is the smallest nonzero value in the vector, and

the Counter in Fig. 10 will be increased by 1.

4. EVALUATION

The proposed method was evaluated using the five

Japanese vowel postures obtained from magnetic resonance

images as the targets to estimate muscle activation patterns.

Since the prototype subject of the physiological model

is the same as that for obtaining the MRI data, we can

compare them directly without any registration or normal-

ization procedure. In order to control the model to achieve

the best target possible, the threshold TH shown in Fig. 10

was set to 0 in this experiment. In the iteration process

the muscle activations were obtained using the dynamic

PCA workspace introduced previously. An example of the

iteration processes approaching the target is shown in

Fig. 13, where the left panel shows the process of

approaching the target, and the right panel is the distance

(defined in Eq. (12)) between the target and realized

posture during optimization of the muscle activation

pattern. In the figure, one can see that the general tendency

of the error curve decreases as the iteration increases, and

the average distance decreased to 0.123 cm for vowel /a/

after 46 iterations. Although, it is seen that some ripples

appeared along with the distance curve, the muscle-

adjusting method can modify the muscle activation patterns

automatically, and eventually control the model to achieve

the target.

Fig. 12 Example of the interpolation surface using four
reference points with coordinates (0; 0), (0; 1), (1; 0),
(1; 1) and their values 0, 2.5, 7.5, 10.

Fig. 13 Processes of muscle activation estimation of
vowel /a/.

Fig. 11 Reference PCA workspaces (solid lines) and
dynamic PCA workspace (dash lines) in 3D PCA.
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By the proposed method the target postures of the five

Japanese vowels were well achieved. At the same time, we

obtained the estimated muscle activation patterns. The

target and achieved postures are shown in Fig. 14. The

difference, calculated using Eq. (12), ranged from 0.06 to

0.168 cm. The obtained muscle activation patterns (active

muscle forces) are shown in Table 2.

To evaluate the obtained muscle activation patterns, we

first compare the activations of extrinsic tongue muscles

to the normalized EMG (electromyography) measurements

[17]. Note that the EMG signals used here were extracted

from English vowel articulations because there are no

EMG signals for Japanese vowels. The EMG signals and

muscle activation were normalized to values between 0 and

1, relative to their maximum value in the activation pattern;

the maximum values were normalized to 1. Figure 15

shows the estimated extrinsic tongue muscle activations

and the EMG observations. One can see that the estimated

muscle activation patterns are consistent with the EMG

patterns for vowels /a/, /o/, and /i/. In Fig. 15, there are

considerable differences for vowels /e/ and /u/. Japanese

/e/ was used for the prototype of the model. Accordingly,

there should be no muscle activation in the estimation for

vowel /e/. A slight activation of GGp in the estimation was

probably caused by the difference in the prototype /e/ and

the reference /e/ used in this study. The difference shown

for vowel /e/ does not result in any significant effects. As

is well known, unlike English /u/, Japanese /u/ does not

Table 2 Muscle activation patterns for the five Japanese vowels. The active muscle forces of JO and JC are the sum of the active
force included in the muscle groups (Unit: Newton).

GGa GGm GGp HG SG SLa SLp IL Va Vm Vp Ta Tm Tp GH MH JO JC

/a/ 0 1.78 1.71 6.51 6.04 0 0.11 4.16 1.30 2.67 0 1.76 1.72 1.14 0 0 9.00 0
/i/ 0.62 0.51 3.36 0 0 0.02 0 0.78 0 0.41 0 0 0.52 0 0 3.01 0 14.0
/u/ 0 0 0 0 3.12 0 0.09 0 0 0 0.67 0 0.87 0 0 0 0 3
/e/ 0 0 1.79 0 0 0 0 0.76 0 0 0 0 0.82 0 0 0 0 0
/o/ 0 0.48 0 5.13 10.0 0 0.07 0 0 0 0 0 1.68 1.50 0 0 0 0

Fig. 14 Realized position for five Japanese vowels. Gray dash lines show the rest position. Gray dash lines with square markers
show the target postures. Black lines with stars show the realized positions. The average distances (defined in Eq. (12)) for /a/,
/i/, /u/, /e/, and /o/ are 0.123 cm, 0.145 cm, 0.06 cm, 0.085 cm, and 0.168 cm, respectively.
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have lip protrusion. The articulatory positions are different

between Japanese vowels and English vowels. From this

figure, one can see that the vowels used for comparison

have similar but not exactly the same articulatory positions.

This articulation difference may cause some compensation

on the tongue shape, not only on the tongue dorsum. This

may be one reason for the difference for /u/.

From Table 2, one can see that intrinsic muscles were

activated for all five Japanese vowels, which showed their

importance in vowel production. The assessment of the

importance of intrinsic muscles in vowel production is very

difficult by EMG. The automatic estimation method

proposed in this study provides a convenient approach

for investigating the functions of intrinsic muscles.

5. DISCUSSION AND CONCLUSION

It is difficult to investigate muscle activations in detail

by experimental methods alone. However, a physiological

articulatory model can help to overcome this difficulty by

predicting muscle activations through simulation. Fang

et al. have implemented their physiological articulatory

model to estimate muscle activities for the five Japanese

vowels [4]. In the method reported by Fang et al., the basic

process was that the muscle activations were initiated

based on EMG observations, and then certain muscles were

manually added or removed to reduce the distance between

the realized posture and target posture. Their method

depends on the expertise of the researcher and manual

‘‘trial-and-error’’ tuning. In order to avoid the deficiency of

the manual method, an automatic estimation method was

proposed in this study, whereby muscle activations are

estimated by systematically and gradually reducing the

distance between the realized posture and target posture in

accordance with the inherent function of individual

muscles. In Fang et al.’s method, the full 3D shape of

the tongue was used to represent the articulatory posture.

In the current study, the midsagittal contour of the tongue

and jaw were used to represent the articulatory posture for

two reasons: 1) the changes in the midsagittal contour

of the tongue and jaw have the greatest effect on the

acoustical outcome (especially in the lower range of

acoustical frequencies), and 2) using current techniques,

it is easier to obtain movement data of the tongue and jaw

in the 2D midsagittal plane.

Theoretically, the same articulatory posture may be

generated by different muscle activation patterns because

muscle activations have more degrees of freedom than

does articulatory posture. In order to obtain the optimal

activation, economy of energy is typically used as the

optimality criterion. Stavness et al. [6] proposed a method

for finding muscle activations that control the tongue tip to

move along given target trajectories by considering mini-

mum muscle activation as a constraint. In this study,

although it is difficult to guarantee that the obtained

muscle activation has a minimum activation cost, the result

can be regarded as a good approximation of the minimum

because, in each iteration step, the added muscle gives the

greatest contribution to the target vector.

In a muscular-hydrostat system, such as the tongue,

muscle orientations change during articulation, which

results in a variation of each muscle’s function. In this

study, a dynamic PCA workspace was constructed to

estimate individual muscle functions during articulation.

The proposed method was assessed using the articulatory

postures of the five Japanese vowels. For vowels far from

the ‘‘neutral vowel’’ /e/, the estimated muscle activation

patterns are consistent with anatomical knowledge and

previously published measurement data. The midsagittal

contour including the tongue and jaw was used as the

articulatory target, instead of using three crucial points

[3,27]. We expect that by using the articulatory posture as a

target, the accuracy of model control for speech production

will be improved, because the detailed characteristics of

speech sounds depend on the whole vocal tract shape rather

than the constriction position alone.

In the future, muscle activation patterns for consonants

will be investigated by the proposed method and running

speech will be generated by using predicted muscle

activations based on the physiological articulatory model.
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