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2Université Libre de Bruxelles, Belgium.
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We prove that the dual graph of any arrangement of n lines in general position always contains a path of length at
least n2/4. Further, we show that in every arrangement of n red and blue lines — in general position and not all of
the same color — there is a simple path through at least n cells where red and blue lines are crossed alternatingly.

Keywords: Discrete geometry, Line arrangement, Planar graphs, Hamiltonicity

1 Introduction
Given an arrangement of n red and blue lines in the Euclidean plane, we consider sequences of cells
of the arrangement such that consecutive cells share an edge and no cell appears more than once in the
sequence. We refer to such sequences as cell-paths, or simply paths. A path is called alternating if the
common edges of consecutive cells alternate in color. The length of a path is defined to be one less than
the number of cells involved. Cell-paths can also be seen as paths in the dual graph of the arrangement,
in which there is a vertex for every cell in the arrangement, and an edge connects two vertices when the
corresponding cells are adjacent.

∗This paper is dedicated to the memory of Ferran Hurtado, to whom we are grateful for constantly proposing beautiful problems,
like the ones studied in this paper.
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In this paper we study the existence of long paths in both monochromatic and bichromatic arrange-
ments. First we consider the following question: What is the largest number f(n) such that every ar-
rangement of n lines in general position (no three lines share a point and no two lines are parallel)
has a cell-path of length at least f(n)? It is not hard to argue that f(n) ∈ Ω(n), and a quadratic up-
per bound trivially follows from the number of cells in an arrangement. In Section 2, we prove that
n2/4 ≤ f(n) ≤ n2/3 + O(n). We also show that there always exists a path of length at least the number
of cells of size four or more.

Originally, our research on cell-paths was motivated by the following bichromatic variant of the ques-
tion: What is the largest number p(n) such that every arrangement of n blue and red lines in general
position and not all of the same color has an alternating path of length at least p(n)? Naturally, this
problem is more constrained and it is non-trivial to prove even the existence of, say, a linear-size cell-
path. In Section 3, we answer this question in the affirmative, proving that p(n) ≥ n. We also give a
simple example showing p(n) ≤ 2n − O(1). Hence, there is indeed a significant difference between the
monochromatic and the bichromatic setting.

Previous work. Arrangements of lines have been thoroughly studied for decades [7, 10, 13, 14, 15,
23]. For example, properties of monotone paths in the arrangement have been considered (see, e.g., [9]).
Substantial emphasis has been put into studying degenerate arrangements in which, e.g., the number
of vertices decreases dramatically. Further, the kind of cells one may obtain as well as their extremal
number were investigated (for example how many triangles appear in any simple arrangement). In another
direction, one can study the graph having as vertices the intersection points of lines, which are adjacent if
they are consecutive in one of the lines [6], and investigate its basic properties as a graph, such as edge-
colorings or whether it can be decomposed into Hamiltonian cycles (in projective space) [11]. For later
use, recall that the cells in any arrangement can be 2-colored chessboard-like, i.e., no two cells with the
same color are adjacent [24] (see also [18]).

Not many problems on colored arrangements of lines were considered in the early times, in contrast
to the rich (and still growing) literature on combinatorial problems on red and blue points [7, 21]. The
first publications considered bichromatic sets of lines and studied the number and distribution of the
intersection points of lines with the same color [16, 17, 27]. There is a recent line of research on problems
in which lines have to be colored to achieve some property, or are already colored and one looks at the
kind of cells that appear, regarding the color of their sides [3, 4, 5]. Our problem on alternating paths adds
to this trend.

The present work on bichromatic line arrangements was inspired by a well known (still open) problem
on points: Consider a set R of n red points and a set B of n blue points in convex position. Then it is
easy to see that a crossing-free alternating Hamiltonian path on R ∪B does not always exist. What is the
longest crossing-free alternating path spanned by these points? Akiyama and Urrutia [2] gave an O(n2)
algorithm to find an alternating Hamiltonian path, if it exists. Erdős (see [22]) popularized the problem of
studying the value `(n) such that a plane alternating path of length at least `(n) always exists for any such
pair R and B. Abellanas et al. [1], and independently Kynčl et al. [22], proved that `(n) ≤ 4

3n+O(
√
n).

Hajnal and Mészáros [20] proved that `(n) ≥ n + Ω(
√
n). The gap is still to be closed. Other variations

and related problems appear in Mészáros’ PhD thesis [25].
Our results are also related to a long-standing open problem about paths in planar graphs. In 1963,

Moon and Moser [26] showed that there exist three-connected planar graphs with n vertices in which the
longest simple path has length at most cnlog 2/ log 3, where c is some constant. It is conjectured (see [19])
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that this is a lower bound as well, hence that every three-connected planar graph contains a path of this
length. Our result on f(n) shows that considering dual graphs of arrangements instead, we always get a
path of length Ω(n2).

Finally note that during the preparation of the final version of the manuscript, we heard about a recent
unpublished work on this topic due to Hoffmann, Kleist, and Miltzow, showing that f(n) = n2/3−O(n),
closing the gap above. They also provide additional results on the bichromatic version.

2 Long paths in arrangements
We begin by considering the following problem: given a set S of n ≥ 2 lines in general position, our aim
is to find bounds on the length of the longest simple path in the dual graph of the arrangement. Let A(S)
be the arrangement associated with S, and let G be the dual graph of A(S). Recall that the number of
vertices of G is N =

(
n+1
2

)
+ 1. We define f(S) as the length of the longest simple path in G, and let

f(n) = min|S|=n f(S). In this section we show:

Theorem 2.1 f(n) = Θ(n2).

The upper bound on f follows from the fact that the number of vertices of G is quadratic. In Proposi-
tion 2.13 below we improve this trivial upper bound with a better constant.

Similarly, we provide two distinct lower bounds for f (Theorem 2.10 and Theorem 2.11). The first
one uses Tutte’s theorem to show that a graph very similar to G is Hamiltonian, whereas the proof of the
second one is elementary and directly gives a simple algorithm to find the path. The difference between
them is that the bound on the first one is proportional to the number of large cells (having four or more
edges), while the second one depends only on n. Thus, clearly the first one is more useful for the particular
cases in which the number of such cells is big.

2.1 A lower bound using Tutte’s Theorem
The first lower bound construction uses Tutte’s theorem stating that every four-connected planar graph
is Hamiltonian. Thus, our aim is to perform local transformations to G to make it four-connected while
preserving planarity and removing as few vertices of G as possible.

Recall that, since every vertex of A(S) has degree 4, G is a bipartite quasi-quadrangulation (i.e., every
face of G has size four, except for the unbounded one). It is easy to check that G is two-connected
and planar. We consider the natural embedding of G given by S, in which every vertex of G is located
in the corresponding face of A(S), every edge of G intersects exactly one edge of A(S), and the face
corresponding to the unbounded cells of A(S) is the outer face. Recall that a vertex cutset of a graph is a
set of vertices whose removal disconnects the graph.

Let C be a simple cycle of G. By Jordan’s theorem, the removal of C from G decomposes the remaining
vertices into two subsets, which we call outer and inner, where the outer one is the component that
contains the unbounded cells of the arrangement. Given a vertex v ∈ C, we define its inner degree as the
number of neighbors of v that belong to the inner component.

Lemma 2.2 In any cycle C of G of length 2k, the inner degree of any vertex of C is at most k − 2 and
the number of vertices in the inner part is at most (k − 1)(k − 2)/2.
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Proof: Consider the set S(C) ⊆ S of lines associated with edges of C. Since C is a cycle, every line in
S(C) is intersected by C an even number of times, and at least twice. Hence, there are |S(C)| ≤ k such
lines. As any vertex v of C is incident to two edges on C, there are exactly |S(C)|−2 lines left that could
correspond to edges incident to v and in the inner part of C. Further, the number of vertices in the inner
part of C is at most the number of bounded cells of the arrangement formed by S(C) and thus at most
(k − 1)(k − 2)/2. 2

Let P be a simple path of G whose first and last vertex are incident to the outer face, while all other
vertices are interior vertices of G. Then the removal of P splits the remaining vertices of G into two
subsets as well. We refer to P as a separating path and to the induced subsets as separated vertex sets.
The proof of the following lemma is similar to the one of Lemma 2.2.

Lemma 2.3 For any separating path P of G with k vertices, one of the separated vertex sets of G has
cardinality at most (k − 1)(k − 2)/2.

Lemma 2.4 Let C be a simple cycle of G, and let I(C) be the set of vertices in its interior.
If I(C) 6= ∅, there exists a simple cycle C ′ with the same set I(C) in its interior such that no two

consecutive vertices of C ′ have inner degree zero.
For any separating path P that splits the remaining vertices of G into V1 and V2, there exists a sepa-

rating path P ′ such that (1) for each side of P ′, at least one out of any two consecutive vertices of P ′ has
an emanating edge to that side, (2) P ′ splits the remaining vertices of G into V ′1 ⊇ V1 and V ′2 ⊇ V2, and
(3) the first and the last vertex of P ′ have emanating edges to both sides of P ′.

Proof: Suppose I(C) 6= ∅. As all faces of G in the interior of C have size four, at most two consecutive
vertices of C can have inner degree zero. Moreover, the only possibility of having two consecutive such
vertices is that C uses three consecutive edges of a face in its interior. Iteratively replacing these edges by
the fourth edge of this face wherever such a situation occurs, we obtain a simple cycle C ′. C ′ has exactly
I(C) in its interior as well, and no two consecutive vertices of C ′ have inner degree zero.

Similarly, in a separating path P , two consecutive vertices without emanating edges on one side can
occur only if P uses three consecutive edges of a face on that side. Replacing all such occurrences on
both sides gives the claimed properties. 2

Lemma 2.5 All vertex cutsets of size two of G consist of the two neighbors of a degree-two vertex.

Proof: Consider a vertex cutset C = {c1, c2} of size two and the at least two resulting sets V1, V2 of
the remaining vertices of G. First let one of the sets, w.l.o.g. V1, contain only inner vertices of G. It
follows that V1 is the interior of a cycle of G and the vertices of this cycle are not contained in V1. By
Lemma 2.4, there exists a cycle, also with V1 in its interior such that no two consecutive vertices of that
cycle have inner degree zero. Further, for V1 not to be empty, this cycle has to have a length of at least 6
by Lemma 2.2. Hence, at least three vertices of this cycle have inner degree larger than zero and C is not
a cutset.

If both V1 and V2 contain vertices of the outer face, then there exists a separating path in G. By
Lemma 2.4 (3), c1 and c2 have to be the end points (first and last vertex) of this separating path. There-
fore, by Lemma 2.4 (1), this separating path contains at most three vertices. Thus, by Lemma 2.3,
min{|V1|, |V2|} ≤ 1, implying that c1 and c2 are the two neighbors of a degree-two vertex or C is not a
cutset. 2
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Fig. 1: The Y-∆ transformation.

Lemma 2.6 If C is a vertex cutset of size three of G where one of the separated sets does not contain any
vertex of the outer face, then C consists of the three neighbors of a degree-three vertex.

Proof: Consider a minimal cutset C of size three and let V1 be a connected component that contains only
interior vertices of G. Recall the first part of the previous proof. By Lemma 2.4, there exists a separating
cycle with V1 in its interior such that no two consecutive vertices of that cycle have inner degree zero.
If V1 contains only one vertex, then this separating cycle has to have a length of at least 6 by Lemma 2.2.
Hence, at least three vertices of this cycle have inner degree larger than zero. Thus, C can be a cutset, if V1

contains only one degree-three vertex. However, if V1 contains more than one vertex, then the separating
cycle has to have a length of at least 8 by Lemma 2.2. Therefore, at least four vertices of this cycle have
inner degree larger than zero and C is not a cutset. 2

In order to construct a long path in G, we will use the following well-known result.

Theorem 2.7 (Tutte [28]) Every four-connected planar graph is Hamiltonian.

Given a degree-three vertex x in a graph, adjacent to u, v, w, the corresponding Y-∆ transformation
consists of removing vertex x, adding edges uv, uw, and vw, and removing any parallel edges. This is
illustrated in Figure 1. We define a new graph G′ by applying the following two transformations to G, in
the given order (see Figure 2):

1. Add an extra vertex v∞, and make it adjacent to all vertices of G dual to the unbounded cells of
A(S).

2. For all vertices of degree three, perform a Y-∆ transformation. Observe that after adding v∞, no
two vertices of degree three are adjacent. Hence, the transformation is well-defined.

Lemma 2.8 G′ is a four-connected planar graph, hence it is Hamiltonian.

Proof: We need to show that G′ does not have any cutset of size three or less. We first verify the following
claim: if C is a cutset of G′, then C \ {v∞} is a cutset of G. To verify this, we need to show that the
vertices of degree three that are eliminated by the Y-∆ transformations do not reconnect the separated
vertex sets in G. Each such Y-∆ transformation involves three vertices u, v, w that are pairwise adjacent
in G′. Hence, the degree-three vertex of G that was eliminated can be assigned to the same side of the
partition in G as the vertices {u, v, w} \ C.

Next, we rule out the existence of a cutset C of size two in G′, thereby showing that G′ is at least
three-connected. From our observation, C \ {v∞} would be a cutset of G. If v∞ belongs to C then
C \ {v∞} has size one, which is impossible since G is known to be two-connected. Otherwise, we have a
cutset of size two in G, which from Lemma 2.5 must consist of the two neighbors of a degree-two vertex
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G

v∞

G′

Fig. 2: Transforming the dual graph G into G′.

in G. This vertex, however, after adding v∞ became of degree three, thus it must have been eliminated by
a Y-∆ transformation, hence again C cannot be a cutset in G′.

Now suppose that C is a cutset of size exactly three in G′, and suppose first that C does not contain v∞.
From our observation, C is also a cutset of G. By Lemma 2.6, the separated sets either all contain vertices
of the outer face or only one separated set, containing exactly one vertex of degree three, is cut off by
its neighbors. Degree-three vertices of G are eliminated by the Y-∆ transformations and all vertices
of the outer face in G are connected by v∞ in G′. Thus, C cannot be a cutset in G′ and we have a
contradiction. Hence, we can assume that v∞ ∈ C, and that C \ {v∞} is a cutset of size two of G. But
this case was already ruled out above, hence G′ cannot have a cutset of size at most three, and therefore
is four-connected. 2

Note that using Chiba and Nishizeki’s algorithm [8], a Hamiltonian cycle in G′ can be found in linear
time. In order to complete the bound, we must provide a lower bound on the number of vertices of G′. Let
N>3 be the number of vertices of G that have degree larger than 3. Observe that the transformations we
have done to G have only affected the vertices of degree two or three. That is, any vertex that has degree
4 or more in G will also be present in G′. In particular, we have that G′ has at least N>3 vertices.

Lemma 2.9 N>3 ≥ n2/6− 5n/6 + 1 .

Proof: Recall that G has exactly N =
(
n+1
2

)
+ 1 vertices. G has no interior vertices of degree two.

Furthermore, it is known that the maximum number of degree-three interior vertices in G, that is, the
number of bounded triangular cells in the arrangement A(S), is at most n(n − 2)/3 [12]. Also, the
number of exterior vertices of degree two or three in G is at most 2n. Hence, N>3 is at least n(n+1)/2+
1−(n(n−2)/3)−2n = n2/6−5n/6+1. 2

Theorem 2.10 f(n) ≥ N>3 .

Proof: Consider a Hamiltonian cycle in G′. This cycle can be transformed into a simple path of length
at least N>3 in G, by eliminating v∞ and replacing every portion of the cycle using one or two edges
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v∞

Fig. 3: Obtaining a long path in G from a Hamiltonian cycle in G′ (left), using the operations shown on the right.

of a triangle obtained from a Y-∆ transformation by two edges incident to the degree-three vertex (see
Figure 3). 2

2.2 An improved Ω(n2) lower bound
In this section we present an alternative lower bound that performs better than the previous one when N>3

is small.

Theorem 2.11 f(n) ≥ n2/4 + 3n/4.

Proof: Consider the arrangement A(S) to have a fixed direction, with distinguished topmost and bottom-
most infinite cells. In order to describe the lower bound construction, we will use the simplified wiring
diagram W of A(S) with respect to this direction, as depicted in Fig. 4. We refer the reader to the book
by Stefan Felsner for precise definitions and discussions of wiring diagrams [10].

Recall that the horizontal lines in W represent the levels of A(S) (in the given fixed direction). We
number the levels from top to bottom with L1, . . . , Ln. Let R0 and Rn be the two (one-cell) outer rows
above L1 and below Ln, respectively. Let Ri, 1 ≤ i ≤ n− 1, be an inner row of cells between two levels
Li and Li+1.

Note that the union over the cells in all inner rows does not include the topmost cell (in R0) and the
bottommost cell (in Rn). Further, note that vertical segments in W represent line intersections in A(S),
hence two cells are adjacent in the arrangement exactly if they share a horizontal segment in W .

Observation 2.12 Each interior cell in any inner row Ri, 1 ≤ i ≤ n − 1, has at least one neighbor in
Ri−1, at least one neighbor in Ri+1, and altogether at least three neighbors in Ri−1 ∪Ri+1

Proof: If an interior cell had only two neighbors, then it would be bounded by two lines intersecting at
least twice, see Fig. 5. 2

Let Ui = Ri∪Ri+1 for 0 ≤ i ≤ n−1. The subgraph Hi of the dual graph induced by Ui is a caterpillar
(a star if i = 0 or i = n − 1). Let Pi be the longest path in Hi connecting the left infinite cells with the
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arrangement

simplified wiring diagram

wiring diagram

L1

L2

L3

L4

L5

R1

R2

L6

R0

R3

R4

R5

R6

Fig. 4: An example of an arrangement and its presentations as a wiring diagram and as a simplified wiring diagram.
The dual graph is shown in the arrangement and the simplified wiring diagram.

≡Li Li

Li+1Li+1
C C

Fig. 5: An interior cell C cannot have two neighbors only.

right infinite cells. See Fig. 6 for an example. It is easy to see that all vertices dual to infinite cells of Ui

are in Pi.
We show that the union of the paths Pi contains the dual vertices of all cells of W . Consider an

interior cell C in Ri. The vertex dual to C lies on Pi if and only if C has at least two neighbors in Ri+1.
Similarly, the vertex dual to C lies on Pi−1 if and only if C has at least two neighbors in Ri−1. It follows
by Observation 2.12 that the vertex dual to C is in Pi or in Pi−1 (or in both of them).

Our aim is first to show that we can combine (parts of) the paths Pi into four different longer paths,
each of them connecting the topmost cell to the bottommost cell. Then we will prove that at least one of
these four paths fulfills the bound claimed in the theorem.

L1

L2

L3

L4

R1

R2

R3

Fig. 6: Example showing the longest paths P1 (dark dashed) and P2 (dark dotted) in the subset R1 ∪R2 ∪R3 of the
example in Fig. 4.
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For i = 1, . . . , n − 1, let CL
i be the left infinite cell in Ri and let CR

i be the right infinite cell in Ri.
Denote the topmost cell by CL

0 = CR
0 and the bottommost cell by CL

n = CR
n .

L1

L2

L3

R1

R2

L2

L3

L4

R2

R3

L1

L2

L3

L1

L2

L3

PL
1

PL
2

PR
1

PR
2

Fig. 7: The (sub)paths PL
i and PR

i of the paths Pi (i = {1, 2}) of the example in Fig. 6. The non-contained parts of
P1 and P2 are shown in gray, dashed and dotted, respectively. The infinite cells CL

i and CR
i are shaded.

For 1 ≤ i ≤ n − 2, let PL
i ⊆ Pi be the path in Hi from CL

i to CR
i+1, and let PR

i ⊆ Pi be the path
in Hi from CR

i to CL
i+1. See Fig. 7 for an example. Note that each of PL

i and PR
i traverses all interior

cells of Pi plus at least two of its infinite cells. Consider the four infinite cells CL
i , CL

i+1, CR
i , CR

i+1 of Ui.
Observe that one of the two paths PL

i , PR
i contains both CL

i and CL
i+1 (in some order), while the other

path contains exactly one of the two cells. An analogous statement holds for CR
i , CR

i+1. Hence, out of the
four infinite cells of Ui (1 ≤ i ≤ n − 2), two are contained exactly once and two are contained exactly
twice in PL

i and PR
i together. Thus, summing the number of infinite cells contained in PL

i and PR
i and

averaging over the four infinite cells of Ui, we count each such infinite cell at least 3/2 times.
For i ∈ {0, n − 1}, PL

0 = PR
0 = P0 is the path CL

1 C
L
0 C

R
1 = CR

1 CL
0 C

L
1 , and PL

n−1 = PR
n−1 = Pn−1

is the path CL
n−1C

L
nC

R
n−1 = CR

n−1C
L
nC

L
n−1. Trivially, every infinite cell of U0 and Un−1 is visited twice

by PL
0 together with PR

0 , and PL
n−1 together with PR

n−1, respectively.
We partition the paths PL

i , PR
i into four different sets Qk, k ∈ {0, 1, 2, 3}, defined by:

Qk := {PL
j : (j − k − 1) ≡ 0 mod 4} ∪ {PR

j : (j − k + 1) ≡ 0 mod 4} .

See Fig. 8 for an example. Observe that in each Qk the paths are disjoint. Moreover, they can easily be
connected to form one long path by adding certain edges connecting neighboring infinite cells. See the
shaded cells in Fig. 8 for examples.

We define these sets Ek of connecting edges for each Qk:

Ek := {CL
j C

L
j+1 : (j − k) ≡ 0 mod 4} ∪ {CR

j CR
j+1 : (j + 2− k) ≡ 0 mod 4} .

Combining the edges in Ek with the edges in the paths inQk, we get a path Qk, for each k ∈ {0, 1, 2, 3}.
What remains to show is that at least one of the four paths Qk has the desired length.

Recall that PL
i and PR

i contain all interior cells of Pi. By Observation 2.12, each interior cell lying in
some row Ri has at least two neighbors above or below and therefore lies on both paths PL

i and PR
i , or

on both paths PL
i−1 and PR

i−1 (or even on all four paths). Thus, each interior cell lies on at least two of the
four paths Qk. Further, all infinite cells (except for the topmost and bottommost one) in Ui, 0 ≤ i ≤ n−1,
are counted at least 3/2 times (on average) in PL

i and PR
i together. For the topmost and bottommost cell,

observe that both are contained in each of the four paths Qk.
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Q0 = {PL
1 , PR

3 , PL
5 }

L1

L2

L3

L4

L5

R1

R2

L6

R0

R3

R4

R5

R6

L1

L2

L3

L4

L5

L6

Q1 = {PR
0 , PL

2 , PR
4 }

Q2 = {PR
1 , PL

3 , PR
5 }

L1

L2

L3

L4

L5

R1

R2

L6

R0

R3

R4

R5

R6

L1

L2

L3

L4

L5

L6

Q3 = {PL
0 , PR

2 , PL
4 }

Fig. 8: The four sets Qk, k = 0, 1, 2, 3, of paths, for the example in Fig. 4. For each set Qk, the infinite cells that
need to be connected to obtain one long path are shown shaded.

Altogether, it follows that the sum of the number of the cells that are traversed by each Qk for k ∈
{0, 1, 2, 3} is at least

2 ·
((

n + 1

2

)
+ 1− 2n

)
+ 2 · 3

2
· (2n− 2) + 8 = n2 + 3n + 4 .

Thus, by the pigeonhole principle, at least one out of the four paths Qk visits at least
⌈
n2+3n+4

4

⌉
cells. 2

There exists a family of arrangements with a fixed direction, see Fig. 9 (left), such that the technique
described in the proof of Theorem 2.11 results in a path visiting only n2

4 +n+2 cells (if n is a multiple of
4). On the other hand, for the same arrangement with a different direction, see Fig. 9 (right), this technique
results in a path visiting n2

2 − n
2 + 4 cells. An interesting open question is whether we can always find a

direction such that we get a better bound.
The proof of Theorem 2.11 clearly also holds for cell-paths in pseudoline arrangements. Since the

lower bound of n(n− 2)/3 of bounded triangular faces as well holds for pseudoline arrangements [12], it
can be observed that also Theorem 2.10 remains true for pseudoline arrangements.

2.3 Upper bound
We show that the previous lower bound on the length of the longest simple path in G is within a factor
4/3 of the optimum.

Proposition 2.13 f(n) ≤ n2/3 + O(n).
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R7

R8

L1

L2

L3

L4
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Q3 visits 26 of 37 cells Q3 visits 32 of 37 cells

Fig. 9: An example where the above proof gives a path of length∼ n2/4, instantiated for n = 8. (left) With the given
direction of the arrangement our technique yields a path (Q0 and Q3) visiting 26 cells. (right) The same arrangement
rotated by 90◦: the constructed path (Q1 and Q3) visits 32 cells.

Proof: It is well-known that the cells of any line arrangement can be properly two-colored, hence that G
is a bipartite graph. We will refer to the colors as black and white. Füredi and Palásti [13] give an example
of an arrangement of n lines in which there are n2/3 + O(1) black cells and n2/6 + O(n) white cells.
Hence, there are roughly twice as many black cells as white cells, which is known to be asymptotically
tight [18]. Now observe that any simple path or cycle in G will alternatingly traverse white and black
cells, hence cannot have length greater than n2/3 + O(n). 2

3 Long alternating paths in bichromatic arrangements
In this section we prove the existence of long alternating paths in bichromatic arrangements. First observe
that general position is important to allow a positive answer: Assume that n ≥ 4 and that at least two
lines are red and two lines are blue. Take all the n lines in the arrangement to go through a common point,
so that all of the red lines have slope between 0 and 1, and all of the blue lines have positive slope larger
than 1. Then every alternating path has length at most two. This holds since each cell on an alternating
path, except for the first and the last one, has to be bichromatic, i.e., has to have a red and a blue edge on
its boundary. But the constructed arrangement has only four bichromatic cells and no two of them share
an edge.

Further, consider an arrangement of n lines, all blue except for exactly one of them red, in general
position. Then the length of the longest alternating path is 2n − O(1): In the arrangement (as edge set)
there are n red edges which can be used at most once in a path, so in an alternating path at most 2n + 1
edges can be used; hence the upper bound. For the lower bound we go through the 2n cells along the red
line, crossing the red line in every other step, and a blue edge for entering a red-line-incident cell not yet
visited in the steps in between; this results in a path of length 2n− 1.

The following lemma directly implies our main result for the stated problem on bichromatic arrange-
ments.
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Lemma 3.1 Any pair of bichromatic cells in an arrangement of red and blue lines in general position is
connected by an alternating path.

Before giving the proof of this statement, we discuss an implication. Consider two antipodal bichro-
matic infinite cells in an arrangement (“antipodal” means that the cells are separated by all n lines). As
long as there is at least one line of each color, such a pair of cells has to exist and, by Lemma 3.1, is
connected by an alternating path. Clearly, such a path has to cross every line at least once.

Theorem 3.2 In a set of n blue and red lines — in general position and not all of the same color — there
is an alternating path of length n.

By the example with exactly one red line, the bound in the theorem is asymptotically tight. However,
if we require the same number of red and blue lines, we do not know whether longer alternating paths
always exist.

3.1 Existence of long alternating paths
In this section we give a proof of Lemma 3.1 (that is, any pair of bichromatic cells in an arrangement of
red and blue lines in general position is connected by an alternating path). Recall that the graph underlying
our problem is the dual graph G of the arrangement: the

(
n+1
2

)
+ 1 cells are the vertices of the graph and

two vertices are adjacent if their corresponding cells share an edge in the arrangement.
In order to capture the ‘alternating’ property, we can orient the edges of G as follows. Recall that G can

be properly 2-colored [24] and denote the two colors by “r-out” and “b-out”, respectively. Now direct
the edges of G by directing red edges (i.e., edges dual to red edges in the arrangement) from color r-out
to color b-out and blue edges from color b-out to color r-out. This is illustrated in Figure 10. As the
partition of cells of A(S) into two color classes is unique, the construction of the directed version of G
is unique up to global direction change. Further, it is an easy exercise to verify that every (undirected)
alternating path in the arrangement can be directed in one way so that it appears as a directed path in this
oriented version of the dual of the arrangement — and vice versa, every directed path is clearly alternating.

Let us fix an arbitrary bichromatic cell z in the arrangement and consider the set of all cells that can be
reached from z by a directed path in the just defined directed graph. Let reach(z) be the closure of the
union of all the cells that are reachable by a directed path starting from z in the oriented graph.

Here comes the crucial observation: Let us call a vertex in the arrangement bichromatic if it is the
intersection of a red and a blue line. Then the four cells incident to a bichromatic vertex form a directed
cycle in the oriented graph and thus either all four of them are contained in reach(z) or none of them is.
(Here we implicitly use the fact that the existence of a directed walk — i.e., with repetitions of vertices
allowed — from vertex x to vertex y implies the existence of a directed path from x to y.) Therefore,
every bichromatic vertex is interior either to reach(z) or to its complement.

We have now established the following fact.

Lemma 3.3 Let E be the set of edges of the arrangement that separate reach(z) from its complement.
Then no red edge in E shares a vertex with a blue edge in E.

We will show that bichromatic vertices cannot be interior to the complement of reach(z). Thus all
of them have to be interior to reach(z) and therefore, all bichromatic cells are in reach(z), from which
Lemma 3.1 follows. To this end consider a set X ⊆ E of separating edges that form a cycle or a maximal
path in the graph of separating edges. A maximal path has to start and end with an edge that extends to
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Fig. 10: Orientation of the dual graph G of a bichromatic line arrangement. Cells of b-out-colored vertices are drawn
as shaded, while cells of r-out-colored vertice are drawn white. Every bichromatic vertex of the arrangement yields
a four-cycle in the oriented graph.

infinity (otherwise such path can be extended). Consequently, the union of edges in X separates the plane
into two parts, one part of which contains the seed cell z. Suppose the edges in X are all blue (recall
that they all have the same color). Then it is not possible that both sides contain a point on a red line, as
otherwise, since we can travel on red lines between these two points, a red line would have to cross the
union of edges in X , which we know is not possible, since all of them are blue. Thus, the side that does
not contain z must be completely monochromatic, i.e., all cells there are bounded by edges of the same
color.

Since every point p in the complement of reach(z) must have such a cycle or path X separating p
from reach(z), it follows that bichromatic vertices cannot be interior to the complement of reach(z), as
claimed. As argued before, this implies Lemma 3.1.

3.2 Discussion
• The linear bound on the length of the alternating path is probably not tight if an equal number of red

and blue lines is required. However, as already stated at the beginning of Section 3, when abandon-
ing the general position assumption, it is easy to construct an example with the same number of red
and blue lines where the maximum alternating path has only length two. Obviously, the same bound
still holds if no three lines intersect in a common point, but all lines are allowed to be parallel - just
place all blue lines vertically followed by all red lines vertically. On the other hand, these arrange-
ments have only one vertex in the first construction and no vertex at all in the second case. Another
degenerate example arrangement but with a quadratic number of vertices (and cells) whose longest
alternating path has length only O(n) is depicted in Fig. 11. This example has an equal number of
red and blue lines, half of the lines are vertical parallel and half of them are horizontal parallel.

• A closer inspection of the given proof shows that we have actually established the following.

Theorem 3.4 Let C be a set of red and blue simple closed or biinfinite curves, each of which
separates the plane into two parts. If the union of red curves is connected, the union of blue curves
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Fig. 11: An arrangement not in general position, but with a quadratic number of vertices, in which the length of the
longest alternating path is in O(n) (an example of a long path is shown).

is connected, and no point is contained in more than two of the curves, then any pair of bichromatic
cells in the arrangement is connected by an alternating path.

• Further, Lemma 3.1 can be generalized to higher dimensions: Consider two antipodal bichromatic
cells in a (d + 1)-dimensional arrangement. Intersect these two cells (and the arrangement) with
a hyperplane H . The intersection of the arrangement with H gives a d-dimensional bichromatic
arrangement, in which the antipodal cells are connected by induction.
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[17] B. Grünbaum. Monochromatic intersection points in families of colored lines. Geombinatorics,
9:3-9, 1999.
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[20] P. Hajnal, V. Mészáros. A note on noncrossing path in colored convex sets. Accepted to Discr. Math.
& Theor. Comp. Sci., 2011.

[21] A. Kaneko and M. Kano. Discrete geometry on red and blue points in the plane – a survey. In
Discrete and Computational Geometry, The Goodman-Pollack Festschrift, pp. 551-570, 2003.
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