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PAPER Special Section on Mathematical Systems Science and its Applications

Diagnosis of Stochastic Discrete Event Systems Based on N-gram
Models

Miwa YOSHIMOTO†, Nonmember, Koichi KOBAYASHI†, and Kunihiko HIRAISHI†a), Members

SUMMARY In this paper, we present a new method for diagnosis of
stochastic discrete event system. The method is based on anomaly detection
for sequences. We call the method sequence profiling (SP). SP does not
require any system models and any system-specific knowledge. The only
information necessary for SP is event logs from the target system. Using
event logs from the system in the normal situation, N-gram models are
learned, where the N-gram model is used as approximation of the system
behavior. Based on the N-gram model, the diagnoser estimates what kind
of faults has occurred in the system, or may conclude that no faults occurs.
Effectiveness of the proposed method is demonstrated by application to
diagnosis of a multi-processor system.
key words: stochastic discrete event systems, diagnosis, N-gram models

1. Introduction

The problem of failure diagnosis has been studied from
1970’s and there are various schemes for it. For systems
with continuous state variables, fault detection based on an-
alytical modeling was proposed [1], [2]. In this approach,
faults are detected by comparing actual measurements with
their predicted values. Rule-based diagnosis (RBD) is a
method for detecting and specifying system faults based
on empirical rules obtained from accumulation of expert
knowledge [3]. While computational cost of RBD is low for
simple systems, it is hard to build complete rule bases for
large and complex systems. Moreover, RBD is not suitable
for autonomous fault detection.

In contrast, model-based diagnosis (MBD) is a method
using system models that describe causal relation on event
occurrence. There are many literature on MBD for dis-
crete event systems (DES) (e.g., [4]). Diagnosis for stochas-
tic DES and decentralized DES is also studied [5]–[8]. In
MBD, faults are detected by comparing event logs observed
in the actual system with those provided by the system
model. This process is performed on finite-state automata
called diagnosers. One of advantages of MBD is that it does
not require any empirical rules depending on the target sys-
tem. Moreover, MBD can be applied at low computational
cost once the diagnoser is constructed. This is a desirable
feature for on-line autonomous failure detection. However,
MBD has several weaknesses described as follows.

The first weakness is that the size of the diagnoser can
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be doubly exponential in the size of the system description
in the worst case. This can make the diagnoser practically
impossible to generate. To overcome the problem on com-
putational cost, SAT-based diagnosis was proposed [9]. Di-
agnosis based on behavior reconstruction, which is an in-
tensional representation of all behaviors that are consistent
with the system observation, was also proposed [10].

The second weakness is that MBD requires an accurate
and detailed model of the target system. However, when
the configuration of the target system changes dynamically,
such as systems operated on virtual environments like in
cloud systems, it is difficult to obtain accurate models for
the entire system. Updating the system model is hard to be
done in online environment.

In this paper, we present a new method for the diagno-
sis of stochastic discrete event system. We call the method
sequence profiling (SP). The method is based on anomaly
detection technique [11]. SP does not require any system
models and any system-specific knowledge. The only infor-
mation necessary for SP is event logs from the target sys-
tem. In this sense, the proposed approach is not classified as
MBD.

The overview of the proposed approach is illustrated
in Fig. 1. Using event logs from the system in the normal
situation, i.e., the situation in which no fault occurs, a prob-
abilistic model that represents the system behavior is con-
structed (Learning Phase). Based on the learned behavior,
the diagnoser estimates what kind of faults has occurred in
the system, or may conclude that no faults occurs (Diagno-
sis Phase). In the SP, we assume that faults in the system
appear only in the probability of event occurrence.

At the learning phase, an N-gram model that approx-
imates the behavior of the target system is computed. The
N-gram model was originally introduced by Shannon [12],
and are mainly used for natural language processing [13].
Recently it is applied to text mining and web search. In the
proposed method, N-gram models are used for discovering

Fig. 1 Overview of the proposed approach.

Copyright c© 2015 The Institute of Electronics, Information and Communication Engineers
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discrepancy between the observed event logs and the behav-
ior of the system in the normal situation. The discrepancy is
measured by the specificity of short event sequences in the
event logs, where the short sequences correspond to local
activities of the system.

As a similar approach based on learning, there exists
a method using probabilistic models representing relation-
ship between event sequences and potential faults [14]. In
this method, it is assumed that faulty behavior appears only
in the interevent time, and probability distribution function
of the interevent time is estimated for every combination of
faults. In the proposed method, however, it is assumed that
faulty behavior appears in event sequences, i.e., the order of
event occurrences. Process mining [15] is a technique that
is used for estimating system models from event logs. The
aim of process mining is to obtain correct system models,
while in the proposed approach models approximating sys-
tem behavior are computed and used for identifying faults.
In this sense, the models in the proposed method becomes
relatively simpler than the correct model.

This paper is organized as follows. In Sect. 2, some no-
tations and definitions on formal languages and automata are
given. In Sect. 3, approximation of probabilistic automata
by N-gram models is explained. In Sect. 4, the diagnosis
problem studied in this paper is formally stated. The pro-
posed method is presented in Sect. 5. Comparison with ex-
isting methods for anomaly detection is also described. In
Sect. 6, effectiveness of the proposed approach is demon-
strated by application to diagnosis of a multi-processor sys-
tem. Section 7 is the conclusion.

2. Preliminaries

Let Σ be a finite set of symbols and let Σ∗ denote the set
of all finite sequences over Σ. Let s be a sequence over Σ.
We write |s| to denote the length of s. The i-th symbol of
s is denoted by s[i] and the subsequence of s from the i-
th position to the j-th position is denoted by s[i, j]. For a
positive integer k, let Σk = {s ∈ Σ∗ | |s| = k} denote the set of
all sequences of length k.

Let s and w be sequences over Σ such that |s| < |w|. The
number of occurrences of s as a subsequence of w is denoted
by Os(w), i.e.,

Os(w) := | {(i, j) | 1 ≤ i ≤ j ≤ |w|, w[i, j] = s} |. (1)

We assume that the target system is modeled by a
(nondeterministic) probabilistic automaton G = (X,Σ ∪
{ε}, δ, P, x0, F), where

• X = {x1, · · · , xn} is the set of states,
• Σ is the set of symbols and ε is the empty sequence,
• δ ⊆ X × Σ × X is the transition relation,
• P : X×Σ×X → [0, 1] is the function defining probabil-

ity of state transition, i.e., P(xi, σ, x j) is the probability
that event σ occurs in state xi and the state changes to
x j after the occurrence. We require that P(xi, σ, x j) = 0
if (xi, σ, x j) � δ, and

∑
σ∈Σ,x j∈X P(xi, σ, x j) = 1 for each

state xi,
• x0 ∈ X is the initial state,
• F ⊆ X is the set of final states.

We will simply write Pσi j to denote P(xi, σ, x j). Moreover, let
Pσi• :=

∑
j Pσi j. As usual, state transition relation is extended

to δ ⊆ X × Σ∗ × X by (i) (xi, ε, xi) ∈ δ and (ii) (xi, sσ, xk) ∈ δ
if (xi, s, x j) ∈ δ and (x j, σ, xk) ∈ δ.

The underlying Markov chain of G is given by the set
of states X, and the probability for each pair of states Pi j =∑
σ∈Σ Pσi j.

3. Approximating Probabilistic Automata by N-gram
Models

Given a sequence w over Σ, the maximum likelihood esti-
mation of the N-gram model for w is given as the following
probabilities for all y ∈ ΣN−1 and all σ ∈ Σ:

Pr(σ|y) :=
Oyσ(w)∑
σ′∈Σ Oyσ′(w)

(2)

Given a sequence w, N-grams are extracted and the
number of occurrences of each N-gram is counted. This
procedure requires O(|w|) time. Next the conditional prob-
ability for each y and σ is computed by (2). The number
of conditional probabilities to be computed is at most |Σ|N .
Summing up Oyσ′(w)’s in the denominator requires O(|Σ|)
time for each y ∈ ΣN−1. Hence the total time for computing
an N-gram model is O(|w| + |Σ|N).

Let G = (X,Σ ∪ {ε}, δ, P, x0, F) be a probabilistic au-
tomaton. Suppose that a finite sequence s has occurred from
some unknown state of G. We consider the problem of esti-
mating the next event to occur. Let Xy denote the set of such
states that sequence y has occurred just before reaching it,
i.e.,

Xy = {x j | ∃xi ∈ X : (xi, y, x j) ∈ δ} (3)

Next we define an equivalence ∼ on X by xi ∼ x j ⇔
∀σ ∈ Σ : Pσi• = Pσj•. We say that G is predictable for se-
quence y if all states in Xy are equivalent w.r.t. ∼. Note that
if |Xy| = 1 then the automaton is obviously predictable for
y. Moreover, G is called k-predictable if G is predictable for
all sequence y of length k.

Whether G is k-predictable or not is determined by its
structure. The automaton in Fig. 2 is 1-predictable. How-
ever, the automaton in Fig. 3 is not k-predictable for any k
because G is not predictable for sequences b∗a of arbitrary
length (Xb∗a = {x1, x2}).

Given a probabilistic automaton G, we say that an N-
gram model approximates G if for any sequence y ∈ ΣN−1

that has occurred in G, the probability that an event σ will
occur after y is Pr(σ|y). We show the cases in which such
an N-gram exists.

Suppose that a probabilistic automaton G is (N − 1)-
predictable. Then we can obtain the following N-gram
model that correctly gives the probability: for each y ∈ ΣN−1

and σ ∈ Σ,
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Fig. 2 Probabilistic automaton: example 1.

Fig. 3 Probabilistic automaton: example 2.

Pr(σ|y) := Pσi• (4)

where xi ∈ Xy.
Suppose that G is not (N − 1)-predictable and |Xy| > 1

for some y ∈ ΣN−1. If the automaton has the steady state and
the stationary distribution π = (π1, · · · , πn) is known, where
πi is the probability that the system is in state xi, then we can
obtain the following N-gram model: for each y ∈ ΣN−1 and
σ ∈ Σ,

Pr(σ|y) =
∑

xi∈Xy

⎛⎜⎜⎜⎜⎜⎜⎜⎝πi/
∑

x j∈Xy
π j

⎞⎟⎟⎟⎟⎟⎟⎟⎠ · Pσi• (5)

Figure 3 is a probabilistic automaton whose underlying
Markov chain is ergodic. This automaton has the unique
stationary distribution π = (35/107, 30/107, 42/107) as the
solution of equations π = πP,

∑
i πi = 1, where P = [Pi j]

is the transition probability matrix. After an occurrence of
ab, possible states are 1 and 2. Therefore, the conditional
probability Pr(b|ab) is computed by

Pr(b|ab) =
π1

π1 + π2
· 0.4 + π2

π1 + π2
· 0.3 = 23/65.

The following is a direct consequence of the theory of
Markov chains.

Theorem 3.1: Let G be a probabilistic automaton whose
underlying Markov chain is ergodic. Then the probabilities
by (2) approaches to the probabilities by (5) as the length of
w increases.

4. Fault Identification Problem

Let Gi, i = 0, 1, · · · ,m be probabilistic automata, where G0

is an automaton that represents the system in the normal sit-
uation, and let Gi, i = 1, · · · ,m be automata for faulty sit-
uations. We assume that Gi’s are the same automaton ex-
cept that probabilities of some state transitions are different.
Such faults correspond to malfunction of some part of the
system. A typical example of such faults will be shown in
Sect. 6.

In this paper, fault detection of stochastic discrete event
systems is considered as the following problem:

Definition 4.1 (Fault Identification Problem): Given a se-
quence wtest of events over Σ, choose a system model from
Gi, i = 0, 1, · · · ,m that most likely generates wtest.

This problem is exactly the same as the anomaly detec-
tion for sequences [16], except that we put the assumption
on type of faults.

If the normal/faulty system models Gi, i = 0, 1, · · · ,m,
are given, then the problem is solvable by the model-based
diagnosis. In this paper, we put the following assumptions
on the input data:

• System models Gi, i = 0, 1, · · · ,m, are unknown or hard
to obtain or too large to handle.
• The System model in the normal situation has the

steady state.
• Event logs from the models Gi, i = 0, 1, · · · ,m, are

available.
• Event logs may not be those from the initial state. In

other words, event logs are not synchronized.

These assumptions are valid in the situation that event
logs are automatically recorded in the system and they are
connected to specific faulty cases when some faults happen.
Such a situation can be seen in enterprise information sys-
tems and cloud systems.

We can also consider the problem under partial obser-
vation. Let G = (X,Σ ∪ {ε}, δ, P, x0, F) be a probabilistic au-
tomaton. An observation map is a function O : Σ→ Π∪{ε},
where Π is a different set of symbols. O is extended to
O : Σ∗ → (Π ∪ {ε})∗ in the usual way. Let O(G) denote
the probabilistic automaton G′ = (X,Π ∪ {ε}, δ′, P′, x0, F)
obtained by

• (xi, σ
′, x j) ∈ δ′ if ∃σ ∈ Σ : (xi, σ, x j) ∈ δ and O(σ) =

σ′,
• P′(xi, σ

′, x j) :=
∑
σ : O(σ)=σ′ P(xi, σ, x j).

Since O(G) is a probabilistic automaton, we can consider
the fault identification problem for the case that O(wtest) is
observed instead of wtest.

Let Gi = (Xi,Σ ∪ {ε}, δi, Pi, x0, Fi), i = 1, 2 be a set of
probabilistic automaton defined over the same set of events.
We say that G1 and G2 are indistinguishable w.r.t N-gram
model if G1 and G2 give the same N-gram model based
on (5). If O(Gi), i = 0, 1, · · · ,m are indistinguishable w.r.t.
the N-gram model, then no algorithm based on the N-gram
model can answer the fault identification problem.
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5. Sequence Profiling

We present the proposed diagnosis method, called sequence
profiling.

5.1 Sequence Specificity

We first define the specificity of sequences based on the N-
gram model. Computing specificities is the main part of the
sequence profiling. We assume that the k-gram model is ob-
tained for all 1 ≤ k ≤ N. We will call the collection of these
models the N≤-gram model. Based on this model, condi-
tional probability Pr(s|y) for y of any length is determined
by

Pr(s|y) = Pr(s|y[ j, |y|]) (6)

where j = max {|y| − N + 2, 1}.
Suppose that we already have an N≤-gram model for

G0. Let s be a sequence of length r. Then the conditional
probability that sequence s appears after sequence y is given
by the following recursion:

Pr(s | y) := Pr(s[1] | y) · Pr(s[2, |s|] | ys[1]) (7)

We show an example. Using a 4-gram model,
Pr(abx|xyz) is obtained by

Pr(abc|xyz)
= Pr(a|xyz) · Pr(bc|xyza)
= Pr(a|xyz) · Pr(b|xyza) · Pr(c|xyzab)
= Pr(a|xyz) · Pr(b|yza) · Pr(c|zab)

where Pr(b|xyza) = Pr(b|yza) and Pr(c|xyzab) = Pr(c|zab)
as we have assumed in (6).

The expected number of times s occurs in w is com-
puted by

Es(w) =
∑

y∈ΣN−1

Oy(w) · Pr(s|y) (8)

Now we define the specificity of sequence s in w w.r.t.
the N≤-gram model as follows:

dN
s (w) = log

Os(w)
Es(w)

(9)

If dN
s (w) is positive (negative), then s appears more (less)

often than the average.
Given a nonnegative integer r, let Dr,N(w) denote the

|Σr |-dimensional vector each component of which is dN
s (w)

for s ∈ Σr. We can expect Dr,N(w) captures some charac-
teristics of sequence w, and we call it the profile of w w.r.t.
the two parameters r and N. Note that the dimension of the
specificity vector Dr,N(w) is |Σr | = |Σ|r. This is an expo-
nential function of r, but is independent of the length |w|.
Moreover, some of sequences in Σr may not occur in the tar-
get system, and therefore the actual dimension of Dr,N(w) is
usually smaller than |Σ|r.

5.2 Sequence Profiling Algorithm

The detailed procedure of sequence profiling is described as
follows:

1. Let wre f be an event sequence generated by the system
in the normal situation. Compute the N≤-gram model
of wre f .

2. Let wi be an event sequence generated by model Gi, i =
0, 1, · · · ,m, where |w0|, |w1|, · · · , |wm| � |wre f |. Based
on the N≤-gram model, compute the specificity vector
Dr,N(wi) for each wi, i = 0, 1, · · · ,m.

3. Find the vector Dr,N(wi) that shows the highest correla-
tion with Dr,N(wtest), and output the model Gi. This can
be done by clustering of the specificity vectors, or by
computing corelation coefficients between Dr,N(wtest)
and Dr,N(wi), i = 0, 1, · · · ,m.

Different from researches on learning probabilistic
models such as [17], obtaining accurate system models is
not the objective of SP. The model learned from wre f should
be simpler but enough for enabling the fault identification.

5.3 Comparison With Existing Anomaly Detection Tech-
niques

There are many results on anomaly detection [11]. Anomaly
detection problems are classified by various features such as
nature of data and anomaly types. The fault identification
problem considered in this paper is classified as anomaly
detection for sequences, where sequences are time series of
symbolic data. For this class of problems, various existing
techniques based on probabilistic modeling are compared
with each other in [16]. The techniques used in the evalu-
ation are (i) finite state automata based techniques [18], (ii)
probabilistic suffix trees [19], (iii) sparse Markovian tech-
niques [20], and (iv) hidden Markov model based techniques
[21].

Finite state automata techniques are based on condi-
tional probability for preceding N-grams with a fixed N,
whereas probabilistic suffix trees can deal with conditional
probability for variable-length sequences. Sparse Marko-
vian techniques are more flexible in the sense that condi-
tional probabilities are estimated based on a subset of sym-
bols within the preceding N-grams. Hidden Markov mod-
els based techniques do not use conditional probabilities for
preceding sequences. Given the number of hidden states,
hidden state spaces are estimated for test sequences. The
proposed method SP uses a technique similar to that used in
the finite state automata techniques, i.e., SP uses conditional
probabilities for preceding fixed-length N-grams.

Comparing with anomaly detection problems studied
in literature, we put special assumptions on the target sys-
tems and also on type of faults, as described Sect. 4. Both
the system in the normal situation and the system in faulty
situation are represented by the same probabilistic automa-
ton except that probabilities of some state transitions are
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different. This means that whether some sequences appear
in the test sequence or not does not contributes to detect-
ing faults, and therefore we need to take the frequency of
event occurrence into account. Moreover, if the change in
the probabilities appear only in a limited number of state
transitions, then the effect of the faults is also limited. As a
result, the system behave normally in most of the time, but
in some occasion the system shows unusual behavior.

In most of the existing techniques, anomaly scores are
computed for the entire sequences, while SP focuses on
fragments of event sequencers in order to detect localized
anomaly in the test sequence. This is the main distinction of
SP comparing with existing approaches. An anomaly score
is computed for each sequence fragment and the entire se-
quence is characterized by the vector of the scores. We
remark that the specificity is independent of the sequence
length. This enable us to compare sequences having differ-
ent lengths. Importance of such anomaly scores normalized
by the length is discussed in [19].

6. Experimental Results

6.1 A Multi-Processor System

We apply the proposed method to a multi-processor system
described in [9]. The system consists of 9 Processing Units
(PUs) arranged on 3 × 3 grid layout. Figure 4 shows the
state transition diagram of a single PU, and Fig. 5 shows
the system configuration. When a fault occurs in some PU,
the PU will reboot and simultaneously send a message (re-
boot!) to 4-neighbors. If a neighbor PU receives a reboot
message (reboot?), then the PU will reboot (IReboot), too.
After the rebooting process (rebooting), the PU returns to
the normal operation (IAmBack). The number of states will
be 69 =10,077,696.

We model the system by a stochastic Petri net (SPN)
tool StpnPlay [22]. During the simulation, all event oc-
currences are recorded in a log. In faulty models, we give
smaller values for stochastic exponential delays of event re-
boot!. Note that PUs may reboot even in the normal model,
but the frequency of rebooting is lower than that in the faulty
models.

Each event log is converted into a sequence of symbols,
according to the following observation map:

• done of PU2, PU5, PU8→ A
• IReboot of PU2→ R
• IReboot of PU5→ S
• IReboot of PU8→ T
• IAmBack of PU2, PU5, PU8→ X
• Other events: → ε

We assume that faulty events are unobservable. Therefore,
we need to detect the fault by observation of other events.

6.2 Test Data

We prepare one normal model (Gnrm0) and nine faulty mod-
els (Gabn1−Gabn9). Five event logs (nrm01−nrm05, abn11−

Fig. 4 One processing unit.

Fig. 5 System configuration.

abn15, · · · abn91−abn95) are obtained from each model. In
addition, we prepare an event log nrm0 generated by the
normal model, where |nrm0| = 1, 000, 000 and |nrm0X| =
|abn1X| = · · · = |abn9X| = 100, 000, X ∈ {1, · · · , 5}.
These numbers are those before application of the observa-
tion map. In the experiments, it is observed that each length
after application of the observation map is around 18% of
the original length.

From the event log nrm0, N≤-gram model is computed,
where we use N = 3 in the experiments. The specificity is
computed for short sequences of length r = 3, where we use
(9) for the computation.

6.3 Preliminary Test

We first apply clustering analysis to classify the data into
categories depending on similarities between the obtained
vectors. The proposed approach is valid for fault identifica-
tion if we succeed to partition the event logs into 10 groups
(nrm0X, abn1X, · · · , abn9X).

There are two approaches in the clustering analysis:
one is the hierarchical clustering and the other is the non-
hierarchical clustering. In the non-hierarchical clustering,
the number of clusters is given beforehand, and the optimal
clusters is computed under this constraint. We first show
a result of non-hierarchical clustering based on k-means
method. The number of clusters was set as 2 in order to di-
vide the normal group (nrm0X) and the faulty groups. The
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result is shown in Table 1. The result suggests that the nor-
mal group is not clearly separated from the faulty groups,
but logs in the same group are classified into the same clus-
ter.

6.4 Fault Identification by Clustering

In the hierarchical clustering analysis, the number of clus-
ters is not fixed. The distance as degree of dissimilarity be-
tween clusters is computed. Using the distance, nearest clus-
ters are unified into one cluster. This procedure is repeated
until all clusters are unified into one cluster. The result of the

Table 1 Result of non-hierarchical clustering.

Log ID Cluster ID Log ID Cluster ID
abn11 2 abn61 1
abn12 2 abn62 1
abn13 2 abn63 1
abn14 2 abn64 1
abn15 2 abn65 1
abn21 1 abn71 1
abn22 1 abn72 1
abn23 1 abn73 1
abn24 1 abn74 1
abn25 1 abn75 1
abn31 2 abn81 2
abn32 2 abn82 2
abn33 2 abn83 2
abn34 2 abn84 2
abn35 2 abn85 2
abn41 1 abn91 1
abn42 1 abn92 1
abn43 1 abn93 1
abn44 1 abn94 1
abn45 1 abn95 1
abn51 2 nrm01 1
abn52 2 nrm02 1
abn53 2 nrm03 1
abn54 2 nrm04 1
abn55 2 nrm05 1

Fig. 6 Result of hierarchical clustering.

unifying process is formulated as a dendrogram. We here
use Euclidean distance as degree of dissimilarity. The result
of the hierarchical clustering using average linkage concept
is shown in Fig. 6.

The dendrogram shows that the normal group (nrm0X)
is located at the lowest level. This means that normal
event logs can be distinguished from faulty ones. Further-
more, there are groups of faulty event logs that are cor-
rectly classified at a certain level, such as abn2X, abn5X
and abn8X. However, pairs abn1X−abn3X, abn4X−abn6X,
and abn7X−abn9X are mixed. This is because faults in PU1
and faults in PU3 give the same observations, and similarly
for pairs PU4 – PU6 and PU7 – PU9. In other words, pairs
O(Gabn1) – O(Gabn3), O(Gabn4) – O(Gabn6), and O(Gabn7) –
O(Gabn9) are indistinguishable, where O is the observation
map used in the experiments.

The above result implies that if we give an event log
wtest for a faulty situation, then the proposed method can
identify a model from the following 7 groups:

• nrm0X
• abn1X, abn3X
• abn4X, abn6X
• abn7X, abn9X
• abn2X
• abn5X
• abn8X

6.5 Robustness for Values of Parameters

We examine robustness of the result with respect to values
of the following three parameters:

1. The length l of each event log used for diagnosis.
2. The value of N.
3. The value of r.

We first prepare event logs consisting of different num-
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Table 2 Results for different log-length l (r = 3, N = 2).

l = 100 1, 000 10, 000 100, 000
nrm1-l 1 1 1 1
nrm2-l −0.0288 −0.0941 0.1428 0.1672
abn1-l 0.0132 0.04019 −0.1257 −0.1178
abn2-l 0.1214 0.2428 −0.0370 0.0599

Table 3 Results for different N (r = 5).

N = 1 2 3 4 5
nrm1 1 1 1 1 1
nrm2 0.7448 0.6065 0.4022 0.2055 0.2055
abn1 0.6069 0.4465 0.2566 0.0763 0.0763
abn2 0.5895 0.4534 0.2378 0.0949 0.0949

Table 4 Results for different r (N = r − 1).

r = 2 3 4 5
nrm1 1 1 1 1
nrm2 0.5203 0.2144 0.3019 0.2055
abn1 −0.2809 −0.0762 0.0684 0.0763
abn2 0.3583 0.0542 0.0071 0.0949

bers of events in the normal situation and two faulty situ-
ations. To check the separation of faulty situations from
the normal situation, two event logs are generated from
the normal situation. In total, there are sixteen event logs
nrm1-l, nrm2-l, abn1-l and abn2-l for each length l =
100, 1, 000, 10, 000, and 100, 000. Then we compute cor-
relation coefficients between the profile for nrm1-l and the
profile of other logs, where we use r = 3 and N = 2. The
result is shown in Table 2. It is observed that around 10,000
events is required for separating the normal situation from
faulty situations. Of course, the necessary length of event
logs may depend on the target system.

Next we prepare two logs nrm1 and nrm2 for the nor-
mal situation and two logs abn1 and abn2 for different faulty
situations, where the length of each event log is 100,000.
Then we compute the correlation coefficients between the
profile of nrm1 and the profile of other logs for r = 5 and
N = 1, · · · , 5. The result is shown in Table 3. It is ob-
served that N = 4 and N = 5 give almost the same result.
Therefore, N = r − 1 might be a sufficiently large value for
computing profiles.

Finally, we show results on different values of r, i.e.,
the length of the short sequences used in profiles. We pre-
pare four event logs nrm1, nrm2, abn1 and abn2 consisting
of 100,000 events, and compute correlation coefficients be-
tween the profile of nrm1 and the profile of other logs. The
results are shown in Table 4. It is observed that the case for
r = 2 does not give good separation but does in other cases.
We need to choose an appropriate value for r. The optimal
value of r depends on the structure of the probabilistic au-
tomaton representing the target system.

7. Conclusion

In this paper, we have presented a new method for diagnosis
of discrete event system, called sequence profiling. Since
order of events is taken into consideration in the N-gram
model, the proposed approach is different from simple sta-
tistical analysis such as counting occurrences of each event.
Short sequences used for the specificity correspond to local
behavior of the system. When the target system is a dis-
tributed system like one used for the experiments, the ef-
fect of a faulty event is limited to the subsystem around the
event, and other parts of the system runs normally. We ex-
pect that the vector of specificity for each event sequence
reflects such behavior caused by local faults.

Whether faulty cases are distinguishable or not de-
pends on the observation map. Designing optimal obser-
vation map for given purposes is one of future work. The
results in Sect. 6 suggest that short event sequences do not
give good separation. This is because the proposed method
relies on differences in conditional probabilities. By this
reason, the method shown in the paper is not suitable for
detecting faults that immediately lead to system down. As
demonstrated in the experiments, the proposed method is
applicable to detecting non-functional faults such as a drop
in performance at some part of the system. Diagnosis using
shorter event logs also remains as future work.

Moreover, we need to improve the complexity in the
calculation of the specificity for large N and r, in order to
apply the method to larger and dynamically changing sys-
tems. In such systems, we should also consider how to deal
with interleaved event sequences.
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