
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title シナリオからの並行プログラムの合成についての研究

Author(s) 渡邉, 裕

Citation

Issue Date 1999-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/1286

Rights

Description Supervisor:平石 邦彦, 情報科学研究科, 修士



On Synthesis of Concurrent Programs from

Scenarios

Yutaka WATANABE

School of Information Science,

Japan Advanced Institute of Science and Technology

February 15, 1999

Keywords: scenario, concurrent program, hyper sequential programming, dependency

relation, synchronizing actions.

In this research, we study synthesis of concurrent programs that consist of sequential

programs running concurrently and communicating each other. In general, testing and

debugging of concurrent programs are much more di�cult than those of sequential pro-

grams, and so currently we have a few e�ective debugging tools. In addition, we need

enormous time for checking all possible states of a concurrent program because of the

state space explosion problem, i.e., the number of states of a concurrent program increases

exponentially in the size of the program, and this makes analysis of concurrent programs

very di�cult. For these reasons, it is required that fewer errors should be included at

early stages of making programs.

Nondeterministic behavior in concurrent executions are knows as one of characteristic

properties of concurrent programs, and this may cause errors. Such errors are usually not

easy to be found, comparing with debugging sequential programs.

Uchihira et al. proposed a new programming paradigm, called hyper sequential pro-

gramming, to remove such kind of errors. In this method, a concurrent program is syn-

thesized from a set of sequential executions of the concurrent programs called scenarios,

where each scenario represents an expected correct behavior of the program and is given

by the designer.

In hyper sequential programming, each execution sequence is treated as a sequence

of symbols, by replacing each instruction of the program with a label. The meaning of

each instruction is reected on the dependency relation on the set of labels. There exists

a kind of dependency between instructions such that the order of their execution a�ects

the �nal results, e.g., read and write action for a shared variable have such dependency.

We give this dependency as a reexive and symmetric relation on the set of labels.

Copyright c 1999 by Yutaka WATANABE

1



In this approach, �rst a scenario graph, which is a directed graph having each global

state of the system as a node and each instruction as a directed edge is constructed from

given scenarios. Next, synchronizing actions are inserted as directed edges in the scenario

graph, and then the graph is projected onto each sequential program. When deletion of a

synchronizing action does not change the equivalence to the scenarios with respect to the

dependency, the synchronizing action is deleted. Finally, replacing each label with the

corresponding instruction, we obtain a concurrent program that shows expected behavior.

This algorithm is not very e�cient because deletion of synchronizing actions are done

by trial and error. In addition, optimality of synthesized programs is not su�ciently

discussed. In this research, we improve this method, and propose a new e�cient algo-

rithm for synthesizing concurrent programs acting correctly and containing no redundant

synchronizing actions.

In the proposed algorithm, a set of scenarios is given as a regular expression over the

set of labels. The algorithm consists of the following steps: decomposition of scenarios

into blocks, insertion of synchronizing actions, restoring scenarios, projection onto each

sequential programs, and code generation.

In the �rst step, decomposition of scenarios into blocks, a regular expression repre-

senting scenarios are decomposed into blocks with or without control structures.

Next, synchronizing actions are inserted into each block so as to keep the equivalence

to the partial ordering de�ned by the scenario. Detail of this procedure is described as

follows: �rst a directed acyclic graph representing the total ordering in the scenario is

constructed, next its transitive closure is computed, directed arcs between nodes without

dependency are removed, and �nally its transitive reduction is computed. Remaining

edges shows positions for inserting synchronizing actions. Through this procedure, insert-

ing positions of synchronizing actions are uniquely determined. Uniqueness is proved by

the result that the transitive reduction of a directed acyclic graph is unique.

After this step, the scenarios are restored by substituting each block symbol by cor-

responding block. The restored scenarios are projected onto each sequential program,

and a concurrent program is obtained by replacing each label with the corresponding

instruction,

For the scenarios without control structure, the concurrent program synthesized by the

proposed algorithm acts correctly to the scenarios, and contains no redundant synchroniz-

ing actions. Moreover, it is optimal in the sense that it generates all sequences permitted

in the partial ordering de�ned by the scenarios. For the scenarios with control structure,

we can also prove the correctness of its behavior, but the optimality is not necessary

guaranteed. Because we treat each loop and branches as blocks in the algorithm.

2


