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The present study focuses on a class of games with reinforcement-learn-
ing agents that adaptively choose their actions to locally maximize their
rewards. By analyzing a limit model with a special type of learning, pre-
vious  studies  suggested  that  dynamics  of  games  with  learners  may  be-
come  chaotic.  We  evaluated  the  generality  of  this  model  by  analyzing
the  consistency  of  this  limit  model  in  comparison  with  two  other  ap-
proaches,  agent-based  simulation  and  the  Markov  process  model.  Our
analysis  showed  inconsistency  between  the  limit  model  and  two  other
models with more general reinforcement learning. This suggests that re-
inforcement learning does not lead to complex dynamics in games with
learners. 

Introduction1.

Dynamic games among agents have been investigated as minimal mod-
els  of  various  types  of  social  phenomena.  Conventional  game  theory
treats each agent as a rational decision maker whose actions are based
on  sufficient  information  regarding  the  game.  The  dynamics  in  a
game with two such rational agents can be described with Nash equi-
libria,  in  which  none  of  the  agents  can  profit  by  changing  their  ac-
tions  [1].  Real  social  problems  are,  however,  often  more  complex
than  games  with  such  rational  agents  [2–4].  Due  to  this  complexity,
the classic equilibria-based description may not be characteristic of re-
alistic  problems.  Therefore,  more  recent  studies  have  focused  on
games with nonrational agents that are allowed to have limited com-
putational resources or information.

In  reality,  each  agent  has  limited  computational  resources  and  in-
formation  about  the  game.  Under  such  uncertainty,  learning  plays  a
crucial role in finding a locally optimal action from the limited infor-
mation sources. One key question regarding such games is how learn-
ing changes the dynamics [3]. 
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As  a  form  of  minimal  model  with  learning,  a  class  of  iterative

games  with  reinforcement  learning  [5]  has  been  investigated  in  both
theoretical  [6,  7]  and  empirical  studies  [2–4].  For  the  remainder  of
this  work,  we  refer  to  this  class  of  games  as  the  learning-and-game
model.  In  the  learning-and-game  model,  each  agent  is  typically  sup-
posed  to  know  only  a  series  of  its  own  actions  and  the  rewards  for
these  actions.  The  probabilities  for  the  agents#  next  actions  are  com-
puted according to the weighted averages of rewards for the possible
actions. 

One major theoretical question regarding this model is how this lo-
cal  learning  by  each  agent  affects  the  dynamics  of  the  game  as  a
whole. As the learning-and-game model is essentially a stochastic pro-
cess,  analysis  often  focuses  on  a  certain  type  of  statistics  rather  than
individual  cases.  As  described  in  conventional  game  theory,  the  sim-
plest  class  of  dynamics  in  a  learning-and-game  model  is  convergence
to a fixed point.  This fixed point is  the limit resulting from a certain
average across agents over sufficiently many steps. 

Past  studies  have  discussed  more  generic  classes  of  dynamics,
which  a  certain  type  of  learning-and-game  model  can  demonstrate.
Sato and colleagues have considered a limit in which learning is based
on errorless feedback after infinitely many actions and rewards. They
derived  a  set  of  dynamical  equations  of  the  games  [7–9].  Under  this
limit, reinforcement learning leads from a simple game, such as rock-
paper-scissors,  to  generic  classes  of  dynamics  including  periodic,
quasiperiodic, and chaotic dynamics. From these results, Sato and col-
leagues claimed that learning can lead a game to chaotic dynamics, to
which rationality in classical game theory cannot lead. The capability
of  showing  these  complex  dynamics  suggests  that  this  class  of  learn-
ing may be computationally universal in the sense of Wolfram [10]. 

However,  this  finding requires  further  investigation,  as  the models
in [7–9] include assumptions about a special type of learning. Gener-
ally,  learning  should  benefit  one#s  choices  under  uncertainty.  In  con-
trast,  Sato#s  continuous-time  limit  model  assumes  a  special  situation
with  no  uncertainty,  in  which  learning  benefits  little.  Thus,  it  is  un-
clear whether the generic dynamical classes can be found in more gen-
eral situations. This study investigates this issue by comparing the con-
tinuous-time limit model to multiple models based on a more general
learning  scheme.  Here,  we  employed  agent-based  simulation  and
Markov process formalism, each of which allows us to analyze learn-
ing-and-game models without the special limit assumption. 

Agent-based simulation is one of the most common methods for an-
alyzing  learning-and-game  models.  In  a  typical  agent-based  simula-
tion, a set of statistics of the agent behaviors is obtained by repeatedly
applying a rule set governing each agent. One of its known shortcom-
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ings  is,  however,  that  the  sample  statistics  obtained  in  this  way  may
not  reflect  the  central  characteristics  of  interest.  In  fact,  a  game with
reinforcement  learners  heavily  weighting  on  their  past  experience
tends  to  show severe  initial  value  dependence  [11],  which  makes  the
game dynamics  difficult  to  describe  with a  small  number of  samples.
This is  the situation: the specific  settings leading to chaotic dynamics
in [7–9] cause the convergence of the corresponding agent-based simu-
lation  to  be  slow.  As  we  will  discuss  later,  the  learning-and-game
model with the special settings of interest increase the difficulty of nu-
merical  computation.  Given this  technical  problem,  we need to  com-
pare  multiple  methods  based  on  different  assumptions  and  analyze
the consistencies between them. 

Another  method  we  employed  was  a  Markov  process  analysis.
Consider an iterated game with two agents; each of them probabilisti-
cally  chooses  one  out  of  a  finite  number  of  actions  based  on  the  k
past steps of the game. 

The probabilistic nature of this game can be sufficiently character-

ized by a kth-order finite-state Markov process. Few past studies, how-
ever,  have employed Markov process analysis  on the game due to its
computational  cost,  except  for  limited  cases  [12].  In  general,  a
Markov process formalism requires an exponentially large number of
states as k increases, and is computationally intractable. 

Our motivation to employ the Markov process comes from the ob-
servation that we can relax this computational problem. Although its
computational cost potentially grows as a function of k,  the depth of
the game tree, the Markov process analysis does not require too large
a k to be a reasonable approximation to its true model. We will elabo-
rate on this observation later. 

In  Section  2,  we  give  the  formal  definition  of  the  learning-and-
game  model,  and  we  provide  brief  illustrations  of  the  three  ap-
proaches introduced. In Section 3, we numerically study the game ana-
lyzed by Sato and colleagues [9] in order to evaluate the generality of
their findings. In Section 4, we study another case of the learning-and-
game model for further support of our analysis in Section 3. 

Formulation2.

The Learning-and-Game Model2.1
We define the learning-and-game model in a general form here and an-
alyze two games of this class in later sections.

Definition 1 (n-agent and k-step learning-and-game model). Consider a game
with  n  agents,  where  each  of  the  agents  is  denoted  by  integers
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1, 2, $ , n. At step t % &, the ith agent chooses an action xt,i  from the

set  of  actions  ' :( )0, 1, $ , m * 1+.  Denote  each  of  mn  possible
states in n agents# actions at step t by an integer 

Xt :( 1 , -
i.0

n*1

xt,n*i mi*1. /10

We write Xt
t,k . /Xt, Xt,1, $ , Xt,k0 for a sequence of k states from

the  step  t.  Define  a  map  from  a  state  X  to  a  reward  r  for  the  ith

agent as

ri : X 1 r % 2.

We  write  the  map  ri /Xt0 . ri 3xt,1, $ , xt,n4.  Although  this  reward

map  may  vary  across  different  steps  t  in  general,  the  present  study
considers only maps that remain constant across steps.

In reinforcement learning, each agent chooses an action based on a
function of rewards for its past actions. This function is the weighted

sum of rewards for the action x % ' of the ith agent over k past steps 

5i,x
6i 3Xt*k

t*14 . -
s.1

k

6i
s 7x,xt*s,i

ri /Xt*s0,

where  6i % 80, 19  is  the  memory-retention  parameter,  and  7x,y . 1  if
x . y;  otherwise  7x,y . 0.  Using  this  weighted  rewards  function  and

the  sensitivity  parameter  :i ; 0,  the  probability  for  the  ith  agent  to
choose the action x at step t is

P 3x Xt*k
t*14 .

exp 3:i 5i,x
6i 3Xt*k

t*144

<x.0
m*1 exp 3:i 5i,x

6i 3Xt*k
t*144

. /20

Assuming  independent  choices  by  the  n  agents,  the  probability  of
state transition is

P 3Xt Xt*k
t*14 . =

i.1

n

P3yt,i Xt*k
t*14, /30

where  yt,i . >/Xt * 10 ? mn*i,1@ /mod m0,  which  is  the  inverse  map  of

equation (1) from Xt to yt,i.
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Agent-Based Simulations2.2
We define the agent-based simulation as a type of Monte Carlo simu-
lation,  using  equation  (3)  as  the  probability  distribution  to  draw  a
sample. We start with a series of k states 1 A X0, X1, $ , Xk*1 A mn

and generate a value for Xt,1  sampled from the probability distribu-

tion, equation (3), given Xmax /0,t*k,10
t  for t ; k.

The present study analyzed the case with k B C, in which it is im-
possible  to  sample  a  series  X*C

t ,  and  thus  a  truncated  series

Xmax /0,t*k,10
t  must necessarily be sampled instead. This may cause bi-

ased results in this agent-based simulation, particularly as the dynam-
ics of interest are sensitive to initial states. 

Finite-State Markov Process2.3
For N % D, denote the state at time t % & by Xt % E . )1, 2, $ , N+.
We call a stochastic process the kth-order Markov process if the prob-
ability of a state in a system at any time step is determined only by its
k past states: 

P /Xt Xt*1, Xt*2, $ , Xt*k0 . P/Xt Xt*1, Xt*2, $0.

Definition 1 is a kth-order Markov process with N . mn states.

A  kth-order  Markov  process  is  described  by  a  probability  vector

p % 2Nk
 over the joint states 1 A i A Nk  and its corresponding transi-

tion matrix Q % 2NkFNk
, defined as follows. 

Assign an integer 1 A i A Nk  to each fixed t and joint states Xt*k,1
t

by the indexing map 

hN,k3Xt*k,1
t 4 :( 1 , -

j.0

k*1

3Xt*k,1,j * 14 Nj. /40

Denote  the  inverse  of  the  indexing  map,  equation  (4),  by  hN,k
*1 .  The

probability vector p % 2Nk
 over the joint states 1 A i A Nk is

p . 3P 3hN,k
*1 /104, P 3hN,k

*1 /204, $ , P3hN,k
*1 3Nk444T ,

where  the  superscript  T  denotes  transpose  of  the  vector  or  matrix.

For every 1 A j A Nk, write

Gj :( HhN,k//X1, X2, $ , Xk00 :

j . hN,k//X0, X1, $ , Xk*100, Xk % EI.
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For integers 1 A j A Nk, the transition matrix Q corresponding to p is
defined as

Qi,j :( P3hN,k
*1 /i0 hN,k

*1 /j04 /50

for i % Gj and Qi,j :( 0 for i J Gj.

Suppose we start with some initial probability vector p0. Then pt  is
obtained  by  pt . Q pt*1  for  t K 0.  Applying  this  infinitely  many
steps, we obtain the stationary probability distribution 

pC . lim
tBC

Qt p0, /60

if this limit exists.
The Perron–Frobenius theorem [13] gives the condition for the exis-

tence of the limit  in equation (6),  which we assume in this  study un-
less  otherwise  specified.  For  a  general  learning-and-game  model,  ex-
cept for those with some 6i . 1 and k B C, a transition matrix Q has
its  unique  largest  eigenvalue  1  and  its  corresponding  eigenvector  L.
Then  the  stationary  distribution  is  given  by  the  eigenvector  of  the
largest eigenvalue 

pC . L 31
Nk
T L4*1,

where 1Nk . /1, 1, $ , 10T % 2Nk
 is  a vector with all  elements equal

to 1. 

Theoretical Properties of the Markov Process Approach2.3.1

The number of states Nk  of a kth-order Markov process increases ex-
ponentially as the depth of the game tree k increases. This is an appar-
ent  computational  difficulty.  Specifically,  a  naive  computation  of  the

eigenvector  pC  of  the  transition  matrix  Q % 2NkFNk
 in  equation  (5)

requires matrix multiplication Q p of the computational cost O 3N3 k4.
However,  we  can  compute  the  above  multiplication  more  effi-

ciently.  In general,  the Nk FNk  transition matrix Q  is  sparse,  with at

most Nk,1 nonzero positive elements. Exploiting this sparsity, the ma-

trix  multiplication  cost  is  reduced  to  O 3Nk,14.  Further  details  are
given in Appendix B. 

An  additional  property  is  that  a  learning-and-game  model  is  well

approximated in general with a kth-order Markov process where k  is

reasonably  small.  Consider  the  stationary  vector  p0 % 2Nk
 of  a  kth-

order Markov process with a transition matrix Q0, and the stationary
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vector p % 2Nk
 of a transition matrix Q sufficiently close to Q0. The

sum of squared errors 

M2 . /p * p00T /p * p00 N O 3e*c k O4,

is  an  exponential  function  of  k,  where  c  is  a  constant,  and
O . Q * Q0  is  the difference in the transition matrices.  This  suggests

that  a  kth-order  Markov  process  exponentially  approaches  the  true
model as k B C for a learning-and-game model with 6i P 1 for every
i.  Further  mathematical  elaboration  is  given  in  Appendix  A.  This
error behavior is numerically analyzed later.

Special Case !i " 12.3.2
In the special case 6i . 1 for each i, we can compute a stationary dis-
tribution  even  more  efficiently.  Exploiting  the  exchangeability  of  ac-
tions in a state series, the size of the state space of this special case is
/k , 10 k $ /k * N , 30 for N ; 2, which is quite a bit smaller than the

size  of  the  original  state  space,  Nk.  With  the  following  formulation,
we can compute the stationary distribution for a relatively large k.

With 6i . 1 for each i, the order of joint states in a series is incon-
sequential,  because  reward  weights  are  equal  at  every  step.  In  this
case,  we  can  identify  two  joint  states  /Xt, Xt*1, $ , Xt*s, $ ,
Xt*sQ , $0  and  /Xt, Xt*1, $ , Xt*sQ , $ , Xt*s, $0  for  any  pair  s,
sQ P C. Thus, for a finite k, we rewrite state space by the counts of N
joint states, 

Ct*k
t :( )/C1, C2, $ , CN0 :

Ci . R)x % )Xt*k, Xt*k,1, $ , Xt+ : x . i+S+.

Over this counting state space Ct*k
t , we obtain the recursive equation

on the stationary distribution

P /C1, C2, $ , CN0 .

-
i.1

N

Ti P3C1 * 7i,1, C2 * 7i,2, $ , CN * 7i,N4.
/70

For i . 1, $ , N, Ti is the conditional probability

Ti . P 3C1, C2, $ , CN C1 * 7i,1, C2 * 7i,2, $ , CN * 7i,N4.

Given a probability of some initial state, we can compute the forward-
in-time probabilities over these counting states, using equation (7) un-
til k is sufficiently large. In the numerical implementation of this case,

we  removed  counting  states  with  a  probability  less  than  10*10  for
       

          

Which Types of Learning Make a Simple Game Complex? 55

Complex Systems, 24 " 2015 Complex Systems Publications, Inc.



           
         

           

  g     p y     
computational  efficiency.  This  rounding  reduced  the  probability  to
less than 1% of the total probability 1 in our analysis.

Continuous-Time Limit Model2.4
For consistency of notation, we write

Ri,x
6i 3Xt*k

t*14 :( 5i,x
6i 3Xt*k

t*14 , 7x,xt,i
ri/Xt0

and transform the learning parameters by

ai . 1 * 6i, bi . :i /1 * 6i0.

When k B C, equation (2) can be rewritten as 

P 3x X*C
t 4 .

P 3x X*C
t*14 exp 3:i ORi,x

6i 3X*C
t 44

<x.0
m*1 P 3x X*C

t*14 exp 3:i ORi,x
6i 3X*C

t 44
,

where

ORi,x
6i 3X*C

t 4 :( Ri,x
6i 3X*C

t 4 * Ri,x
6i 3X*C

t*14.

Consider  the  limit  when  this  update  of  probability  measures  takes
place  only  after  infinitely  many  interactions.  This  allows  us  to  treat
the  given  difference  equation  as  a  differential  equation.  With  regard
to the continuous-time limit, Sato and Crutchfield [9] derived the fol-
lowing ordinary differential equation of the marginal probability mea-

sure  Pi /y0  for  the  ith  agent  to  take  the  action  y % '.  For  integers
1 A i A n,

P
U
i /y0

Pi /y0
. bi ri /y0 * -

x.1

m

Pi /x0 ri /x0 , ai -
x.1

m

Pi/x0 log
Pi /x0

Pi /y0
, /80

where yU  denotes the derivative of  y,  and ri /y0  is  the resulting reward
that  occurs  when  agent  i  chooses  strategy  y  averaged  over  the  other
agents#  strategy  during  the  time  interval  between  learning  updates.
This equation was solved numerically, and its trajectory and dynami-
cal properties were analyzed in [9].

Consistency in the Different Approaches2.5
Given Definition 1, each of the three approaches reviewed provides a
different  type  of  approximation  to  a  learning-and-game  model  with
infinite depth k B C.  Our interest here is whether these three models
are consistent for 6 N 1, with which Sato et al. found chaotic dynam-
ics.  The  following  technical  reasons  may  affect  whether  the  ap-
proaches are consistent. 
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The  continuous-time  limit  model  may  provide  a  good  approxima-
tion when its limiting condition holds sufficiently. To our understand-
ing, this limit condition implicitly requires a learning-and-game model
to have k B C and ai . 1 * 6i N 0 for every i, because it assumes the
learning  applies  only  after  sufficiently  long  play.  In  fact,  Sato  et  al.
[7–9] have analyzed only special cases with ai P 0.03. The applicabil-
ity of this approximation remains to be analyzed. 

The agent-based simulation provides an approximation up to sam-
pling  error  whose  magnitude  depends  on  k  and  6i.  As  noted  before,
for  a  large  k  and  some  6i N 1,  the  convergence  of  statistics  using
agent-based simulation may be quite slow. 

The  kth-order  Markov  process  gives  an  approximation  up  to  a  fi-
nite  and  very  small  k.  As  noted  in  Section  2.3.1,  this  limitation  may
be relaxed to some extent, except for the case 6i . 1. The case 6i . 1
is  more  tractable  in  computational  terms,  as  described  in  Section
2.3.2. The stationary distribution in this special case is crucial for the
analysis of consistency between the three models. 

In  the  following  section,  we  numerically  test  the  consistency  be-
tween these three models. Consistency will imply that the continuous-
time  limit  model  captures  not  just  the  special  type  of  learning  as-
sumed  in  [7–9],  but  also  the  original  properties  of  the  reinforcement
learning given by Definition 1. Otherwise, we need to further validate
whether  the  agent-based simulation and the Markov process  analysis
are consistent with each other, in order to confirm their inconsistency
with the continuous-time limit model. 

The Continuous-Time Limit Model Revisited3.

In this section, we investigate the class of games, rock-paper-scissors,
in  which  Sato  and  colleagues  [7–9]  have  found  generic  dynamical
classes including chaos. We analyze the rock-paper-scissors games be-
tween two agents using the continuous-time limit model and the other
two  methods  described  in  the  previous  section.  The  rock-paper-
scissors game [9] is defined as follows.

Definition 2 (2-agent-k-memory iterated rock-paper-scissors game). 
Using the notations in Definition 1, we set n . 2, m . 3, and 

xt,i :(
 0  rock /R0 
 1  paper /P0 

 2  scissors /S0. 

For integer i . 1, 2, we write the opponent j . 3 * i for the ith  agent.
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Let state Xt  at each step t take one of the nine pairwise actions by the
two agents and denote it by

Xt . 3xt,i, xt,j4 .

/0, 00 : RR, /0, 10 : RP, /0, 20 : RS,

/1, 00 : PR, /1, 10 : PP, /1, 20 : PS,

/2, 00 : SR, /2, 10 : SP, /2, 20 : SS.

By taking an action xt,i, the ith agent receives the reward

ri 3xt,i, xt,j4 :(

 1,  if xt,j * xt,i V 1 /mod 30 

 *1,  if xt,j * xt,i V *1 /mod 30 

 Mi,  if xt,j * xt,i V 0 /mod 30. 

We  consider  this  game  as  k B C,  but  its  kth-order  Markov  process
analysis is performed for a finite k.

Results3.1
First,  as  a  sanity  check,  we  replicated  the  numerical  experiments  in
the  exact  settings  studied  in  [9].  With  the  parameters  a . 0,  b . 1,
M1 . *M2 . 0.5,  we  ran  two  simulations  of  the  Hamiltonian  class  of
the system with the initial  conditions reported in [9].  Figure 1 shows
the  phase  portraits  (of  Agent  1)  of  the  quasiperiodic  tori  (left)  and
chaos  (right),  which  respectively  correspond  to  the  two  different  ini-
tial conditions. We replicated these trajectories as reported in the pre-
vious study. 

/a0 /b0

Figure 1.  The  (a)  quasiperiodic  tori  and  (b)  chaos  in  the  phase  space  of  the
continuous-time  limit  model  with  parameters  a . 0,  b . 1,  M1 . *M2 . 0.5,
and two different initial conditions.
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As parameter b and initial values were not reported in [9], we repli-
cated  them  with  the  parameters  a . 0.01,  b . 1,  M1 . 0.5,
M2 . 0.025, and several initial conditions drawn from random values.
We typically  obtained  limit  cycles  as  shown in  Figure  2(a).  With  the
same  parameters  excepting  M2 . *0.365,  and  several  initial  condi-
tions drawn from random values, we typically obtained chaotic trajec-
tories as shown in Figure 2(b). These results are quite similar to those
reported in the previous study. 

/a0 /b0

Figure 2.  A  limit  cycle  ((a):  M2 . 0.025)  and  chaotic  trajectory  ((b):
M2 . *0.365) in the phase space of the continuous-time limit model with pa-
rameters a . 0.01, b . 1, M1 . 0.5, and random initial conditions.

Next,  we  compared  the  results  obtained  by  the  continuous-time
limit  model  to  those  of  the  agent-based  simulation  and  finite-state
Markov  process.  Since  it  has  the  most  representative  outcome of  the
learning-and-game  models  presented  by  Sato  and  colleagues  [9],  we
analyzed  the  game  resulting  in  chaotic  dynamics  with  parameters
0 P a A 1,  b . 1,  M1 . 0.5,  M2 . *0.365.  We  analyzed  an  average  of
30 samples for each set of parameters with different initial conditions. 

Using our best computational resources, we could reasonably com-
pute the stationary distributions up to k . 8 for a K 0 and k . 63 for
a . 0. As the continuous-time limit model does not share the same dis-
crete  time  steps  as  the  other  class  of  models,  the  choice  probabilities
at  each step are not comparable across the three models.  Instead, we
analyzed the marginal probability of outcomes of these models, which
can be  compared across  the  three  models.  Considering  the  symmetry
of  the  three  actions:  rock,  paper,  and scissors,  we only  evaluated the
probability  of  Agent  1#s  win,  of  Agent  1#s  loss,  and  of  a  draw.  Fig-
ure 3(a) shows the probabilities of the win, loss, and draw as a func-
tion  of  a  in  the  chaotic  case  (Figure  2(b)).  The  red,  green,  and  blue

           

        
         
          

          
        

         
          
             

 

Which Types of Learning Make a Simple Game Complex? 59

Complex Systems, 24 " 2015 Complex Systems Publications, Inc.



        
           

           
           

           
         

         
           

             
             
       g     g   

points show the sample probability of Agent 1#s win, loss, and draw,

respectively,  in  the  agent-based  simulations  with  106  samples.  The
solid  lines  corresponding  to  the  color  show  the  probabilities  calcu-
lated by the finite-state Markov process k . 8 (a K 0), and the corre-
sponding  triangles  show  those  of  k . 63  (a . 0).  The  results  of  the
agent-based simulations (open circles) and the Markov process k . 8
(solid  lines)  had  a  high  correlation  coefficient  (0.9716)  and  were
tightly  matched,  except  for  the  case  a P 0.1.  For  a N 1,  the  Markov
process of a . 0 gives a better fit to the result of the agent-based simu-
lation. 

Figure 3.  (a) Probabilities of a win, a loss by Agent 1, and a draw calculated
by the agent-based simulation (circles), the Markov process with k . 8 (solid
lines), the Markov process over the counting states k . 63, a . 0 (triangles),
and the continuous-time limit model (lines with dots). (b) Those over the inter-
val a P 0.04.

In  contrast,  the  continuous-time  limit  model  (the  dashed  lines  in
Figure 2(a)) had uniform probability 1 W 3 in all three cases, except for
a A 0.022. For a closer look in Figure 2(b), the subpanel zooms in on
the parameter interval a P 0.04. This subpanel shows that the proba-
bilistic  properties  in the continuous-time limit  model  are quite  differ-
ent  for  a A 0.022.  This  bifurcation is  found consistently  in  the previ-
ous study. With similar (but slightly different) parameters,  Sato et al.
[8,  Figure  19]  shows a  bifurcation  around a N 0.02.  Even in  this  pa-
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rameter interval, it is evident that the continuous-time limit model fits
neither  the  agent-based  nor  the  Markov  process  model.  As  a  de-
creases,  the probability  of  Agent 1#s  loss  increases  in both the agent-
based  simulation  and  the  Markov  process,  but  it  becomes  smaller
than the baseline probability 1 W 3 in the continuous-time limit model.
The  results  of  the  Markov  process  in  the  special  case  a . 0  and
k . 63 (triangles) are qualitatively consistent with those of the agent-
based simulation and the Markov process with k . 8. 

For further characterization of reinforcement learning, we analyzed
the  average  rewards  of  the  two  agents  in  each  approach  (Figure  4).
This  additional  analysis  demonstrated  that  the  average  reward  for
each  agent  in  the  agent-based  simulation  approached  0.0238  (black
horizontal  line  in  Figure  4).  This  value  is  nearly  equal  to
/M1 , M20 W 6 . 0.0225,  which  is  the  equal  share  of  rewards  for  a  uni-
form random play in this  game. The results  of  the Markov processes
(k . 8  and  k . 63)  were  similar  to  that  of  the  agent-based  simula-
tion,  which  showed  the  general  trend  of  balancing  the  average

Figure 4.  Average  rewards  for  Agent  1  (circle)  and  Agent  2  (square)  in  the
Markov  process  analysis  k . 8  (blue),  the  agent-based  simulation  (green),
and  the  continuous-time  limit  model  (red)  as  a  function  of  a.  Those  of  the
Markov  process  over  the  counting  state  space  with  k . 63, a . 0  are  also
shown (purple).  The black horizontal  line shows the average reward 0.0238,
which is the average of the two agents# rewards in the agent-based simulation
approach. 
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rewards between the two agents as a B 0 and k increases. This result
suggests  that  two  agents  with  the  same  learning  parameters  a1 . a2

and  b1 . b2  would  have  equivalent  average  rewards  in  the  limit  of
a1 . a2 B 0,  although  the  agents  have  asymmetric  rewards  for  their
actions  (M1 K M2).  In  contrast,  the  average  rewards  in  the  continuous-
time  limit  model  did  not  match  the  trend  toward  the  balanced  point
(Figure  4).  As  the  balancing  in  the  average  rewards  characterizes
reinforcement  learning,  this  result  suggests  that  the  continuous-time
limit  model  does  not  capture  this  essential  property  of  reinforcement
learning. 

These  results  show  that  the  continuous-time  limit  model  is  gener-
ally  inconsistent  with  the  other  two  models,  while  the  agent-based
simulation  and  Markov  process  show  qualitative  consistency  over
broad parameter intervals. 

Discussion3.2
The inconsistency of the outcome of the continuous-time limit model
with the other two models suggests that the continuous-time model re-
flects  neither  the  quantitative  nor  the  qualitative  nature  of  reinforce-
ment learning. This inconsistency sheds doubt on the theoretical claim
by Sato  and  colleagues  [7–9]  that  reinforcement  learning  can  lead  to
chaotic dynamics, as their limit model does not approximate reinforce-
ment  learning.  It  is  likely  that  the  continuous-time  limit  approxima-
tion leads to another type of XlearningY that has little to do with rein-
forcement  learning.  Thus,  in  contrast  to  the  conclusions  of  Sato  and
colleagues in [7–9], we warn that there is no support for the continu-
ous-time  limit  model  in  relation  to  reinforcement  learning  leading  to
generic dynamical classes in a game.

Consistency Analysis of Agent-Based Simulation and the
Markov Process

4.

Given  the  results  of  Section  3,  the  remaining  issue  is  a  more  system-
atic  test  regarding  the  consistency  between  agent-based  simulation
and its corresponding Markov process analysis. Although the two re-
sults show reasonable fits  in the analysis  on rock-paper-scissors,  they
show some dissociation as  a B 0.  The following analysis  numerically
investigates whether this dissociation converges to zero asymptotically
as k B C.

Since  the  rock-paper-scissors  game  has  a  relatively  large  combina-
tion  N . 9  at  each  step,  we  could  only  reasonably  calculate  up  to
k . 8. We employ a game with a smaller combinatorial  size in order
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to  analyze  the  consistency  between  the  two  models  for  a  relatively
large k. Specifically, we analyzed an iterated prisoner#s dilemma game
that has the minimal number of states N . 4. We consider two agents
playing the iterated games by choosing an action at each step using re-
inforcement learning. We suppose that the consistency between agent-
based  simulation  and  Markov  process  analysis  would  be  essentially
common across  multiple  learning-and-game models.  Thus,  the  choice
of  the  prisoner#s  dilemma purely  stems  from its  minimal  combinato-
rial space. 

The prisoner#s dilemma is a classic game that has been studied as a
minimal  model  of  tradeoff  between  cooperation  and  defection.  The
basic  game  has  been  extended  to  games  with  multi-agent,  iterated
steps,  stochastic  strategy,  situation  under  noise,  and  a  certain  topol-
ogy  of  agents#  interactions  [11,  14,  15].  In  the  iterative  variant  of
models,  each agent can adaptively choose its  action on the basis of a
series of past actions. One of the simplest cases is completely analyzed
based on the finite Markov formalism [12], but more general cases re-
main for further research. 

The  iterated  prisoner#s  dilemma  as  a  learning-and-game  model  is
defined as follows. 

Definition  3  (2-agent-k-memory  iterated  prisoner"s  dilemma).  In  the  nota-
tions defined in Section 2, we set n . 2, m . 2, and 

xt,i :(
 0,  cooperation 

 1,  defection. 

For each step t and agent 1 and 2, let us write the set of the four states

Xt :( 2 xt,1 , xt,2 , 1.

For integer  i . 1, 2,  the ith  agent  with its  opponent  j . 3 * i  receives
the reward

ri 3xt,i, xt,j4 :( Rxt,i,xt,j

by  taking  an  action  xt,i.  The  rewards  satisfy  R01 P R11 P R00 P R10

and  /R01 , R100 P 2 R00  in  order  for  this  game  to  be  classified  as  a
prisoner#s dilemma.

Simulation and Analysis4.1
In the agent-based simulation, we initialized Q0 . 0, and each action
of  each agent  is  randomly chosen using  equation (3)  in  Definition 1.
We discarded the first 1000 samples as transients and used the subse-

quent  3F106  or  3F105  samples  to  compute  the  stationary  distribu-

tion for each joint state Xt
t,k for a given k by treating it as a kth-order
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Markov  process.  In  the  Markov  process  analysis,  for  each  k A 9  we
used  the  transition  matrix  in  equation  (5)  to  compute  the  stationary

distribution over  the states  Xt
t,k.  We analyzed the iterated prisoner#s

dilemma with the rewards R00 . 1, R01 . *2, R10 . 2, and R11 . 0.

Error Analysis4.2
For  61 . 62 . 0.5,  :1 . :2 . 0.5,  and  k A 9,  Figure  5  shows  the

sample  probabilities  of  Nk  states  in  the  agent-based  simulation  as  a

function of the stationary probabilities in the corresponding kth-order
Markov  process.  Figure  6  shows  another  case  with  the  parameters
61 . 62 . 0.7 and :1 . :2 . 1. The results show a good fit between
the two methods as k increases.

Figure 5.  The stationary probabilities  of  Nk  states in the agent-based simula-

tions (y axis) as a function of those of the kth-order Markov process (x axis)
for 61 . 62 . :1 . :2 . 0.5 and k A 9. 
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Figure 6.  The stationary probabilities of Nk  states in the agent-based simula-

tions (y axis) as a function of those of the kth-order Markov process (x axis)
for 61 . 62 . 0.7, :1 . :2 . 1, and k A 9. 

For  a  more  rigorous  statistical  test  on  model  fitting,  we  evaluated
the chi-squared statistics [16] 

Z23Nk * 14 . -
i.1

Nk /ni * n pi02

n pi

/90

where,  for  joint  states  1 A i A Nk,  n . <i.1
Nk

ni,  pi  is  the  stationary

probability  in  the  kth-order  Markov  process,  and  ni  is  the  count  of
joint  state  i  in  an  agent-based  simulation.  If  each  state  in  the  agent-
based  simulation  is  sampled  from  the  distribution  3p1, p2, $ , pNk 4,

Z2 3Nk * 14  follows  the  chi-squared  distribution  ZNk*1  with  Nk * 1

degrees of freedom. We set  the upper bound of the sampling error Z[

such  that  the  cumulative  distribution  ZNk*1 3Z2 3Nk * 14 A Z[ 4 .
0.975.  We  say  that  a  Markov  process  fits  the  corresponding  agent-
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based  simulation  if  its  chi-squared  statistics  Z2 3Nk * 14  are  smaller

than the supposed bound Z[ .

Figure 7 shows Z2 3Nmin /k,50 * 14 of the 15 cases with the parame-
ters  6 :( 61 . 62 . 0.3,  0.5,  0.7,  0.9,  1;  :1 . :2 . 0.1,  0.5,  1;  and
k . 1, 2, $ , 12 for 6 P 1 and 1 A k A 500 for 6 . 1. With our com-
putational  resource,  k . 13  for  6 P 1  was  the  maximum  practically
computable  in  a  reasonable  time,  due  to  the  exponential  growth  of

the state space (N13 N 107.82). Due to the special nature of 6 . 1, we
were able to compute over k . 500 for it and found the stationary dis-
tribution was converging for k K 1000, as far as its marginal distribu-
tion is concerned. 

The red line in each panel shows the upper bound Z[  of sampling er-

ror  of  the  agent-based  simulation  with  3F106  for  6 P 1  and  with

3F105 for 6 . 1. In general, the larger state space gives a stricter sta-
tistical  test  on  the  model  fit  but  requires  a  larger  sample  size  for  the
agent-based  simulation.  Considering  the  tradeoff  between  computa-
tional cost and statistical power, we chose to evaluate the chi-squared

errors  in  marginal  distributions  in  the  state  space  N5 . 1024  for

k ; 5  and  6 P 1.  For  k K 5  and  6 P 1,  each  of  the  Nk  states
Xt*k,1

t . /Xt, $ , Xt*k,10  is  mapped  to  its  corresponding  state

Xt*4
t . /Xt, $ , Xt*40,  and  the  chi-squared  values  of  these  marginal

probabilities  over  N5  states  were  analyzed.  For  6 . 1,  the  stationary

distribution of every state with probability larger than 10*10 was ana-
lyzed.  The  cases  with  deviations  smaller  than  the  upper  bound  are
shown in the filled circles, and all other cases are represented by open
circles. 

These results show a general trend that the Markov processes fit to
the corresponding agent-based simulations with a sufficiently large k.
For small 6 and :, a small k is enough for a good fit, and for large 6
and :, a relatively larger k is needed. As 6 B 1 and : B C, the agents
learn with an infinite history length, and the fitting of a finite Markov
process  becomes  worse.  In  fact,  among  the  cases  we  analyzed,  the
case  with  the  larger  parameters  0.7 A 6 P 1  did  not  show  any  well-
fitting  cases  within  this  range  of  k A 10  (Figure  7).  However,  for
6 . 1, the finite Markov process showed notably smaller errors than
the  theoretical  error  bound  for  every  1 A k A 500,  excepting  a  few
cases  (Figure  7).  This  confirms  that  the  Markov  process  analyses  fit
the  corresponding  agent-based  simulations  over  a  broader  range
6 P 0.7 or 6 . 1 with sufficiently large k. 
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Figure 7.  The chi-squared statistics Z2 3Nk * 14 for the sampling errors in the

agent-based simulations from the corresponding Markov process.
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As discussed  in  Section  2.3.1,  the  squared  errors  between  the  kth-
order  Markov  process  and  the  true  model  reduce  exponentially  as  a
function  of  k.  Our  mathematical  analysis  discussed  in  Section  2.3.1
states that exponential decays of errors are generally slower for larger
6. Testing this statement, we analyzed the slopes of the expected error
shown as the blue lines in Figure 7. As expected, their exponential de-
cays are slower as 6 increases. These results confirmed the theoretical
properties  of  the  Markov  process  in  Section  2.3.1  and  Appendix  A.
Although it is not directly computable with a large k, this exponential
reduction  of  errors  suggests  a  practical  consistency  between  the
Markov  process  and  agent-based  simulation  for  a  broad  interval  of
6 P 1. 

We estimated the expected minimal k0  (described in each panel  in
Figure  7)  in  which  the  extrapolated  error  line  (blue)  meets  the  sam-
pling  error  upper  bound (red)  for  each  set  of  parameters.  For  6 N 1,
this suggests that the necessary k  for the Markov process to substan-
tially  approximate  the  model  as  k B C  is  quite  large  and  not  easily
computable. Nonetheless, this error analysis with an extrapolated line
would be useful when we wish to evaluate a sufficient sample size for
the  convergence  of  an  agent-based  simulation.  The  Markov  process
analysis is useful for a smaller 6 P 0.7, since it does not have any sam-
pling  error.  With  6 K 0.7,  an  agent-based  simulation  or  the  Markov
process analysis with 6 . 1 may be more reliable. 

General Discussion5.

In this study, we investigated a game with reinforcement learning us-
ing  three  different  approaches  and  numerically  investigated  whether
reinforcement learning leads to generic dynamical classes in the game.
The continuous-time limit model proposed in [7–9] has been thought
to  show  the  theoretical  relationship  between  reinforcement  learning
and complex dynamics  in  a  game.  Since  this  theoretical  claim is  lim-
ited  for  special  learning  after  infinitely  many  actions,  we  tested
whether  the  continuous-time  limit  model  can  be  continuously  con-
nected to the other models without this assumption.

Our  analysis  showed  that  the  outcomes  of  agent-based  simulation
and the Markov process analysis are consistent. Our additional analy-
sis showed that the average rewards of the two agents tended to con-
verge  to  a  balanced  point  in  both  the  Markov  process  analysis  and
agent-based  simulation.  This  finding  suggests  that  two reinforcement
learners with equal learning parameters approach an equilibrium with
sufficiently  large  k  and  small  a.  However,  this  analysis  also  revealed
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that  the  continuous-time  limit  model  did  not  exhibit  a  similar  trend
toward an equilibrium. In sum, the comparison with these two other
approaches  revealed  that  the  continuous-time  limit  model  does  not
capture  the  basic  qualitative  outcomes  of  a  game with  reinforcement
learning, such as who wins against whom or the equilibrium in the av-
erage  rewards.  Importantly,  the  Markov  process  analysis  with  a . 0
showed  a  converging  stationary  distribution,  which  means  this  game
has  a  unique  fixed  point  to  which  it  converges  (and  thus,  the  game
cannot  be  a  chaotic  attractor).  Thus,  this  analysis  does  not  support
Sato  and  Crutchfield#s  [9]  claim that  reinforcement  learning  leads  to
complex  dynamics  such  as  chaos  in  a  game.  To  put  it  another  way,
our  analysis  suggests  that  two  reinforcement  learners  in  these  games
cannot  be  universal,  as  this  class  of  computation  cannot  encode  a
complex class of phenomena sufficiently [10]. 

The  second  study  on  the  iterated  prisoner#s  dilemma  gave  an  ex-
tended  investigation  confirming  the  agreement  between  the  agent-
based  simulation  and  corresponding  Markov  process  for  relatively
large k. 

We conclude the paper by summarizing two benefits of using the fi-
nite-state  Markov  approach.  First,  it  offers  another  computational
method  for  agent-based  simulations  and  can  be  used  for  a  sanity
check  of  these  kinds  of  models,  as  it  has  no  sampling  error,  unlike
agent-based simulation.  Second, unlike in agent-based simulation,  we
can characterize  the  potential  dynamics  directly  from the mathemati-
cal  property  of  a  given  transition  matrix.  A  drawback  of  using  the
Markov  process  analysis  is  its  computational  cost  for  a  large  state
space. For this issue, we offer a potential collaboration with the agent-
based  simulation  of  a  game  and  the  corresponding  Markov  process
analysis.  This  hybrid  approach  can  be  a  potentially  powerful  tool  to
explore a broad class of games with multiple agents. 
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Appendix

Errors in a Finite-State Markov ProcessA.

For  a  model  with  k B C  and  6 P 1  formulated  in  Definition  1,  we
evaluate the errors of a Markov process with a finite k defined in Sec-
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tion  2.3.  Let  L % 2Nk
 and  L % 2Nk

,  where  LT L . LT L . 1,  be  the
eigenvector corresponding to the largest eigenvalue \ . 1 of the transi-

tion  matrix  Q % 2NkFNk
 and  QT % 2NkFNk

.  Suppose  the  true  kth-
order  transition  matrix  is  Q0  and  its  stationary  vector  is  L0  in  the

limit k B C. The sum of squared errors is defined by 

M2 . /L * L00T /L * L00.

When  each  cell  in  the  difference  matrix  O . Q * Q0  is  sufficiently
smaller, the difference is approximated by the Taylor series up to the
first order

L0 N L * vec /O0T
]L

]vec /Q0

T

,

where we denote the vectorization operator to a matrix X % 2MFN by

vec : X B 3X1,1, $ , XM,1, $ , X1,N, $ , XM,N4T .

Then we find

M2 N vec /O0T
]L

]vec /Q0

]L

]vec /Q0

T

vec /O0.

The partial differential of L with respect to the vector vec /Q0 is

]L

]vec /Q0
. 3L ^ ENk 4 _ENk * 3LT L4*1 L LT` 3\ ENk * QT4a,

where EN % 2NFN  is the NFN  unit matrix, ^ denotes the Kronecker

product, and Xa . XT 3X XT4*1  denotes the Moore–Penrose general-
ized  inverse  matrix  of  X.  For  most  cases  of  the  learning-and-game

model,  Q  has  its  second-largest  eigenvalue  R\2S b \,  and  Q N L LT .
This gives

_ENk * 3LT L4*1 L LT` 3\ ENk * QT4a N ENk ,

and  the  sum of  squared  errors  M2  is  approximately  a  quadratic  func-
tion of O:

M2 N /OL0T OL.

With 6 P 1,  the difference O  decreases  exponentially  as  a  function of

k  in  equation  (3).  Therefore,  the  sum  of  squared  errors  M2  decreases
exponentially  as  k  increases.  The  exponential  decays  of  the  weighted
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sum  of  squared  errors  are  numerically  demonstrated  by  the  results
shown in Figure 7.

Efficient Computation of Stationary DistributionB.

Here we show an efficient algorithm to compute the stationary distri-

bution L for an arbitrary transition matrix Q of the N-state kth-order
Markov process in equation (5).

Before  showing  the  main  result,  let  us  introduce  additional  nota-
tions. Let us define the inverse of indexing map: For 1 P j A k * 1, 

gN /i, j0 :( 1 , modN

i * 1

Nj*1
,

where modN/x0 :( x mod N and y . cxd is the maximal integer y A x.
Then,

i . hN,k //gN /i, k0, gN /i, k * 10, $ , gN/i, 1000.

The  transition  matrix  Q  defined  in  equation (5)  can  have  at  most

N  positive  elements  in  each  column.  For  the  jth  column  and
1 A i A N, the nonzero element is 

qi,j :( QfN,k /i,j0,j,

where

fN,k /i, j0 :( hN,k//i, gN /j, k0, gN /j, k * 10, $ , gN/j, 2000.

Let us denote the unit matrix by EN % 2NFN and the unit vector 

eN,i :( 0, $ , 0, 1
e
i

, 0, $ , 0

T

% 2N.

We define a special permutation matrix called a commutation matrix
[17] by

CM,N :( 3EM ^ eN,1, EM ^ eN,2, $ , EM ^ eN,N4.

By the commutation matrix, an arbitrary MFN matrix X holds

vec /X0 . CM,N vec 3XT4.

Now we are ready to state the main result.
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Theorem 1.  Let  Q % 2NkFNk
 be  a  transition  matrix  defined  in  equa-

tion (5). Then, it has the following decomposition: 

Q . CN,Nk*1 Q,

where

Q .

Q1

Q2 0

f
0 QNk*1

with the block diagonal matrix Qm in which the /i, j0 element

)Qm+i,j . Qa,b

where

a . fN,k /i, N /m * 10 , j0, b . N /m * 10 , j.

Proof. We can write the transition matrix 

Q . -
i.1

Nk*1

e
Nk*1,i
T ^ Qi ^ eNk*1,i.

Similarly,

Q . -
i.1

Nk*1

e
Nk*1,i
T ^ eNk*1,i ^ Qi,

and

CN,Nk*1 . -
i.1

Nk*1

e
Nk*1,i
T ^ EN ^ eNk*1,i.

Then it is easy to see

Q . CN,Nk*1 Q. !

With this theorem, we obtain the following result. 

Corollary 1.  For  an  arbitrary  vector  x % 2Nk
 and  transition  matrix

Q % 2NkFNk
 with  its  block  diagonal  matrices  Qi % 2NFN;

i . 1, $ , Nk*1, 

Q x . vec 33Q1 x1, Q2 x2, $ , QNk*1 xNk*1 4T4, /B.10
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where xi % 2N 3i . 1, $ , Nk*14 satisfies

x . vec 33x1, x2, $ , xNk*1 44.

The left-hand side of equation (B.1) is  needed in numerically solv-
ing  the  eigenvalue  problem,  and  the  multiplication  costs  computa-

tional  complexity O 3N3 k4  in general.  The computational  complexity
of the matrix multiplication at the right-hand side in equation (B.1) is

O 3Nk,14.  Although  the  computational  complexity  in  both  forms  is

still  an  exponential  function  of  k,  the  latter  gives  relatively  efficient
computation.  Exploitation  of  this  mathematical  property  relaxes  the
computational problem of a Markov process analysis to some extent. 
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