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Abstract

In this dissertation, congestion control management mechanisms are investigated to
introduce a new direction for aiding in solving network congestion. Existing mechanisms
that directly or indirectly help to eliminate the congestion problem were being investi-
gated.

The well-known empirical model of TCP connection throughput model has been ex-
tended in this thesis to include the effect of compression of part of the traffic throughput.
The derived model can help to estimate the performance of congested networks when
compression is applied.

The proposed generic ECM framework can be applied to minimize the impact of
network congestion by orchestrating different existing congestion management mecha-
nism with the newly introduced compressed MPLS mechanism. The ECM framework
presented in this research offers an overall idea on how to help in improving congested
networks throughput by reducing the impact of network congestion. In other words, ECM
framework can indirectly help congestion points or links of the entire network (Internet).
ECM framework can be re-engineered to cooperate with other possible mechanisms (i.e.,
network coding) for further reduction of network congestion.

The ECM/C model is presented in this research which offers an overall idea on how
to utilize compression in the networking model to help in improving congested networks
throughput for limited resource devices.
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Chapter 1

Introduction

This chapter first briefly introduces the congestion problems in the communication net-
works. The background of some of the existing congestion control techniques are presented
here together with the research motivation. The objective and contribution of this re-
search are also provided, which is followed by the dissertation outline.

1.1 Congestion Problems in Communication Networks

A computer network is collection of autonomous computers interconnected by a single
technology. Two computers are said to be interconnected if they are able to exchange
information. The data in some communication networks is transmitted in the form of
messages, which could be referred to as packets during the transmission process. These
packets are sent across the network based on the communication protocols, and recon-
structed at the destination [1].

The size and complexity of communication network can be classified into four main
types: small network, Local Area Network (LAN), Metropolitan Area Network (MAN),
and Wide Area Network (WAN). Small networks commonly connect the sub-assemblies
or devices, while LAN connects the distributed terminals and computer equipment in
restricted areas, such as University campuses. MAN is a high speed network that is used
to interconnect LANs in a geographical region, such as within a city. Meanwhile, WAN is
multiple communication connections for a large geographical area, for example, Internet
is connected via a large global network of service providers using the servers, modems,
routers and switches.

Internet has had a big influence on human daily life for years. It is used at home for
personal usage entertainment, communication, banking, shopping, and devices control. It
is also used at work as professional tool. Fig. 1.1 illustrates the growth of Internet based
on the time-line from year 2004 to 2015 [2]. One important time-stone is in 2010, when
mobile broadband connections exceeded fixed broadband connection. The time-line also
shows that the number of Internet users increased from one billion in 2005 to almost three
billion by 2015.

The rapid growth of Internet users increases traffic loads, at the same time, networks
are targeting full utilization to maintain revenue and service pricing. Consequently, the
problem of network congestion is likely to occur in certain situations. Network conges-
tion is one of the unending problems that can occur when capacity of an underlying
sub-network is insufficient for the demanded amount of data. The growth of demand
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Figure 1.1: The milestone of Internet development

will eventually go beyond the Service Provider’s ability to efficiently cope with the huge
data traffic. As a result, the network might face tremendous and unpredictable network
congestion. When network congestion occurs, the quality of service (QoS) and energy
efficiency in the network will degrade. In other words, if traffic load ever goes beyond
the Internet’s capacity, Internet will face tremendous and unpredictable network conges-
tion. When a resource (buffer or bandwidth) is shared with multiple users who contend
to access that resource beyond its availability, network congestion may occur. In other
word, the network congestion can be defined as when the incoming traffic demand to some
sub-network (node or link) exceeds the capacity of that sub-network (buffers and output
capacity), congestion may occur.

Network congestion occurs due to various reasons. It can be generally categorized
into predictable events and unpredictable events or alternatively into random congestion
and recurrent congestion. Predictable events generate additional Internet demand to
the already existing traffic load, like when users accessing global online debut of big
branded products. Unexpected life threatening events such as floods, tornadoes, and
earthquakes can increase the network traffic erratically and/or suddenly remove vital
network resources. This kind of unpredictable events can last for few hours, days or
weeks. Random congestion can occur when a number of users are sharing a sub-network
and all become highly active within a very short period of time. Random congestion is
mainly due to bad design of network resource that is over-utilized above the safe statistical
nature of traffic. Finally, recurrent congestion occurs due to the normal pattern of daily
activities that create an overall significant traffic load in recurrent time. For instance,
higher usage on business hours for commerce and trading servers, similarly higher usage
of residential users in the evening to entertainment service providers.

During congestion, the quality of service (QoS) in Internet will be degraded. When
a network is congested, the delay time and packet loss increase, and the throughput
decreases. The delay time might increase due to packets suffering from long queuing till
timing-out. For example, if the worst case for satellite network transmission is 160 ms
round-trip, when a voice call experiences 200 ms, the talk will be overlapping. Packet
loss in congestion happens when a packet is dropped because of long waiting time due to
unavailability of the next buffer. Although the lost packets would be retransmitted with
Transmission Control Protocol (TCP), still, the overall network throughput decreases.



1.2 Research Background and Motivation

Network congestion basically can be resolved by three possible methods: increasing phys-
ical output bandwidth, increasing physical size of local buffering and implementing better
network flow management. When physical output of a network is increased, i.e., the
transmission rate is increased, the problem of congestion which mainly caused by an ex-
tremely slow link would be solved. However, it is usually not that simple, when some links
are upgraded without sufficient studying and planning, worse congestion can reappear in
some nearby link due to bad network resources balancing.

When the capacity of buffering is insufficient, incoming packets which wait too long
before being allowed to enter the buffer might experiences times-out and get dropped.
If the buffer size is enlarged, more packets will be allowed to enter and stored, this can
mitigate the congestion problem. However, larger buffer size can introduce longer delay
again causing timing-out and congestion again.

Network congestion is a dynamic problem; the two manual methods mentioned are
not always useful and definitely not responsive enough. That leaves only the last method
which has been actively pursued by researchers for nearly three decades, which is the net-
work flow management to handle congestion. In short, the congestion management. The
goal of any network flow management is to ensure that the network is utilized as efficiently
as possible. In other word, the highest possible network throughput shall be achieved while
trying to avoid over-utilization and its associated problems such as congestion.

Different low management approaches has been introduced over the years to address
the problem of congestion. Congestion control handles the level of traffic entry to the
system. The initial model of congestion control is based on microeconomic theory and
convex optimization theory, where individuals controlling flow rates can interact to obtain
an optimal network-wide rate allocation. Later many distributed network optimization
algorithms extended that initial model. However, the initial model has a weakness; it
assumes the entire flow is controlled by the same parameter, and different flows will be
controlled by different parameters.

Congestion avoidance such as Random Early Detection (RED) and fair queuing are
commonly used. In RED mechanism, the average queue size is monitored and the packets
are pre-dropped according to statistical probabilities to save space for other packets and
explicit messages are sent to inform the sender to decrease the transmission rate. RED is
simple to implement without global synchronization and can provide high link utilization.
However, the performance is highly sensitive to the controlling parameters; threshold,
drop probability and weight in RED algorithm and might cause buffer overflow or slow
responsiveness to congestion. Fair queuing is a scheduling algorithm which allows the
capacity of the link to be fairly shared by multiple connections; it can prevent high
speed data connection from swamping links of insufficient capacity. Priority schemes,
is one of the network congestion mending functionalities which allow some packets to
be transmitted with higher priority than others. These schemes cannot solve network
congestion directly. They only help to relieve congested network through providing some
services.

A wide range of network congestion mechanisms have been introduced by researchers
around the world, some of current network congestion mechanisms have included fuzzy
logic or neural network. Adaptive route changing algorithms have been also presented
to alleviate congestion by modifying the routes to steer traffic in the most effective way.



The utilization of network coding in congestion control has also been studied. TCP Vegas
with online network coding (TCP VON) uses one of the examples of congestion control
mechanisms.

From the point of view of congestion control mechanisms, the term congestion control is
wider than just a way to get rid of congestion, but rather to the way for better utilization of
the network resources. The goal of researchers is still almost the same, which is to improve
the efficiency of network resources usage while providing safety measures or margins to
avoid over-utilization.

Here, I emphasize again, congestion control actually refers to the way of effectively
use the network resources, not just congestion management itself. Network technologies
have reached blazing speeds, Ethernet technology advanced from IEEE802.3a 10 Mbps in
1985 to IEEE802.3ba 100 Gbps in 2010 [3]. Also, wireless LAN technology increased from
[EEE802.11a 54 Mbps in 1999 to IEEE802.11n 600 Mbps in 2009 [4]. Still, the congestion
sometime occurs due to the unbalance load distribution.

Most of the existing congestion control mechanisms is about ‘how to eliminate con-
gestion’, focusing on one or more scenarios of special cases. But congestion is a dynamic
problem which might occur due to different network scenarios and events. This motivates
us to propose an efficient congestion management framework, which is about ‘how to
better utilize the available mechanisms’ by adaptive selection of the suitable congestion
mechanism, trying to improve resources utilization. The research introduces a new ap-
proach for solving congestion, compression is studied to reduce the effective size of data
and possibly to improve performance.

To implement compression in the proposed congestion management framework, the
following research problems are carefully considered.

e Lengthy compression time even for the fastest existing hardware compression schemes.

e Highly sensitive compression degree depending on the fragile existing correlation in
any data based on bot spatial and temporal locality principals of information theory.

e Enormous temporally memory requirements for compression and sometimes decom-
pression as well.

e The conflicting nature of the mentioned above three problems, meaning improving
one will definitely degrade the other two.

1.3 Research Vision and Objectives

Congestion can occur at any time and place in the Internet. Fig. 1.2 shows the possibility
of congestion in the Internet. Current congestion management is usually implemented
as an integral part of flow management which ensures the network resources are being
fully utilized all the time. However, there will never be a perfect flow control mechanism
that can make sure that the network resource is fully utilized and at the same time
avoid congestion completely. This can easily be realized from the researches’ continuous
development of new traffic control mechanisms.

The vision of this research is to propose an efficient congestion management frame-
work to minimize the impact of congestion, without wasting much network resources. To
accomplish this vision, the research objectives are summarized as follows:
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Figure 1.2: The congestion problem in the Internet

e To review the existing network congestion management, especially the ATM and
TCP/IP networks.

e To derive an empirical model throughput of congested network with compression
capability.

e To design an efficient congestion management framework making use of the com-
pression.

e To propose an efficient congestion management with compression for small devices.

1.4 Summary of Contribution

This research investigates the efficiency of compression techniques in networks from the
perspective of throughput. The network congestion management framework (ECM) is
proposed for network devices. Although the framework model is quite simple, the work
provides valuable insight contribution to the existing research on congestion management.
The main contributions of this research can be summarized as follows:

e An empirical model for network throughput with compression capability to study
the feasibility of compression in networks.

e A generic congestion management framework is proposed that can be applied to
minimize the impact of network congestion by using the existing mechanisms cou-
pled with compression on top of Multi-Protocol Label Switching-Traffic Engineering
(MPLS-TE).

e A simple compression scheme with lightweight decompression for devices with lim-
ited resources is proposed.

Both ECM framework and ECM/C model proposed show opportunities of using com-
pression in networking such as in the Internet. Both models can co-exist and be applied
in different parts of the network simultaneously, or with limited overlapping.



1.5 Structure of the Dissertation

The dissertation is organized as follow:

Chapter 1 (this chapter) introduces the basic concept of congestion and the conges-
tion problems in networks. The motivation and some research backgrounds are described.
Also a summary of the contributions of this research are presented.

Chapter 2 reviews some of the existing network congestion management mechanisms
used in the Internet. First, the devices in general networks are distinguished, and then
traffic management methods are reviewed. Almost 34 of TCP variants are used to explain
in-depth end-to-end congestion control.

Chapter 3 reviews some of the common existing compression schemes and provides
thorough classification. Example schemes are later explained and discussed to show the
suitable chances of application. Finally, the generic compression metrics are presented
together with derivation of a relation between overall compression degree and part-wise
compressed data compression degrees.

Chapter 4 formulates an empirical model for connection throughput of compression
capable networks. This throughput model is the extension of an existing model with finite
buffer. The operating curves of the model are also shown.

Chapter 5 proposes an Efficient Congestion Management (ECM) framework for net-
working devices to minimize the impact of network congestion when it occasionally occurs.
The architecture of ECM mainly consists of a congestion classifier. The new congestion
control mechanisms introduced together with the compression.

Chapter 6 introduces an ECM/C model together with Dictionary-based Lightweight
DeCompression (LDC) scheme that is proven to minimize the impact of congestion in
small limited resources devices. Those devices which have small bandwidth and small
buffering capabilities are the main concerned here. The four stages of LDC; dictionary
building, encoding, dictionary loading and decompression are explained. Analysis of the
LDC scheme performance due to the affected parameters is also presented.

Chapter 7 summarizes the work in this dissertation and provides insight into the
future work.



Chapter 2

Network Congestion Management

In this chapter, the background knowledge of network congestion management is dis-
cussed. Some network architectures can suffer from congestion while other designs man-
aged to avoid any possibility of occurrence. An example of each network class is presented
in this chapter. Some of the existing congestion management techniques are also intro-
duced while talking about the congestion vulnerable class of networks.

2.1 Introduction

Network congestion can occur when different data streams flowing in from multiple links
to a router, require a single resource. Since congestion can only happen in nodes with
multiple input links and at least one output resource, it can happen in any device except
for end devices. For example, when core Internet devices encounter more traffic than
they can handle. The single resource which is competed for here might be memory like a
router buffer for traffic, or bandwidth of the output link. In both cases, data experiencing
prolonged delays (buffer waiting) would eventually timeout (be dropped). When reliable
data is required and the network is congested, the more data being re-sent after dropping,
the more time need for successful transfer. This would waste the already consumed
energy, bandwidth and memory resources which that data already utilized until the point
of dropping. Not to mention the additional overall delay that data would accumulate
besides the retransmission delay.

Congestion can occur mainly due to one of two reasons. First, when the amount of
data traffic admitted into the whole network doesn’t exceed the whole network capacity
for data transfer. The second is attributed to poor balance routing of data traffic across
the network links. Known routing techniques are still far from perfection, thus frequently
fail to balance traffic among the links. Imperfect routing causes congestion by over utilized
some parts of the network for some profit (financial, political, energy ...), while other parts
are underutilized.

Fig. 2.1 illustrates an example of Internet congestion. Internet is comprised of three
elements: end device, edge device, and core device. An end device can be any machine
with some application running. An edge device (router) provides an entry point to the
lower level devices for the higher level devices. Core devices (extremely fast big routers)
form the core Internet and interconnect it to lowest level edge devices (router). In Internet
links, data only flows from one end device to another end device. According to what was
previously mentioned, congestion in Internet would only occur in edge or core devices but



Figure 2.1: Example of network congestion in Internet

not end devices.

Any network that might experiences congestion will be operating in one of the three
main stages; normal traffic flow stage and two congestion stages. When congestion is
detected, the network will go through a congestion mending stage, followed by the recov-
ery stage. Some networks will additionally go through congestion avoidance stage after
optional congestion prediction. The naming of those stages has varied a lot throughout
the literature. Fig. 2.2 (a) shows the network congestion state diagram of the operation
of congestion vulnerable networks in the different congestion stages.

To handle the network operation during those stages, four different basic functions
must be provided by the traffic flow management. Those four functions are; normal flow
control, congestion detection, congestion mending manoeuvre and congestion recovery
flow control. The correspondence between the stages and the functions is clear from
the naming. Two additional optional functions are provided in the networks capable of
running in optional avoidance stage. Those two functions are congestion prediction and
avoidance flow control. Both congestion management and its functions have also been
referred to in the literature with different names. The functions responsible for controlling
the flow during the four network congestion stages are shown with solid boxes in Fig. 2.2
(b). Those functions are basic normal flow control, congestion mending manoeuvre and
congestion recovery flow control, besides the optional avoidance flow control.

Both the congestion detection and congestion prediction functions, which is showed
with dotted boxes in Fig. 2.2 (b), are responsible for switching the operation of the
network from normal flow stage into either congestion mending stage or congestion avoid-
ance stage, respectively. Switching between either stage is usually straight forward after
carrying out the congestion mending manoeuvre or avoidance flow control, respectively.
During the avoidance stage, congestion detection can also switch the network operation
into the congestion mending stage.

Many techniques and standards have been introduced to resolve network congestion
problems or avoid it. Some network standards were designed from the beginning to
avoid any possibility of congestion occurrence, ATM and MPLS are among those network
standards. In the next subsection, ATM as an example network that totally avoids any
congestion is introduced. The following subsection will introduce TCP network as an
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Figure 2.2: Network congestion mechanism

example of network architectures experiencing congestion and how it is managed. The
transmission control protocol (TCP) and Internet Protocol (IP) are actually two different
network protocols. TCP and IP are normally implemented together. The terms TCP/IP
or TCP are going to be used interchangeably throw out this thesis and considered to be
equivalent referring to either the whole Internet or only the transport layer.

2.2 Congestion Free Networks

ATM is one of the technologies that are targeted to meet the Broadband Integrated Ser-
vices Digital Network (BISDN) requirements. The BISDN is an extension of Integrated
Service Digital Network (ISDN). In ISDN, the end-to-end digital connectivity for data
such as audio, video, and data applications are provided. While in BISND, a wide range
of applications that require higher transmission rate are supported. The BISND that uses
ATM technique is also called as ATM networks. Almost all other networks mainly tar-
geting voice connection services are also congestion free networks such as Public Switched
Telephone Network (PSTN). Some data network as MPLS are also designed to provide
congestion free traffic.

2.2.1 Asynchronous Transfer Mode (ATM)

According to the ATM reference model as shown in Fig. 2.3, it consists of three main
layers, which are physical layer, ATM layer, and ATM adaption layer [5,6|. The figure
shows the ATM layers side by side with the corresponding OSI model layers. The physical
layer is constructed by two sub-layers; physical medium (upper sub-layer) which provides
bit transmission capability, and transmission convergence (lower sub-layer) which pro-
vides the functions of transmission frame generation and extraction, transmission frame
adaption, cell rate decoupling, cell delineation, and Head Error Control (HEC) signal
generation and confirmation. The ATM layer is mainly responsible for the cells traffic
management and congestion control in the network. In ATM adaption layer, the seg-



mentation is performed to split the higher layer information into a size of cells at the
end devices of sender and reassembles back into data units at the end device of receiver
devices before being delivered to higher layer.
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Figure 2.3: ATM Reference Model (courtesy of [7])

The information in the ATM network is transmitted in a short fixed length of 53 byte
cells. The 5 bytes are used for ATM header and the remaining 48 bytes are the payload of
encapsulation information. The ATM cell structure is shown in Fig. 2.4, where it consists
of six header fields, Generic Flow Control (GFC), Virtual Path Identifier (VPI), Virtual
Channel Identifier (VCI), Payload Type Identifier (PTI), Cell Loss Priority (CLP), and
Header Error Control (HEC). The GFC field is used to control the traffic flow across the
User Network Interface (UNI). The VPI defines the virtual paths between sender and
receiver for a particular cell. The VCI is used to identify a channel path for a particular
cell. By combining both information in the field of VPN and VCI, a virtual circuit for a
specified ATM cell is identified. In an idle cell, all the bits of VPI and VCI are set to 0’s.
The PTT is responsible to identify the type of ATM cell that follows, to indicate whether
the cell experienced congestion in its journey, and to determine the last cell in a block for
ATM adaptive layer for user ATM cells. The CLP is used as priority indicator, and HEC
is used for error detection.

GFC (4 bits) VPI (4 bits)

VPI (4 bits) VCI (4 bits)

VCI (8 bits)

VCl (4 bits) PTI (3 bits) | CPL (1 bit)

HEC (8 bits)

Data Payload (48 bytes)

Figure 2.4: The ATM cell structure
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The ATM network provides several services to the users, according to the traffic type
and the transmission method. The ATM service includes Constant Bit Rate (CBR), real
time Variable Bit Rate (rt-VBR), non-real time Variable Bit Rate (nrt-VBR), Unspecified
Bit Rate (UBR), and Available Bit Rate (ABR) [5,8-10]. CBR provides the service of
transmitting a constant bit rate of information. This service is mainly for the applications
that need a fixed and continuous data during the connection lifetime and have a tight
upper bound of transfer delay, such as Skype, YouTube, Live TV and so on. The rt-VBR
service is for the real time applications that have limited time delay and variable data rate
transmission. On the other hand, the nrt-VBR service is for the applications that consist
of busty traffic characteristics and do not require tightly constrained delay variation. The
UBR service is for tolerate variable delays and cell losses acceptable applications. During
congestion, no feedback mechanism is concerning, the cells are lost and their source will
not reduce the transmission rate to overcome the congestion. In ABR, some parameters in
the used applications need to be specified, for instances Peak Cell Rate (PCR), Minimum
Cell Rate (MCR), Cell Loss Rate (CLR), and so on. An explicit feedback message is used
in the ABR to inform the status of congestion and/or the rate of to be transmitted data.

In ATM network, QoS is an important issue [8-10|. When a connection is established
in ATM network, a contract about the given services that is related to various QoS
parameters must be agreed by both user and the network. These parameters include
Peak Cell Rate (PCR), Minimum Cell Rate (MCR), Cell Loss Rate (CLR), Cell Transfer
Delay (CTD), Cell Delay Variation (CDV), and Cell Error Ratio (CER). The PCR is the
maximum rate of cell that sender plans to send. The MCR is the minimum rate that a user
can accept. CLR is the percentage of cells loss in the network. The cells are considered
lost even though they did reach the destination, if they were received with an invalid
header, or the content of cells has been corrupted by errors. The measured CTD can be
defined as the time elapse between the departure time of a cell from sender end devices
and arrival time at destination. The CTD includes propagation delays, internal delays
(switching, processing, and internal transmission link), external queuing and transmission
delays. The CDV indicates the uniformity of cells deliver, and CER is the fraction of cells
that is corrupted during delivery.

Until here, the basic structure of ATM network has briefly explained. The following
section will focus on the traffic management mechanism on ATM network.

2.2.1 Traffic Management in ATM network

The ATM network is designed to support variety of services and applications. The control
of ATM mainly involves providing proper differentiated QoS for the network applications.
As the traffic management of ATM, it is used to ensure the network and the end devices
are out from congestion problems, so that high network performance is achieved. The
traffic management is also used to promote the efficient network resources utilization.
It ensures the efficient and fair operation in the networks, meanwhile fulfils the demand
and QoS that users desired. In short, traffic management is a set of mechanisms that
ensures the network resources are fully utilizes and meet the various QoS as part of
traffic contract. The traffic management mechanisms for ATM networks are depicted
in Fig. 2.5, which include connection admission control, usage parameter control, traffic
shaping, selective cell discard, explicit forward congestion indication, and network resource
management [8-10].
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Figure 2.5: Type of traffic management mechanism

The connection admission control (CAD) is used to determine if the specific service
required by the user can be accepted or should be rejected during the connection estab-
lishment. If a connection is accepted, the user and the network agree on a certain traffic
pattern of that connection (traffic contract). As long as the user complies with the traffic
contract, the network continues to deliver the cells in a timely fashion.

The Usage Parameter Control (UPC) is a mechanism that is used to monitor the
traffic and enforce the traffic contract. The aim of UPC is to protect the network resource
from mischievous or unintentional misbehaviour that would adversely affect the QoS of
other established connections, by detecting violations of assigned parameter and taking
appropriate actions such as cell discard or cell tagging.

The traffic shaping is attained to modify the characteristic of a connection into a
desired pattern. The aim of this mechanism is to achieve higher network efficiency, at the
same time meet the QoS objective. Accordingly, the traffic shaping can smooth out the
flow of traffic and reduce cell clumping. The network resources can be fairly allocated and
the average delay is also reduced in the traffic shaping mechanism. In other word, traffic
shaping reduces congestion. One of the approaches to traffic shaping is the leaky bucket
concept. The principle of leaky bucket is very simple. A bucket with a small hole in the
bottom, water can enters the bucket at any rate; the outflow is at a constant rate if there
is water in the bucket, else the outflow is zero. Still, once the bucket is full, water that
enters the bucket is spilled over the sides. In this case, water is considered lost because it
does not appear in the output stream under the hole. The same idea is applied to cells
in the ATM network as shown in Fig. 2.6. Each end devices is connected to the network
by an interface that contains a leaky bucket. The leaky bucket is the buffer which has a
finite queue. When a cell arrives, if there is available queue, the cell is appended to the
queue; otherwise, it is discarded. At every clock tick, one cell is transmitted.

The selective cell discard operates only when some point in the network behaves beyond
the UPC function. The aim of this mechanism is to discard lower priority cells and protect
the performance of higher priority cells.

The explicit forward congestion indicator is a mechanism that used a bit in the cell
header, called EFCI. The EFCI bit is set to 1 when the congestion occurs in the network.
The aim of this indicator is to notify the congestion status in the network, so that user
can initiate the use of congestion control mechanism.

The ATM stack layer can be split, so that the lower layers can be utilized as one
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Figure 2.6: The leaky bucket concept in ATM network

of possible network interface layers of the TCP architecture stack as shown in Fig. 2.3.
The collaboration of both stacks can be done in more than one configuration to service
different goals. Accordingly, some of the setting does not manage to keep the congestion
free property of the basic ATM stack. Those configurations would still have to delegate a
congestion handling to the upper TCP/IP layers or introduce new mechanism to handle
the possible congestion scenarios. Next sub section will start by introducing some of those
mechanisms.

2.3 Congestion Vulnerable Networks

Most connection oriented networks that do not provide strict enough resource reservation
per connection would surely suffer from congestion at some point of time. This sub section
introduces an example of collaboration between congestion free networks and congestion
vulnerable networks, followed by a pure congestion vulnerable networks example. The
mechanism utilized by both network examples to handle congestion is also presented in
this section.

2.3.1 Congestion in TCP on top of ATM networks

The main concern of traffic management is to ensure the users get their desired QoS, as well
as the network resources are fully utilized. This concern is very difficult to achieve during
the period of heavy load, especially the demands cannot be predicted in advance. This is
the reason for congestion control schemes to take part in traffic management of network
with TCP on top of ATM. The congestion control scheme plays the role of ensuring the
connection has better throughput, low delay performance, and network resources are fairly
allocated.

Various congestion control scheme have been proposed for TCP on top of ATM net-
works. Based on [11], the congestion control schemes can be classified into two main
categories, open loop and close loop as shown in Fig. 2.7. Open loop congestion control
scheme refers to the control decision that does not depend on any feedback information
in the network. The controller is completely according to its own knowledge such as
bandwidth capacity of the local links and the available buffers in the system. The open
loop congestion control schemes usually consist of the admission handling mechanism and
continuous activation features to help in stabilizing the traffic arrival rate. These schemes
can be further classified into sender and receiver control. In the sender control, the trans-
mission rate is control by the sender, whereas in the receiver control, the network traffic is
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control either at the receiver or intermediate nodes along the path. The congestion control
schemes that are categorized under sender control are bit round fair queuing [12], schedule
based approach [13|, VirtualClock [14], input buffer limit [15], stop and go scheme [16].
Meanwhile, the congestion control schemes which are categorized under receiver control
such as isarithmic method [17], packet discarding [18], and selective packet discarding [19].
In general, the open loop congestion control scheme is not powerful enough to handle the
entire traffic pattern that might cause congestion in the network.

Congestion control schemes

Close loop control Open loop control
| |
| | | |
Explicit Feedback Implicit Feedback End devices End Devices
| (Sender) (Receiver)
Responsive Persistent

Figure 2.7: Taxonomy of congestion control schemes

In the closed loop congestion control scheme, their control decisions are based on
the feedback information that might be from receiver and immediate neighbours. With
this feedback information, the network performance can be monitored. Two types of
feedback information are used in the close loop congestion control scheme, which are
explicit feedback and implicit feedback. The explicit feedback involves a feedback that
is sent explicitly as separate message. It can be further classified into persistent and
responsive feedback. The feedback that is always available is called persistent, whereas the
feedback that is only generated under specific condition is named as responsive. Examples
of close loop based explicit feedback with persistent approach schemes are binary feedback
scheme [20], selective binary feedback scheme [21|, BBN scheme [22], adaptive admission
control 23], Q-bit scheme [24], loss load curves |25], and hop by hop control [26]. For the
existing of close loop based explicit feedback with responsive approach schemes are choke
packet [27], rate-based control [28], dynamic time window [29], and source quench [18].

A scheme is considered as implicit feedback when there is no necessity to send feed-
back explicitly, such as time delays of acknowledgement. The existing congestion control
schemes that is categorized under the closed loop based implicit feedback are slow start
scheme [30], timeout-based scheme [31], Tri-S scheme [32|, and warp control [33].

2.3.2 TCP/IP network

TCP/IP provides end-to-end data transfer that requires segmentation, addressing and
routing among a lot more functions. Those functions are organized into the well-known
abstraction layers of the TCP/IP architecture model as in Fig. 2.8, which is similar to
the OSI counterpart [34].

The application layer is a place where the network applications and their applica-
tions protocol is located. The application protocol includes Hypertext Transfer Protocol
(HTTP), Simple Mail Transfer Protocol (SMTP), Domain Name System (DNS), and so
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Figure 2.8: TCP/IP reference model

on. The application layer protocol is distributed over multiple end devices. The applica-
tion is implemented by different protocols to exchange information in the form of messages
between end devices.

The transport layer transmits the messages from the application layer from one end
device to another. The main two transport protocols in the Internet are Transmission
Control Protocol (TCP) and User Datagram Protocol (UDP). TCP provides a reliable
connection-oriented service to applications. TCP also have to handle flow control includ-
ing congestion control for the connection. On the other hand, UDP provides a connec-
tionless service to applications, thus flow control is inapplicable. UDP does not readily
provide reliability or connection, still most applications make used of UDP header fields
to implement some kind of reliability or connection.

The network layer takes the responsibility of moving the information in the form of
datagrams from one host to another. The network layer in Internet is also known as the
IP layer. There is only one IP protocol, and the entire Internet devices with network layer
must be able to run the IP protocol beside other supplementary network layer protocols
mainly for control.

The network interface layer is in charge of moving data from one node to the next node
in route as long as there is a direct point to point physical connection. To perform this
function, the link layer needs a specific link layer protocol that is used over the link. The
link layer protocols commonly used through the Internet includes the Ethernet standard
family as well as wireless and mobile standards.

The physical layer is responsible for moving the bits within the frame from one node
to the next. The protocol used in this layer depends on the actual transmission medium
such as single-mode fibre optic, twisted pair copper wire, coaxial cable and so on.

Among these layers, the existing congestion control techniques are mainly located in
the transport layer of TCP with some supporting techniques in other layers. Some of the
congestion control techniques depend on the collaboration between more than one layer,
for example the cross-layer control techniques [35]. Surely transport layer is always one
of the collaborating layer to manage congestion. It has been generally accepted that any
congestion control in both TCP and network layers can only solve a congestion situation
after occurring by decreasing the transmission rate of the end device sender. Still, by the
time the rate starts to decrease, a number of packets may have been dropped or have
been retransmitted without any real need.
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2.3.2.1 Types of Congestion Control Techniques

This section will focus only on the techniques implemented in both transport and network
layers. Those techniques are classified as end-to-end and hop-by-hop congestion control
techniques, respectively shown in Fig. 2.9. End-to-end congestion control techniques
are particularly associated with transmission control protocol (TCP) [36]. In end-to-
end congestion control, the sender (sometimes the receiver) receives an acknowledgement
from the receiver or a network signal periodically. The sender continuously adjusts its
transmission rate based on the acknowledgements received. When acknowledgements
are over waited (timed out) the sender would assume congestion and start transmission
rate reduction with the retransmission. End-to-end congestion control will be thoroughly
discussed in sub-section 2.3.2.1.2.

Hop-by-hop congestion detection initiates a signal of congestion from the affected
intermediate nodes to travel towards the receiver and then back to the sender. If the
sender receives this signal without the packet being dropped due to congestion, then the
sender will start transmission rate reduction. The hop-by-hop congestion control is used in
the network layer based on the intermediate node buffer space availability to avoid buffer
overflow [37-39]. Hop-to-hop congestion control for the transport layer requires per-flow
state information in intermediate nodes, which limits its scalability. Thus, hop-to-hop
congestion control almost restricted to helping end-to-end congestion control techniques
by providing detection or prediction and such functions. The congestion control techniques
that were presented in [35,38| have combined hop-by-hop and end-to-end control. Hop-by-
hop is also quite popular in wireless networks specially those having rudimentary transport
layers. Example of hop-by-hop congestion control techniques are given in the next sub-
section.

Hop-by-hop has been restricted in use to only complement the end-to-end congestion
control to prevent congestion. In some cases, it can help detect the congestion earlier
and provide effective feedback to the end device to respond. Hop-by-hop congestion
control techniques are not widely used because of its additional memory, long processing
time and higher complexity. According to the conventional wisdom, the core network
should be flexible and simple, thus most of the congestion control is implemented at the
end device. However, the current advanced and powerful hardware technology allures
researchers to start considering more complicated tasks in the intermediate the edge/core
device for limited size networks.

g Hop-by-hop: Internet Layer
\ End-to-end : Transport Layer
\e\ Internet e/
Hop-by-hop{ Hop-by-hop Hop-by-hop Hop-by-hop Hop-by-hop
End-to-end

Figure 2.9: The hop-by-hop and end-to-end transport control
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2.3.2.1.1 Hop-by-hop Congestion Control

Hop-by-hop network control with Active Queue Management (AQM) is one of the well-
known complementary approach in helping the transport congestion control to avoid in-
termediate node buffer overflow. Fig. 2.10 shows the classification of AQM mechanisms.
Hop-by-hop congestion control is mostly implemented in the wireless networks. In wire-
less system, congestion that happens in the transmission medium is referred to as link
level congestion. If the congestion occurs in queue (buffer), it is called node level conges-
tion. To solve congestion, both MAC layer functions and transmission rate reduction at
upper layers are utilized. Generally, flow control in wireless networks performs three basic
functions: traffic control, resource control and reliable data transport. Traffic control is
basically an end-to-end control function. Resource control attempts to utilize alternative
path to the sinks when the main path is congested. Table 2.1 shows an example of the
congestion control techniques in wireless sensor networks (WSN). The H-by-H and E-to-E
in the Table 2.1 refer to hop-by-bop and end-to-end respectively.
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Figure 2.10: The classification of AQM mechanism (courtesy of [40])
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Table 2.1: Example of congestion control mechanisms in WSN

Protocol

Technique

H-by-H/
E-to-E

Description

CODA [41]

SenTCP
[44]

Traffic
Control

Both

Two main techniques: 1) open loop hop-by-hop
backpressure: A node broadcasts backpressure
mechanism when congestion detected. The node
that receives a backpressure acknowledgement will
adjust its sending rate by AIMD approach. The
upstream node (towards the source) receives the
backpressure acknowledgement will decide to
further propagate the backpressure upstream
based on the local network conditions.

2) closed loop multisource regulation: Operates on
a slower time scale and control the congestion on
multiple sources from a single sink in an event of
persistent congestion [42,43].

H-by-H

A transport protocol that uses open loop
hop-by-hop congestion control. It detects
congestion using local congestion degree and uses
hop-by-hop for control.

HTAP [45]

Resource
Control

H-by-H

A protocol that based on the creation of
alternative paths from the source to sink. When
the candidate congested receiver sends a
backpressure packet to the sender, the sender
stops the transmission of packets to the candidate
congested receiver and searches in its neighbour
table to find the least congested receiver in order
to continue the transmission of data.

ESRT [46]

Reliable
Data
Transport

E-to-E

A protocol that based on two parameters: Event
reliability and reporting frequency. Event
reliability is the number of data packets received
at the decision interval at the sink. The
end-to-end data delivery services are regulated by
adjusting the sensor report frequency. If the
reporting frequency is too low, the sink will not be
able to collect enough information to detect the
events. If the reporting frequency is too high, it
endangers the event transport reliability. ESRT
adjusts the reporting frequency such that the
observed event reliability is higher than the
desired value to avoid congestion.
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2.3.2.1.2 End-to-End Congestion Control

The end-to-end transport is the classical approach to the TCP congestion control tech-
niques. Fig. 2.11 shows the example of end-to-end congestion control transport. A
plethora of research has been proposed in relation to the TCP congestion control tech-
niques, the first congestion control variant was introduced by Van Jacobson in 1988 which
used the end-to-end mechanisms [47]. In his design, there are four congestion control
stages: slow start, congestion avoidance, fast retransmit, and fast recovery. Together
with these four stages, they form the basic TCP flow and congestion control [47, 48].
Later, other TCP variants were designed to increase the network throughput not just for
congestion but also for other network conditions. These TCP variants include features
like early congestion detection, available bandwidth detection, and loss type estimation.
With these features, a sender can detect congestion state, buffer utilization, loss events
and route condition changes to ensure the network resources are fully utilized.

Sender Domain Receiver Domain

End-to-end acknowledgement g

S

Figure 2.11: Example of end-to-end congestion control transport

Recent research includes TCP/Network Coding [49], history-based TCP throughput
prediction [50], and neural networks model in TCP throughput estimation [51|. Such
research investigates communication networks, such as fifth generation mobile networks,
machine-to-machine (M2M) networks, and Internet of Things (IoT) networks, network
coding, prediction, machine learning, neural networks, optimization theory and the others.

The vast development of TCP variants lead to many surveys that have been con-
ducted by researchers. Those surveys classified the variants performance from 3 different
perspectives; generally, in certain network environments, and with specific parameters.
The first perspective, TCP general performance compare between the different TCP vari-
ants. Westwood, NewReno, and Vegas were surveyed by L. A. Grieco et al. [52]. Similarly,
H. Jamal et al. [53] compared a standard TCP Reno to various variants and also clas-
sified the variants into loss-based, delay-based, and mixed loss-delay based. The second
perspective, many surveys studied how different TCP variants perform in different net-
work environments. A. A. Hanbali et al. [54] have discussed wireless issues and the major
factors involved in TCP congestion control over mobile ad hoc networks (MANET). Sim-
ilarly, H. Balakrishnan et al. [55] compared protocol categories of end-to-end, link-layer,
and split-connection of TCP congestion control over the wireless networks. K. S. Reddy
et al. [56] focused the congestion control in high-speed network, by considering TCP vari-
ants such as BIC, CUBIC, FAST TCP, HSTCP, Layered TCP, STCP, and XCP. The last
perspective, A. Afanasyev et al. [57] collected and described a comprehensive set of TCP
variants and mechanisms that optimize various parameters in different network environ-
ments. The survey also explained each TCP variant, which includes its strengths and
weaknesses.
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In this sub section, existing TCP variants are described according to its controlling de-
vice entity and characteristics, followed by their association. This can give a quick view of
the types of TCP variants and their relationship. Association of the variants is important
here because it allows the researches to understand the evolution and the importance of
congestion control in current and future networks. In addition, TCP congestion detection
is discussed in terms of its evolutionary chain. The variants are also compared according
to the device of detection. Two parameters: duplicated acknowledgement (ACK) and
round trip time (RTT) are two of main factors effecting the TCP variants mechanism.
Packet loss for duplicated ACK, and delay for RTT are used as indicator to detect the
congestion in the network. Lastly, we consider TCP congestion avoidance (CA) techniques
in terms of dependency on congestion window size (cwnd). This allows us to know how
the TCP variants work in controlling the transmission rate to avoid congestion.

2.3.2.1.2.1 TCP Variants List

The 34 most commonly used TCP variants are listed here. Throughout the following sub
section, the listed TCP variants are classified and compared.

1. Tahoe [47]:

Tahoe is one of the earliest end-to-end congestion control algorithms. It introduces
a slow start algorithm, a congestion avoidance algorithm, and a fast retransmit
algorithm. The slow start algorithm and the congestion avoidance algorithm allow
a TCP sender to detect available network resources and adjust the transmission rate
according to the detected limits. Whereas the fast retransmit algorithm can detect
the losses in the networks and allows the sender to retransmit the lost data without
waiting for the corresponding retransmit time out event. Tahoe provides a great
concept in solving the congestion collapse problem, but it has been obsoleted due
to high-amplitude periodic phase.

2. Reno [58] :
Reno has improved the Tahoe by adding a fast recovery algorithm into the mech-
anism. The fast recovery algorithm is to halve the congestion window and hold
it from increases until the networks is recovered. Reno is the congestion control
standard for TCP due to its simplicity and characteristics. However, the packet loss
detection can only performs at once a time.

3. Vegas [59]:
Vegas is a proactive approach that uses the round trip time (RTT) value to deter-
mine the networks congestion status. If the RTT is increased, the Vegas TCP will
assume the networks are congested and reduce the transmission rate; if the RTT is
smaller than the minimum RTT, the congestion window will increase to raise the
transmission rate.

4. SACK [60]:
Although NewReno solved the problem of multiple packet losses in the fast recovery
stage of Reno, it does not solve the problem of prolonged the fast recovery stages. In
fast recovery stage, the sender only transmits a single packet upon error detection.
Therefore, SACK (Selective ACKnowledgement) has been presented to allow the
receiver to inform the sender about the block of data packet that is successfully
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10.

transmitted. As a result, the sender can easily determine lost packet block and
retransmit them immediately. Unfortunately, SACK cannot work well in multiple
packet loss problems.

TD-FR [61]:

TD-FR is developed to mitigate the out-of-order packet delivery problem. The
causes of out-of-packet delivery problem are such as erroneous of software or hard-
ware behaviour such as malfunctions or misconfiguration, enforcement of diverse
packets handling services in a router, etc. In TD-FR, a receiver will holds the out-
of-order data packets respond for few milliseconds depending on reordering pattern.
This delay is to prevent the sender from over-react and to identify the actual losses.
However, if the delay is too long, the “fast” loss detection mechanism will become
slower than the standard loss detection based on retransmission time out (RTO).

NewReno [62]:

NewReno enhances the Reno by improving its response when multiple packet losses
occur in the single congestion event. It confirms the fast recovery stage only end
after all lost packets are retransmitted. Conversely, a feedback message is in the form
of cumulative acknowledgement, which consists of limited available information.

DSACK [63]:

DSACK provides information of each receipt of a duplicate packet to the sender.
There are two types of duplication: a part of acknowledged continuous data stream,
and a part of isolated block. For the acknowledgement continuous data stream, a
DSACK includes a duplicate range of sequence numbers in the first block of SACK
option. For the isolated block, the receiver attaches the isolated block at the second
position in SACK option. As a result, DSACK provides a way to report packet
duplication. The drawback of DSACK is the receiver can send faulty information
causing the sender to make a wrong decision to increase or reduce the congestion
window size.

. Westwood [64]:

Westwood modifies the NewReno congestion control algorithms to suit the wireless
environment that consists of non-congestion related losses. Westwood estimates the
available bandwidth through the ACK arrival rate and improve the fast recovery
stage by an optimal value of congestion window. The weakness of Westwood is the
bandwidth estimation technique provides inaccurate results in certain network con-
ditions: overestimating network bandwidth during congestion and underestimating
network bandwidth in the presence of random errors.

. Veno [65]:

Veno improves the throughput utilization of Reno algorithm by using the Vegas bot-
tleneck buffer estimation technique for early detection of congestion status. How-
ever, Veno algorithms tend to stay longer in the congestion avoidance state with
larger congestion window value.

TCPW CRB [66] :
TCPW CRB (Westwood with Combined Rate and Bandwidth estimation) is to
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11.

12.

13.

resolve the problem of high inaccurate of bandwidth estimation in Westwood algo-
rithm at certain network conditions. TCPW CRB has included the rate estimation
for long term bandwidth estimation in estimation algorithm to prevent the overes-
timation of a congested network. However, TCPW CRB is unable to differentiate
whether the data packet losses are due to random error or buffer overload.

Nice [67] :

Nice is proposed to minimize the interference between high-priority and low-priority
flows. Nice has considered all TCP flows that carry high priority data and attempts
to use the network resources if nobody else uses them. Nice defines a queuing delay
threshold to compare with the arrival of each non-duplicate ACK packet. Nice
counts the number of times that the queuing delay exceeds the threshold values for
each RTT period. The counted value estimates the number of ACK packets which
have been delayed due to interference between changing traffic of high priority data
packet flows and low priority data transfer. If the estimate delay exceeds a predefined
threshold, the congestion window size will be reduced to halve.

LP [68] :

LP is developed for a low priority data service for background applications. LP uses
the Timestamp option and heuristic approach in estimating the one-way propagation
delay to calculate queue delay for each RTT period. LP provides early congestion
detection by employing a simple delay threshold based method. LP retains the
minimum and maximum of one-way delays during the connected lifetime. The
current one-way delay estimate is compared with a predefined threshold which is
a fraction of queuing delay plus a minimum of one-way delay. Once the early
congestion detection event is triggered, LP reduces the congestion window (cwnd)
size to half of the current value and start the inference timer. If another early
congestion detection event is triggered within the timer elapse, LP is assumed the
presence of high-priority flow and reduced the congestion window size to minimal
value. Otherwise, LP resumes the Reno type of congestion avoidance algorithm.

TCP-Real [69] :

TCP-Real implements a receiver oriented approach that can reduce an unnecessary
transmission gaps and designates recovery strategy responsive to the packet losses.
The multiplicative decrease in congestion avoidance state causes the transmission
gaps to degrade goodput and experience jitter in real time applications. TCP-
Real introduces another parameter v to determine the window adjustments during
congestion avoidances to balance the trade of additive increase and multiplicative
decrease parameters. Moreover, TCP-Real receiver uses a pattern called “wave” to
observe the level of contention and/or packet loss. This approach is to mitigate
the congestion control algorithms from over-react to the packet losses that due to
short-lived flows or wireless interferences. This wave approach consists of few fixed
size segments which are sent back-to-back similar to the way TCP handles packets.
The wave size is used to observe and estimate the gap of the missing packet. These
observations use an ad interim method to identify transient random error from
congestion. The error is verified at the next RTT by comparing the perceived rate
and the previous rate.
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14.

15.

16.

17.

18.

DOOR [70] :

DOOR is developed to resolve the congestion control from overact to the route
changes in wireless networks especially mobile ad-hoc network. During route changes,
some data packets are dropped, the congestion control algorithms will assume
the packet loss due to congested network and reduce the rate flow instead of re-
transmitting the loss packets. Therefore, DOOR has a feature of out-of-order de-
tection and feedback to sender for temporary disable the congestion control actions
during the route changes. In addition, DOOR can revert to the original state of the
congestion window and retransmission timeout values, if the congestion control has
recently reduced the sending rate due to loss detection. This action is called instant
recovery and able to alleviate the drawbacks that cause by previous detected rerout-
ing event. However, the transmission rate in DOOR may become inappropriately
after route change and performs poorly in substantial persistent packet reordering.

TCPW BR [71] :

TCPW BR (Westwood with Bulk Repeat) adds a special loss type detection mech-
anism in Westwood algorithm. It uses the queuing delay estimation threshold and
rate gap threshold algorithms to increase the estimation precision and reduce the
number of false. Moreover, TCPW BR modifies the retransmission timer back off
algorithm by restricting the maximum timer with a predefined constant during non-
congestion related losses. TCPW BR handles the multiple packet losses in the same
way as NewReno, therefore TCPW BR has the same drawback of NewReno, where
the feedback message is in the form of cumulative ACKs.

STCP [72] :

STCP replaces the additive increase and multiplicative decrease (AIMD) of con-
trolling methods to a multiplicative increase and multiplicative decrease (MIMD)
methods. During congestion avoidance state, the congestion window size increases
by a fraction of window size with each RTT. During fast recovery state, the con-
gestion window size decreases by a different fraction 5 upon detecting a loss. The
drawback of MIMD policy is an STCP flow becomes extremely unfair.

HS-TCP [73] :

HS-TCP is an alternative to STCP in solving the effectiveness of data transfer
problem in high speed / long delay networks. The increase coefficient a in congestion
avoidance and decrease factors /3 in fast recovery are acted as a function of congestion
window size to avoid the used of unrealistic low loss rate in high Bandwidth Delay
Product (BDP) network. In addition, HS-TCP included a complementary algorithm
that bounds the maximum increase step for the slow start state. HS-TCP has a
fairness problem if the flows consist with different RTTs.

FAST TCP [74] :

FAST uses a constant-rate cwnd equation based update. The new cwnd size is
calculated by the equation, w = (w.RTT,,,)/RTT + «; where w is the current
window size, RTT" and RT'T,,;, are current and minimum RTT, and « is protocol
parameter. The selection of « has effect on the scalability and stability of TCP.
This is still an open issue, even though the authors have concluded that « should
be a constant value. The drawbacks of FAST are it depends highly on the minimal
RTT value and the congestion window update rule is not friendly to standard TCP.
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19.

20.

21.

22.

23.

TFRC [75] :

TFRC is developed for applications that have a constant packet size with varying
transmission rate in response to congestion. TFRC sender and receiver are collabo-
rated in handling the congestion control mechanism. The receiver measures the loss
event rate and feedback this information to the sender, whereas the sender use this
feedback messages to measure the RTT. Later, the loss event rate and RT'T values
are fed into the TFRC’s throughput equation to determine the acceptable transmit
rate in bytes per second. The sender will adjust its transmitting rate according to
the calculated rate. The data packets lost is detected when the arrival of at least
three packets with a higher sequence number than the lost packet in the receiver.
Once the loss event is determined, the sender will reduce the cwnd size into halve
during any single RTT. Conversely, TFRC has a strict response to idle or data
limited periods.

BIC [76] :

BIC extends the NewReno algorithm by including a Rapid Convergence phase in its
mechanism. This phase implements the binary search manner to optimize cwnd size
through the packet loss detection to indicate the cwnd overshooting. Moreover, BIC
not only adopts the HS-TCP’s limited slow start phase and also bound the increase
in rapid convergence if the search range is more than some predefined value. In a
network with large multiplexing, the RTT fairness and inter-fairness values in BIC
is low.

Hybla [77] :

Hybla is proposed to resolve the RTT-unfairness problem in high speed/long delay
networks. Hybla modifies the NewReno’s slow start and congestion avoidance phases
to partially independent with RTT. The cwnd size is defined as w = w + 27 — 1
(slow start), and w = w + p*/w (congestion avoidance), where the scaling factor
p is calculated through the equation p = RTT/RTT,.s. Furthermore, Hybla also
includes the techniques of data pacing and initial slow start threshold estimation
using packet pair algorithm. The data pacing technique is to smooth the burst-
nature of TCP transmissions, and packet pair algorithm is to estimate the network
path capacity. However, if the initial RTT is determined wrongly in Hybla, it could
risk the fairness of capacity sharing and perform poorly in high speed networks with
relatively small delay.

Vegas A [78] :

The Vegas A is the extended of Vegas with adaptive mechanism. The threshold
coefficients from Vegas algorithm are adjusted according to the actual transmission
rate. In addition, Vegas A improve the re-routing and fairness features of Vegas
algorithm. The drawback of Vegas is it cannot identify that long RTT is experi-
enced by the congestion or the route had changed. Whereas, Vegas A achieves low
throughput performance compared to NewReno.

Casablanca [79] :

Casablanca implements the differentiated service (Diffserv) technique into NewReno
to distinguish congestion losses from wireless losses and react to the losses problems
appropriately. The receiver in Casablanca TCP performs the discriminator func-
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24.

25.

26.

27.

9w

tion to identify the congestion state: “likely congestion”, “congestion”, or “corrup-
tion”. The initial state after a connection establish is “likely congestion”. If a loss
is detected at the receiver, the current state becomes “congestion” if the function
of discrimination is less than one; otherwise the current state becomes “corruption”
which representing as wireless error loses. If the current state is “corruption”, the
receiver will transmit an Explicit Loss Notification on the duplication acknowledge-
ment to inform the sender. However, Casablance requires the related routers to
have a differential packet dropping policy.

NewVegas [80] :

New Vegas enhances the Vegas algorithm by defining a new phase called Rapid
Window Convergence. When the estimated network buffering exceeds the threshold
in the slow start phase, the rapid window convergence phase allows the exponential-
like resource probing to continue with reduced intensity. In addition, New Vegas
implements the packet pacing techniques to set up a minimal delay between trans-
missions of any two consecutive packets to resolve the problem of traffic initialization
bursts. The data packets in New Vegas also transmit in pair to solve the problem
of estimate bias. The disadvantage of New Vegas is the rapid window convergence
phase only improves the early termination of slow start.

Africa [81]:

Africa combines the aggressiveness of HS-TCP when the network is not congested
and the conservative characteristic of NewReno when the network is congested.
Africa also implements the Vegas algorithm in determining the congestion status
by comparing the estimate of network buffering to a predefined constant. If the
estimate of network buffering is less than the predefined constant, Africa move
to fast mode and applies HS-TCP rules of congestion avoidance and fast recovery
phase. Otherwise, Africa move to slow mode and applies Reno rules.

CTCP [82] :

CTCP uses a delay based scheme to estimate the network congestion status to
associate Reno congestion control with a congestion control that is scalable in high
BDP networks. CTCP introduces a scalable component wy,s in the congestion
window size calculation (W = Wyeno + Weast). If the estimated value is less than
the predefined constant, the component wy,s is updated according to the modified
HS-TCP rules. If the Vegas estimate value exceeds the predefined constant, the
component wyqs; Will gradually be reduced by a value proportional to the estimate
itself. This reduction is to smoothen the transition between HS-TCP and Reno. The
drawback of CTCP is that it is very sensitive to correctness of RT'T measurements.
For instance, if there is a flow that has higher RTT among the same network with
different minimal RT'T competing to each other, CTCP will react more aggressively
and unfair to the other flow.

MCP [83] :

MCP uses the same congestion control mechanism as TCP, such as slow start,
congestion avoidance, fast retransmit, and fast recovery. However, MCP location
control is based on mobile host for all case. The mobile host can be a sender or
receiver. MCP limits the transmission rate by sending (sender centric) or requesting
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28.

29.

30.

31.

(receiver-centric) within the buffer capacity of both the sender and the receiver.
Unlike TCP, MCP does not treat every packet as network congestion. MCP uses
a cross-layer scheme to distinguish the type of losses and respond according to the
losses. If the packets lost is due to congested network, the sender will decrease the
transmission rate and retransmit the lost packets. If the packets lost is due to the
non-congestion related losses, the sender will retransmit the lost packets without
decreasing the transmission rate. The disadvantage of MCP is it performs poorly
in the multi-hop networks.

Illinois [84] :

[llinois is proposed to resolve the performance degradation of delay based algorithms
when the RTT measurements are noisy. Illinois defines the congestion window, w
increase steps, « in congestion avoidance and decrease ratio, 5 in fast recovery with
the queuing delay functions. The increased coefficient, « is inversely proportional
to the queuing delay, whereas the decreased coefficient 3 is directly proportional to
the queuing delay. The o and f coefficients are updated once for every RTT. In
order to reduce the effects of queuing delay measurement noise, the a coefficient
can be set to maximum when the numerous consecutive queuing delay values is less
than the default value of first threshold.

Fusion [85]:

Fusion combines the concepts of Westwood’s achievable rate, DUAL’s queuing delay
and Vegas’ network buffering estimations. Fusion defines three separate linear func-
tions which are switchable depending on the absolute queuing delay threshold. If
the present queuing delay is less than the predefined threshold value, the congestion
window is increased at a fast rate at each RT'T through the Westwood’s achievable
rate estimate. If the queuing delay is three times more than the predefined thresh-
old value, the congestion window is reducing to the lower bound. If the queuing
delay is relying between the predefined threshold value and three times of predefined
threshold value, the congestion window will remain the same.

CUBIC [86] :

CUBIC enhances the BIC algorithm with RTT-independence congestion growth
functions to preserves RTT-fairness and inter-fairness properties of BIC’s limited
slow start and rapid convergence phase. The function is fast growth when the
current window is far from the estimated target window, and become conservative
when the current window is close to the estimated target window. CUBIC is the
second most used congestion control for TCP due to the good performance and
fairness properties. However, CUBIC suffers from slow convergence causing the
poor network responsiveness.

Libra [87] :

Libra is one of the TCP variants to resolve the scalability issues in high speed/long
delay networks. Libra modifies the NewReno’s increase steps of congestion window
in congestion avoidance phase to a function of the RTT and bottleneck link capacity.
The packet pair technique is used in Libra to estimate the capacity of bottleneck
link. However, Libra is too reliance on queuing delays estimation such as minimum
RTT, maximum RTT, and RTT measurement consistency. If the estimation biases
occur, the TCP performance will become worse.
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32. TCP-FIT [88] :
TCP-FIT is used for the heterogeneous networks that contain high speed/long delay
links and wireless links. It implies the parallel TCP connections without modifying
any layers in the protocol stack and /or applications software. The AIMD mechanism
is used to adjust the congestion control window.

33. ICTCP [89] :
ICTCP performs incast congestion avoidance at receiver. The receiver can adjust
the received window size of TCP connections to control the bursts from all the
synchronized senders. TCP receiver window is fine tuned according to the ratio of
achieved and expected connection throughput over the expected throughput, and
the hop of available bandwidth before the receiver.

34. FWestwood [90] :
FWestwood includes the fuzzy controller in the Westwood congestion control al-
gorithm to improve the performance of wired networks with high error rate. The
number of timeout events, the number of triple duplicate acknowledgement, the
time difference between the last two timeout events, and round trip time are used
as the parameters to determine the congestion status.

2.3.2.1.2.2 TCP Variants Classifications

Here, TCP variants is discussed according to three different perspectives: device entity,
characteristic and assoctation.

2.3.2.1.2.2.1 Device Entity

TCP variants can be classified into four types according to the controlling device entity,
i.e., sender, receiver, sender or receiver, and sender and receiver. The classification of the
studied TCP variants among the four types is shown in the Table 2.2 and the top part of
the Table 2.3.

Sender category is sometimes referred to as sender-centric protocol (SCP). In SCP, the
sender performs essential tasks such as reliable data transfer; whereas the receiver only
needs to transmit feedback packets in the form of acknowledgement to the sender [91].
The data transfer between the sender and the receiver in SCP is also referred as data-
acknowledgement message exchange. Upon receiving this feedback information, the sender
tunes the Congestion Window (cwnd) based on a window based mechanism to ensure the
number of transmission bytes does not exceed the network capacity.

The idea of having the congestion and flow controlled at the receiver side was intro-
duced in 1997 [91-93|. This is also called receiver-centric control protocol (RCP). RCP
uses the same window based mechanism similar to the SCP, but the data acknowledge-
ment message exchange is no longer applicable. However, the RCP uses the request-data
message exchanges for data transfer, in which a receiver sends an explicit request packet
to the sender for requesting the data packets to be sent. Through this way, the sender
only can transmit its data packets according to the transmission rate that is requested by
the receiver. The receiver uses the incoming data packet as an acknowledgement to its
previous request for data. According to [94], the TCP performance can be significantly
improved by using the RCP approach.
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Table 2.2: A comparison of TCP variants in the aspect of the device entity
TCP Variant Initiator(s) Year of | Device of | Improvement | Nomenclature
Proposal| Control Aspect
Tahoe [47] Van Jacobson 1988 S LL
Reno [58] Van Jacobson 1990 S LL
Vegas [59] Lawrence Brakmo, et 1995 S LL
al.
SACK [60] Matt Mathis, et al. 1996 S LL Selective  ACKnowledge-
ment
TD-FR [61] Vern Paxson 1997 R PR Time Delayed Fast Recov-
ery
NewReno [62] Sally Floyd, et al. 1999 S LL
DSACK [63] Sally Floyd, et al. 2000 R LL Duplicate SACK
Westwood [64] Saverio Mascolo, et al. 2001 S LL
Veno [65] Fu Cheng Peng, et al. 2002 S LL VEgas and reNO
TCPW CRB [66] | Ren Wang, et al. 2002 S LL Westwood with Combined
Rate and Bandwidth esti-
mation
Nice [67] Arun 2002 S LP
Venkatarammani, et
al.
LP [68] Aleksandar 2002 S LP Low Priority
Kuzmanovic, et al.
TCP-Real [69] Vassilis Tsaoussidis, et 2002 R LL
al.
DOOR [70] Feng Wang, et al. 2002 S and R PR Detection of Out-of-order
and Response
TCPW BR [71] Guang Yang, et al. 2003 S LL Westwood with Bulk Re-
peat
STCP [72] Tom Kelly 2003 S LD Scalable TCP
HS-TCP [73 Sally Floyd 2003 S LD High-Speed TCP
FAST TCP [74] Cheng Jin, et al. 2003 S LD
TFRC [75] Mark Handley, et al. 2003 S and R PR TCP Friendly Rate Control
BIC [76] Lisong Xu, et al. 2004 S LD Binary Increase Congestion
control
Hybla [77] Carlo Caini, et al. 2004 S LD
Vegas A (78| Srijith Krishnan Nair, 2005 S LL Vegas with Adaptation
et al.
Casablanca [79] Saad Biaz, et al. 2005 S LL
NewVegas [80] Joel Sing, et al. 2005 S LD
Africa [81] Ryan King, et al. 2005 S LD Adaptive and Fair Rapid
Increase Congestion Avoid-
ance
CTCP [82] Kun Tan, et al. 2005 S LD Compound TCP
MCP [83] Liang Zhang, et al. 2005 SorR LL Mobile-host Control Proto-
col
Illinois [84 Shao Liu, et al. 2006 S LD
Fusion [85 Kazumi Kaneko, et al. 2007 S LD
CUBIC [86] Injong Rhee, et al. 2008 S LD
Libra [87] Gustavo Marfia, et al. 2010 S LD
TCP-FIT [88] J. Wang, et al. 2011 S LL,LD
ICTCP [89] H. Wu, et al. 2013 R LD Incast Congestion control
for TCP
FWestwood [90] 7. Alissa, et al. 2014 S LL Fuzzy Westwood

Unlike the SCP and the RCP, Y. Shu et al. [83] have proposed an alternative approach,
called a mobile-host-centric transport protocol (MCP). In the MCP, the device of control
can function either as the SCP or the RCP at the specific period of time. If the mobile
station is the sender, then the data-acknowledgement message exchange is adopted. When
the mobile station is the receiver, the request-data message exchange is applied. In par-
ticular, when the mobile station is the receiver, a flag m_ flag of synchronization packet
is set to one to notify other senders to use the receiver-centric control. Otherwise, when
the mobile station is the sender, it sets the m_ flag to be 0 and then the sender-centric

28



control is adopted.

Another type of controlling device entity is known as hybrid centric protocol (HCP),
which was introduced by K. Shi et al. [95]. TCP flow is co-ordinately controlled by both
the sender and the receiver at the same time. For example, the receiver participates
in flow and the congestion control by computing the cwnd. Then, the sender uses the
receiver’s information to adjust the size of cwnd. HCP can reduce the waiting time of the
sender to alleviate the impact of timeout problem of MCP [95].

Table 2.2 shows the comparison of TCP variants according to device entity and lists the
initiator(s), year of proposal, device of control, improvement aspect, and nomenclature
of each TCP variant. ‘S’ and ‘R’ are used to denote a sender and a receiver device
entity, respectively. As it can be seen from Table 2.2, a majority of the TCP variants
is SCP. From the viewpoint of improvement aspect, most of the SCP approaches focus
on the low priority (LP), the long delay (LD), and lossy link (LL). In LP, SCP divides
the traffic into high and low priorities and SCP enables the sender to ensure enough
resources allocated for low priority traffic. In another case, SCP uses the number of
received windows to monitor the delay performance of LD networks. Similarly, SCP
uses a threshold at the transport layer to trigger the packet loss rate in LL networks.
However, MCP uses feedback information at the data link layer to reflect the data packet
loss. Another improvement aspect is the packet reordering (PR). Both RCP and HCP
allow the non-zero probability of packet reordering, and respond the out-of-order events
by increasing the flow rate [57].

2.3.2.1.2.2.2 Characteristic

To elaborate the characteristics of TCP variants in sub section, three parts, feature,
complexity degree, and network domain are used. The classification of TCP variants
based on their characteristics is showed in Table 2.3.

Feature: Except the Tahoe, all of the TCP variants operate in four fundamental
stages. Originally Tahoe had techniques for only 3 of those stages. V. Jacobson refined the
Tahoe by adding the fast recovery stage and called the new TCP variant as Reno in 1990
[47]. New Reno is the enhancement of Reno. Reno is unable to control network congestion
efficiently because it focuses on detecting single packet loss and can’t detect multiple
packet loss. Variants that cannot handle multiple packet loss include Tahoe, Reno, and
Vegas. This is due to the fact that those variants avoid congestion by using the feedback
information (ACKs), which is referred to as primary feedback. To mitigate this problem,
New Reno and the following variants include a new feature, called multiple losses handling
to detect loss of more than one packet at a time. This feature uses partial feedback
information or extended feedback information. The estimation/prediction feature is added
to some TCP variants to predict congestion status. The estimation parameters include
bandwidth, transmission rate, and queue delay. Table 2.3 shows in the second part, that
most of the TCP variants studied include both features; multiple losses handling and
estimation /prediction.

Complexity Degree: Complexity degree is defined in this paper as a difficulty in
terms of implementation complexity of the TCP variant. High complexity referred to TCP
variants using techniques for the core four stages plus both the estimation and multiple
loss detection features. While medium complexity lack the estimator feature. The low
complexity is restricted to variants with techniques for only the core stages. As shown in
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Table 2.3: The characteristics of TCP variants and distribution among the different types
of device entity

Characteristics

Tahoe [47]
Reno [58]
Vegas [59]
SACK [60]
TD-FR [61]
NewReno [62]
DSACK [68]
Westwood [64]
Veno [65]
TCPW CRB [66]
Nice [67]

LP [68]
TCP-Real [69]
DOOR [70]
TCPW BR [71]
STCP [72]
HS-TCP [73]
FAST TCP [74]
TFRC [75]
BIC [76]
Hybla [77]
Vegas A [78]
Casablanca [79]
New Vegas [80]
Africa [81]
CTCP [82]
MCP [83]
llinois [84]
Fusion [85]
CUBIC [86]
Libra [87]
TCP-FIT [88]
ICTCP [89]
Fwestwood [90]

Centric Control Protocol
SCP
RCP
MCP
HCP

Feature

Slow start

Congestion avoidance

Fast retransmit

Fast recovery
ACK Feedback
Multiple loss handling

Estimation technique

Complexity Degree

Low
Medium
High
Network Domain
Wired
Wireless
High-speed/ long delay
Low priority data transfer

D denotes as selected column

Table 2.3, the TCP variants that have high complexity are more than half.

Network Domain: TCP variants are distributed into four overlapping network do-
mains, namely wired network, wireless network, high-speed/long delay network, and low
priority of data transfer network. TCP is originally designed for wired network whereby
the network congestion only occurs due to the packet loss. Therefore, TCP for wired
network cannot react adequately to the packet loss of wireless networks. This is because
packet loss in wireless networks is mainly due to the lossy nature of radio links. Several
solutions have been proposed to resolve this problem, such as network status verifica-
tion by explicit congestion notification from the congested intermediate wireless terminal.
Other solution uses intermediate wireless terminal to distinguish the cause of the packet
loss whether wireless or wired environments.

In addition, standard TCP variants may not be very efficient in high-speed /long-delay
networks. In this kind of network, the data packets are transmitted but not yet received
at the receiving side due to the long distance end-to-end transmission. Those delayed
data packets could be mistaken as packet loss [86]. This problem is also referred to as a
bandwidth-delay product (BDP).

A low priority data transfer network is the network which consists of high and low
priorities data flows. Both TCP-Nice and TCP-LP are designed to provide a guarantee
of transmission rate for the low priority data flows even in the presence of high priority
data flows.

In Table 2.3, the TCP variants with high complexity degree are often belonging to
both wireless networks domain and high-speed /long-delay network.
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2.3.2.1.2.3 TCP Variants Association

The association of TCP variants is depicted in Fig. 2.12. Tahoe was the first intro-
duced TCP variant. The core Tahoe congestion avoidance technique reduces cwnd to
1 when in the congestion avoidance stage (packet loss is detected). This can lead to
significant throughput degradation especially if no congestion occurred. Fast recovery
(FR) technique was introduced in Reno to halve the cwnd and hold the new value un-
til no duplicated acknowledgements are received within a specific period of time. Reno
evolved into five different TCP variants that are specifically targeted for wired and wire-
less environments. The first two, NewReno and SACK solve multiple losses in the wired
environment by introducing the partial ACK and selective ACK respectively. The third

TCP-Real implements contention detection and congestion avoidance in wireless environ-
ment. The fourth, Vegas uses the queue length utilization to determine the congestion
status and reacts pro-actively. Vegas predicts congestion status before an actual con-
gestion using estimation method, then uses packet delay to update cwnd. The last one

TCP-FIT performs gracefully in high speed /long delay wireless networks by parallel TCP
techniques.
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Figure 2.12: The association of TCP variants

A few TCP variants are extended from the Vegas. For example, New Vegas included
rapid window convergence algorithm to reduce the convergence time and increase utiliza-
tion in high-speed /long-delay network. FAST TCP is a scalable TCP variant of Vegas,
it defines a periodic fixed rate cwnd and a delay-based congestion estimation. Vegas
A proposed an additional adaptive buffer mechanism to solve the problem of improper
decrement of flow rate to nearly zero under certain conditions in Vegas. The threshold co-
efficient in Vegas A is adaptively tuned according to the actual transmission rate, with the
cwnd management mechanism. The variant Nice, targets priority data transfer networks
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The proactive method allows Nice to utilize more network resources for low priority data
flows when high priority data flows are not using. ICTCP was designed to handle the
problem of incast congestion by adjusting the TCP receiver window before packet loss
happens.

One of the Reno family members, NewReno was extended into a large number of new
TCP variants for all kinds of the network environment. HS-TCP, Hybla, Libra, STCP,
[linois, Fusion, CTCP, Africa, BIC, and CUBIC are the enhanced NewReno version for
the high-speed /long-delay networks. The enhancement features include the Additive In-
crease and Multiplicative Decrease (AIMD) of cwnd and queuing delay, semi-independent
of RT'T, packet pair technique, MIMD congestion avoidance policy, binary cwnd search,
and so on.

Besides adaptations of the NewReno for high-speed/long-delay networks, NewReno
also was expanded for the wireless networks. For instance Westwood, Casablanca, DOOR,
and TD-FR all extended NewReno for wireless networks. In the Westwood, a bandwidth
estimation mechanism is added to speed up the fast recovery stage. This bandwidth
estimation mechanism has an inherent concept from Vegas. Both use round trip time
(RTT) and the amount of transmitted data packets to calculate the data transfer rate.
cwnd and slow start threshold, sssthresh in the Westwood are set near to the estimated
data transfer rate when the packet loss is detected. Furthermore, three TCP variants,
TCPW BR, TCPW CRB and FWestwood are evolved from Westwood. The TCPW
BR and TCPW CRB add the features of predominant packet loss identification and
loss based estimation to Westwood’s, respectively. FWestwood uses fuzzy controller to
enhance performance in wired network with high error rate.

Casablanca adds the feature of differentiated service (Diffserv) to enable a sender
to identify accurately and react properly to packet loss due to medium contention and
interference. DOOR includes out of order detection and instant recovery. TD-FR uses
the time delayed fast recovery mechanism to perform packet reordering.

A number of TCP variants were developed by merging the concepts and ideas from
different TCP variants together. For instance, the CTCP uses network status estimation
like Vegas and slow and scalable cwnd calculation like HS-TCP. Africa uses network
status estimation of the Vegas and switching fast and slow mode of the HS-TCP. Fusion is
integrating Vegas, NewReno, and Westwood. In Fusion, the features of the network buffer
estimation for monitoring network status from Vegas and achievable rate from Westwood
are merged. Fusion also maintains the NewReno congestion stage control mechanism.

Other TCP variants like the DSACK, which is the extension from SACK for wireless
problem of misinterpreted out of order delivery. Two TCP variants do not come from the
root TCP variants, those are MCP and TFRC. MCP uses the cross-layer scheme, whereas
TFRC uses different mechanism to control stage by fixing the transmitted number of
packets. TFRC triggers the data sending rate in terms of the packet per second in
response to the network congestion status.

Fig. 2.12 shows that nearly 74% of the 34 TCP variants is the SCP, and only one
TCP variant is the MCP. Furthermore, about 37% of the 34 TCP variants is for the high-
speed/long-delay environment, about 25% is for the wireless environment, and the rest
of percentage is for wired and low priority data transfer environments. In the association
of TCP variants, most of the TCP variants of the high-speed /long-delay environment is
evolved from the TCP variants of the wired environment.
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2.3.2.1.2.4 TCP Variants Congestion Detection
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Figure 2.13: An evolutionary chain of TCP variants that shows the detection scope of the
congestion control mechanism

The congestion detection technique plays an important role in the TCP variants. In
this sub section, the scope of congestion detection of TCP variants is classified into two
fundamental categories, namely loss based (L) and delay based (D). Fig. 2.13 shows
the evolutionary chain of the congestion detection in the TCP variants. Loss based is
the earliest reactive method used to detect network congestion status. Loss based was
built to amend reliable end-to-end transmission at the transport protocol to deal with
congestion. In the normal operation of the TCP protocol, the receiver transmits an ACK
message to the sender upon successfully receiving the data packet. When the sender that
receives three duplicate of ACK messages consecutively from the receiver, this indicates
that the transporting network is congested and that the sender already transmitted that
packet three times after 2 timeouts [58,60, 62].

The method used in loss based tends to face long delay to send ACK messages. As
a result, the loss based method might not detect the congestion problem early enough.
To overcome this problem, delay based uses a proactive method, it was introduced in
Vegas. In delay based, the network parameter, i.e., the RTT is used to measure the
average end-to-end delay required for the sender to transport the data packets to reach
the destination and receive an ACK message of that packet. RTT can be used to know
the network congestion status. cwnd is calculated as a function of RT'T to reflect to the
network congestion status.

Some TCP variants use an estimation mechanism to approximate the bandwidth usage
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Table 2.4: A comparison of parameters that are used in the congestion detection of TCP

variants
Device of Detection Scope Locality
Detection
Parameter
Duplication ACK sender L, LD, global
LBE, LDBE
Round trip time sender D, LD global
(RTT) LBE, LDBE
Retransmission sender L, D, LD, global
timeout (RTO) LBE, LDBE
Bandwidth sender and LBE, LDBE global
intermediate
Packet loss rate sender L, D, LD, global
LBE, LDBE
Internal queue intermediate L, D, LD local
length LBE, LDBE
Inter packet receiver and D, LBE, global
arrival time intermediate LD, LDBE
Retransmission sender L, D, LBE, global
time of packet LD, LDBE
Average delay receiver D, LD, LDBE global
Jitter receiver D, LD, LDBE global

of the end-to-end transmission. This mechanism is sometimes called bandwidth estimation
technique, and sometimes applied in conjunction with the loss based detection, that will
be called loss based estimation (LBE). The bandwidth is estimated upon reception of
the ACK message by calculating RT'T. The amount of acknowledged data by the ACK
message is divided by the time elapsed since the last ACK message was received. The
TCP variants that use this detection mechanism are the Westwood, TCPW BR, and
TCPW CRB.

Another detection mechanism, hybrid based that is defined as the combination of both
loss based and delay based (LD) was introduced right after the bandwidth estimation.
Three duplication of ACK messages or the RTT parameter cannot solely determine net-
work congestion status. Therefore, hybrid based was developed to overcome the weakness
of either loss based or the delay based mechanisms. In the hybrid based, the TCP variants
use delay based mechanism to identify the network status. When the network is suspected,
congestion is further confirmed by using loss based mechanism. Veno is a typical variant
example using hybrid based mechanism. However, the TCP Fusion combines the hybrid
based mechanism with bandwidth (LDBE) estimation to detect congestion [85].

So far, the detection scope of the TCP variants is discussed. Selecting an appropriate
parameter is essential to detect network congestion. The list of the parameters that are
used in the congestion detection of TCP variants is shown in Table 2.4.

The duplication of ACK uses three duplicate ACK messages, which are generated by
the receiver. The RTT is the time required for a short packet to travel from a sender to
a receiver and back again to the sender. The RTT parameter is also used to determine
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other parameters, such as queue delay and achievable transmission rate. The retransmis-
sion timeout (RTO) is the time required for the same packet to be retransmitted. The
bandwidth is the transmission rate of data through a communication link. The packet
loss rate is the rate of the data packets travelling across a network that fail to reach their
destination. The internal queue length is the buffer size allocated to each terminal in the
network. The inter packet arrival time is how much time elapses from when the last bit of
the first packet arrives until the last bit of the second packet arrives. The retransmission
time of a packet is the time required for a retransmitting packet to travel from a sender
to a receiver and back again to the sender. The average delay is the sum of the delays
encountered by a packet between the time of insertion into the network and the time
of delivery to the destination. The jitter is the variation in latency as measured in the
variability over time of the packet latency across a network.

The aforementioned detection parameters used in each detection mechanism are se-
lected based on several factors, including network structure, traffic pattern, transmission
rate, network application, QoS requirements, and congestion probability [96]. In this pa-
per, the congestion detection parameters are further classified into device of detection,
detection scope, and location. The device of detection specifies which terminal is involved
with the congestion parameter. The terminal can be a sender, a receiver, or an inter-
mediate. From the Table 2.4, most of the congestion parameters are at the sender side.
Only three congestion parameters are at the receiver or intermediate. It is also found that
most of the parameters are used for delay based and estimation mechanism. As it can be
observed from Table 2.4, only parameter internal queue length is local. Local means that
a parameter is measured within a device and used to detect the congestion status. This
allows faster response in the congested node. This requires per-flow state information
in the local node, which limits scalability. Whereas global parameter is shared among
network devices and used to detect congestion. This will result in slow response to con-
gestion. The parameter information reflecting congestion may have to travel towards all
the way to the receiver and even worse sometimes back to the sender.

In summary, several detection parameters are used, but this accuracy might some-
times not fable. Detection parameters such as duplication ACK, RTT, bandwidth and
packet loss rate are mainly based on the feedback of acknowledgement packets. The ac-
knowledgement packets can be lost or delayed due to non-congestion factors during the
transmission. As a result, congestion might be falsely detected and lead to unnecessary
congestion handling.

2.3.2.1.2.5 TCP Variants Congestion Avoidance

In this section, mechanisms used during the congestion avoidance (CA) stage of the TCP
variants are discussed. In the CA mechanism, the congestion window (cwnd) size is the
main parameter to be controlled and monitored. Generally, cwnd is started with exponen-
tial increase mechanism during slow start stage. When the network congestion is detected
using one of the detection mechanisms, the TCP will enter into the CA stage. In the CA
stage, the cwnd size is reduced or increase according to the additive or multiplicative way.
Except the Tahoe, all the TCP variants at the CA stage immediately reduce the cwnd
size and then increase the cwnd size based on the policy of the additive increase (AI)
or the multiplicative increase (MI). Tahoe directly sets cwnd to zero when the detection
mechanism receives three duplicated ACK.
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Table 2.5: The dependency of previous cwnd size when the CA algorithm of TCP variants
is used

Dependency of Function, f(cwnd)
Old cwnd Size w/ Condition w/o Condition
Direct Dependent Vegas, Nice, Vegas A, Veno, Tahoe, Reno, NewReno,
New Vegas, STCP, Africa, SACK, LP, Casablanca,
TCP-Real, FAST TCP, HS-TCP, TD-FR, DSACK,

CTCP, Hybla, Tllinois, Libra, | DOOR, MCP, TCP-FIT
Fusion, Westwood (Mode 1),
TCPW BR (Mode 1), TCPW
CRB (Mode 1), ICTCP
Indirect Dependent Westwood (Mode 2), TCPW None
BR (Mode 2), TCPW CRB
(Mode 2), FWestwood

The mathematical representations of the AT and MI used in the CA stage to increment
cwnd are offered in Table 2.6. The increment of the cwnd size gives an impact to the
network throughput while the CA mechanism tries to avoid the network congestion.

Table 2.5 classifies TCP variants according to the effect of their previous cwnd size
when the CA mechanism is used. Dependency in Table 2.5 refers to the function of the
cwnd that depends on the old cwnd size or not in order to decide the new cwnd. The
condition refers to the function of the cwnd that bounds with any constraints or not.
From the Table 2.5, it can be observed that most of the function of the cwnd depends on
the old cwnd size. For example, the Tahoe starts to update the new cwnd size without

condition based on cwnd,e, = cwnd,y + Cwnld - when the packet loss is detected. But,

the Vegas will need to ensure the condition o > cwndq X % is fulfilled in order
to enter the CA stage with cund,e, = cwndyg + 1. Meanwhile, only the Westwood, the
TCPW BR, and the TCPW CRB are using other parameters to determine the new cwnd
size with condition in their CA algorithms.

Table 2.6 shows the methods of additive increase, multiplicative increase, and equation-
based of the function, f(cwnd). Some TCP variants consist of two modes in their CA
algorithms, e.g., Westwood, TCPW BR, TCPW CRB, TCP-Real, Africa, CTCP. These
two modes that are operating in the CA algorithms depend on some constraints and
conditions. The first component and second component of the function, f (cwnd) is defined
as « and [ to represent the increment policies of additive and multiplicative, respectively.
The « in the additive increase is totally depending on the old cwnd size. And the § in the
additive increase is depending on the zero, constant, scaling, quotient, and other. If the
B is zero, the new cwnd size is equal to the old cwnd size. If the [ is constant, the new
cwnd size can be a function that varies with a fixed value, such as Libra, Vegas, Vegas
A, New Vegas, and Nice. If the  is scaling, e.g., v X cwnd,q, the new cwnd size can be
a function that varies with a factor. For instance, v = 0.125 in STCP [72] and v = 0.01
in Africa (Mode 1) [81]. If the g is equal to a quotient, e.g., w/cwndyyg, the new cwnd
size can be a function that varies with w, in which can be 1. If the § is other, the new
cwnd size can be a function that varies with an estimation value. On the other hand, the
« in the multiplicative increase can be divided into two types, i.e., bandwidth estimation
(BE) and rate estimation (RE). But, these two types of the multiplicative increase share
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Table 2.6: The methods of additive increase, multiplicative increase, and equation-based
of the function, f(cwnd)

Method - f(cwnd) 3 TCP Variant
Additive cwnd Zero Westwood (Mode 1), TCPW BR (Mode 1),
Increase (AI) TCPW CRB (Mode 1), TCP-Real* (Mode 1),
cwndpey = o+ Fusion (Mode 1), FWestwood* (Mode 1)
cund Constant | Vegas, Vegas A, New Vegas, Nice, FAST TCP,
Fusion (Mode 2), ICTCP*, TCP-FIT (Mode 1)
cwnd Scaling STCP, Africa (Mode 2), CTCP (Mode 1),
TCP-FIT (Mode 2)
cwnd Quotient Tahoe, Reno, NewReno, SACK, HS-TCP,
TD-FR*, DSACK*, Veno, DOOR***, Hybla,
Libra, Africa (Mode 1), TCP-Real* (Mode 2),
CTCP (Mode 2), Fusion (Mode 3), MCP**
cwnd Other [linois
Multiplicative BE RTTin Westwood (Mode 1), TCPW BR (Mode 2),
Increase (MI) FWestwood (Mode 2)
CWndpew = X B RE RTToim TCPW CRB (Mode 2)
Equation- cwnd BIC, CUBIC, TRFC***
based

w/o footnote mark = SCP, * = RCP, ** = MCP, *** = HCP

the common S of RT'T,,;,. An alternative method that is found in the Table 2.6 is an
equation-based method. In the equation-based method, the new cwnd size is determined
by a new form equation, which depends on the maximum or minimum limit of cwnd size
and the computed end-to-end throughput.

In summary, the function, f(cwnd) of the CA algorithms depends on the network
structure, traffic pattern, type of application, and QoS requirement. In other words, the
multiplicative increase policy of new cwnd size can be recovered the network throughput
faster than the additive increase policy. However, the multiplicative increase policy easily
causes the network to be congested again.

Overall, congestion management in TCP/IP networks is simple to implement, par-
ticularly end-to-end system that requires minimum participation from the edge or core
devices. This also allows the TCP congestion management to work over heterogeneous
networks. TCP congestion control can be self-pacing, as packet drops is detected, the
transmission rate can be adjusted accordingly. This means the packets are constantly
transmitted at the optimal bandwidth of the current connection.

However, the congestion management in TCP/IP cannot provide guaranteed band-
width that is required for QoS. This is why many TCP variants need to enforce the
fairness among the connection. Besides, the congestion control in TCP is type of traffic
synchronization effects. This is because the TCP variants use dropped packets as their
main measurement of congestion status. A burst of dropped packets might be caused
by small buffer drop-tail router, but this can lead to cycles of underutilization, window
increase, and then tail drop again. The TCP traffic bursts might be also due to reverse
path routes of acknowledgement; those acknowledgement packet bursts occupy valuable
resources and could cause timeouts and retransmission of others data packets.
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2.3.2.2 Traffic Management in Other None-TCP Transport Layer Protocols

There are few traffic management techniques in TCP/IP network that can help in the
releasing of the congested network indirectly. For example, Resource ReSerVation Pro-
tocol (RSVP), Differentiated Services (DiffServ), queuing techniques, and Multi-Protocol
Label Switching-Traffic Engineering (MPLS-TE).

The RSVP is a state establishment for real time services in the Internet. It does
not provide network service; it just communicates any end device requirement to the
network. Through RSVP, applications inform their needs to the network and their traffic
characteristics to the receivers. RSVP is the signalling protocol which establishes and
manages the reservation state information at each router of the path. RSVP engages
on the top Internet protocol layer, and responsible to QoS of packets forwarded based on
routing. RSVP enables the receivers to make different reservations, handles route changes
adaptively, allows the users to specify their needs to efficiently utilize the network resource,
and control the overhead by specific parameters.

The DiffServ is a protocol that is used for specifying and controlling the network
traffic through classifying the types of traffic in the networks and forwarding it according
to the predefined way. The DiffServ uses more complicated policy or rule statements to
manage the way to forward a given network packet. In DiffServ, the network traffic can
be classified into alert message, control message, and monitoring data. The monitoring
data includes video data, query based response data, and periodic reporting.

The queuing techniques such as Fist In First Out (FIFO), priority queuing, fair queu-
ing, weighted fair queuing, class based queuing, and so on. The appropriate queuing
method use in the network can reduce the packet waiting time and speed up service time.
By this, the network throughput will be increased.

The MPLS-TE is designed to reduce the overall cost of operations through efficient
use of network bandwidth. MPLS-TE allows the constructed routes for traffic streams
within a service provider. This can solve the problem of some parts of the network to
be over-utilized and other to be under-utilized. However, MPLS-TE might need extra
devices and complex network management.

2.4 Summary

The congestion control mechanism have several similarities and differences to reduce traffic
load when congestion is detected by using additive and/or multiplicative decrease to
control the sender transmission rate.

First a comparison is due here, between the networks example mentioned in this chap-
ter representing both network types; congestion free and congestion vulnerable networks.
ATM networks can provide a flexible grained and fair level for network transmission. How-
ever, it requires complicated switches functionality compared to regular Ethernet switches
but still far simpler than routers. It also needs longer administration control to negotiate
QoS for the guaranteed requirement. TCP congestion control cannot get rid of congestion
completely like the case of ATM in the congestion free network, resulting in much lower
QoS in TCP/IP transmission. Due to the usual expensive faster links of ATM, the cost
to implement and maintain such ATM networks is quite high especially when existing
TCP/IP networks should be replaced first. This leads to still preferring TCP/IP over
ATM when not much QoS is required. Congestion free network are usually restricted
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when QoS is vital, by spending more time and cost for design and implementation as
well as longer operation periods for QoS negotiation prior to connections establishment.
TCP/IP is the most common congestion vulnerable network if not the only one still ex-
isting. It has been always the de-facto choice for the enormous Internet. ATM and such
congestion free networks are utilized to boost the performance of Internet core among
other vital Internet resources.

This chapter have extensively reviewed the congestion management showing that cur-
rent control of the transmission rate of the sender is the main if not the only way of
resolving congestion. Current congestion managements are still not sufficient to totally
eliminate congestion from congestion vulnerable networks. That is why congestion free
networks were designed. Congestion handling mechanisms are still emerging, hoping to
find new ways to resolve congestion faster or better avoidance of its occurrence.
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Chapter 3

Data Compression

In this chapter, background knowledge about data compression is presented, where dif-
ferent data compression schemes are discussed and classified. Part-wise data compression
is further analysed since it will be utilized in the rest of the thesis.

3.1 Introduction

Data compression is converting data into another format that requires less storage (more
efficient) than the original format with some satisfactory accuracy. It is considered as
one of the information encoding techniques. Sometimes it is also referred to as bit-rate
reduction when applied in networking. In 1848, Morse Code was introduced, which is
considered to be the first modern data compression [97-99].

Data compression theory is an extension of the basic information theory, same as all
any encoding. Data compression is mainly focused on statistical inference information
theory. Compression can be either lossless or lossy. Compressed data from lossless com-
pression must be decompressed to exactly its original value. Compression belongs to
algorithmic information theory category for lossless compression and rate-distortion in-
formation theory for lossy compression. Both areas were established by Claude Shannon,
in the late 1940s and early 1950s as the base for all communication, signalling and data
handling [100,101]. Shannon Fano (SF) coding was the first compression scheme built
based on information theory.

When a data unit or sequence of units from the source is compressed, the resulting
compressed representation will be referred to as the representing code within this thesis.
The representing code should achieve the desired target, either faster transmission, less
storage or less energy, performance and degree of compression of unit by unit individually
could vary and rarely considered by itself. The aggregate overall compression degree is
more significant for the whole data together with the overall performance specially when
compressing data from different sources as studied in 3.4.1.

Designers of data compression schemes have to handle tight trade-off between the con-
flicting targets. Those targets are the degree of compression, the computational resources
required (time, temporary storage and energy). Lossy compression faces an additional
target, the amount of distortion introduced, which is highly dependent on the degree of
compression. The suitable position in the trade-off limited space is usually decided during
design or implementation to target the application of the compression scheme according
to a specific situation [99,102].
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When data compression is applied for computer networks, compression is tradition-
ally activated manually by the user at the sender end devices before transferring. When
the receiver end devices receive the compressed data, the user again activates decom-
pression manually. Sometimes data compression functionality is embedded in computer
applications or lower layers of end devices. Either way, compression has been largely re-
stricted to end-to-end use. The compression performance could affect the overall network
performance.

3.2 Classifications of Data Compression Schemes

Nine different perspectives are used in this section for classifying the different compression
schemes. Generally, the classifications divide the compression schemes into two or more
categories which have many-to-many relations between all categories from all the other
classifications. The resulting overall categories form a hypercube of degree nine.

1. According to the heterogeneity: the first classification divides compression schemes
into mixed (heterogeneous) versus homogeneous data. The classification depends on
whether the data compressed originated from different sources or the same source.
Heterogeneity also refers to the structure of the data itself, whether homogeneous
having the same structure or mixed structures. Homogeneous data usually exhibit
much better compression performance and degree compared to mixed data. Since
mixing is usually done randomly and out of order without any synchronization,
mixed data usually results are around those of the worst part of the mix with lowest
correlation with respect to both its compression performance and degree. Thus
mixed data are usually handled by part-wise (blocking) compression to reduce the
effect of lack of correlation caused by the mixing itself. Almost all known commercial
compression tools utilize part-wise compression to handle general data. Whatever
the way the different data from different sources are mixed, the resulting mix is
totally unpredictable ranging from much higher to much lower correlation that each
data source separately. Compressing the data from the different sources separately
gives much more predictable performance, will be studied in section 3.4.1. For
example, the two data sources abab originally having repetition 2 x ab and cdcd
having 2 X cd, if mixed could give acbdcadb with no repetition at all.

2. According to the purpose of compression: the two main purposes are either storage
or communication. Storage compression schemes target smaller final storage while
sacrificing computational costs of compression; compression time, compression com-
putational energy and temporary storage. This class of compression schemes are
usually used for archiving. Both categories handle either homogeneous or mixed
data. Online archiving overcomes the long delay encountered by utilizing heavy
caching mechanisms. On the other hand communication compression schemes tar-
get much faster compression time as well as lower compression computational energy.
Usually communication compression schemes sacrifice compression degree to achieve
the strict requirements. Most network coding utilizes power versus speed trade-off
to choose the suitable bit per symbol rate.

3. According to the required accuracy: compression schemes can be generally classified
into lossless and lossy. Lossy compression is used when some information loss can be
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accepted depending on the requirements of usage. Lossy schemes are used for com-
munication purposes more than for storage purposes. For instance, when compress-
ing still images, the human eye is more sensitive to subtle variations in luminance
than variation in colour. Thus JPEG image compression works by “rounding off”
less important information to more coarse quantization levels. Lossless compression
is used when the data decompressed must match exactly the original data before
compression. Lossy compression is also widely used in the lower layer basic network
coding compression schemes, which is already highly tolerant to noise i.e., accuracy
loss. Lossless compression is used for critical control data among other usages, such
as IP header compression.

. According to the structuring of the data compressed: structured data units usually
exhibits repeated (and usually redundant) fields from one data unit to another.
That redundancy can be easily totally eliminated by taking advantage of knowing
the data structure format. Representing data relatively instead of using absolute
reference is the most common methodology to eliminate the redundancy in the
repeated data structures. On the other hand, raw data also known as unstructured
data lack any data structure format and cannot be handled using those compression
schemes. Un-structured data is merely considered as a stream of similar data unit
of unknown internal structure. Most of the lossy compression schemes and network
encoding are mainly structure data compression associated with other compression
schemes. For unstructured data, compression schemes try to detect repetitions of
the whole data unit regardless any internal data structure. IP header compression
and data referencing in computer programming are among the well-known areas
of using structured data compression. Un-structured compression includes a lot
of schemes started from the original Morse code passing through the well-known
LZ schemes. Generally, unstructured compression schemes try to remove frequent
repetitions of data units by encoding that repetition using some smaller structure.

. According to the repetition distance: the distance between repetitions targeted for
compression can be used to distinguish compression schemes. Consecutive com-
pression schemes target repetitions that are consecutive between either single data
units or sequences of data units. Distributed encoding structures are used to rep-
resent, consecutive repetitions more effectively. Consequence compression schemes
are better used when some data is available ahead, but still can be used when not
available with less efficiency. Non-consecutive compression schemes are used when
the distance between the repetitions is longer, other common dictionary like struc-
tures are used as look up tables. Methods of building those dictionary structured
are varies a lot from one scheme to another, trees (Huffman), arrays, tables, lists
and so on. When the data size is quite big, a pre-defined size sample of the whole
data is scanned to statistically or probabilistically detect the repetitions. The size
of data, which that sample is representing, is also different from one scheme to an-
other. Both consequence and non-consequence schemes can be applied for either
structured or unstructured data. RLE scheme, as the one implemented in BMP im-
ages, is probably the most common consecutive compression scheme. An example
of non-consecutive schemes, colour palettes of most image and video data formats
are considered a form of common dictionary for a more efficient representation of
repeated colours.
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6. According to the encoding/decoding structure sharing: the dictionary like structures
generated before or during compression for encoding is sometimes attached with the
compressed code for either storage or transmission such as colour palettes of image
and video compressed data formats as well as most consecutive compression schemes.
The dictionary like structures can be either one big structure as the colour palettes
in images or distributed smaller structures such as run-length encoding fields pre-
ceding compressed runs of data in RLE schemes. When the dictionary structure is
attached, it will affect the compression degree since the compressed code size will
include the dictionary size. Accordingly, a practical size limit is usually imposed on
the dictionary size so that compressed code size do not to exceed the input code
size. Other compression schemes do not need to attach the dictionary structures and
dispose the generated structures; LLZ schemes are an example of this category. The
decoders of those schemes regenerate the dictionary during decompression without
any prior knowledge needed about the dictionary used for compression. When the
dictionary is regenerated, additional computational resources are utilized, time, en-
ergy and temporary storage. Since the dictionary size does not directly affect the
compression degree, the dictionary size can virtually grow infinitely to capture more
repetition and achieve better compression degree. In some compression schemes, the
dictionary is either fixed or managed independent of data by explicit periodic syn-
chronization mechanisms, Morse code, most lossy schemes and network coding are
examples of the former while Compressed Real-time Transport Protocol (CRTP) is
an example of the latter. Fixed dictionary cannot adapt to different data contents
and can miss lot of repetition resulting in poor compression degree. On the other
hand, fixed dictionaries are sorted and optimized for faster access, thus faster en-
coding/decoding. Periodic dictionary synchronization causes a lot of accesses to the
replicated dictionary structures, which adds a lot of additional load to the storage
or traffic to the network.

7. According to the number of passes scanning the input for compression: optimal com-
pression schemes require a pre-parse of the input code (at least part of it, sample)
to build the dictionary structure that will be used for compression. Additionally,
some schemes calculate or predict the final compression degree statistically or prob-
abilistically to decide compression feasibility. Some schemes use more than one pass
to perform such pre-processing to prepare the required structures before starting
the final real compression pass. LZ Sorter Szymanski (LZSS) decides if the feasi-
bility of the expected compression in a separate pre-pass, likewise arithmetic like
schemes builds the dictionary structures in a separate pre-pass. Most literature refer
to the former multi-pass compression schemes as statistical compression, since only
small sample size ratio are used during the pre-passes. Other compression schemes
perform only one pass during which the dictionary structure is built simultaneously
with the compression itself, such as most of the LZ schemes. Multi-pass compression
schemes usually required longer compression time to achieve better compression de-
gree compared with single compression schemes by adding overhead pass(es). Higher
sampling frequencies as well as larger sample size ratios can up scale the effect of
this overhead on the compression time. Multi-pass schemes generally achieve bet-
ter compression degree for heterogeneous data compression to better capture the
non-homogeneous mix of data being compressed.
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8. According to the sampling frequency (blocking): when the data is too big, parts
of the data are scanned or sampled independent of other data parts to detect rep-
etitions in that part alone. Morse code like schemes scan or scanned a chosen
representative part of the data as a sample to stand for all the data in the world for
eternity. On the other hand, LZ like schemes scans every data part to statistically
obtain its independent repetition representation. When the data size grows above
some limit most schemes start blocking data and handling it part by part (part-wise
compression), each block is sampled separately. Different sampling frequencies are
usually used in any consecutive and non-consecutive compression schemes whether
data is structured or not. The bigger the size of each sample, the lower the frequency.
The combination of sampling frequency and sample size ratio for any compression
schemes strongly affects its compression degree and performance. The less homoge-
neous the data is, the higher sampling frequency should be with the same sample
size ratio.

9. According to the sample size ratio: the ratio of the size between the scanned sample
and the part of the data it is representing. Some data compression schemes scan
only a percentage of the whole data (part or block) to find repetitions statistically or
probabilistically, the detected repetitions will be used to represent the whole data.
Morse code scheme used infinitely growing data size with one time only sample
frequency, resulting in almost zero sampling size ratio. Most LZ like schemes used
100% sample size ratio, by scanning the whole data or block to find all the existing
repetitions. Huffman like schemes choose lower percentage for sample size ratio.
The less homogeneous the data is, the higher the sample size ratio should be within
the same sampling frequency. Choosing the suitable combination of both sampling
frequency and sample size ratio for any compression schemes is strongly affected
by the information entropy and correlation within the compressed data. Periodic
dictionary synchronization schemes are usually combined with huge data (blocks).
Where fixed dictionary structure schemes are limited for near zero sample size ratios,
usually the small sample is good enough to represent the whole data (block).

3.3 Examples of Data Compression Schemes

This section presents six different examples representing a lot of the joint data com-
pression schemes discussed in the previous section. JPEG compression schemes are first
discussed to represent both categories of lossy compression as well as structured compres-
sion schemes. Consecutive compression is represented afterwards by the RLE compression
scheme in the following sub section. Huffman, arithmetic and LZ are explained as general
examples in the succeeding sub section. The last sub section introduces an overview of
various compression schemes designed for communication purpose.

3.3.1 Joint Photographic Experts Group (JPEG) Schemes

As aforementioned, lossy compression can accept some information loss depending on
the quality of data required. JPEG exploits the limited human eye capability of sensing
subtle variations in colour (chroma) by “rounding off” such less important information
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using chroma subsampling while keeping luminous (luma) information intact. In addi-
tion, other commonly used compression algorithms are utilized in JPEG schemes. Some
of those are transform codecs and predictive codecs. The transform codec compression
is applied on blocks of a JPEG image, transforming it from spatial domain to frequency
domain using discrete cosine transforms, relying on the fact that frequency domain rep-
resentation requires far less accuracy than spatial domain representation of most images.
Afterwards, predictive codecs reduces the required size for representing from previous
and /or subsequent next data or blocks of the image.

JPEG schemes are lossy compression with a few lossless exceptions, which is applied
for the generally homogeneous structured data. The pixels colour data structures as
well as locality of image areas structure are heavily exploited by structured compression
schemes. Still image compress standards of JPEG target storage efficiency, while motion
pictures target both storage and communication such video conference streaming appli-
cations. Both JPEG standards also utilize consecutive compression schemes. Distance
compression schemes (palette dictionaries) are optionally used and attached to the com-
pressed code when sharing. Although one pass compression can be implemented for most
JPEG schemes, it can be quite a complicated project. Most JPEG schemes divides big
image data into small 8 x 8 (64 pixels) to which the main compression is applied with
100% sample size ratio per block.

3.3.2 Run-Length Encoding (RLE) Scheme

RLE is a simple and popular data compression scheme, based on replacing long repeated
data unit(s) by a shorter representation [103]. For example, consider the source data
AAAABBBC, the encoded data can be more effectively represented as 4A3B1C. The
original 8-byte message, reduced to 6-bytes (20% saving). Sequences of data units can be
similarly compressed from banana to 1(b)2(an)l(a). RLE schemes compresses the runs
of the data and do not modify non-repeated data usually using some flagging symbol
mechanisms, i.e., the single repetition is left as is without any of the additional storage
shown in the explanation for clarity only.

If the number of repetition is large enough, the size of the output data will be signif-
icantly reduced [104]. In contrast, the size of output data can significantly be increased
in worst case. Therefore, RLE is usually used as a pre-compression pass for other more
sophisticated compression schemes such as Huffman and arithmetic. RLE is usually easy
to implement and does not require much compression resources. RLE is only efficient
with files that contain lots of repeated consecutive data, such as lots of consecutive spaces
in text files or the images files that contain large areas of a single colour as in computer
generated images. Microsoft BitMaP (BMP) is probably the most common example of
depending mainly on RLE compression schemes.

RLE schemes are lossless compression, which is applied for the generally homogeneous
consecutive unstructured data (the internal structure is not utilized). The locality of
image areas structures are the only exploited feature to achieve the compression. A
lot of network encoding makes use of RLE similar schemes to handle phase ambiguity
problems. RLE scheme are also used for efficient storage as in BMP and the now almost
history, archive tapes. RLE schemes are quite easily implemented as a single pass coder
using distributed attached dictionary like structure. RLE schemes require look-ahead
mechanisms that are usually far smaller than to be considered as an extra pass without
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any real sampling (100% sample size ratio).

3.3.3 Huffman Scheme

The probability of occurrence of a specific value in a data unit is estimated in a pre-
pass, the different values of representing codes have different sizes. Smaller values of
representing codes are assigned to values of data units of higher occurrence probability,
and vice versa. After the probabilities have been computed, a binary tree is built with
the data unit values are acting as leaves based on their probability and the paths are
acting as the representing code assigned for that specific data unit value. For example,
the source data kkkkhoho results into the tree in Fig. 3.1. The labels on the edges is
the assigned representing code for each data unit value, while the probability of that data
unit is shown in the leaf node together with that data unit value. The path from the root
of the tree until that leaf is the full assigned representing code for that data unit value.

0.25 0.25
(h) (o)

Figure 3.1: Huffman tree example

In this example one data unit is eight bits, making the total source data is 64 bits. By
using Huffman coding, the data unit value k is represented only by one bit, while both
h and o are represented by two bits. The final compressed size becomes 12 bits. Still,
compressed representations must be attached with the formed dictionary like structure,
either in tree form or table. The size of that structure varies a lot and depends on its
implementation, the final compression degree depends on the summation of the size both
compressed code representation as well as the accompanying dictionary structure.

Two types of Huffman schemes are widely used; static Huffman and adaptive Huff-
man. Static Huffman is the original simple form that has just been mentioned. Adaptive
Huffman, the probabilities and trees keeps changing as the input data is scanned, a flag
symbol is used to inform the decoder of positions tree updates. This will require more
complicated tree bookkeeping but avoid the need of attaching the tree (dictionary) with
the compressed representation and damaging the compression degree when the tree is
quite big [103,105,106].

Huffman schemes are lossless compression, which is applied for the generally homo-
geneous consecutive unstructured data. Due to the long pre-pass required or enormous
tree bookkeeping, Huffman schemes are restricted to storage usage only. Adaptive Huff-
man schemes with tree regeneration can be done in a single pass unlike the regular static
Huffman with he attached dictionary. Huffman schemes must scan the whole source data
in the pre-pass (100% sample size ratio), some practical considerations can divide large
input into smaller blocks according to the available resources and limitations.
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3.3.4 Arithmetic Scheme

Arithmetic compression scheme uses only one very long high accuracy fraction to repre-
sent many source data units [103,105,106]. The occurrence probability and cumulative
probability are used to calculate that representing code fraction. Arithmetic coding pro-
vides a good compression degree, but it is more complicated and needs higher compression
resources. The attached dictionary structure with the single high accuracy fraction should
still be much small representation than the original input.

Arithmetic compression is mainly lossless compression unless fraction accuracy loss can
be accepted. Arithmetic compression is applied for the generally homogeneous consecutive
unstructured data. Due to the long pre-pass required, arithmetic schemes are restricted
to storage usage only. The attached dictionary represents a significant percentage of the
compressed code size. The whole source data must be scanned first in the pre-pass (100%
sample size ratio), again for some practical considerations it can divide large input into
smaller blocks according to the available resources and limitations.

3.3.5 Lempel Ziv (LZ) Schemes

This scheme is the inspiration of the compression scheme proposed in Chapter 6, and will
be more thoroughly discussed. LZ is mainly designed for lossless compression but can
be easily modified to for lossy applications. LZ is applied for the generally homogeneous
consecutive unstructured data. LZ is used in regular storage purposes; it is virtually the
standard of practical lossless data compression. LZ is also suitable for communication
application owing to the facts that its schemes (fast-LZ and ultra-fast-LZ) are probably
the fastest existing compression schemes and also its dictionary regeneration capability.
With no pre-pass needed in most of LZ schemes the input source data is parsed only one
time and the dictionary keeps including all the inputs scanned resulting 100% sample size
ratio with once per input data block sampling.

The first LZ algorithm was proposed by Abraham Lempel and Jacob Ziv in 1977 and
1978 |105]. It was first designed for text data with intensive string matching. LZ adds
each newly encountered data unit (character) to the enormous lookup dictionary while
parsing the source data. It eliminates long repeated characters representing it entirely by
much shorter pointers from the dictionary. If a match is identified, the reference to the
position in the dictionary is used as the representing code, otherwise, the input data string
is output as it is and appended to the dictionary. This process is repeated until the source
data string is entirely encoded. Although the basic algorithm assumes infinitely growing
dictionary, a lot of practical considerations limit its size. Many approaches have been
utilized in the different LZ schemes to manage the drawbacks of limiting the dictionary size
or allowing more efficient dictionary structures. Different LZ schemes were also proposed
to improve different goals, compression degree, compression time, temporary storage or
other computation resources. Fig. 3.2 shows the evolution of LZ algorithm.

The LZ schemes can be generally divided into two types, sliding window and parsing.
In sliding window based LZ schemes, the size of both dictionary entries and data unit
sequences are limited, while parsing schemes limit the number of entries in the dictionary.

The LZ77 scheme is the basic sliding window LZ scheme, later a lot of schemes were
proposed to extend it. Lempel-Ziv-Rodel (LZR) is an extension of LZ77 to trying to
achieve a linear time compression, using special pointer mechanism which consumes in-
feasible memory. Lempel-Ziv-Storer-Szymanski (LZSS) scheme is another extension of
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Figure 3.2: The evolution of LZ algorithm

LZ77 with compression feasibility pre-pass and uses fixed size pointer (dictionary indices).
Lempel-Ziv-Huffman (LZH) and LZB are both extensions of LZSS which represent the
dictionary pointer in with more efficient coding. LZH uses Huffman scheme to compress
the dictionary pointers (indices) to increase the compression ratio, while LZB [107] uses
different pointer sizes and assigning shorter pointer to more frequently occurring data
unit sequences. Both LZH and LZB required an addition pass after the regular LZSS pass
to optimize the obtained pointers representation in the compressed code than the origi-
nal LZSS fixed size pointers. Both LZH and LZB achieve higher compression ratio than
LZSS, but take more time due to the extra encoding pass for pointers. The comparisons
between both LZH and LZB haven’t settled which one outperforms the others.

Parsing based LZ schemes search for the longest match of data unit sequences without
limitation like sliding window schemes. LZ78, the first parsing based LZ scheme, tries to
match the entire previous sequence of data unit in the dictionary. Instead, the parsing
schemes restrict the dictionary according to the number of entries allowed at any moments.
Lempel-Ziv-Welch (LZW) is the most commonly used LZ78 extension; it makes the out-
put entirely out of pointers by including every character in the dictionary before starting.
Lempel-Ziv-Compress (LZC) extends LZW by including monitoring function of the com-
pression degree; the dictionary is discarded and rebuilt once reaching a certain threshold.
Lempel-Ziv-Ticher (LZT) improves LZC by replacing the least recent dictionary entries
when the dictionary is full. Lempel-Ziv-Miller-Wegman (LZMW) operates on word basis
instead of data unit basis (character) which makes it limited to only text input. Whereas
Lempel-Ziv-All-Prefixes (LZAP) enhances LZMW by also adding additional words and
pseudo-words to dictionary when two words are matched from dictionary right end-to-
end. Similarly, LZWL [108] is a syllable based compression scheme. Lempel-Ziv-Jakobson
(LZJ) removes entries occurring once when the dictionary is full.
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3.3.5.1 LZW Example

LZW is a mature compression scheme with many implementations making it the most
commonly used parsing LZ scheme for both of binary and text applications [105, 106].

If 8-bits data unit size is used, the dictionary indices would be reserved by all the
combinations of the basic 256 characters. Therefore, a larger dictionary should be al-
located from the beginning to accommodate the sequences of data units that would be
added later, thus at least 9-bit indices should be used. This dictionary will be appended
whenever a new (word) sequence of data units is encountered during compression. For
example, consider a text document that has the repeated word “hello”. It will be ap-
pended to the dictionary the first time it appears in the data stream, and will be used
in the output compressed data stream as it is. The “hello” entry is 5 bytes (40 bits) plus
some additional dictionary bookkeeping overhead. The next times the word appears in
the data stream it will be represented by the index (representing code) of its entry in the
dictionary in the example that would be 9 bits. The compression degree of those two oc-
currences is 80/(40+9), i.e., 39% saving for this word only. The overhead added to other
symbols that were not compressed should be outweighed by the achieved compression for
this compressed word and others. In case of no repeated sequences at all, the algorithm
will add 12.5% to the original size instead of compression.

LZW compression doesn’t use much computations or even sorting for compression,
only simple search. In other words, LZW provides long sequences to be stored in the
dictionary quickly. Also the decoder can restore the dictionary quickly from the encoded
data upon receiving. Since the dictionary needn’t be transferred, the compression degree
will not suffer from the overhead of adding it to the data stream. At the same time the
dictionary theoretically can infinitely grow to obtain higher compression ratio without
any synchronization requirements between encoder and decoder or such overhead. Still,
searching such big unsorted dictionary would consume quite a long time and considered
the only or main factor of compression time. The processing time is directly proportional
to the size of the dictionary, since the unsorted dictionary sequences must be searched with
brute force techniques. Thus processing time is inversely proportional to compression de-
gree, which requires larger dictionary size as mentioned earlier. Most implementations try
to achieve some satisfactory trade-off point. Being of temporary function in compression,
the dictionary could be restricted to some size by sacrificing the achievable compression
degree.

Many of the stored sequences might not be used much for later compressing, sometimes
never used. The dictionary might get to be bigger than the source data size. Due to
practical memory limitations and also size effect on speed limitation, implementations
place some restrictions on the dictionary size. When the dictionary gets bigger than
specified thresholds, it will be deleted [103]. Then another new block of compression is
started with a fresh dictionary. Different signalling has been used to ensure that the
decoder resets the compression and dictionary at the same stream position. This could
reduce compression time by sacrificing compression degree.

At some point the instantaneous dictionary size when added to the remaining input
size can be extremely huge. For such cases, a new compression scheme for lightweight
temporary memory is targeted. To achieve this goal, in chapter 6, LDC is proposed as a
new compression algorithm with finite size dictionary. The memory reduction is further
maximized in the decoder side for slow and small memory terminals.
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3.3.6 Compression Schemes for Communication in Transport Layer

Source data (packets) to be compressed is considered mixed structured data consisting of;
header (signalling information) and user information which also called as data or payload,
except for MSR (chapter 5) where packets are considered as homogeneous unstructured
data. The compression data targeted can be categorized into three; header (homoge-
neous), data (homogeneous) and both (mixed). Header compression must be lossless, due
to the importance of its contents for control and signalling. For example, the Internet
protocol (IP) header consists of information for routing the data to its destination. If
some information is lost or changed, the packets will fail to reach its destination. In
data compression, the information is compressed according on the user requirements. For
instance, in the case of lossy compression, the images quality is reduced by permanently
eliminating certain information. To compress both information fields, lossless schemes
are commonly used. Some examples of header compression technique used in networks
are described below. MPLS and ATM are among the state of art network protocols with
compression scheme concepts as its core design philosophy.

Van Jacobson’s Header Compression (VJHC) is the first internet compression scheme
that compresses the TCP /IP header in low-speed serial links [109]. It reduces the normal
40 byte TCP/IP packet headers to 3-4 bytes for the average case by sending the differences
in the header fields instead. By this way, VJHC can get nearly 50% of compression of the
header.

The IP Header Compression (IPHC) extends VJHC. It is commonly used for packets
over Transport Control Protocol/ Internet Protocol (TCP/IP) and User Datagram Pro-
tocol/Internet Protocol (UDP/IP) in low speed links, for TCP streams, IPHC is identical
to VJHC [110]. Since UDP streams are connectionless, IPHC introduces the concept of
context with some unique CID for each data stream. This context is used to save the data
stream header fields that are static or have little change among the continuous packets
shared between both the encoder and decoder.

Compression Real-time Transport Protocol (CRTP) was developed to compress stream-
ing multimedia data packets of the Real Time Protocol (RTP). However, CRTP also can
compress UDP and IP headers, the 40 bytes of RTP/UDP/IP packet headers can be com-
pressed to only 4 bytes [111]|. For multimedia data quality is reduced by lossy compression
of the data field of the packets. CRTP wastes a lot of bandwidth when for synchronizing
between the encoder and decoder. CRTP can perform well on the small round trip time
(RTT) link. In long RTT, the encoder and decoder cannot achieve a good synchronization,
which lead to a series of packet loss.

RObust Header Compression (ROHC) is a standardized method to compress the UDP,
UDP-Lite, RTP and TCP header of Internet packets. ROHC uses the IPHC concept of
context and manages the context identifier (CIDs) reasonably and effectively [112].

Adaptive Compression-based Technique (ACT) for congestion control uses both lossy
ADPCM (adaptive pule code modulation) and lossless RLC (run-length coding) compres-
sion. Discrete wavelet transform is also utilized to categorize data priorities and assign
each a different frequency to achieve fairness in wireless sensor networks.

Real time adaptive packet compression for high latency networks with limited band-
width uses the generic zlib library (LZ based) to improve the drop rate of heavy load
satellite networks during heavy congestions [125].
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3.3.7 Classification of the Examples

The following table shows the result of applying the categorization presented earlier on
the examples listed in this section.

Table 3.1: Classification of the compression schemes presented

. Structuring | Repetition structure No. of Sampling Sample
Homogeneity Purpose Accuracy N . g ]
SChEe of data distance sharing passes frequency size ratio
Homogeneous + Storage & Lossy or 8x8 ~ 64x64 Optional ) 100% of
e Mixed Comm. Lossless In 2 stages blocks (Palettes) 3 Blocking block
Storage & Lossless and Practical Optional Max. Run- 100% of
BEE Homogeneous Comm. lossy None limit (Palettes) ! length block
Huffman Homogeneous Storage & Lossless None Whole Coding Tree 2 Whole small
Comm. Stream Stream Percent
Arithmetic Homogeneous Storage & Lossless None Whole Yes 2 Whole small
Comm. Stream Stream Percent
Storage & Lossless Practical Mostly 1 Practical 100% of
ez Homogeneous Comm. (lossy) None Limit Mostly No (2or3) Limit block
VJHC Mixed Comm. Lossless Utilized Prlji:i:al No 1 N/A N/A
IPHC Mixed Comm. Lossless Utilized P'fif:iia' No 1 N/A N/A
CRTP Mixed Comm. Lossless + Utilized Practical No 1 N/A N/A
lossy Limit
ROHC Mixed Comm. Lossless Utilized P'fii:i:a' No 1 N/A N/A
) . N
L.S. Tanetal. Homogeneous Comm. Lossless None PraCtI‘cal No 1 Préch‘cal 100% of
Limit Limit block
o
ACT Mixed Comm. Lossless + Utilized Block No 2 Block 100% of
lossy block

3.4 Compression Degree (Ratio)

The performance of the data compression schemes depends on the nature of the source
data units to be compressed as well as its structure. In order to compare different data
compression schemes fairly, the compression degree which is also known as a compression
ratio (C'R) is commonly used. In this research, the compression ratio is defined as the ratio
of the size of the original input source data units (5,) to the total output. The first form of
equation 3.1 represents compression schemes where a centralized dictionary like structures
are not attached to the output, while the second form is used for compression schemes
that use such attached dictionary. The total output in latter case, is the summation of
the dictionary structures size and the size of the compressed representing coded data (S).
More detailed example of calculating the C'R will be shown in Chapter 6, together with
the newly proposed compression scheme LDC.

S,
= 1
CR =3 (3.1)
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The amount of compression is stated as CR : 1, which could be expressed as when a
compression scheme takes in the original source data units size (S,) and compress it, the
output compressed representing code size is (S.). According to this C'R definition, a higher
C'R indicates smaller compressed representing code size. This reciprocal of C'R is also used
in some literature with the same name ‘compression ratio’. In this research the reciprocal
will be referred to as compression percentage to avoid the confusion CP = 1/CR, it
will be used to represent utilization savings which is discussed in the last section of this
chapter.

CR = (3.2)

3.4.1 Overall Compression Ratio for Part-wise Compression

When compressing homogeneous data, the CR and C'P mentioned are sufficient to eval-
uate the compression degree and utilization savings. As for mixed data, the sources are
usually split into different parts before compression, to obtain higher correlation within
each separate part sufficient for compression. If the input source was originally formed
by mixing different sources it is simply split back, otherwise some blocking mechanism is
used with or without enough knowledge about the nature of the mixed data. Blocking
is also used for large homogeneous data sources that cannot be handled as one part due
practical limitations.

When blocking is used, different parts of the source are compressed separately what
will be referred to as part-wise compression in this thesis. Part-wise compression yields
different compression degrees for each part of the source. To calculate the overall com-
pression degree of the whole source, overall compression ratio and percentage concept are
introduced in this subsection.

Overall compression percentage C'P,,, shown in equation (3.3), is the weighted sum of
all the compression percentages scaled probabilistically by the fraction Pc of data parts
being compressed, respectively. Since different parts of data get compressed with different
compression percentages (compression ratio), the overall compression percentage obtained
here represent another virtual homogeneous input data size that was totally compressed
using that uniform compression percentage. The output size after compression of this
virtual data is still the same as the summation of the sizes of all the compressed data
parts, while the size of the virtual input data is different from the summation of the sizes
of the data input parts.

CP,, =Y Pc;xCP,  :» Pe=1 (3.3)
CP,, = Pcx CP+ (1 — Pc) (3.4)
Pc
Py=———+(1-P
CP,, R + ( c)

In this research, data is considered to be divided simply into only two parts. First the
homogeneous compressible part whose Pc; will be referred to as only Pc for short. The
compression percentage of the first part will also be referred to as only C'P for short. The
other part, totally incompressible whose fraction would be 1 — P¢, will be having zero
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compression, which also means unity compression ratio. This special case is represented
in both forms of equation (3.4). The two forms of overall compression ratio, shown in
equation (3.6), are simply the reciprocal of the overall compression percentage derived as
shown from equation (3.5).

Clov = 55 (3.5)
ov
CRy =
C
cr + (1= Pc)
CRyy = (3.6)
Pc+CR— PcxCR
CRy =
Pcx CP+(1— Pc)
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Figure 3.3: Top servers traffic during the studied sample period

The Pc in this research is estimated according to the report of 2014 global Internet

Phenomena, which is provided by Sandvine Intelligent Broadband Networks [120]. Fig.
4.13 (a) to (e) showing the traffic percentages during a randomly selected sample period
for studying the top 10 servers accessed. The top servers include HT'TP, YouTube, Bit
Torrent, Facebook, MPEG, Secure Socket Layer (SSL). The overall average of the first 5
parts of the figure is shown in part (f).

According to the overall average traffic percentages in Fig. 4.13, most of the traffic from
the top servers is incompressible, as multimedia from server like YouTube. That traffic
is tightly compressed in the original format and almost no chance at all for any further
compression. In this section, it assumes that HTTP and some other serversaAZ traffic
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are compressible. Yielding an upper bound of 26% of compressible data traffic. In worst
case, only data traffic of HT'TP servers is compressible, that means Pc is approximated
to 14% as a lower bound. Fig. 3.4 shows the CR,, versus C'R of the compressible traffic
with different Pc values. To determine the utilization savings the overall compression
percentage is shown in Fig. 3.5 under different Pc values.
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Figure 3.4: CR,, versus C'R with different Pc
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For reference purposes, Pc range from 10% to 30% will be used to plot the relations
between C'R, C'P from one side and overall overall CR, C'P (utilization) and resources
saving, respectively. Figures 3.4 and 3.5 show that the overall C R and overall C'P are
both much more affected by the changes in Pc values, than any change in CP. In Fig.
3.5 shows the case when C'P is 20% in the far right of the graph. At that time, the
compressible part of data is reduced by 80% resulting only 20% overall resources savings
when Pc is nearly maximum at 25%. In other words, aggressive compression when “CR
= 57 is still restricted by “Pc = 25%” resulting CR,, = 1.25.

Accordingly from now on, this thesis will only use the range (1 : 1.3) for C'R refer-
ring to the overall compression, which refers to a corresponding utilization/compression
percentage range (100% : 75%), respectively. The respective resources savings range will
be (0% : 25%). Compression percentages, utilization and resources saving will not be
mention directly in the next chapter, when required reference will be made to use the
formulas in this chapter to calculate the corresponding values from C'R.

3.5 Summary

The different compression schemes discussed in this chapter show the general tendency
of most compression designers to target homogeneous data or structured data. Most well
designed lossy schemes can offer much better compression than lossless depending on the
acceptable distortion degree. The nature of data especially in mixed non-homogeneous
data is more important than the compression scheme used, even if the compression scheme
is extremely aggressive. All compression schemes choose only one of the conflicting targets
to try to approach as much as possible, compression speed (time), compression degree
(ratio), compress resources (temporary memory and energy) or compression complexity.
Most storage targeting compression schemes mostly care about the compress degree rather
than any other compression performance. While communication targeting compression
schemes are usually more concerned with the energy resource efficient utilization within
some time restrictions.

In this thesis, communication targeting compression is addressed trying to improve the
efficiency of resources utilization. Both chapters 5 and 6 will introduce new compression
support in networking frameworks to improve the efficiency of resources utilization.
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Chapter 4

Empirical Model of Congested Network
with Compression

This chapter considers the empirical model of network throughput in a congested net-
work. First, the simple TCP throughput model per connection is studied. Then, the
model of throughput with compression is derived. The effect of buffer size, incoming
rate, compression ratio, and compression time on the throughput and round trip time is
analysed.

4.1 TCP Throughput Models

Network throughput is one of the metrics that are commonly used to evaluate the per-
formance of networks. The network throughput measures the maximum number of data
packets that is transmitted in a unit time. In this chapter, network throughput is studied
to determine the effect of compression in edge/core devices. In order to study compres-
sion in networking and evaluating its effect on network performance, one of three common
approaches is usually utilized. The first one is using a network simulator and observing
the network behaviour, regression statistical models can be used to express the obtained
results. The second is to use logs from congested network either real life or experiment
test beds, then following the similar regression models such as curve fitting. The prob-
lem of those two approaches, enormous time and data is required to get a sample that
is sufficiently representable. Any approximation to simplify or speed up would probably
yield in adequate model. Besides, a lot of researches have utilized those two approaches to
study compression but only statistically or for special networking cases without obtaining
much conclusive results. The last approach is to formulate a new empirical model for
compression in networks, by deriving an equation from the basic throughput model of
TCP. In this research, the last approach is used.

4.2 Basic TCP Throughput

A simple empirical model for the throughput of TCP was presented [113|. This throughput
is based on packet loss rate, p and the average round trip time, RT'T.

A round is a period of time that starts with the back-to-back transmission of W
packets, where W is the current size of the TCP control window. In the basic TCP model,
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loss indications are exclusively of type “triple-duplicate” ACK (7'D). T'D period (T'DP)
is defined as a period of time from a specific TD loss indication and the immediately
preceding one, thus including one or more rounds. The similar term round trip time will
be exactly equal to a round duration given the assumptions below.

TCP’s window size (W) increases each time an ACK is received. Since the processing
and transmission times in the edge or core devices are assumed to be zero, the window
size is only increased at the end of every round. In other words, all the W packets of any
specific round are all transmitted at exactly the same time instant, the beginning of that
round. If ACKs of those packets are received without any loss, all ACKs are also going
to arrive at the exactly the same time instant, the end of round before starting the new
round within the same T'D period. If T'D is detected, the current T'D period ends by this
round and the next round marks the beginning of the next T'D period as well.

The equations in this section use the variables listed below, those variables are per
connection. When needed, individual variables will be further explained. In some liter-
ature, a window, round trip time are used interchangeably, in this thesis, [ am going to
stick to the definitions above.

The number of packets from the beginning of the T'D period until
and including the first lost packet (unit: packets)
The number of sent packets in the last round in that specific T'D
period (unit: packets)
The number of rounds in a T'D period until and including the round
x where the TD occurs. It is either the number of rounds in that
specific T'D period or the same number minus one (unit: packets)
The time duration of the 7D period (unit: seconds)
The slope of additive increase in a TCP congestion control scheme
Loss probability of sent packets
Round-trip time of one packet start when the packet of TCP con-
RTT nection is completely transmitted from the sender until its ACK
from the receiver is completely received by the sender again
The duration of the round trip time of this specific round in the

ESEES N

" TD period considered (unit: seconds)
T Number of packets sent per unit time regardless the eventual fate,
either lost or received (unit: packets per second)
Relationship between the throughput of TCP connection (R) and
R(p) loss probability (p)
The maximum window size of that specific T'D period, which is the
W window size of the last or before last round, depending on where
did the T'D occurred
Y The number of sent packets in that specific T'D period

The assumptions used in [113] model are:

1. TCP sender is in the mode of saturation with infinite data.

2. All network devices have infinite buffering resources.
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3. TCP’s window size is increased infinitely each time an ACK is received.

4. Duration of a round is equal to the round trip time and is assumed to be independent
of the window size.

5. All the packets of any specific round are all transmitted almost at exactly the same
time instant, the beginning of that round.

6. All ACKs are also going to arrive almost at the exact same time instant, the end of
round before starting the new round within the same 7T'D period.

7. Time for sending all the packets in a window is very small tending to zero which is
definitely much smaller than the RTT.

8. Packets in a round are independent from any packets in other rounds.

9. If a packet is lost, all remaining packets transmitted until the end of that round are
also lost.

10. The last round of a T'D period is the one right after its 7D round, i.e., the first
packet in a round is not the one lost.

11. Packets are not lost because of timeout at all.

Fig. 4.1 shows the basic idea of the TCP model used to derive the throughput ex-
pression. Other symbols in the above table and not mentioned here, are to represent
related variables that are defined straight forward. As soon as T'D is detected either for
the first packet of the current round or other packets in the previous round, the T'D pe-
riod will terminate immediately. All the packets following the T'D packet in same round
are assumed missing as well even they were acknowledged. The round in which the T'D
occurred is referred to as penultimate round or T'D round (the z round). As indicated
earlier it can be either the last round in the T'D period or the one right before.

A new T'D period starts immediately with its own set of rounds. The window size of
the first round in the new T'D period is set to half the value of the window size of the T'D
round in the previous T'D period. All the packets in that round are transmitted almost
at the same instant with inter-packet delay tending to zero according to assumption 4-7.
After r period of time for this round, the sender starts receiving ACKs for the packets
sent in the beginning of the round. When the first ACK(s) arrives, the next round of the
T D period immediately starts without waiting for ACKs of the other packets from its
own round. The sender sends one new packet for each ACK received. Since inter-packet
is assumed tending to zero, both the ACKs and transmission of the packets of the new
round all occur almost at the same instant. When a new round is initiated, the window
size is incremented (additively according to linear slope 1/b). In Fig. 4.1, the window is
increased by 1/2 every round, i.e., it is incremented by one packet every two rounds. The
current 7D period will continue until the occurrence of another T'D (assumptions 2 and
3).

When T'D is detected for some packet (the first “X” marked packet from below) in
the current round, the round is immediately terminated as in the beginning of this 7T'D
period. The T'D packet could possibly be one of the packets in the previous round or this
round itself. The maximum window size (W) refers to the window size of the 7D round
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Figure 4.1: T'D period of a TCP connection

(the x round), regardless it is the last round or the one before it. Half that of the W in
the current T'D period will also be used as the initial window size of the first round of the
next T'D period. The last round of the T'D period is most probably the round right after
the  round (the T'D round) and according to assumption 10 will always be in the before
last round. The number of packets successfully acknowledged in the 7D round (clear
packets in the lower part of the T'D round) will immediately cause same number of new
packets (/) to be transmitted in the last round, before the T'D is detected and both the
TD round and period are terminated. The higher “X” marked packets in the T'D round
are all assumed missing even that their ACKs were received successfully (assumption 9).

The probabilistic expectation function of the throughput R(p) is the probability-
weighted average of all possible throughput values [114,115]. According to the probability
law of large numbers, for any infinitely repeated random experiment, the arithmetic mean
converge to the expected value, only if the experiment repetition go to infinity. Thus, the
average throughput of a TCP connection would converge to the expectation of the ran-
dom probability throughput variable representing it. The model targeted by the basic
throughput of a TCP connection is operating only in steady state with infinite input
data per connection (assumption 1). Therefore, infinity is guaranteed and the average
throughput 7" converges to the expectation of R(p) as in equation (4.1). From now on in
this chapter, the probability random variables will be used to refer to the expectation of
those variables, unless stated differently.

Thus in equation (4.1), the throughput is further expanded as the number of packets
transmitted divided by the time duration of a T'D period.

E[Y]

R(p) = E[T] = BlA] (4.1)

The derivation starts with the evaluation of the number of packets sent, Y before A.
Y in a specific T'D period is obtained by observing the last two rounds of that T'D period.
The number of packets transmitted (V') is equal to the number of packets in the T'D

29



period until the first lost packet () added to the number of lost packets. Since the model
assumes all packets after a T'D are lost even if acknowledged later (assumption 9), then
the number of lost packets in that T'D period is equal to the maximum window size of
that specific TD period (W). The first lost packet is already counted in both definitions,
thus the summation is adjusted by deducting one.

E[Y] = Ela] + E[W] - 1 (4.2)

According to assumption 8, the probability random processes of the number of packets
in the T'D period until the first lost packet («) is obviously a sequence of the well-known
independent and identically distributed (i.i.d) random variables. As shown in the equation
below, the probability of a being equal to some k value, is represented by the probability
that the number of packets acknowledged until the T'D equals k& — 1.

Pla=k] = (1 —p)*'p, k=1,2,.. (4.3)

and the expectation of o can be calculated by equation below
= _ 1
Ela] =Y (1 —p)* 'pk = 5 (4.4)

k-1

By using equation (4.4) to substitute for « into equation (4.2), Y is expressed in the
equation below
iyl =P
Y] = , + E[W] (4.5)
Next, the duration of T'D period (A), will be investigated before continuing the eval-
uation of the Y expression. The T'D period consists of x rounds, each of them lasting for
r time. According to the assumption (4-7), a round will be identical to RTT. Thus r
is the probability random variable representing RT'T', which is independent of the round
or its size, i.e., the number of packets sent in the round. The “A” equation (4.6) can be
expanded by using joint probability rules into equation (4.7). According to the previ-
ously used probability law of large numbers, the average value of RTT" will tend to the
expectation of r value as the number of rounds tends to infinity.

A= %rj (4.6)
E[A] = (Elz] + 1)E][r] (4.7)

So far, the expression of relationship between the throughput of TCP connection (B)
and loss probability has been expanded by substituting from both equations (4.2) and
(4.7) to reach the form below.

Ln) 4 B

R) = BET e

(4.8)

Next, the derivation of the number of rounds () in a specific T'D period is based on
the change in window size. The linear relation between window size per round and z is
expressed by equation (4.9). W is the maximum window size of the current T'D period,
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and W4 is the maximum window size in the previous T'D period before T'D, which was
halved as an initialization in the beginning of the current T'D period. The slope of line
segment of the linear relation is defined as 1/b.

Woid

W= 9

+

(4.9)

8

Equation (4.5) of the number packets in the current 7'D period (Y) will be used to
find an expression for the maximum window size (W) in the next derivations. Y is the
sum of all window sizes in all the rounds of the current T'D period, it can be calculated
using either the summation of an arithmetic sequence or the area trapped under the curve
(line). The second method is shown in equation (4.10), the area is split into three regions.
First the region is the area of rectangle below in Fig. 4.1, followed by the triangle above
and finally the packets in last round (3) are added separately.

Waa 1 Wod
Y = - _ eld
T 5T (W 5 ) +0

(4.10)
_ 2 (W+ Wota —1) +8

2 2

By calculating the stationary distribution of the probability random variable (W) as
a Markov process based on equations (4.3, 4.9 and 4.10), the details are omitted for
simplicity. The probability density of the number of rounds in the T'D period (z) is
approximated by assuming that both x and W are mutually independent sequences of
i.i.d random variables. The following equations (4.11 and 4.12) were deduced using the
calculated and mentioned assumption together with equations (4.5, 4.9 and 4.10), the

steps are also omitted here.
2

EW] = Ela] (4.11)
22 gy = ZE (B0 4wy - 1) + 1 (412)

Since the number of packets sent in the last T'D period () is uniformly distributed
from 1 to W, thus E[5] = E[W]/2. Using the expectation of § together with equations
(4.11 and 4.12), the expression below in equation (4.13) for W is deduced.

24D 8(1—p)  [2+0b\°
Ew) =22 2228 (270
W= +\/ sp 3

8 1
= \/%Jro(ﬁ)

For small values of p, the expectation of the maximum window size is approximately

(4.13)

E[W] =~ ,/==. When substituting for the approximated expectation of maximum window
3bp

size (W) in equations (4.7 and 4.11), both the expectation of the number of rounds (z)
and the expectation of the T'D period duration (A) are obtained as in equations (4.14
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and 4.15). In equation (4.15) the expectation of the round trip time is replaced by RT'T
as explained earlier according to the probability law of large numbers.

24 o2(1—p)  [2+Db\°
EW‘T*\/TWT)

_ (4.14)
= 3p 0(%)
E[A] = RTT (22b+\/26(é;p) +(ng)2+1> (4.15)

By substituting from both equations (4.14 and 4.15) into the throughput/packet loss
relation equation (4.8), the final form of that relation is obtained in the equations below.

1-— P + 2+b + \/8(;bpp + ib

2b(1

1 3
“RIT\ 20 OB

R(p) =

For p tending to zero, the throughput/packet loss relation is approximated as in the
final equation below. In most literature, the final form is commonly referred to as simple
throughput of a TCP connection (7).

R(p) = ﬁ\/% (4.17)

4.3 TCP Throughput with Finite Buffer

The basic TCP throughput was modified to limit the unrealistic assumption of infinite
buffering all over the network, by limiting the buffering resources of one of network devices
to a finite size B [116]. The additional assumption introduces by [116] handles that RTT
is only considering propagation delay in the basic TCP model with infinite buffering.
When introducing the limited buffering in only one network device, the queuing delay of
that device is added to the RTT. The other network devices with infinite buffering stay
with absolute zero queuing delay.

First the packet loss rate (p) is approximated using the state probability of the M /M /1
queuing theory. The long derivation details were omitted in the reference and are also not
shown here. In the equation below, A is the average input rate of that TCP connection
and g is the service (processing) rate of that network device. The service rate can be the
routing rate in case of routers or the segmentation/encapsulation in case of end devices.

pn AFAB - Bu (4.18)
i

Then the round trip time (RT'T) is also approximated by applying Little’s theorem

to the average queue length of the M/M/1 model again. The lengthy derivations were
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similarly omitted from both the reference and here. The equation below shows explicitly
the overall average propagation delay of that TCP connection (7).
RTT b + (4.19)
fy T .
= A
After simplification of the substitution of both p and RT'T in the basic TCP through-
put equation (4.17, the final throughput obtained in [116] is shown in the equation below.

3
T — (= Ny moveis=em (4.20)
1= AT+ pur

4.4 TCP Throughput with Finite Compressed Buffer

The TCP model with finite buffering introduced in the previous section is extended in
this section to represent the compressibility. The basic finite buffering model considers
restricted buffer size in one of the network devices, that device is further enhanced in this
section by adding the ability to compress a specific part of the data stored in that finite
buffer. This section assumes that the network is heavily congested, thus compression is
only performed in such network conditions. This model also assumes that compression
time (¢.) is only in the compressing limited buffer network device, it is independent of the
other factors of RTT. Thus ¢. is only an additional constant offset to the original RTT
expression obtained in equation (4.19).

Additional incoming

(@]
g \l/ packets
©
@ ,
B ) B
o
-}
A
w/o compression with compression

Figure 4.2: Buffer without and with compression function

When the data packets in a buffer is compressed, the total amount of data is decreased,
thus the available buffer size increases. In this case, more data packets can be received
and stored in the buffer, as shown in Fig. 4.2. When the compression is performed, the
number of packets that can be stored in the limited buffer will increase according to the
compression degree achieved. Some of the packets in the buffer will be in compressed
while others will stay in the normal uncompressed form. The final number of packets in
the buffer B’, regardless compressed or not, can be approximated by the product of the
overall compression ratio (C'R) and the real physical buffer size, equation (4.21).

B'~CRx B (4.21)
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RTT from equation (4.19) is rewritten to include the compression time (¢.) to the
original expression as in the equation below.

1
RIT = —— te 4.22
M_)\—I—T—ir (4.22)

By using equation (4.21 and 4.22) to substitute into equation (4.20), the obtained
throughput (7') expression is shown as in the equation below.

_ p—A 3
T_1+(T+tc)u—)\)\/2b[)\+BxCR()\—,u)] (4.23)

4.4.1 Curves of the Empirical Model

The constant and ranges of variables used in this section are listed below:

Constants

Window slope, b =2

Average overall propagation delay, 7 = 150 ms

Service rate, = 150000 packets/sec

Ranges of variables

Input rate, A = 149900 ~ 149990 packets/sec
Buffer size, B = 500 ~ 900 packets

Overall compression ratio, CR =10~1.3

Compression time, . =0 ~ 600 ms

The ranges were deduced during the derivation of the equation to eliminate the fol-
lowing conditions:

e Zero division (A > u)

e Negative square root

e Negative probabilities

e Probabilities more than one

e CR less than 1 (the size of original data is enlarged)

Some of the combinations of those conditions were not seen straight forward from the
equation, the ranges were adjusted during the plotting of the curves below. All of the
values that are used in this analysis represent a very small fraction of actual values in real
networks. For example, 1% of the transmission rate of 15 Gbps that is 150 Mbps.

In the next sub section, Fig. 4.3 through 4.10 show the T'hroughput and RT'T curves
plotted against either B and A for different C'R and .. The reference case of unity com-
pression is included in the curves and labelled (C'R=1) or no compression time (t.=0).
That includes the case of deciding not to compress (CR=1) after checking, which con-
sumes some time for the checking (¢.>0). The checking time is considered as part of the
compression time. The case of extremely fast compression is also considered with different
compression ratios (C'R>1) and no compression time (t.=0).
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4.4.2 C(CR and t. effect on Throughput and R7TT with Different
Buffer Size
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Figure 4.3: Throughput and RTT versus B under different C'R

Fig. 4.3 through 4.5 show T"and RT'T curves plotted against B for different C'R and t..
From Fig. 4.3, it is clear that RT'T is not affected at all by different CR or B. RTT was
found totally constant almost at 479 ms. On the other hand, throughput clearly improves
with small slope with both B and C'R. The higher the C'R, the better the improvement
caused by the B. In other words, increasing B slightly improves throughput by 12% when
not compressing and almost the same in lower C'R. Increasing B will improve throughput
until 23% when C'R is maximum. Increasing C'R will also improve throughput between
4% to 14% provided the same B. When combining the increase in both B and CR,
throughput improves almost by 28%.

In Fig. 4.4, throughput without compression increases as the buffer size increases. This
conforms to the traditional queuing theory basic assumption. The increase in throughput
is almost linear with low slope. Throughput also slightly increases as the compression
speed improves (compression time t. decreases). When combining the effect of buffer size
increase and compression time decrease, the obtained slope is slightly lower than that of
increasing the buffer size alone. Once compression is used, the effect of longer compression
time has a very small effect on improving the throughput.

Fig. 4.3 and 4.4 clearly confirm that throughput depends on B, CR and t.. The effect
of small changes in B (80%) clearly makes a considerable difference (23%) in throughput
which increases when combined with C'R. While 200% faster compression (smaller ¢.)
is required to get only 60% throughput improvement. Throughput improvements caused
only by CR lies in between both factors. It can be seen that the maximum 13% CR
increase can improve 4% to 14% throughput depending on B. In summary, slower more
aggressive compression when added on top of the increasing B, enhances throughput.
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In Fig. 4.5, RT'T is still independent from B with perfectly horizontal lines for different
t.. Still a different RTT value is visible for each t.. Since RTT already includes t. as a
simple additional term, thus different ¢. only shifts the horizontal RTT vertically. The
shifts can be clearly seen to be of equal steps (same as the added ¢.). It is clear from the
curves that no other factors are affecting R7TT. In other words, RTT is not affected at
all by B or CR. RT'T is only affected by ¢. as a linear constant to offset the RTT lines.

4.4.3 CR and t. effect on Throughput and R7TT with Different
Incoming Rate

When talking about increasing input rate, throughput is expected to start dropping since
the additional packets will contend for the limited buffer space. Thus, the packet loss rate
will increase.

In Fig. 4.6, 4.8 and 4.7, both throughout and RT'T" are plotted against A for different
CR and t.. The longer RTT and lower throughout with increasing A is confirmed by
those figures. This is used to validate the correctness of the earlier derived model in this
chapter. The result obtained from the previous B dependence figures is further affirmed
here. With respect to increasing B, RT'T was totally independent of C' R, having all RT'T
exactly on top of each other for any C'R. While in the A dependence figures RT'T" curves
are not constant, instead they increase with A. (0.06%) additional incoming packets will
increase the contention for the limited buffer size, then RT'T rises (20%). The behaviour
of the curves without compression or with any kind of compression is almost exactly
the same. Throughput curves here are similar to the throughput curves with respect to
increasing B. Almost 50% decline in throughput occurs when the \ increases, compression
manages to slow down this decline. The gap between the RTT curves of different ¢, is
almost constant as in the case of RT'T versus B.
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The A figures can be summarized as, decreasing the effective A is the only way to
improve or at least maintain throughput in case of increasing the real A, while RTT can
be decreased by finding extremely new compression schemes. Those schemes should be
extremely fast approaching the zero time of no compression while at the same time pro-
viding good compression ratio (C'R). Although the effect of increasing buffer size cannot
be taken lightly, together with the other factors it can be used to improve throughput
especially when large memory is not an option.

4.4.4 (R and t. effect on Probability loss with Different Buffer
Size and Incoming Rate

In Fig. 4.9 the effect of different C'R and . on the packet loss is plotted against B. The
figure shows the improvement in p of a heavily congested network. The figure shows that
increasing B is the main reason to decrease p. Doubling B can almost drop p by 40%. The
relation is almost linear as shown in the figure. The role of both CR and t. is restricted
to being a linear offset to shift the linear relation between B and p. The black group of
lines is the changes caused by different C'R, while the blue group is the changes due to
the different t.. The t. changes (blue lines) are almost in the middle as an average for the
overall system with very low variance, i.e. weak effect. While the variance due to the CR
changes (black lines) is clearly shown to be with much wider variance. Accordingly it can
be deduced that the effect of C'R is much stronger than the effect of ¢. on reducing the p.
When compared to B, highly aggressive compression with high C'R can reduce the p by
14% which is only slightly better the reduction caused by simple B increases.
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The effect of different C'R and ¢. on the p is plotted against A\. As expected the increase
in A will further deteriorate p in a heavily congested network. Faster compression (lower
t. in blue lines) can slightly reduce p as shown in Fig. 4.10. While more aggressive
compression (higher C'R in black lines) can further reduce the degradation of p, with
stronger effect than .. The difference in variance is similar to that explained in Fig. 4.9.

4.4.5 Emphasized Curves

Some of the curves that were presented earlier in this section are of special interest to this
research. Those curves are separated and highlight in this section. The constant values

and variable ranges of those curves are listed below:

Window slope, b =2

Overall Compression Ratio, CR = 1.3

Buffer size, B = 900 packets

propagation delay, 7 = 150 ms

Compression time, . = 5 ms, 25 ms, and 50 ms
Service rate, p = 150000 packets/sec

Input rate, A = 149930 ~ 149990 packets/sec
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Fig. 4.11 shows throughput and RTT curves versus A for the three different com-
pression times (¢.) above. As mentioned earlier, throughput with or without compression



will always decrease as A increases, RT"T" with or without compression gets worse as well.
RTT with compression will always be linearly shifted higher from without compression
according to the ¢. value and always be worse in case of compression. With extremely
swift compression, throughput is only better when incoming rate is already is very low.
This soon changes when the input rate increases even slightly; the advantage of com-
pression immediately disappears. In case of more realistic compression delay even in the
future, both throughput and RTT are always way worse than without compression.

Fig. 4.12 shows the scatter graph of throughput versus RT"T" to visualize the correla-
tion between the two different output for the different compression times (t.) mentioned
above. Each curve shows 5 constant input rates scenario A (149930, 149945, ..., 149990)
pkts/sec. In case of 149,930 pkts/sec (the red marked points), compression time with 5
ms has 9.82% better throughput than without compression, although RT'T is 3.0% more.
While the compression time with 25 ms, throughput is almost the same with or without
compression and RT'T" is even longer for the same A scenario. The throughput curve with
5 ms continues to have higher throughput and longer RTT" than without compression
until A becomes 149,975 pkts/sec, where the throughput is almost equal to the through-
put without compression curve. After that, the throughput of compression goes below
throughput without compression. The realistic case of compression time with 50 ms is
far worse with respect to both RTT" and throughput. In summary, if the compression
time can ever reach 5 ms or less while still maintaining very high C'R, there is a chance
for compression to improve throughput, but only when both B and \ are quite small and
cannot be increased.

Fig. 4.13a shows the scatter graph of throughput versus RTT to visualize the corre-
lation between the two different output for the different propagation delay, 7 from 150
ms ~ 750 ms, with 25 ms of constant compression time, t. in RTT. The RTT results of
compression are always way worse than without compression, but throughput are getting
better when 7 in RT'T is increased. To clearly determine the effect of 7 in RTT to the
throughput, throughput efficiency with unit of throughput per second is computed [117].
Fig. 4.13b shows when the increment of RTT reaches 3 times of the starting 7 (450
ms), throughput efficiency of compression outperforms the throughput efficiency of no
compression.

4.4.6 Summary

All the curves show that throughput decreases with any of the following factors sorted
according to importance; A increase, B decrease or t. increase. Throughput improvement
is mostly affected by A then B more than it is affected by CR and t.. Assuming that
the input rate () is uncontrollable, then C'R and t. can be used to improve the effect of
B on throughput when more memory is not possible. Compression with more aggressive
schemes even if it is slow, can really enhance throughput when added on top of increasing
B. For RTT, it can only be decreased by finding extremely fast compression which
approaches zero time, while still providing good compression to improve throughput.
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Chapter 5

Efficient Congestion Management
(ECM) Framework

5.1 Introduction

The purpose of ECM framework is to efficiently implement different existing congestion
avoidance and congestion control approaches in one adaptive framework to minimize the
impact of congested network while better utilizing network resources. There are numerous
existing congestion avoidance and congestion control approaches, many of which have been
already discussed in the Chapter 2. Most of those approaches were designed with one or
more particular purpose in mind, which makes this framework useful as multipurpose
used in all network conditions. The ECM framework offers adaptive selection to manage
the different congestion solving approaches according to adaptive learning from history.
ECM is mostly a congestion management framework, sending control messages to other
congestion control mechanisms to handle the different network situations.

Figure 5.1 shows the block diagram of proposed ECM framework in the different steps
of traffic or operation flow. The framework is an overall network manager coordinator
between the different layers of the network stack, ranging from application layer (e.g.,
Molecular Sequence Reduction) till the physical layer (e.g., network coding). The addi-
tional congestion classifier introduced in the framework together with the accompanying
control signalling and traffic forwarding links are used to achieve the coordination of the
framework.

The congestion detector in the classifier is actually split into two detection levels.
First, the initial detector or first level, roughly and swiftly checks congestion occurrence.
Accuracy is sacrificed in the first level in favour of both speed and energy. When disabling
the rest of the unused framework modules until congestion is suspected, energy that would
have consumed by those extra modules could be saved. Additionally, taking those modules
of the critical path of the framework operation helps speed up the framework operation
in normal traffic status.
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5.2 ECM Operation

In the beginning, the first level congestion detector simply monitors queue length and the
time it last changed combined with the packet loss count. The more sophisticated classi-
fication is used in the second level congestion detector (the actual congestion classifier) to
compensate for the inaccuracy of the first level detector. The congestion classifier detects
traffic load properties by monitoring a lot of network status parameters from all over the
different network layers. The obtained traffic load properties are then compared with the
history kept in a dynamic database of the previously encountered network situations, to
help make a more accurate classification of the current network situation. The current
network situation descriptor together with its classification and the correctness of that
classification will be also added to the database to help improve the classification the
future cases.

The database also records the history of the actions have been performed previously
when the same (similar) network situations were classified. The impact of those actions
will also be recorded to know the effectiveness of the action chosen in resolving the cor-
responding congestion.

Fig. 5.1 is split into four parts showing the steps of managing congestion when en-
countered by the proposed framework. Part (a) shows the flow of normal traffic before
congestion occurs. The first level congestion detector of the framework will keep checking
for possible congestion symptoms. As long as the preliminary check done by the first level
detector is negative, the remaining modules of the framework are idle and indicated with
grey colour text or background. Control and flow lines that are not used in this mode
of operation are also omitted in this part of the figure and shown when first used and
explained in the respective figure parts.

At the same time data packets flowing out from MPLS connections end and also up
from other lower networking layers are passed by the routing algorithm first. The routing
table is checked to select the destination per packet and save that selected destination
together with that packet in the network layer packets buffer. The destination can simply
be one of the existing physical links of the device or a virtual link (tunnel) connection
as MPLS or ATM (only MPLS is shown in this model here for simplicity). When the
routing table chooses which to link the packet should be forwarded, regular load balancing
mechanisms are utilized to improve the network utilization and general performance as
well as further minimize the chances of congestion occurring.

Each packets saved in the network layer packets buffer will wait, until its turn comes
to be forwarded to its assigned destination link. Some links, as MPLS, can be much faster
than the others and can accept more than one packet simultaneously while other links
are busy and their packets are still waiting. Compressed MPLS virtual links can even be
faster since it starts by copying memory to memory of whole block of packets destined
to same sub-network address. After copying the whole block of packets, MSR starts to
filter out the packets that will damage the required correlation and reduce the required
compression rate. Those packets are immediately forward on to the MPLS without any
compression. The selected packets for compression are then compressed to result a new
set of considerably smaller size before also being forwarded to the same designated MPLS
connection.

Traffic to be decompressed proceeds in the opposite direction but omitted from the
figure for simplicity. The compressed traffic emerging from the end device of the com-
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pressed MPLS connection is directly forwarded to MSR decompression module by-passing
the previously mentioned routing of regular MPLS connections. The decompression mod-
ule will check for uncompressed packet and forward it back to the routing algorithm.
Packet sequences that are marked as compressed will be uncompressed first before also
passing to the routing algorithm.

Concurrently the MSR, additional traffic to handle the continuous local update and
inter-device synchronization is encapsulated by the help of the local TCP layer of the
device and then also forwarded to the routing algorithm. MSR, pattern discovery module
is continuously scanning the packets in the network layer buffer regardless its destination
and updating its local dictionary when needed. MSR pattern discovery module is also
collecting statistics about the current content of the buffer per destination sub-network.
The collected statistics will be used to estimate the expected compression ratio, that esti-
mation is used by the congestion classifier to choose the suitable action to take according
to the detected network congestion classification.

Fig 5.1 part (b) shows the control flow when congestion checking done by the first
level detector is suspecting congestion. Greyed lines are used to indicate control and flow
lines or modules already explained in the previous part of the figure and not any different
in this figure. The same gesture is applied in the next two parts of the figure.

Since the detector rule to classify congestion is very primitive and inaccurate it cannot
be trusted as a final congestion detector and the second level detector is invoked. The
second level detector starts by collecting more network parameters from different layers
of the network of the device. Network coding level, SNR is useful to judge if the extra
delay encountered is congestion of due to high noise bursts in the physical network. Extra
transport and network layer statistics are also used to provide a more in-depth knowledge
of the current network conditions and traffic patterns. The output of one or more tradi-
tional congestion detection mechanism is also used to guide the classifier together with
congestion predicting mechanisms.

The collected network monitors are used to generate some network condition repre-
sentation vector. The vector is passed to the database manager to find if the same (or
similar) network condition occurred before in the recorded history. If not found the newly
encountered condition is added to the database and its classification will be added later.
When similar network condition was encountered, the (immediate, partial or full) history
is retrieved together with its previous classification and score (probability) of each clas-
sification. The retrieved score history is used to make the classification of the existing
network condition by voting mechanisms. If the network condition did not have history
in the database, a group of the different network status categories can be assigned default
or random values as an initialization.

Later when the classification is confirmed by future traffic, some voting evaluation
formula is used to assign a score to the classification and saved to its record in the
database. No further action is needed, if the classification decides that the current network
conditions indicate no sign of congestion for sure or with some confidence degree. Other
more advanced actions can be utilized to improve energy saving and other requirements
but not currently considered.

Fig 5.1 part (c) shows the control flow when congestion checking done by the second
level detector decides the existence of sure congestion with some confidence degree. The
congestion category detected is also ranked with different levels; ranging from heavy
congestion to light. Depending on both the congestion level and the confidence degree,
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congestion can either be predicted to occur soon in the future or detected in the current
time instant.

After completely classifying current network status, the congestion classifier collects
more monitoring statistics from the MPLS management module as well as the MSR
module. The newly collected statistics are aggregated with the previous statistics used
by the detectors to help choose the suitable actin for this network status. The database
manager is also used to provide historical records of what was done to handle similar
situations before, together with the score of how effect those actions were in improving
the different network performance.

Fig 5.1 part (d) shows the control flow when the action is finally chosen to handle the
current network status. One thing is that the database is again updated to record the
action selected and attaching it to the record of the current network status. At the same
time, the congestion classifier sends control messages either local to other mechanisms in
the different network layers of the device or to other network devices. Depending on the
chosen action(s) and the host network device, the control signalling links are indicated in
the figure.

For example, one or more TCP congestion avoidance mechanism can be initiated if
the network status was classified as congestion predicted. Similarly congestion mending
manoeuvres can also be initiated if the status was classified as some level of congestion.
Network coding can also be controlled either to higher faster level (more energy) or vice
versa, depending on the obtained classification of the current network status. Lowering
the quality of data (accuracy or QoS) is also considered as one of the possible actions for
congestion management when handling lossy data streams. The degree lowering of QoS
can be chosen depending on the level of congestion detected or predicted.

The newly added manoeuvres in this framework, is dynamically establishing MPLS
connections to assist in the management of network congestion. Since MPLS connection
requires some substantial time, this action is restricted as an option to be performed only
when predicting near future congestion with enough time to establish the connection. So
that by the time the predicted congestion occurs, the MPLS connection would have been
established. The MPLS coupling module is responsible for performing this action together
with the afterwards bookkeeping of modifying the routing tables for the future traffic to
start flowing into the MPLS channel either explicitly or load balanced with other links.

The MPLS coupling module is also responsible for establishing compressed MPLS
connections to other compression capable network devices. Similar to the regular MPLS
connection, the routing tables are updated with some indication of the compressibility
of this MPLS connection when needed. The action of decoupling an existing MPLS
connection is currently not included for simplicity relying on some MPLS connection
timeout to tear down long unused MPLS connections.

Depending on the severity of current network status category, more than one action can
be combined or speed up the resolving of the encountered congestion. The next time the
second level detector is engaged, the time elapsed since the last decision is checked. If the
time gap is considerable enough, the previous classification and action(s) are assumed to
have been correct and efficient to resolve the respective network status. That combination
of classification and action(s) is assigned a high score (probability). This way it will be
favoured for classification and handling the next time the same situation is encountered.
On the other hand, if the gap between two invocations of the second level classifier is
small enough, the previously action(s) and may be classification are assumed in adequate
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and assigned lower score. The lower score decrease the likelihood of repeating the same
mistake.

More sophisticated history sequence dependence can be introduced in the second level
classifier to provide better classification based on the knowledge of previous states pre-
ceding the current state. It can be useful in cases like failing to avoid congestion after
prediction, which should help classifying the current state as sure congestion that is too
heavy that the avoidance mechanisms were not enough to stop it from occurring. Thus
next time better apply more severe avoidance mechanisms. Similarly when the prediction
was too late, the classifier should update a larger set of network status in database as
the set preceding congestion. This way congestion can be predicted much earlier, for in-
stance to give enough time to establish an MPLS connection. An opposite example when
overacting occurs, by choosing an action that is too strict or over estimating the severity
of compression. The general network performance will drop without any real reason. By
updating the respective classification and/or action scores, the network utilization should
be improved the next time the same situations are encountered.

5.3 ECM Operation over MPLS

—> Setup Path (R1>R3[>R5[>R6[>R8)
<— Labels Established on RESV Message

== Tunnel 1
""""" RSVP Message Formats
Core| Next | Cost Bytes 0 1 2
R4 R4 10 Version| Flag | Type RSVP Checksum
R6 R4 30 Send TTL [ Reserved RSVP Length
l * Quoted from RFC2205
1 Path
R8 tunnell 50 2 Reservation Request (RESV)

Figure 5.2: Normal operation of MPLS-TE

Routers use the MPLS for underutilized links caused by Internet IP routing/forward-
ing paradigms. Traffic engineering (TE) component is employed to steer the destined
traffic from following the optimal path. TE enables better bandwidth management and
utilization between routers. The key to implementing a scalable and efficient TE com-
ponent in core networks is to gather information on the traffic patterns and traverse the
network to guarantee bandwidth is better utilized. The scope of TE is limited to net-
works with congestion which happens none frequently and only in few routers. TE virtual
links between two distant routers to better use the available bandwidth. Thus, TE might
relieve those temporary congestion.
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Figure 5.3: ECM operation of MPLS-TE

TE is inspired by constraint based routing (CBR), which takes into account the pos-
sibility of multiple paths between a specific pair of source and destination routers. The
resource availability and link status information are computed using a constrained shortest
path first (CSPF). CSPF uses bandwidth among the cost metrics to compute an ordered
set of IP addresses as the next hops along the path of the TE tunnel or LSP. TE is used
to transfer information through to virtual tunnels pre-configured on a router. TE uses
resource reservation protocol (RSVP). As illustrated in Fig. 4.8, TE tunnels are con-
figured in between ingress (headend) routers, R3 and egress (tailend) router of the core
network. The TE tunnels are assigned specific label switched path (LSP) routed via the
pre-configured paths. Only tailend routers perform path selection based on the ordered
sets computed by CSPF. Those routers reserves resources by RSVP to update the LSP
path and labels in the tables of the involved routers [119].

The four main messages used in RSVP for TE are PATH, RESERVATION REQUEST
(RESV), ERROR and TEAR. The PATH message is generated by the headend routers.
In other words, the headend router asks for information from the routers in the network
through the RSVP signalling to ask for bandwidth availability for the tunnel. At each
hop, the PATH message checks the available bandwidth and stores this information into
the message. The list of routers is calculated upon receiving on the tailend router. Other
routers in the network do not perform CSPF computation. The RESV message is created
by the tailend router and it is used to verify the reservation request that was sent with
the corresponding PATH message.

In the network depicted in Fig. 4.8, router R8 will generate the RESV message in
response to the PATH message. The ordered set of [P addresses indicates the routers of
the path R1, R3, R5, R6, and R8 are chosen. As a result, tunnell is established in the
core network.

The TE is extended to enable the implementation of ECM with compression by using
the RSVP signalling. The modifications are new RSVP messages, two additional types
of message are proposed. Compression Path (CP) message and Congestion Management
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with compression (CMC) message are added to the new RSVP protocol extension. The
CP message is used to request an uncongested path with compression supporting routers;
it is generated by the headend router. Then the CMC message allocates the bandwidth
to the new compressed TE tunnel and it is generated by the tailend router. The tunnel
between the headend and the tailend router is referred to as coupling data flow. Fig.
4.9 shows two paths, i.e., tunnell and tunnel? are established between routers R1 and
R8, tunnell is the regular MPLS tunnel while tunnel2 is added using the CP and CMC
messages to transfer compressed data flows.

When decoupling data flow, the tailend router uses the TEAR message to clear the
path reservation instantaneously. The reservations of the links are cleared from the routers
so that bandwidth can be reused for other traffic.

In general, one of the TE functions is to reduce the congestion in the core network. In
particular, the TE does guarantee the congestion can be perfectly solved. This is because
the future congestion, which is depending on the amount of data traffic admitted into
the core network, can be predicted by TE. When the newly ECM with compression is
applied on the MPLS, the compression path is intelligently performed to reduce the total
bandwidth. As a result, the extra bandwidth is available to transport other traffic. By
this way, the TE tunnel is efficient to carry more traffic in the core network. Furthermore,
some optimization algorithm can be used to provide a better load balancing management
to solve efficiently the encountered congestion in the entire networks.

5.4 Summary

The proposed framework is mostly a sophisticated congestion classifier tightly coupled
with network management of other network layer mechanism. The classifier can cate-
gorize the different network status with high accuracy, based on the monitored statistics
collected from the different network layers. The management functionality of the proposed
congestion classifier have orchestras the involved network layers, modules and mechanism
to better manage network congestions. Aided with a detailed recorded history, the clas-
sifications and actions decided by the congestion classifier are continuously corrected to
provide continuous improvement of the performance of the framework. Most of the frame-
work functionality is performed off the critical path of the routing functionality away from
the main traffic flow. Thus the network performance is almost not affected at all by the
framework in case of normal flow conditions. The effect of the framework should be only
obvious in congestion situations, where the framework tries to coordinate the different
layers that perform some congestion management for better responsiveness.
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Chapter 6

Efficient Congestion Management with
Compression (ECM /C) for Small
Devices

6.1 Introduction

It has been shown in Chapter 4 that reducing the incoming rate of data traffic into a
congested network is the main and may be the only way to solve or avoid congestion. The
problem is reducing the incoming rate risks leaves some network resources under-utilized
to keep safety margins from congestion. The motive of using compression in the model
presented in this chapter is finding a way to take the advantages of reducing the incoming
rate without really reducing it. By reducing the effective incoming data size while keeping
the actual incoming input rate as it is, congestion can be avoided or relieved.

Compression would still prolong RTT and thus the network performance including
throughput will be degraded, but definitely much better than in case of regular congestion
management mechanisms. Regular compression schemes as LZW, are characterized by
extremely large memory footprint and compression delay. While the delay is mostly data
dependent as well as technology dependent and cannot really be improved, the memory
requirements can be compromised to some extent.

Lightweight DeCompression (LDC) is a customized compression technique that re-
quires minimal additional memory for decoding compared to LZW. Some devices have
smaller buffering and bandwidth, LDC is introduced for those low memory devices. LDC
decoder is a lightweight process that can be implemented in hardware unlike all the other
existing compression schemes, which make it more appealing for limited memory devices.
In addition, such small devices cannot perform long complicated calculations or memory
intensive operations as required by LZW. That was the design goal for LDC. LDC man-
aged only in half duplex compressed data stream to save incoming bandwidth to those
small devices, as shown in Fig. 6.1. Half duplex compression here means one way traffic
only is compressed while the opposite way is not compressed, unlike the regular meaning
of full and half duplex transmissions. The powerful encoder device will be responsible for
the complicated memory intensive compression process. The reverse traffic will not be
compressed, since the limited small device does not have enough resources. The tuning
of the LDC algorithm is also described in the end of this chapter.
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Sender 1

End devices

Figure 6.1: LDC network topology

6.2 New Dictionary based Compression Scheme with
Lightweight DeCompression (LDC)

Simply reducing the transmission rate at the transport layer of the end devices would avoid
a lot of packets retransmission which would probably suffer from timing out in congested
networks. Reducing packet rate might make it difficult to maintain high throughput and
utilization when congestion is not that severe or was not really there from the beginning.
Data compression can be one of the viable solutions to help in congestion handling to
maintain high throughput with reducing the effective incoming rate instead of the real
one.

The most widely used data compression algorithms of the LZ family are simple to
implement, and has long provided promising compression ratio. Still, LZ needs huge
additional memory during dictionary that can easily reach higher than the square of the
data size itself, which might not be provided by some devices. In this chapter, LDC
is introduced for low memory devices. LDC decoder is a lightweight process that can
be implemented in hardware of limited memory devices. LDC decoding needs small
additional memory, while encoding requires comparable memory to LZW and much longer
compression delay and lower compression ratio. Since data streams are compressed outside
of the network (above end devices TCP layers) not to cause additional packets timing
out. When those streams are compressed as much as possible, the required bandwidth is
reduced. The spared bandwidth is consumed for the retransmissions to resolve possible
existing congestion beside the virtually reduced input rate. The effective throughput in
that case would be higher than without compression.

An overview of the ECM/C model operation with its physical location either on the
sender (compressor) or the receiver (decompresser) is shown in Fig. 6.1. Small limited
memory devices are always acting as decoders receiving compressed stream of data from
much powerful compressing devices. The network topology is also shown with half duplex
compression traffic. In Fig 6.2, the stages of LDC compression are also shown.
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Figure 6.2: LDC Stages

List of Definitions:

Definition 6.2.1. (Codeword) A codeword (c) is a group of two or more concatenated
data unit. If the codeword has two data units and each symbol has two characters, then
the mazimum number of the codewords is 2562, which is equivalent to 65536.

Definition 6.2.2. (Codeword length) A codeword length (1.) is the number of bits of
a codeword. If the codeword has two symbols and each symbol has two characters, then
the codeword length is 2 symbols X 2 characters x 4 bits = 16 bits.

Definition 6.2.3. (Code) A code (C) is a mapping from a symbol or a codeword to a
set of finite length of binary strings. (**representation code)

Definition 6.2.4. (Code length) A code length (7y) is the length of a code. If the code
has v bits, then it can encode at most 27 of symbols and codewords.

Definition 6.2.5. (Fixed length code) A fized length code is a code such that v; = v,
for alli,j.

Example: Suppose there is one symbol, {AB} and two codewords, {9F1B, 3E70B2}. In
the fixed length code of 2 bits, the code would be C'(AB) = 00, C(9F1B) = 01, and
C(3E70B2) = 10.

Definition 6.2.6. (Dictionary) A dictionary (D) is initialized to contain the single
codeword corresponding to all th possible input characters. The dictionary is identical to
the input source data.
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Table 6.1: List of notations

‘ Symbol ‘Description

So The size of source data (unit: byte)
Se the size of encoded data (unit: byte)
R The sum of repetitions of all output symbols and codeword
P, The sum of repetitions of all output symbols that were not compressed
P. The sum of repetitions of all input codeword that have been compressed
Q The sum of entries in the dictionary
« The size of one input symbol in bits
leyon The codeword length that has the maximum number of bits of a
codeword length
le, .. The codeword length that has the minimum number of bits of a
codeword length
le The codeword length that has the average number of bits of a codeword

To reduce the temporary memory requirements of the dictionary structures during
encoding process, the dictionary size is limited. In the LDC compression, the dictionary
needs to be transmitted to the decoder for decoding process. The codeword entries of the
dictionary are limited to 256. It goes without saying that such small dictionary is the
main reason LDC compression ratio will be much worse than that of any LZ variant, but
when well utilizing the small dictionary the degradation of compression performance can
be reduced. To achieve this, the dictionary is filled with higher repetition codewords first
regardless of their position of occurrences. To calculate the repetition of the codewords
before starting any compression, an additional pass of scanning the whole input which
tends to double the compression time more than any other LZ variant. Each of the
codewords allowed in the dictionary must fulfil the minimum repetition threshold (Ryp.)
below. If those codewords are too short and non-frequently used, the overhead in the
dictionary can end up increasing the stream size.

a(lcmax + 1)

« is the size of one input symbol in bits. [l.nq. iS the maximum number of codeword
length. [; is the codeword length that between the maximum and minimum of codeword
length. A\ is a code length.

A fixed code length is used in the proposed LDC, which is a feature from an simple
implementation engineering viewpoint [121,122]|. Therefore, the codeword in the dictio-
nary must at least start from A=9 bits to have enough space for the dictionary besides
the original uncompressed data space. If the X is 9, the dictionary will have 512 entries.
Since the first 256 entries are reserved for the basic symbols, only 256 entries are usable.
LDC algorithm operates in two passes, dictionary building and encoding.

Rthre - (61)

6.2.1 Dictionary Building Pass

The dictionary building, shown in Fig. 6.3, is conducted according to Algorithm 1, where
codewords are constructed by all possible combinations of input stream symbols sequences.
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The constructed codeword are up to the maximum allowed codeword length. The repeti-
tions of those codewords are counted to represent possible repetition in the final modified
input stream. Only the codewords with highest repetition are added into the final limited
size dictionary. A fixed threshold for minimum repetition is used to keep codewords with
low repetition from entering the dictionary. If those codewords are too short the overhead
in the dictionary can end up increasing the input stream. The threshold could be further
set higher to speed up the process of inserting and replacing codewords in the temporary
database while avoiding the need to sort the big list of all possible input stream symbols.

Fig. 6.4 shows an example of possible codewords forming. All the possible codewords
are formed from I.,,;, = 2 until [.,,.. = 4, if needed they are added in the input database
and /or its repetition count updated. The window keeps shifting until the end of the input
stream. In the example, the generated codewords are 1234, 123, 234, 12, 23, 34, 2345, ...,
and so on. In this example, no repetitions occurred and all counts are one assuming all
combinations never appeared previously in the input.

Algorithm 1 Dictionary Building

1: Input window = read (lgmaz — 1)
2: while (input window.append(read one byte)!=empty) do
3: for (codeword=next possible longest codeword) do

4: if !(codeword in input list) then

5: insert (input list, codeword)

6: else

7 input list [codeword|.count+=I,

8: if (codeword in the dictionary) then

9: continue

10: end if

11: if (input list [codeword|.count < Rype * [.) then
12: continue

13: end if

14: if (dictionary full and input list [codeword].count==Ry,. * [.) then
15: continue

16: end if

17: if (dictionary full) then

18: remove (dictionary,lowest count codeword)
19: insert (dictionary, codeword)
20: end if
21: end if
22: remove first byte window

23: end for
24: end while
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Figure 6.4: An example of possible codeword formation

6.2.2 Encoding Pass

Fig. 6.5 and Algorithm 2 show the encoding algorithm. In this pass, the input symbol
sequences are encoded by searching for them in the dictionary. If a match is found in
the dictionary, the index of the matching codeword position in the dictionary forms the
representing compressed data. If no match is found, just bit encode the input data unit
into the corresponding enlarged representing compressed size.

Algorithm 2 Encoding Process

1: while (inputWindow = readNextInputWindow)!=empty do
2 for (codeword = nextLongestPossibleCodeword (inputWindow)) do
3 if (foundIndex=codewordExistInDictionary ()) then
4 output (bitPacking(foundIndex))
5: removeCodewordFromInputWindow ()
6 end if

7 end for

8 output (bitPacking(firstByte))

9: removeFirstByteFromInputWindow()

10: end while
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Figure 6.5: The flow of encoding process

6.2.3 Decoding

The decoding process consists of two steps, dictionary loading and decompression. The
dictionary is first received from the encoder. After checking the validity of the dictionary,
it is loaded to prepare for the decompression step. The end of the dictionary packet(s) is
signalled from the encoder by a flag/token or separating dictionary packets from the com-
pressed stream. The dictionary can be shared among different input blocks and updated
explicitly if it is separated from the compressed stream. This can further help in improv-
ing the compression performance faster (less bandwidth) and better compression ratio.
That approach is similar with the MSR dictionary synchronization feature. LDC has a
much smaller dictionary which makes it easier to just transmit the whole dictionary when
needed instead of generating a lot of additional traffic and complicated resource hungry
dictionary synchronization of MSR. The new dictionary generated by the compressing de-
vice can be compared to the previous one, if not much different and the compression ratio
improvement by not transmitting the dictionary should be compared to the compression
ratio degradation of using a little different dictionary.

Decompression step is shown in Algorithm 3. Compressed data stream bits are un-
packed, the bit flag is checked. If the data is from the dictionary, output the corresponding
symbols sequence of this codeword. If the flag indicates it is not from dictionary, just bit
decode the compressed data.
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Algorithm 3 Decompression

1: while (true) do

2 index = unpackBits (compressedStream)
3 if (index < DictionarySize) then

4 output (index)

5: else
6
7
8:

output (dictionary |[index-256])
end if
end while

6.3 Parameters Tuning

6.3.1 Code Length

When the code length, v = 8 bits, there is no space in coding bits to represent any
additional representing code from the dictionary. The data block can only be compressed
when the repetition of the codeword is high. In order to have space for representing the
dictionary indices, v must start from 9 bits upwards. In this study, the upper bound of
compression ratio in the proposed compression algorithm is computed with the sum of
repetitions of all output symbols that were not compressed, P, = 0, the fixed codeword
length with minimum value, [, = 2 is used, and total number of entries in dictionary is
fully utilize, which is £, = 27 — 28, When P, = 0, it means the data packet is perfectly
compressed, the S, is only encoded by the codeword. In this case, the best compression
(CR) that can achieve is given by

8 x I, P.

CR
E(l.+1)

(6.2)

Ps:O:

The upper bound of CR is given by CR < CR |p,—9. The worst case of CR in the
proposed compression algorithm can be computed when the P. = 0 is assumed. The
worst compression (C'R) computes by

8 P

CR|lpog=— 4+ —""—
ey T B+ 1)

(6.3)

The lower bound of CR is given by CR > CR |p,—o. The upper bound of CR for the
proposed compression algorithm is showed in Fig. 6.6. The C'R decreases, when the
code length increases. In order to have better C'R with fixed codeword length of 2, 9
bits was found to be the best selection for the data tested here. From Fig. 6.6, the
best performance for the proposed compression algorithm can reach 1.778. This means
the compression algorithm can save up to 44% of the resources for that specific input
giving a chance of other streams to make use of the freed bandwidth. In some cases, fixed
codeword length might enlarge the compressed data size. The worst performance of this
algorithm reaches is 0.889, which enlarges nearly 12% of the original data size. However,
this problem can be solved by pre-determination to reject compressing bad compression
ratio data and just revert back to the original data after compressing.
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Figure 6.6: The upper bound for the proposed compression algorithm

6.3.2 Codeword Length

The codeword length, [. is used to allow variable length of the codeword string. The
longer of the codeword string, the more data bits compressed per symbol. However, the
time needed to determine the possible codeword will be higher. Example of C'R for fixed
codeword length and variable codeword length are showed in Fig. 6.7(a) and Fig. 6.7(b)
respectively. The codeword length showed in Fig. 6.7(b) are varied between the [, and

lcmin .

— |C = 2
E— max. I =2
-— w|c=3

= e=max.lc=3

= == max.lc=4

trans trans

prog prog

paper obj

Figure 6.7: The example of CR with fixed and variable codeword length respectively

The test samples are from the benchmarks of Canterbury corpus [123| and Silesia
corpus [124]. C'R for book is the average of bookl and book2, obj is the average of objl
and obj2, paper is the average of paperl and paper2, and prog is the average of progl,
prog2, and prog3. From Fig. 6.7 (a), . = 2 gives better compression performance than
the others. This is because when the [, increases, the probability of false matching with
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the code also increases. In the variable codeword length, C'R for all the test samples
are over than 1. When [. increases, the compression will become better, because the
algorithm will try to search for the longest codeword to encode. However, this will take
longer processing time. Meanwhile, [, = 2 for fixed codeword length is nearly as the
variable codeword length with [, = 6. This example is just to show the effect of fixed
and variable codeword length of LDC for the test samples used; they cannot be used to
represent any general case.

CR in variable codeword length is better than with fixed codeword length. Difference
in C'R with variable codeword length is not obvious for small codeword length but still
extremely time consuming. Fixed codeword length will always have the fixed code word
(2) as the upper C'R limit for any higher codeword length. On the other hand, the variable
codeword length will only have code word (2) as the lower limit. Any variable codeword
length will provide higher C'R than the best corresponding fixed codeword length.

6.3.3 Block Size
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Figure 6.8: C'R of 100 test samples with v =9, [. = 2 in various 5, size

CR of different source data size is calculated to determine the optimal block size for
the proposed compression algorithm. 100 benchmark samples with 50% binary format
such as mp4, jpeg, and wmv, and 50% text format such as txt, html, and .c are tested.
The result is shown in Fig. 6.8. C'R = 1.25 is used as a reference that needs to be achieved
for minimum CR. In this case, compressing each of block data can at least save 20% of
the network bandwidth occupied by that data and can help the overall compression of
the whole network.

From Fig. 6.8, when the source data is 8K B, 61% of the test samples give C' R with
more than 1.25. When the block size is 32K B and 64K B, 68% of the test samples can
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compress more than 20% of the original file size. However, the test samples that were
compressed more than 1.25 decreases when the block size is more than 128 K'B.
In summary, the chosen parameter values of fixed LDC for this research are

e Code length, v : 9 bits
e Codeword length, [, : 2
e Block size : 16 Kbyte

6.4 Performance Analysis

The overall performance of LDC is quite clear from the tables below and pretty self-
explanatory.

Table 6.2: The Used Benchmarks

Test sample | Size (Kbytes) | Category
alice29 152 English text
book2 611 Non-fiction book
IcelO 427 Technical writing
paperl 53 Technical paper
news 377 USENET batch file
obj2 246 Object code
progp 49 Source code
geo 102 Geophysical data
trans 93 Transcript of terminal

Table 6.3: Dictionary Size and Compression Ratio

Test sample | Memory (Mbyte) | Compression Ratio
LZW LDC LZW LDC
alice29 69 2 2.44 1.76
book2 72 5 2.54 1.60
Icel0 71 3 2.62 1.73
paperl 69 3 2.12 1.59
news 71 6 2.13 1.45
obj2 70 6 1.92 1.42
progp 69 2 2.57 1.69
geo 69 7 1.32 1.55
trans 69 2 2.45 1.56

The simulation conditions used to obtain the above results are listed below:
Evaluation reference: The code of LZW compression is developed by V. Antonenko
[126].

Test environment: The simulations is performed using the GNU/Linux 3.13, 32-bit
operating system, Intel Core 2 Duo 1.20GHz CPU, 4GB main memory, 160GB 66 MHz
hard disk. The code of LZW and LDC are compiled with gnu C version 4.8.1.
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Data Set: Nine benchmarks from Canterbury Corpus [123] are used. The sizes and
categories of these test samples are given in Table 6.2.

LZW Parameter: Code length, A = 8bits (7bits + 1 flag bit), Maximum Codeword
length=128, dictionary size=128 and a = 7bits.

LDC Parameters: Code length, A\ = 9bits, Maximum Codeword length, [.,.. = 6,
Minimum Codeword length, [.,,;, = 2, dictionary size=256 and o = 8bits. Ry,.. was used
as the minimum for each codeword length.

Table 6.3 shows the additional memory needed during decoding and C'R for both LZW
and LDC. The additional decoder memory needed by LZW is 10 or more times that of
LDC. Generally, LZW achieves better C'R than LDC, except for geo benchmark, in which
LDC is 0.25 higher than LZW.

In summary, LZW offers better C'R than LDC. The important thing here is that during
decoding, LZW requires larger memory compared to LDC. The classification of both
ECM/C and LDC according to categories of compression schemes presented in Chapter
2 is shown in the table below with some of the compression schemes mentioned earlier as
references; LZ family, L.S. Tan [125] and MSR.

Table 6.4: Classification of the proposed compression schemes

(%A
s
7. Structuring Repetition structure Sampling Sample
G Homogenei Purpose Accurac 5 A No. of passes e q
ot"/b 8 ty P Y of data distance sharing P frequency size ratio
Scheme
Storage & Lossless . - Mostly 1 Practical 100% of
Lz Homogeneous Comm. (lossy) None Practical Limit Mostly No 2or3) Limit block
; o
L.S. Tan Homogeneous Comm. Lossless None Practical Limit No 1 Préchical 100% of
Limit block
MSR Intra-data 1+
) Homogeneous Comm. Lossless None blocks Distributed (decoupled off N/A N/A
Juniper . "
(Infinite) critical path)
o
LDC Homogeneous Storage & Lossless None Whole data Yes 2 Whole data 100% of
Comm. block block block
Whole data Whole data 100% of
ECM/C Homogeneous Comm. Lossless None block Yes 2 block block
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

This research started by a comprehensive review of network congestion related mechanisms
and protocols including congestion free networks like congestion ATM and MPLS. Variety
of mechanisms was developed for congestion vulnerable networks like TCP/IP to provide
avoidance or mending of the experienced congestion situations. In-depth understanding of
how to address the congestion problem was presented according to the insight gained from
the mentioned review. This dissertation have investigated congestion control management
mechanisms and introduced a new direction for aiding in solving network congestion. The
current congestion management mechanisms are always embedded into flow management
mechanism which ensure that network resources are been fully utilized all the time. The
previously proposed mechanisms directly or indirectly help to eliminate the congestion
problems. None of those mechanisms has been shown to be perfect in achieving full
utilization of network resource with keeping safe out of congestion situations.

Since compression is the new mechanism introduced in this research to help in con-
gestion management, an in-depth review of traditional and common compression schemes
is presented. Thorough classification of compression schemes is studied and applied to
the common compression schemes in use nowadays. The basic compression metrics are
also discussed and extended to obtain some general reasonable ranges of any compression
scheme, which were utilized in the analysis compression of this thesis.

A empirical model was derived for TCP connection throughput with compression
functionality of the contents of the buffering resources. The model was used to study
the feasibility compression in networks. A model has been derived mathematically from
the original TCP connection throughput model and a recent variant. The curves of the
model has been analysed to show the theoretical bounds of compression in networks.
The analysis has shown that compression may improve throughput of heavily congested
networks in some cases. When combined with memory (buffer) upgrades, compression
can increase the improvement caused by buffer enlargements.

The proposed ECM framework can be applied to minimize the impact of network
congestion by orchestrating a big number of already existing mechanisms that handle dif-
ferent situations of network congestion. In order to resolve the congestion situations much
better and faster than applying any of those mechanisms individually, combinations and
sequences of those mechanisms can be utilized in different situations or locations simul-
taneously. Thus maximizing network resources utilization by reducing the period of time
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where congestion mechanisms are increasing safety gaps from fully utilizing the resources.
The ECM framework presented in this research offers an overall idea of how to utilize the
exiting congestion management mechanism to improve congested networks throughput.
Additionally the framework introduces compression over MPLS as new mechanism for
helping in congestion situations, especially heavily congested slow networks. MPLS-TE
was one of the tool coordinated by the framework and was selected to be the carrier of the
compression new mechanism to handle some compression related issues. ECM framework
is a general framework that can be corporate with a lot more mechanisms for handling
network congestion. It can be extended with any newly emerging mechanism whether
originally designed for congestion management or can aid in the process. For example,
the commercial Juinper hardware compression was plugged in the framework with some
guiding foresight on how to do such integration for other mechanism and tools. Even when
the commercial product offered little details due to market privacy, still it was shown how
it can be used while offering promising contribution in the proposed ECM framework.

ECM/C model was also presented in this research to offer an overall idea of how to
feasible compression mechanism for limited resources devices. Small devices as actuator
with slow connections, small buffering capacity and limited computational resources can-
not afford to run any of the resource hungry compression schemes. ECM/C model was
designed to address the needs of those small devices. A new simple compression scheme
LDC was designed to be incorporated into the ECM/C model. LDC and the ECM/C
model enable small devices to carry out decompression with minimal resources. By sac-
rificing both compression ratio and compression delay in favour, still the final transfer
time would benefit from any possible compression. Since LDC requires less memory for
decoding, it is the only chance for those small devices to reduce the required bandwidth
compared with the normal traffic. The analysis of LDC has hinted the possible over-
all performance when applied in network stacks. LDC was further tuned to offer better
compression performance. Even by sacrificing some compression performance, LDC can
finally offer some contribution to help in congested networks of small devices.

7.2 Future Work

Dedicated research further evaluates ECM framework and ECM /C model using computer
simulations, emulation and finally real testbed experiments.

Investigate the effectiveness of ECM framework and ECM /C model from the viewpoint
of application, peak traffic applications (e-voting, e-shopping, etc.) can be studied to cause
on-demand congestions. Evaluation of energy consumption of the framework and model
presented is critical for the practicality of the usage.

More congestion management mechanisms can be incorporated into the ECM frame-
work and studied to check which are more valuable for solving congestion situations, so
that ineffective mechanisms be removed to speed up the framework. Although the MSR
compression mechanism used in the framework, mandates the usage of MPLS, other sim-
ilar protocols or tools can be investigated such as ATM.

The dictionary management in both MSR and ECM/C can be further studied to
improve the additional traffic or reach better compromise for synchronization traffic. The
size and structure of the dictionaries are also a big research topic to reach a trade-off for
better compression versus additional resources being of temporary nature.
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Other networking performance metrics calculation models or more general one can
also give a better idea on the effect of the different congestion management mechanisms
including compression. The development of such models, although quite complicated, can
settle once and for all the effectiveness of the different mechanisms in solving congestions
and improving the performance of networks.
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