
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Modeling, control and analysis of limit cycle

walking on slippery road surface

Author(s)
Asano, Fumihiko; Kikuchi, Yasunori; Shibata,

Masahiro

Citation
International Journal of Dynamics and Control,

2(4): 463-473

Issue Date 2014-03-22

Type Journal Article

Text version author

URL http://hdl.handle.net/10119/12919

Rights

This is the author-created version of Springer,

Fumihiko Asano, Yasunori Kikuchi, Masahiro

Shibata, International Journal of Dynamics and

Control, 2(4), 2014, 463-473. The original

publication is available at www.springerlink.com,

http://dx.doi.org/10.1007/s40435-014-0084-7

Description



Noname manuscript No.
(will be inserted by the editor)

Modeling, control and analysis of limit cycle walking on
slippery road surface

Fumihiko Asano · Yasunori Kikuchi · Masahiro Shibata

Received: date / Accepted: date

Abstract This paper investigates the feasibility and
fundamental gait properties of active and passive limit-
cycle walkers that walk on slippery road surface. First,

we introduce the model of an underactuated spoked
walker with a torso and mathematically analyze the
collision model on the assumption of sliding contact

with the ground to identify the condition for achiev-
ing instantaneous stance-leg exchange. Second, we de-
velop the equation of motion incorporating sliding fric-

tion acting on the stance-leg-end and numerically show
that the walker can generate a stable walking gait by
applying a simple control of the torso. Furthermore, we

discuss the case of passive dynamic walking on slippery
slope using the same model but without considering the
torso dynamics.

1 Introduction

In modeling of limit cycle walking including passive dy-
namic walking [1], it is commonly assumed that the end
point of the stance leg is always in contact with the
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ground without sliding [2][3]. This implicitly supports
that the contact point develops sufficient friction dur-
ing motion and at impact. On slippery road surface,

however, this assumption cannot hold and the robot
equation must be reconsidered taking the sliding con-
tact into account. This issue should not be ignored in

development of walkers that are highly adaptive to un-
known environment but there are few studies on it.

It is not difficult to develop the model of a limit-
cycle walker that moves sliding on the floor, but the

collision with the slippery floor must be carefully mod-
eled according to the condition. The problem of how
to determine the motion immediately after impact has

been investigated in several studies. Bourgeot et al. dis-
cussed the variety of the post-impact motion of a dy-
namic walker that falls down as a 1-DOF rigid body

based on the concept of rocking block, and they divided
the possible motion into four cases according to the re-
lation between the pre-impact velocity and the post-

impact one [4]. Font-Llangunes and Kövecses also dis-
cussed this issue and analyzed the post-impact state of
a compass-like biped robot. They identified the condi-

tion for transition to double-limb support (DLS) based
on the vertical velocity of the end-position of the rear
leg [5]. On the slippery floor, however, this issue has

not been discussed in detail until now.

Based on the observations, this paper addresses two
issues; one is identifying the condition for achieving in-
stantaneous exchange of the stance leg while sliding,

and the other is generation of stable walking gaits on a
slippery road surface. First, we introduce the model of
an underactuated spoked walker with a torso that falls

down as a 1-DOF rigid body immediately before impact
[6], and develop the inelastic collision model on the as-
sumption that the walker is sliding at impact (during

the collision phase). We then identify the condition that
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the rear leg leaves the ground immediately after landing

of the fore leg. We analytically derive the impulse vector
which is derived as a zero-time integral of the impulsive
forces at impact and examine the sign of each element

to determine unilateral constraint [7][8]. Second, we de-
velop the equation of motion incorporating sliding fric-
tion acting on the stance-leg-end and numerically test

the feasibility of stable limit cycle walking on a slip-
pery road surface. The sliding friction is mathemati-
cally developed as the simplest model that represents

the Coulomb’s friction law but without considering the
static friction effect; it corresponds to the condition of
frozen or oily road surface. Through numerical analysis

of the gait properties, we show that there is an opti-
mal friction coefficient for achieving the most efficient
walking gait. Furthermore, we extend the analysis to

the case of passive dynamic walking by using the same
model but without controlling the torso.

The subsequent sections are organized as follows.
Section 2 develops the collision model and derives the
condition for achieving instantaneous stance-leg exchange.
Section 3 describes the equation of motion and out-

put following control for generating a level gait. Section
4 analyzes the gait efficiencies and properties through
numerical simulations. Section 5 discusses passive dy-

namic walking on slippery slope. Finally, Section 6 con-
cludes this paper and describes the future research di-
rection.

2 Collision analysis

2.1 Underactuated spoked walker with torso

Fig. 1 shows the model of an underactuated spoked

walker which composed of a twelve-legged RW and a
torso. Letm1 [kg] and I1 [kg·m2] be the mass and inertia
moment of the RW. Let m2 [kg] and I2 [kg·m2] be those

of the torso. The leg length or the radius of the RW
is l [m]. The length of the torso is 2r [m] and this is
connected to the RW at the central joint. This walker

can exert a joint torque, u [N·m], between the stance leg
and the torso. The torso functions as a reaction wheel
for the RW; the stance leg can use the reaction torque

for propulsion.

2.2 Inelastic collision model

Let q =
[
x z θ1 θ2

]T
be the generalized coordinate vec-

tor. Here, (x, z) is the position of the stance-leg end, θ1
is the stance-leg angle with respect to vertical, and θ2 is

the torso angle with respect to horizontal. The inelastic

collision of the fore leg (the next stance leg) with the

ground is then modeled as

M(q)q̇+ = M(q)q̇− + JI(q)
TλI , (1)

where the superscripts “−” and “+” stand for imme-

diately before and immediately after impact. Note that
q in Eq. (1) is equal to q− = q+. λI is the impulse
vector given as the zero-time integral of the impulsive

force at impact. M(q) ∈ R4×4 is the inertia matrix and
is detailed as

M(q) =


mt 0 mtl cos θ1 0
0 mt −mtl sin θ1 0

mtl cos θ1 −mtl sin θ1 mtl
2 + I1 0

0 0 0 I2

 , (2)

where mt := m1+m2 [kg] is the total mass. The size of
the Jacobian matrix, JI(q), is non-unique and changes
according to the condition for velocity constraint at im-

pact. In the following, we describe the conditions in de-
tail.

2.3 Condition for instantaneous stance-leg exchange

First, we analytically derive the condition for achieving
instantaneous stance-leg exchange by assuming that the

motion transitions to DLS after impact.

If we assume that the fore leg slides at impact, that
is, the end-point is not constrained in the X-direction,

the only velocity constraint condition is given by

d

dt

(
z + l cos θ−1 − l cos(α− θ−1 )

)+
= 0, (3)

where θ−1 = α/2 [rad].

We generally assume that the contact point between
the stance-leg end and the hard ground develops suf-

ficient friction and that the end point does not slide
steadily or the constraint condition of ẋ+ = 0 always
holds. In this case, the walking motion consists of single-

limb support (SLS) and instantaneous DLS for stance-
leg exchange. On the ice, however, this is not true and
we must develop the Jacobian matrix, JI(q), in Eq.

(1) accordingly. The lack of ẋ+ = 0 implies that a re-
dundant DOF is created. We therefore have to concern
about the possible emergence of DLS motion after im-

pact [7][8]. Transition to DLS motion implies that the
walker continues sliding without rotating. In the fol-
lowing, we discuss the problem of how to determine the

post-impact motion, SLS or DLS, through mathemati-
cal analysis of the impulse.

If we assume that the rear leg does not leave the

ground immediately after landing of the fore leg or
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Fig. 1 Model of underactuated rimless wheel with torso

maintains contact with the ground, the following con-

dition must hold.

ż+ = 0 (4)

In addition, in this paper we assume that the torso is
mechanically locked to the RW at impact. This means
that the walker falls down as a 1-DOF rigid body im-

mediately before impact. This velocity constraint con-
dition is then specified as

θ̇
+

1 − θ̇
+

2 = 0. (5)

By summarizing Eqs. (3), (4) and (5), we get

JI(q)q̇
+ = 03×1, (6)

JI(q) =

 0 1 −l sin θ−1 + l sin(θ−1 − α) 0
0 1 0 0
0 0 1 −1

 . (7)

Following Eqs. (1) and (6), the impulse vector, λI ∈ R3,
can be solved as

λI = −XI(q)
−1JI(q)q̇

−

=


2It+mtl

2(1−cosα)
4l sin α

2

−2It−mtl
2(1−cosα)

4l sin α
2

I2

 θ̇
−
1 =:

λI1

λI2

λI3

 , (8)

where XI(q) := JI(q)M(q)−1JI(q)
T and It := I1+I2

[kg·m2] is the total inertia moment. By substituting λI

of Eq. (8) into Eq. (1), the velocity vector immediately

after impact, q̇+, is derived as

q̇+ =
(
I4 −M(q)−1JI(q)

TXI(q)
−1JI(q)

)
q̇− (9)

=


ẋ− + lθ̇

−
1 cos α

2

0

0
0

 . (10)

The result of θ̇
+

1 = θ̇
+

2 = 0 implies that the walker
begins to slide in the X-direction maintaining DLS.

The first element in Eq. (8), λI1, represents the im-
pulse (zero-time integral of impulsive force at impact)

in Z-direction at the end of the fore leg, and the second
element, λI2, represents that of the rear leg as shown
in Fig. 2. It is obvious that the λI1 is always positive.

The λI2, however, becomes positive only if the following
inequality holds.

mtl
2 (1− cosα) ≥ 2It (11)

If Eq. (11) holds, the motion transitions to non-instantaneous
DLS motion as illustrated in Fig. 2 (a).

The left-hand side in Eq. (11) converges to zero as

α → 0. Small α increases the potential of instanta-
neous stance-leg exchange. Let us consider a numeri-
cal example in the following. By choosing the param-

eters as listed in Table 1, the value of the left-hand
side in Eq. (11) becomes 0.402, whereas that of the
right-hand side becomes 3.0. We therefore conclude that

non-instantaneous DLS motion does not emerge after
impact. The right-hand value in Eq. (11) is the total
inertia moment, so the value is large implies that the

rotational energy immediately before impact is large.
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Fig. 2 Model of underactuated rimless wheel with torso

The resultant SLS motion after impact in this case is
therefore convincing.

If Eq. (11) does not hold, i.e., λI2 < 0, the rear leg-
end should leave the ground immediately after impact.
Therefore the condition of Eq. (4) is not necessary and

JI(q) ∈ R2×3 then becomes

JI(q) =

[
0 1 −l sin θ−1 + l sin(θ−1 − α) 0
0 0 1 −1

]
. (12)

By using this, λI ∈ R2 is derived as

λI =
4mtl sin

α
2 θ̇

−
1

2It +mtl2 (1− cosα)

[
It

I2l sin
α
2

]
. (13)

It is obvious that all the elements of λI are positive if

and only if θ̇
−
1 > 0. By substituting Eq. (13) into Eq.

(9), we can derive q̇+ and its elements are detailed as
follows.

ẋ+ = ẋ− +
2mtl

3 sin α
2 sinα

2It +mtl2 (1− cosα)
θ̇
−
1 (14)

ż+ =
2l sin α

2

(
2It −mtl

2 (1− cosα)
)

2It +mtl2 (1− cosα)
θ̇
−
1 (15)

θ̇
+

1 = θ̇
+

2 =
2It −mtl

2 (1− cosα)

2It +mtl2 (1− cosα)
θ̇
−
1 (16)

Note that ẋ+ and ż+ in the above equations are the ve-

locities at the end-position of the rear leg immediately
after impact. Eq. (15) implies that ż+ becomes positive
if the condition of Eq. (11) holds. This means that the

following two conditions are equivalent.

Table 1 Physical parameters for walking model

m1 2.0 kg
m2 1.0 kg
l 1.0 m
r 1.0 m

α 30 deg

I1 = m1

(
l
2

)2
0.5 kg·m2

I2 = m2r2 1.0 kg·m2

(C1) The velocity of the end-position of the rear leg,

ż+, is negative.
(C2) The impulse in vertical direction of the rear leg is

positive.

(C1) is the condition Bourgeot et al. and Font-Llagunes

and Kövecses derived [4][5]. (C2) is that Asano et al.
derived [7][8].

Note also that θ̇
+

1 (= θ̇
+

2 ) of Eq. (16) becomes nega-
tive if the condition of Eq. (11) holds. This implies that

the RW begins to rotate in the counterclockwise direc-
tion after impact. Therefore we can understand that

the condition for θ̇
+

1 < 0 is equivalent to (C1).

The transition rules for the positional coordinates

are described in the following. At the start of walking,
we set the end-position of the stance leg (x, z) to (0, 0).
At every impact, we reset x to

x+ = x− + 2l sin
α

2
. (17)

It is obvious that z± = 0 holds. The angular position
of the stance leg, θ1, should be reset to

θ+1 = θ−1 − α = −α

2
. (18)

Also θ±2 = 0 must hold on the assumption that the
output following control is achieved as described later.

3 Equation of motion and controller design

3.1 Equation of motion considering sliding contact

The equation of motion corresponding to the general-
ized coordinate vector, q, becomes

M(q)q̈ + h(q, q̇) = Su+ JTλ+ JT
µλ, (19)

where the first term of the right-hand side is the control
input vector, the second term is the vector of the holo-
nomic constraint force between the stance-leg end and

the floor, and the third term is the vector of the slid-
ing friction force. λ ∈ R is the Lagrange undetermined
multiplier that represents the vertical ground reaction

force. In the left-hand side, M(q) ∈ R4×4 is the same
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as Eq. (2) and the vectors h(q, q̇) ∈ R4 and S ∈ R4 are

detailed as follows.

h(q, q̇) =


−mtlθ̇

2

1 sin θ1

mt

(
g − lθ̇

2

1 cos θ1

)
−mtgl sin θ1

0

 , S =


0
0
1

−1

 (20)

As previously mentioned, the stance-leg exchange is in-
stantaneous and the continuous motion is always SLS.
The condition for the holonomic constraint during the

stance phase is then given by

ż = Jq̇ = 0, J =
[
0 1 0 0

]
. (21)

By solving Eqs. (19) and (21) for λ, we get

λ = −JM(q)−1 (Su− h(q, q̇))

JM(q)−1 (J + Jµ)
T

(22)

=
2mt

(
I1

(
g − lθ̇

2

1 cos θ1

)
− ul sin θ1

)
2I1 +mtl2 (1− cos(2θ1)− µ sin(2θ1))

. (23)

By observing the sign of λ, we can check the unilateral

constraint.
The sliding friction force in sliding contact is given

as the proportional value of the vertical ground reaction

force, µλ [N]. Here, µ [-] is the coefficient of sliding
friction and this includes the direction of the friction
force. The Jacobian, Jµ ∈ R4, is then determined as

Jµ =
[
µ 0 0 0

]
. (24)

The coefficient of sliding friction, µ, should be, for ex-
ample,

µ(q̇) = µ0sign(ẋ), (25)

where µ0 is a positive constant. There is no standard

value of µ0 for frozen ground because the measured
value of it changes in accordance with temperature and
ice quality [9][10]. We then set small values less than 1.0
for simple modeling. For avoiding chattering, we con-

sider an approximation of Eq. (25) around ẋ = 0 as
follows.

µ(q̇) = −µ0 tanh(cẋ) (26)

Where c is a positive constant for adjusting the sharp-
ness of µ in the neighborhood of ẋ = 0, and in this paper

we choose it as 100. Following Eqs. (19) and (21), we
can eliminate λ in Eq. (19) and arrange it as follows.

M(q)q̈ = Y (q, q̇) (Su− h(q, q̇)) (27)

Y (q, q̇) := I4 − Ĵ(q̇)T
(
JM(q)−1Ĵ(q̇)T

)−1

JM(q)−1

(28)

Ĵ(q̇) := J + Jµ(q̇) (29)

3.2 Input-output linearization and control input

Next, let us design a controller to make the robot fall

down in a fixed posture immediately before every im-
pact. Let

y := θ1 − θ2 = STq

be the control output, and we consider a tracking con-
trol of y to yd(t). The second-order derivative of y with
respect to time becomes

ÿ = STq̈ = STM(q)−1Y (q, q̇) (Su− h(q, q̇)) . (30)

Then we can consider the control input for achieving

y → yd(t) as follows.

u = A(q, q̇)−1 (v(t) +B(q, q̇)) (31)

v(t) = ÿd(t) +KD (ẏd(t)− ẏ) +KP (yd(t)− y) (32)

The scalar functions A(q, q̇) and B(q, q̇) are defined as

A(q, q̇) := STM(q)−1Y (q, q̇)S,

B(q, q̇) := STM(q)−1Y (q, q̇)h(q, q̇).

KP and KD are PD gains and are positive constants. y
is, however, exactly controlled to follow yd(t) and PD
feedback is not necessary because y+ = −α/2 and ẏ+ =

0 hold. To smoothly control y from −α/2 to α/2 during
the stance phases, we introduce yd(t) as the following
5-order time-dependent function.

yd(t) =


6α

T 5
set

t5 − 15α

T 4
set

t4 +
10α

T 3
set

t3 − α

2
(0 ≤ t < Tset)

α

2
(t ≥ Tset)

Here, note that the time variable, t, is reset to zero
at every impact. yd(t) satisfies the following boundary

conditions.

yd(0
+) = −α

2
, ẏd(0

+) = 0, ÿd(0
+) = 0

yd(Tset) =
α

2
, ẏd(Tset) = 0, ÿd(Tset) = 0

We assume that the output following control is always
completed by the next impact.

Note that we must know Jµ(q̇) to compute the ma-
trix Y (q, q̇) in Eq. (28) and the control input of Eq.

(31). More specifically, µ(q̇) must be measured accu-
rately in realtime. The model of µ(q̇) for frozen/oily
ground is very simple as specified by Eq. (26) and we

assume this can be measured in this paper.
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4 Gait analysis

4.1 Typical walking gait and stability

We chose the initial condition as

q(0) =
[
0 0 −α/2 0

]T
, q̇(0) =

[
0 0 ω0 ω0

]T
, (33)

where ω0 [rad/s] is the initial angular velocity. The

walker starts walking from the impact posture shown in
Fig. 2 left; this is defined as the 0th impact. The next
heel-strike collision is the 1st impact, and the period

between the 0th and the 1st impacts is called the 0th
step. The subsequent impacts and steps are contextu-
ally counted.

Fig. 3 shows the simulation results of level dynamic
walking where Tset = 0.30 [s], µ0 = 0 and ω0 = 0.80
[rad/s]. We can see that a stable walking gait is suc-

cessfully generated on the completely frictionless sur-
face. From Fig. 3 (a), we can also see that x decreases
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Fig. 3 Simulation results of dynamic walking on slippery
surface where Tset = 0.30 [s] and µ0 = 0

or the contact point slides backward during the stance

phases.

Fig. 4 shows the evolutions of the gait descriptors

for three values of ω0 with respect to the step num-
ber. Here, (a) is the step period, and (b) is the walking
speed. From Fig. 4 (a), we can see that the step periods

converge to the steady one at a fast convergent rate.
From Fig. 4 (b), however, we can see that the walk-
ing speeds are kept different constant values according

to the initial angular velocities. We can conclude that
the generated gaits are stable but the limit cycles are
not unique. The steady walking speed monotonically

increases as the initial angular velocity increases.

Fig. 5 shows the simulation results of level dynamic
walking where µ0 = 0.4. The initial conditions were
chosen as the same in Eq. (33). From the results, we can

see that a stable gait is successfully generated. Fig. 5 (a)
supports that the contact point, x, slides forward during
the stance phases, that is, the walker in this case can

move forward more smoothly than the previous case.
The sliding contact with friction enables the walker to
increase the forward momentum and to thrust against

the floor. The step length is also increased by the effect
of sliding.

Fig. 6 shows the evolutions of the gait descriptors
for three values of ω0 with respect to the step num-
ber. Here, (a) is the step period, and (b) is the walk-

ing speed. We can confirm that the step period and
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Fig. 5 Simulation results of dynamic walking on slippery
surface where Tset = 0.30 [s] and µ0 = 0.4

the walking speed monotonically converge to the steady
unique values and that the walker therefore generates a

stable 1-period walking gait while sliding. Fig. 7 plots
the evolutions of the state errors at immediately af-
ter impact to check the convergence property in detail.

The initial angular velocity is set to be 0.1 [rad/s] larger
than the steady value. Here, the norm of the velocity
vector is defined as ∥q̇+

(i) − q̇+
eq∥ where q̇+

(i) ∈ R4 is the

velocity vector at immediately after the (i)th impact

and q̇+
eq ∈ R4 is the steady one (equilibrium point).

The errors ∆ẋ+
(i) and ∆θ̇

+

1(i) are also defined as

∆ẋ+
(i) := ẋ+

(i) − ẋ+
eq, ∆θ̇

+

1(i) := θ̇
+

1(i) − θ̇
+

1eq.

They are the first and the third components of q̇+
(i)−q̇+

eq

and should be plotted to check the sign of the state er-
rors. We can see that the velocity vector norm mono-

tonically converges to zero because it is always positive.
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The convergence rate, however, significantly changes at

the 1st impact and after that it decreases at a slow
speed. ∆ẋ+

(i) also exhibits the similar property but is al-

ways negative. ∆θ̇
+

1(i) is positive at the 0th impact but
changes to negative after the 1st impact. After that,

it also converges to zero at a slow speed. In all the
cases, the convergence property after the 1st impact
exhibits the speed mode; the errors converges to zero

at a positive constant rate [1][6]. The significant change
between the 0th and the 1st impacts was caused by set-
ting ẋ(0) = ẋ+

(0) = 0 [m/s]. The sliding dynamics begins

to play in the discrete behavior after the 1st impact.
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Fig. 8 Gait descriptors for three values of Tset with respect to µ0

4.2 Gait properties

Before gait analysis, let us define the gait descriptors
for evaluating the efficiency of the generated walking
gaits.

The average walking speed, V [m/s], is defined as

V :=
∆x

T
.

Here, T [s] is the step period and ∆x [m] is the step
length. ∆x is defined as the change in x from an instant

immediately after impact to the next, i.e. is defined as

∆x :=

∫ T−

0+
ẋ dt+ 2l sin

α

2
. (34)

The energy efficiency is evaluated in terms of the spe-
cific resistance (SR) which is a dimensionless quantity
and is defined as

SR :=
p

mtgV
.

Here, p [J/s] is the average input power defined by

p :=
1

T

∫ T−

0+
|ẏu|dt = 1

T

∫ Tset

0+
|ẏu|dt.

We performed numerical simulations by taking the

following procedures.

(P1a) Set µ0 to zero.

(P2a) Set the initial conditions to those in Eq. (33)
where ω0 = 0.80 [rad/s].

(P3a) Run the walking simulation for over 100 [s], and

save the gait descriptors and the steady state
variables immediately after impact.

(P4a) Increase µ0 by 0.01 and rerun the walking simu-

lation by using the state variables saved in (P3a)
as the new initial conditions.

(P5a) Repeat from (P3a) until µ0 = 1.0.

Fig. 8 shows the gait descriptors for three values of
Tset with respect to µ0. Here, (a) is the step period T ,

(b) the step length ∆x, (c) the walking speed V , and
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(d) the SR. In the cases where Tset = 0.3 and 0.4 [s],

stable gaits were generated for all µ0. Where Tset = 0.2
[s], stable gaits could not be generated with small val-
ues of µ0 because the ground reaction force, λ, became

negative during the stance phases. The small Tset gen-
erates a great deal of joint torque, and this induces a
substantial change in vertical acceleration.

Except the step period, there are significant differ-
ences between the gait descriptors where µ0 = 0 and

those where µ0 = 0.01. As previously discussed, the
gait descriptors where µ0 = 0 is uniquely determined
according to the initial condition of walking. Therefore,

the gait efficiency in this case can be unlimitedly im-
proved by increasing the initial angular velocity. The
analysis results where µ0 > 0 suggest that the gener-

ated walking motion converges to a unique limit cycle
regardless of the initial angular velocity if there is the
slightest effect of sliding friction.

From Fig. 8 (b), we can see that the step lengths
in the cases where Tset = 0.30 and 0.40 [s] converge

to the steady ones and that there are the ranges of µ0

where the step lengths are more than the steady ones.
In these ranges, the walker slides forward during the

stance phases and the step length becomes longer as
shown in Fig. 5 (a). As µ0 increases more, however, the
motion during the stance phases becomes equivalent to

that in the absence of sliding due to big friction. The
first term of the right-hand side in Eq. (34) therefore
converges to zero. To confirm this, we plotted

2l sin
α

2
= 0.517638 [m]

in the figure. Also the step length where Tset = 0.20
would converge to this value if µ0 increases more.

Fig. 8 (c) and (d) show that there is a unique µ0

that maximizes the walking speed or minimizes the SR
in each case. The walking speed is maximized when the

contact point, x, slides forward well during the stance
phases and the step period is reasonably short. The
values of µ0 are close to each other but are different. We

must conclude that the optimal solution for µ0 differs
according to the criterion.

5 Passive dynamic walking on slippery slope

5.1 Modeling

In this section, we also use the same walking model but
without using the torso as shown in Fig. 9. By setting

the control input to zero, we can divide the torso dy-
namics from the passive RW. The equation of motion
is identical to Eq. (19) but the Jacobian matrices, J

and Jµ, must be accordingly replaced. Let ϕ [rad] be

Z

+
X

g
θ1

αλ

(x, z)

ϕµλ/ cosϕ

Fig. 9 Model of passive rimless wheel on slippery slope

the slope angle. The holonomic constraint condition for
sliding contact on the slope is then specified as

ż = −ẋ tanϕ, (35)

and the Jacobian becomes

Jq̇ = 0, J :=
[
tanϕ 1 0 0

]
. (36)

The component of the ground reaction force normal to
the slope is λ/ cosϕ and the sliding friction force tan-

gent to the slope is µλ/ cosϕ. Note that the coefficient
of sliding friction, µ, should be reformed taking the tan-
gent velocity of the contact point into account, that is,

µ = −µ0 tanh

(
cẋ

cosϕ

)
. (37)

The sliding friction term then becomes
cosϕ
− sinϕ

0

0

 µλ

cosϕ
=


µ

−µ tanϕ
0

0

λ = JT
µλ. (38)

Also at impact phase, the holonomic constraint con-
dition must be modified according to the slope angle.

Let (x̄, z̄) be the position of the fore leg-end. Its time-
derivative then becomes

d

dt

[
x̄

z̄

]+
=

[
ẋ+ lθ̇1 cos θ

−
1 − lθ̇1 cos(α− θ−1 )

ż − lθ̇1 sin θ
−
1 − lθ̇1 sin(α− θ−1 )

]+
. (39)

In this case, however, the θ−1 is ϕ + α/2. The veloc-

ity immediately after impact at the fore leg-end should
satisfy

˙̄z+ = − ˙̄x+ tanϕ. (40)

Following Eqs. (39) and (40), the holonomic constraint
condition for the collision equation becomes

JI(q)q̇
+ = 0, (41)
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JI(q)
T =


tanϕ
1

l
(
sin(ϕ− θ−1 )− sin(ϕ− θ−1 + α)

)
/ cosϕ

0

 .

(42)

After calculating q̇+, we must reset the positional vec-

tor as follows. The position of the new stance-leg should
be reset to

x+ = x̄ = x− + 2l sin
α

2
cosϕ, (43)

z+ = z̄ = z− − 2l sin
α

2
sinϕ, (44)

and the angular position should be

θ+1 = θ−1 − α =
α

2
− ϕ. (45)

In this case, the condition for transition to non-
instantaneous DLS motion is given by

mtl
2(1− cosα) ≥ 2I1. (46)

Here, note that the right-hand side does not contain the

inertia moment of the torso. The value of the left-hand
side is the same as the previous case, 0.402 [kg·m2], and
the right-hand side becomes 1.0 [kg·m2]. Therefore, also

in this case, the above condition is not satisfied and
the rear leg should leave the ground immediately after
impact.

5.2 Gait analysis

We performed numerical simulations by taking the fol-

lowing procedures.

(P1b) Set µ0 to zero.
(P2b) Set the initial conditions to q(0) = 04×1 and

q̇(0) =
[
0 0 0.5 0

]T
.

(P3b) Run the walking simulation for over 100 [s] and

save the gait descriptors for 20 steps. Save the
steady state variables immediately after the last
impact.

(P4b) Increase µ0 by 0.01 and rerun the walking simu-
lation by using the state variables saved in (P3b)
as the new initial conditions.

(P5b) Repeat from (P2b) until µ0 = 0.7.

Fig. 10 plots the gait descriptors for three values of
ϕ with respect to µ0. Here, (a) is the step period and

(b) is the walking speed. The step length, ∆x, in this
case is defined as the distance traveled along the slope,
that is,

∆x :=

∫ T−

0+

ẋ

cosϕ
dt+ 2l sin

α

2
. (47)
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Fig. 10 Gait descriptors for three values of ϕ with respect
to µ0

The walking speed is then accordingly defined as V :=
∆x/T [m/s]. Fig. 10 (a) shows that the step period
smoothly changes with respect to µ0 and converges to a

steady value for a given µ0. Fig. 10 (b) shows, however,
that the walking speeds where ϕ = 0.15 and 0.20 exhibit
non-smooth change rate with respect to µ0 and does not

converges in the case with small µ0. Fig. 11 plots the
stick diagrams for two values of µ0 where ϕ = 0.20 [rad].
The RW starts passive dynamic walking from the initial

condition of (P2b). The plot where µ0 = 0.2 strongly
supports that the stance leg slides forward during the
stance phases, whereas the plot where µ0 = 0.5 shows

that the contact point does not slide by the effect of the
friction force. Fig. 12 plots the evolution of ∆x for four
values of µ0 where ϕ = 0.20 [rad]. We can see that the

step length increases with respect to the step number
with small values of µ0.

Fig. 13 shows the magnified view of Fig. 10 (b).
Where ϕ = 0.10 [rad], the RW could not generate a sta-
ble passive-dynamic gait for µ0 < 0.20. In this case, the

slope is too gentle for the RW to overcome the potential
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(a) µ0 = 0.2

(b) µ0 = 0.5

Fig. 11 Stick diagrams for two values of µ0
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Fig. 12 Evolutions of step length where µ0 = 0.2

barrier at mid-stance. Fig. 14 plots the stick diagram

where µ0 = 0.19 and ϕ = 0.10 [rad]. We can see that
the RW falls backward after the first impact. Since our
simulator cannot detect the impact of the rear leg with

the ground, the RW completely falls backward if it fails
in overcoming the potential barrier.

With large values of µ0, the motion was destabi-
lized soon after the first impact by the effect of chatter-
ing around ẋ = 0 due to excessive sliding friction. By

setting a small inertia moment, the rotating and sliding
motions become highly sensitive to the big friction. This
problem can be solved by choosing the inertia moment

as a larger value.

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 0.1  0.2  0.3  0.4  0.5  0.6  0.7

W
al

ki
ng

 s
pe

ed
 [m

/s
]

µ0

φ = 0.10 [rad]

φ = 0.15 [rad]

φ = 0.20 [rad]

Fig. 13 Magnified view of Fig. 10(b)

Fig. 14 Stick diagram where µ0 = 0.19 and ϕ = 0.10 [rad]

6 Conclusion and future work

In this paper, we discussed the feasibility of stable limit
cycle walking incorporating the effect of sliding fric-
tion acting on the stance-leg-end and numerically ana-

lyzed the gait properties. Through mathematical anal-
ysis, we identified the condition for achieving instanta-
neous stance-leg exchange. Numerical simulations showed

that active and passive dynamic walking can be achieved
on frozen/oily surface in appropriate parameter set-
tings and that the friction effect makes the walking gait

unique.

In the future, we should discuss more realistic fric-
tion model taking static friction into account such as

the LuGre model [11] and extend the mathematical
analysis to various walking models. Application to sta-
bilizing control and efficient gait generation taking ad-

vantage of frictional effect is also left as a future work.

Acknowledgements This research was partially supported
by Japan Society for the Promotion of Science, Grant-in-Aid
for Scientific Research (C), 24560542, 2012.



12 Fumihiko Asano et al.

References

1. T. McGeer, “Passive dynamic walking,” Int. J. of
Robotics Research, Vol. 9, No. 2, pp. 62–82, 1990.

2. M. J. Coleman, A. Chatterjee and A. Ruina, “Motions of
a rimless spoked wheel: a simple three-dimensional sys-
tem with impacts,” Dynamics and Stability of Systems,
Vol. 12, Iss. 3, pp. 139–159, 1997.

3. F. Asano, “Stability principle underlying passive dy-
namic walking of rimless wheel,” Proc. of the IEEE Int.
Conf. on Control Applications, pp. 1039–1044, 2012.

4. J.-M. Bourgeot, C. Canudas-de-Wit and B. Brogliato,
“Impact shaping for double support walk: from the rock-
ing block to the biped robot,” Proc. of the 8th Int. Conf.
on Climbing and Walking Robots and the Support Tech-
nologies for Mobile Robots, pp. 509–516, 2005.

5. J. M. Font-Llagunes and J. Kövecses, “Dynamics and
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