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ℓ1 LS and ℓ2 MMSE-based Hybrid Channel
Estimation for Intermittent Wireless Connections

Yasuhiro Takano, Student Member, IEEE, Markku Juntti, Senior Member, IEEE, and
Tad Matsumoto, Fellow, IEEE

Abstract—Broadband wireless channels observed at a receiver
cannot fully exhibit dense nature in a low to moderate signal-
to-noise ratio (SNR) regime, if the channels follow a typical
propagation scenario such as Vehicular-A or Pedestrian-B. It is
hence expected that ℓ1 regularized channel estimation methods
can improve channel estimation performance in the broadband
wireless channels. However, it is well-known that the ℓ2 multi-
burst (MB) channel estimation achieves the Cramér-Rao bound
(CRB) asymptotically. This is because the ℓ2 MB technique
formulated as a minimum mean square error (MMSE) prob-
lem improves the mean squared error (MSE) performance by
utilizing the subspace projection. Performance analysis shows
that ℓ1 regularized channel estimation does not improve the
MSE performance significantly over the ℓ2 MB technique so
far as the subspace channel model assumption is correct. We
demonstrate, however, a receiver with ℓ1 regularized channel
estimation can improve bit error rate (BER) performance if the
assumption is not always correct. For this purpose, we focus
on intermittent transmission (TX) scenario which is defined as
a generalized TX sequence having arbitrary length interruption
between two continuous TX bursts. A receiver with the ℓ2 MB
method suffers from BER deterioration in an intermittent TX
scenario having abrupt channel changes. As a solution to the
problem, we propose a new algorithm which is a hybrid of ℓ1
regularized least squares (LS) and ℓ2 MMSE channel estimation
techniques. Simulation results show that the receiver with the
proposed algorithm achieves a significant BER gain over that of
the ℓ2 MB technique in the intermittent TX scenario.

Index Terms—Subspace-based channel estimation, turbo chan-
nel estimation, compressed sensing, orthogonal matching pursuit
(OMP), Akaike information criterion (AIC), Bayesian informa-
tion criterion (BIC).

I. INTRODUCTION

COMPRESSED sensing (CS) [1]-based ℓ1 regularized
channel estimation can improve estimation performance

over ordinary ℓ2 channel estimation if a channel impulse
response (CIR) observed at a receiver exhibits sparse structure
having several tap weights close to zero [2], [3]. This happens
often, e.g., in under-water communication channels [4]–[6].
Broadband wireless channels are, in general, not observed as
sparse channels at a receiver due to the effect of transmit
(Tx) and receive (Rx) filters required to perform discrete-time
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processing properly. However, they can be seen as approxi-
mately sparse channels in a low to moderate signal-to-noise
ratio (SNR) regime if the channels follow a typical propagation
scenario such as Vehicular-A (VA) or Pedestrian-B (PB) [7].
The dominant path components in such propagation scenarios
are, as shown in Fig. 1, not uniformly distributed in the
observation domain after the Tx/Rx filtering. Furthermore,
some of the small path components can be completely buried
under the noise in a low SNR regime. Therefore, as described
in [8], CS-based channel estimation techniques are expected
to improve estimation performance in broadband wireless
channels as well.

However, an ordinary ℓ2 multi-burst (MB) channel estima-
tion can achieve the Cramér-Rao bound (CRB) asymptotically
in the multi-path channels following the subspace channel
model assumption [9]–[12]. This is because the ℓ2 MB tech-
nique formulated as a minimum mean square error (MMSE)
problem improves the mean squared error (MSE) performance
by utilizing the subspace projection. It can be seen that the ℓ2
MB technique performs noise compression in eigen domain
of the signal of interest. Therefore, this paper investigates if
there are any advantages of ℓ1 regularized channel estimation
over the ℓ2 MB method in broadband wireless channels.
For this purpose, intermittent transmission (TX1) scenario is
focused on. This paper defines the intermittent TX scenario
as a generalized TX sequence which is constructed with a
repetition2 of a TX chunk and a TX interruption of arbitrary
duration, where a TX chunk is a certain length continuous data
TX duration. The two TX chunks do not always follow the
identical channel model due to the TX interruption. Thereby,
the ℓ2 MB technique may suffer from a tracking error problem,
since the subspace channel model assumption can partially
be incorrect at borders of the TX chunks. As a solution to
the problem, we propose a new channel estimation algorithm
which is a hybrid of ℓ1 least squares (LS) and ℓ2 MB
techniques.

The communication system assumed in this paper is a
turbo receiver framework over broadband multiple-input and
multiple-output (MIMO) wireless channels due to the fol-
lowing motivations: it is well-known that MIMO communi-
cation systems can improve the spectral-efficiency and the
transmission rate [13], [14]. However, channel estimation
needed for practical MIMO systems has the problem that the

1This paper distinguishes TX (transmission) from Tx (transmit).
2The repetition applies to the TX scenario structure only. Each TX chunk

transmits different data bursts.
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Fig. 1. Channel delay profiles of VA and PB channel realizations. We note that
the receiver can observe CIRs only as that after the matched filtering. A trans-
mission bandwidth of 7 MHz with a carrier frequency of 2 GHz is assumed.
The implementation of the matched filter is described in Section V. The CIR
gain vector is defined by diag{

∑NT
k=1 E[H

H
k (l) ·Hk(l)]}/(σ2

HNT ), where
the notation follows the description in Section II.

number of the CIR parameters increases due to the spatial
multiplexing. Hence, ℓ1 regularized channel estimation is
expected to improve estimation performance in broadband
MIMO wireless channels by compressing the number of
parameters to be estimated. Furthermore, it is shown in [6],
[15], [16] that a turbo receiver with an ℓ1 regularized channel
estimation can achieve a bit error rate (BER) gain over that
with an ordinary ℓ2 channel estimation. However, the channel
estimation performance is not addressed in [6], [15], [16].
Therefore, this paper aims to clarify the MSE performance
of ℓ1 regularized channel estimation techniques in a MIMO
turbo receiver through theoretical analysis. Simulation results
are also presented to verify the theoretical analysis.

This paper is organized as follows. Section II describes the
system model assumed in this paper. Section III proposes new
ℓ1 regularized MB and hybrid channel estimation algorithms.
Section IV describes analytical performance bounds of the new
techniques. Section V presents results of computer simulations
conducted to verify the analytical performance. This paper is
concluded in Section VI with some concluding remarks.

Notations: The bold lower-case x and upper-case X denote
a vector and a matrix, respectively. For a matrix X, its trans-
pose and transposed conjugate are denoted as XT and XH,
respectively. vec(X) is a vectorization operator to produce an
MN ×1 vector by stacking the columns of an M ×N matrix
X. An operator diag(X) forms a vector from the diagonal
elements of its argument matrix X. svd(X) = UDVH is the
singular value decomposition (SVD) of a matrix X ∈ CM×N ,
where U ∈ CM×M and V ∈ CN×N are unitary matrices and
D ∈ CM×N is a rectangular matrix with a square diagonal
matrix on the left top corner. X|A is a submatrix composed of
the column vectors in a matrix X, the columns of which are de-
fined by index set A. Similarly, x|A is a subvector of a vector x
which extracts the elements specified by index set A from the
vector x. The index set is assumed to be sorted in an ascending
order and can be denoted by A = {i : j} = {i, i + 1, ..., j},
when A is composed of a contiguous integer sequence with
positive integers i ≤ j. |A| denotes the cardinality of the
argument set A. A weighted Frobenius norm is defined as
∥X∥2W = tr{XHWX} for a matrix X ∈ CM×N with a
positive definite matrix W ∈ CM×M . In the case of W = IM ,
we simply denote ∥X∥2W = ∥X∥2, where IM is an M ×M

identity matrix. An ℓ1 norm for a matrix X ∈ CM×N is
defined as ∥X∥1 =

∑M
i=1

∑N
j=1 |xij | where xij is the (i, j)-th

element of the matrix X.

II. SYSTEM MODEL

This paper assumes a vertical-Bell laboratories layered
space-time (V-BLAST) type spatial multiplexing MIMO sys-
tem [17] as depicted in Fig. 2. A length Ninfo bit binary data
information sequence b(i), 1 ≤ i ≤ Ninfo, is channel-encoded
into a coded frame c(ic) by a rate Rc convolutional code (CC)
with generator polynomials (g1, · · · , g1/Rc

) and is interleaved
by an interleaver (Π). The interleaved coded frame cΠ(jc),
1 ≤ jc ≤ Ninfo/Rc, is serial-to-parallel (S/P)-converted into
NT data segments for MIMO transmission using NT Tx an-
tennas. A data segment is further divided into NB data blocks
such that fading is assumed to be static over each burst. A
data block is modulated into binary phase shift keyed (BPSK)
symbols3 xd,k(js; l) with variance σ2

x and the modulation
multiplicity Mb = 1. The k-th Tx antenna transmits data
symbols xd,k(l) = [xd,k(1; l), · · · , xd,k(Nd; l)]

T together with
a length Nt symbol training sequence (TS) xt,k(l) and a length
NCP symbol cyclic prefix (CP), using single carrier signaling,
where l denotes the burst timing index. The data symbol length
Nd in a burst is defined as Nd = Ninfo/(RcNTNBMb).
As depicted in Fig. 2, the burst format has two length NG

symbol guard intervals (GIs) following the training and the
data sequences, respectively, to avoid4 inter-block-interference
(IBI).

The receiver observes signal sequences yn(l) with NR re-
ceive antennas. The received signal suffers from inter-symbol-
interference (ISI) due to fading frequency selectivity, and from
complex additive white Gaussian noise (AWGN) as well. The
ISI length is at most LISI = W − 1 symbols under the
assumption that the maximum CIR length is W . The received
signal can be described in a matrix form Y(l) as,

Y(l) = H(l)X(l) + Z, (1)

where

Y(l) = [y1(l), · · · ,yNR
(l)]T ∈ CNR×LB ,

X(l) = [XT
1 (l), · · · ,XT

NT
(l)]T ∈ CWNT×LB ,

H(l) = [H1(l), · · · ,HNT (l)] ∈ CNR×WNT ,
Z = [z1, · · · , zNR

]T ∈ CNR×LB ,

and the burst length is LB = Nt + NCP + Nd + 2NG. The
W × LB matrix Xk(l) is a Toeplitz matrix whose first row
vector is [xT

t,k(l),0
T
NG

,xT
d,k(l)|(Nd−W+1):Nd

,xT
d,k(l),0

T
NG

] ∈
C1×LB . The expected variance of the CIR matrix Hk(l) for
the k-th transmission (TX) stream is E[∥Hk(l)∥2] = σ2

H with
a constant σ2

H. Furthermore, the CIR satisfies a property that
the spatial covariance matrix E[Hk(l)Hk(l)

H] is of full-rank
by assuming no unknown interferences [9], [12]. The noise
vector at the n-th Rx antenna zn follows CN(0, σ2

zILB
).

3For the sake of simplicity, we assume binary modulation in this paper.
However, extension to higher order modulation is straightforward [18].

4Although it is out of scope of this paper, the GIs can be eliminated by
using the chained turbo estimation (CHATES) [19].
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As depicted in Fig. 2, the receiver performs channel es-
timation (EST) jointly over the Rx antennas while also ob-
taining the extrinsic log-likelihood ratio (LLR) λe

EQU,k for
the k-th TX stream by means of frequency domain soft-
cancellation and minimum mean-square-error (FD/SC-MMSE)
MIMO turbo equalization [20] (EQU). The NT LLRs λe

EQU,k

are parallel-to-serial (P/S)-converted to form an extrinsic LLR
sequence λe

EQU corresponding to the interleaved coded frame
cΠ(jc) at the transmitter. An a priori LLR λa

DEC for the
channel decoder (CC−1) is obtained by deinterleaving λe

EQU.
The channel decoder performs decoding for λa

DEC by using the
Bahl, Cocke, Jelinek and Raviv (BCJR) algorithm [21], and
outputs the a posteriori LLR λp

DEC. After several iterations,
CC−1 outputs the estimates of the transmitted sequence b̂
by making a hard decision on λp

DEC. Both EST and EQU
utilize the soft replica5 of the transmitted symbols x̂d,k which
is generated from the equalizer’s a priori LLR λa

EQU. We note
that LLR λa

EQU is the interleaved version of the extrinsic LLR
λe
DEC which is obtained as λe

DEC = λp
DEC − λa

DEC according
to the turbo principle.

III. CHANNEL ESTIMATION ALGORITHMS

This section proposes new ℓ1 regularized MB and hybrid
channel estimation algorithms after showing ℓ1 regularized
LS channel estimation. The computational complexity order
required for the new techniques is discussed at the end of this
section.

A. ℓ1 Regularized LS Channel Estimation (ℓ1 LS)

1) Problem formulation: By imposing an ℓ1 regularizing
term to an ordinary ℓ2 LS problem, ℓ1 LS channel estimation
becomes

ĤLS
ℓ1 (l) = arg min

H

Ltd(l,H) + λ(l)∥H∥1 (2)

with a Lagrange multiplier λ(l) [22], [23]. Similar to [12],
the equivalent negative log-likelihood function Ltd(l,H) is
defined as Ltd(l,H) = Lt(l,H) + Ld(l,H), where we have

Lt(l,H) =
1

σ2
z

∥Yt(l)−HXt(l)∥2, (3)

Ld(l,H) =
1

σ2
z

∥Yd(l)−HX̂d(l)∥2Γ(l). (4)

Received signal matrices for the training and data sections
are respectively defined as Yt(l) = Y(l)|1:Ñt

and Yd(l) =

Y(l)|(d+1):(d+Ñd)
, where input signal lengths are Ñt = Nt+W

and Ñd = Nd. The offset d is chosen as d = Nt +
NG + NCP + W so that the received data section avoids
IBI from CP. Correspondingly, we define a Toeplitz matrix
Xt(l) = X(l)|1:Ñt

. X̂d(l) is the soft replica of Xd(l), where
we denote Xd(l) = X(l)|(d+1):(d+Ñd)

. The weight matrix Γ(l)

is defined as Γ(l) = σ2
z

(
σ2
zINR +∆σ2

dRHH(l)
)−1

, where
we denote ∆σ2

d =
∑NT

k=1 E[∥x̂d,k(l) − xd,k(l)∥2]/(NdNT )

5In the case of BPSK, as shown in [18], the i-th entry in x̂d,k is generated
as x̂d,k(i) = σx tanh(λa

EQU,k(i)/2), where λa
EQU,k(i) denotes the i-th

S/P-converted the equalizer’s a priori LLR for the k-th Tx stream.

and RHH(l) = H(l)H(l)H. The ℓ1 regularized LS problem
can be solved with the zero-tap detection (ZD) [3] or orthog-
onal matching pursuit [24] (OMP)-based algorithms. Before
detailing a ZD-based algorithm, we briefly show a temporally
restricted MIMO channel estimation technique which can be
utilized commonly for the ZD and OMP-type ℓ1 solvers.

2) Temporally restricted MIMO LS channel estimation: Let
us assume the symbol timings of significant path components
are specified in a column index set A of the CIR matrix H.
This paper refers to the index set A as active-set [25], here-
after. Moreover, this paper denotes a column-shrunk NR×|A|
CIR matrix as GA = H|A, or equivalently GA = HPA, where
a WNT ×|A| matrix PA is defined so that the (m,n)-th entry
is set at 1 if the n-th element in A is m, otherwise, at zero.

The ZD and OMP-type algorithms determine an active-set A
under a certain criterion. Simultaneously, the algorithms obtain
a possible estimate ĤA(l) = ĜA(l)P

T
A by minimizing the

conditional negative log-likelihood function, given the active-
set A, as

ĜA(l) = arg min
G

Ltd(l,GP
T
A | A). (5)

The problem (5) can be seen as an ℓ2 LS channel estimation
technique by using a temporally restricted (or row-shrunk)
training Φt,A = PT

AXt = [XT
t |A]T and data Φ̂d,A = [X̂T

d |A]T
sequences.

Similar to the case of SIMO [12], a MIMO turbo receiver
can obtain an LS estimate via its vectorization to take account
of the weight matrix Γ(l). Specifically, for an active-set A,
a length |A|NR compressed channel estimate vector ĝA =
vec{ĜA} is described as

ĝA = R−1
ΦΦA

· vec{RYΦA
} (6)

with RΦΦA
= PT

ARXXPA and RYΦA
= RYXPA, where we

denote PA = PA⊗ INR
and omit the burst timing index l for

the sake of simplicity. Furthermore, we define

RXX = RT
XXt

⊗ INR + R̂T
XXd

⊗ Γ̂, (7)

RYX = RYXt + Γ̂RYXd
, (8)

where RXXt = XtX
H
t , R̂XXd

= X̂dX̂
H
d , RYXt = YtX

H
t and

RYXd
= YdX̂

H
d . The matrix Γ̂ is obtained as

Γ̂ = σ2
z

(
σ2
zINR

+∆σ̂2
dR̂HH

)−1

, (9)

with ∆σ̂2
d = σ2

x −
∑NT

k=1 ∥x̂d,k(l)∥2/(NdNT ) and R̂HH =

Ĥ(i−1)(Ĥ(i−1))H, where Ĥ(i−1) is the channel estimate ob-
tained by the previous (i-1)-th6 turbo iteration. Finally, the
solution to (5) is described as ĜA = matNR

{ĝA}, where the
operation matN (x) forms an N×M matrix from the argument
vector x ∈ CNM×1, so that x = vec{matN{x}}.

3) The ℓ1 LS with adaptive active-set detection (AAD):
Based on the MSE performance analysis shown in Section
IV-A, a new ZD-type algorithm, AAD, can be formulated as

A = arg min
A

∥ĜPT
A −H∥2, (10)

6For the first turbo iteration, i = 1, the term RHH is discarded in (9)
since the channel estimation is performed with the TS only.
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Fig. 2. The system model and the transmission burst format assumed in this paper.

where Ĝ is the LS estimate given by (6). We can solve (10) if a
channel delay profile dH = diag{HHH} is given. In general,
however, dH is not known since it requires the parameter H

to be estimated. We show, thereby, Algorithm 1 to solve (10)
with reasonable computational complexity.

In summary, Algorithm 1 solves the problems (5) and (10)
alternately in NAAD iterations. First of all, a possible solution
to the problem (10) is obtained by the steps 5 and 6. Algorithm
1 approximates the delay profile by using a possible channel
estimate Ĝ[n] obtained in the previous iteration, as

d̂
[n]
H = P[n] diag{ĜH

[n] · Ĝ[n]}, (11)

where P[n] denotes PA[n]
. As detailed in Appendix A, the

active-set can be detected by

A[n+1] =

{
j

∣∣∣∣∣ d̂
[n]
H,j >

(
f(σ2

z ,A[n]) + |∆d̂
[n]
H |

)
/|A[n]|,

j ∈ A[n]

}
,

(12)
where d̂

[n]
H,j denotes the j-th entry in d̂

[n]
H and we define

f(σ2
z ,A) = σ2

ztr{R−1
ΦΦA

}. The absolute error of the delay
profile estimation can also be approximated by |∆d̂

[n]
H | ≈

f(σ2
z ,A[n]). This is because, as shown in Section IV-A,

f(σ2
z ,A) is identical to the analytical MSE performance of

the ℓ1 LS technique if the CIR H to be estimated is exactly
supported with the active-set A. Problem (5) is then solved at
the step 7. Algorithm 1 obtains a possible estimate Ĝ[n+1]

via (6) with the detected active-set A[n+1]. However, let
Ĝ[n+1] = OWNT

if A[n+1] = ∅.
Algorithm 1 utilizes the Bayesian information criterion

(BIC) [26] as a stopping tool of the iteration. Suppose that
the CIR estimate is described as Ĥ = Ĝ[n]P

T
[n], the BIC can

be defined for the complex matrix normal distribution Ltd(·),
as

BIC(Ĝ[n]) = 2Ltd(l, Ĝ[n]P
T
[n]) +KIC · log(NIC). (13)

The number KIC of free parameters in Ĝ[n] is KIC =
2NR|A[n]|, where the factor 2 is to represent the freedom
of the real and imaginary parts in a complex parameter. The
length NIC of input samples denotes NIC = Ñtd with the
input signal length Ñtd = Ñt + Ñd.

It should be noted that Algorithm 1 is a computa-
tional complexity-efficient version of the iterative detec-
tion/estimation with threshold by “structured” least squared
channel estimation (ITDSE) [3]. Algorithm 1 determines
thresholds adaptively according to the analytical MSE of the

ℓ1 or ℓ2 LS channel estimation. Therefore, as demonstrated
in Section V, Algorithm 1 can asymptotically achieve the
analytical MSE performance even with the first iteration by
setting NAAD = 1 except in a very low SNR regime.

Algorithm 1 The ℓ1 LS with the AAD.

Input: Yt,Yd,Xt, X̂d and NAAD.
1: Compute RYX (8), RXX (7) and Γ̂ (9).
2: Obtain the ℓ2 LS estimate Ĝ[0] = matNR

{ĝA[0]
} by (6)

with A[0] = {1, · · · ,WNT }.
3: β(0) = BIC(Ĝ[0]) by (13).
4: for n = 0 to NAAD − 1 do
5: Update the delay profile estimate d̂

[n]
H by (11).

6: Detect the active-set A[n+1] by (12).
7: Obtain an estimate Ĝ[n+1] = matNR{ĝA[n+1]

} by (6)
with A[n+1].

8: β(n+ 1) = BIC(Ĝ[n+1]) by (13).
9: if β(n+ 1) ≥ β(n) then

10: Let n = n− 1 and terminate the iteration.
11: end if
12: end for
Output: ĤLS

ℓ1 = Ĝ[n+1]P
T
A[n+1]

.

B. ℓ1 Regularized Multi-burst Channel Estimation (ℓ1 MB)

1) Problem formulation: ℓ1 MB channel estimation is
described as an MMSE problem with ℓ1 regularization:

ĤMB
ℓ1 (l) =

arg min
H(l)

1

LM

∑
j∈JLM

(l)

{Ltd(j,H(j)) + λ(j)∥H(j)∥1}, (14)

where a consecutive index set JLM
(l) is defined as {l−LM +

1, · · · , l} with a burst-wise sliding window length LM . To
perform the principal component analysis (PCA) correctly, LM

is required to satisfy LM ≥ W/NR.
This problem (14) can be solved by using the same concept

as the simplified component technique-LASSO7 (SCotLASS)
[28]. A challenge of SCotLASS-based algorithms is that there
is no certain method to determine λ(j). We hence relax the
problem (14) by introducing an assumption that λ(j) can be
approximately specified by the following active-sets (15). The

7Least absolute shrinkage and selection operator [27].
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problem (14) can then be reduced into at most W problems
without ℓ1 regularization.

Since CIRs can be assumed as the output of a finite impulse
response (FIR) filter in general, they attenuate according to the
elapse of time. Therefore, we notice that the ℓ1 regularization
may be replaced by a CIR length constraint. It is hence
sufficient to consider W active-sets defined as

A[w] =

NT−1∪
k′=0

{(1 + k′W ) : (w + k′W )} (15)

for 1 ≤ w ≤ W . With (15), the problem (14) can be de-
composed into at most W problems without ℓ1 regularization,
as

ĤMB
[w] (l) = arg min

H[w](l,Θ)

1

LM

∑
j∈JLM

(l)

Ltd(j,H[w](j,Θ)), (16)

where H[w](j,Θ) = G[w](j,Θ)PT
[w] with G[w](j,Θ) =

H(j,Θ)|A[w]
and P[w] = PA[w]

. The parameter vector Θ is
defined as follows: the k-th TX-stream’s CIR in H(j,Θ[w]) =
[H1(l, θ1), · · · ,HNT

(l, θNT
)] can be described as

Hk(l, θk) = Bk(l)U
H
k , (17)

when the CIR follows the subspace channel model assumption
[9]. The parameter Θ describes the CIR models (17) for
NT Tx streams in a vector as Θ = [θT1 , · · · , θTNT

]T , where
θk = [θTB,k, vec{Uk}T]T. The subvector θB,k denotes θB,k =[
vec{Bk(j1)}T, · · · , vec{Bk(jLM

)}T
]T

, for jn ∈ JLM
. It

should be noticed that the NR × rk matrix Bk(l) is burst-
dependent. However, the W × rk matrix Uk is independent
of the burst timing since it represents a temporally invariant
FIR filter. The parameter rk denotes the rank of the temporal
covariance matrix KLM

l [Hk(l)], where the operation KLM

l [·]
denotes KLM

l [A(l)] = 1
LM

∑
j∈JLM

(l) A(j)HA(j) for a ma-
trix sequence A(l) and a sliding window JLM

(l).
2) ℓ1 MB algorithm: By Appendix A in [10], the

problems (16) is equivalent to minimizing Ψ[w](l,Θ) =∑NT

k=1 Ψ[w],k(l, θk) with

Ψ[w],k(l, θk) =
1

LM

∑
j∈JLM

(l)

∥∥∥ˆ̃gLS
[w],k(j)− g̃[w],k(j, θk)

∥∥∥2 ,
(18)

where we define, for the noise whitening,
ˆ̃gLS
[w],k(j) = Q̄[w],kk · ĝLS

[w],k(j)

+

NT∑
i=k+1

Q̄[w],ki

{
ĝLS
[w],i(j)− g[w],i(j, θi)

}
(19)

g̃[w],k(j, θk) = Q̄[w],kk · g[w],k(j, θk) (20)

with a length wNR CIR vector g[w],k(j, θk) =
vec{Hk(j, θk)|1:w} for the k-th Tx stream’s and its LS
estimate ĝLS

[w],k(j). The wNR × wNR matrix Q̄[w],ki is the
(k, i)-th block matrix of the Cholesky decomposition for
R̄ΦΦ[w]

(21). It should be noted that (18) is based on the
approximation8 that

R̄ΦΦ[w]

∆
= E

[
PT
[w]RXX(j)P[w]

]
≈ PT

[w]RXX(j)P[w] (21)

8The conventional ℓ2 MB techniques [9]–[12] also assume (21) with
P[w] = IWNTNR

.

for ∀j ∈ JLM
(l), where P[w] = PA[w]

⊗ INR
. Therefore, the

w-th active-set has to be independent of the burst timing j,
such as (15).

As shown in Section III in [10], the minimization problems
of (18) are solvable if we reduce them by descending order
k = NT , · · · , 1. Moreover, by following Section IV-C in [12],
the solution ĝMB

[w],k(l) that minimizes (18) can be obtained by
the PCA for the covariance matrix KLM

l [matNR
{ˆ̃gLS

[w],k(l)}],
where approximations g[w],i(l, θi) ≈ ĝMB

[w],i(l) for i > k
are used in (19). Correspondingly, the solution to (16) is
described as ĤMB

[w] (l) = [ĜMB
[w],1(l), · · · , Ĝ

MB
[w],NT

(l)]PT
[w] with

ĜMB
[w],k(l) = matNR

{ĝMB
[w],k(l)}. We finally choose the best

solution to (14) from the W possible estimates as ĤMB
ℓ1 (l) =

ĤMB
[ŵ] (l). The optimal CIR length ŵ may be determined

by Akaike information criterion (AIC) [29]: AIC(ĤMB
[w] ) =

2Ltd(l, Ĥ
MB
[w] ) + 2KIC, where the number of free parameters

is modified as KIC = 2
∑NT

k=1 NRr
[w]
k so that it describes the

number of burst-dependent parameters in the CIR model (17).
The rank r

[w]
k of the temporal subspace is obtained together

with the estimate vector ĝMB
[w],k(l) by the PCA, as shown in

[10], [12].

C. Hybrid Channel Estimation

1) Problem statement: Later in Section V-D2, it is shown
that the ℓ1 MB channel estimation can improve the tracking
error problem. Nevertheless, as discussed in Section III-D,
the ℓ1 MB channel estimation requires a higher complexity
order than the ordinary ℓ2 MB channel estimation. We thereby
propose a new hybrid channel estimation algorithm to improve
robustness of the estimate with reasonable complexity.

2) Hybrid algorithm: In summary, the new hybrid algo-
rithm performs the ℓ1 LS and the ordinary ℓ2 MB channel
estimation9 simultaneously, then selects better estimate under
the Bayesian information criterion.

Specifically, the hybrid technique is shown in Algorithm 2,
where the counter Lm is initialized to 0 before starting the
hybrid channel estimation. The counter Lm is used to define
the sliding window JLm(l) in the MMSE problem (14). The
guard constant LG in Algorithm 2 is set at ⌈W/NR⌉, because
the PCA used in the ℓ2 MB channel estimation is numerically
unstable for Lm < ⌈W/NR⌉, where ⌈·⌉ denotes the ceiling
function. At the first step, the ℓ1 LS channel estimation is
performed. The ℓ2 MB channel estimate can then be obtained
efficiently by reusing the ℓ2 LS estimate Ĥ[0] computed in
Algorithm 1.

The better estimate between the two possible solutions is
then determined by the steps 4 to 15. At the step 4, Algorithm
2 monitors the tracking error by comparing the BIC of the ℓ1
LS channel estimate with that of the ℓ2 MB channel estimate.
The tracking error can be detected based on a property that
BIC(ĤLS

ℓ1 (l)) > BIC(ĤMB
ℓ2 (l)) is satisfied so far as CIRs

follow the subspace channel model assumption. In the case
the tracking error is detected, Algorithm 2 selects the channel
estimate ĤLS

ℓ1 as the output ĤHB of the hybrid estimation.

9The ℓ2 MB channel estimation is formulated by (14) with λ(j) = 0.
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Furthermore, at the step 7, Algorithm 2 resets the counter
Lm when the ℓ2 MB channel estimation performed for more
than LG bursts. The counter reset is performed so that the
covariance matrix in the PCA is adjusted to a change of
channel models quickly. On the other hand, if the tracking
error is not detected, Algorithm 2 selects the channel estimate
ĤMB

ℓ2 at the step 13. However, Algorithm 2 selects ĤLS
ℓ1

at the step 11 if the counter Lm is less than LG. This is
because the channel estimate ĤMB

ℓ2 is not accurate enough
when Lm < LG.

Algorithm 2 Hybrid channel estimation at the burst timing l

1: Perform the ℓ1 LS (2) and obtain ĤLS
ℓ1 (l).

2: Update the counter as Lm = min(Lm + 1, LM ) per a
burst.

3: Perform the ℓ2 MB (14) with the sliding window JLm
(l)

and λ(j) = 0. Obtain ĤMB
ℓ2 (l).

4: if BIC(ĤLS
ℓ1 (l)) < BIC(ĤMB

ℓ2 (l)) then
5: ĤHB(l) = ĤLS

ℓ1 (l)
6: if Lm ≥ LG then
7: Lm = 0
8: end if
9: else

10: if Lm < LG then
11: ĤHB(l) = ĤLS

ℓ1 (l)
12: else
13: ĤHB(l) = ĤMB

ℓ2 (l)
14: end if
15: end if

D. Computational Complexity Order

The computational complexity orders O(·) required for the
channel estimation techniques investigated in this paper are
summarized in Table I. The complexity order required for the
proposed hybrid algorithm is equivalent to the ℓ2 MB channel
estimation when NAAD = 1. However, the ℓ1 MB channel
estimation requires a larger complexity order than the ℓ2 MB
by O(W 4N3

TN
3
R).

1) The ℓ1 LS: The computational complexity orders re-
quired for each step in Algorithm 1 and its details are shown
in Tables II(a) and (b), respectively. For example, the step
2 in Algorithm 1 performs an |A[0]|NR × |A[0]|NR matrix
inversion and a matrix-vector product, the size of which is
[|A[0]|NR × |A[0]|NR]× [|A[0]|NR × 1] with |A[0]| = WNT .
The complexity order needed for these operations is shown
in the row (iv) of Table II(b). It is, however, dominated by
O({|A[0]|NR}3) = O(W 3N3

TN
3
R), where we assume that an

M ×M matrix inverse requires the complexity order O(M3)
[30].

As shown in Table II(a), the complexity order needed for
the steps 1 to 3 is dominated by O(W 2N2

RÑtd+W 3N3
TN

3
R).

This is because W 2N2
T > WNTNR > N2

R is satisfied in the
assumed frequency selective fading channel, the CIR length of
which is W ≫ NR ≥ NT . Moreover, the equivalent negative
log-likelihood functions in (13) may be calculated by using

the following equations:

Lt(ĜA) =
1

σ2
z

∥Yt − ĜAΦt,A∥2F , (22)

Ld(ĜA) =
1

σ2
z

∥Yd − ĜAΦ̂d,A∥2Γ, (23)

where the NR × |A| CIR estimate matrix ĜA is obtained via
(6) for an active-set A.

The complexity order required for the steps 5 to 11 is dom-
inated by that of the steps 7 and 8. It should be noticed that, at
the step 6, the matrix inverse R−1

ΦΦA[n]
in f(σ2

z ,A) is already
computed in the previous iteration. Furthermore, the matrix
inverse R−1

ΦΦA[n+1]
can be efficiently updated from R−1

ΦΦA[n]
.

Specifically, the complexity order needed for the step 7 is
dominated by O({|A[n]|2|∆A[n+1]|+ |∆A[n+1]|3}N3

R), where
∆A[n+1] = A[n]\A[n+1]. This is because, as shown in [31], if
the matrix inverse of an M×M Hermitian matrix is known, the
complexity order needed to compute the matrix inverse of its
arbitrary rank-1-downsized submatrix is O(M2). By extending
the algorithm in [31] straightforwardly, the matrix inverse of
its arbitrary rank-N -downsized submatrix10 can be computed
with the complexity order O(M2N +N3).

Algorithm 1 performs at most max(NAAD) = WNT iter-
ations since WNT ≥ |A[n]| ≥ |A[n+1]| ≥ 0 is guaranteed by
(12). The complexity is, hence, maximized when WNT itera-
tions are performed without the termination at the step 10. This
case happens when the active-sets are updated so that the cardi-
nality changes |A[n]| = WNT −n at the n-th iteration. There-
fore, the maximum complexity order required for Algorithm
1 becomes O({W 2N2

RÑtd+W 3N3
TN

3
R}+

∑WNT

m=1 {m2N3
R+

N3
R+((m−1)NR+N2

R)Ñtd}) = O(W 2(N2
TNR+N2

R)Ñtd+
W 3N3

TN
3
R), where m = WNT − n is used. Especially for

NAAD = 1, the complexity order is at most O(W 2N2
RÑtd +

W 3N3
TN

3
R) due to |A[n]| ≤ WNT .

2) The ℓ2 LS: The ℓ2 LS channel estimation requires the
complexity order of at most O(W 2N2

T Ñtd+W 3N3
TN

3
R) since

it is identical to the steps 1 and 2 in Algorithm 1.
3) The ℓ1 MB: The ℓ1 MB algorithm performs a set

of operations, which are CIR length-shrunk ℓ2 LS channel
estimation (6) and the PCA, for at most W possible solu-
tions. The complexity order required for obtaining the W
LS channel estimates is, however, equivalent to that of the
ordinary ℓ2 LS channel estimation. This is because, in (6), the
matrices RΦΦA

and RYΦA
are the submatrices of RXX and

RYX, respectively. Furthermore, by using the matrix inverse
downsizing or upsizing algorithm [31], the complexity order
needed for the W matrix inverses R−1

ΦΦ[w]
, 1 ≤ w ≤ W , is

equivalent to that of the single matrix inverse R−1
XX. Therefore,

the complexity order required for obtaining the W LS channel
estimates is dominated by O(W 3N3

TN
3
R) = O(W 3N3

TN
3
R +∑W

w=1 w
2N2

TN
2
R), where the summation term describes the

10Let Rn denote RΦΦA[n]
after relevant permutations so that Rn =[

A BH

B Rn+1

]
. R−1

n =

[
E FH

F G

]
∈ CM×M ⇒ R−1

n+1 = G −

FE−1FH, where the sizes of submatrices E, F and G are N ×N , (M −
N)×N and (M −N)× (M −N), respectively.
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TABLE I
COMPUTATIONAL COMPLEXITY ORDERS FOR CHANNEL ESTIMATION

ALGORITHMS

Algorithm Computational complexity order NAAD

ℓ1 LS O(W 2N2
T Ñtd +W 3N3

TN3
R) 1

O(W 2(N2
TNR +N2

R)Ñtd +W 3N3
TN3

R) WNT

ℓ2 LS O(W 2N2
T Ñtd +W 3N3

TN3
R)

ℓ1 MB O(W 2N2
T Ñtd +W 4N3

TN3
R)

ℓ2 MB O(W 2N2
T Ñtd +W 3N3

TN3
R)

Hybrid O(W 2N2
T Ñtd +W 3N3

TN3
R) 1

O(W 2(N2
TNR +N2

R)Ñtd +W 3N3
TN3

R) WNT

complexity for matrix-vector products according to the row
(iv) of Table II(b).

The complexity analysis of the PCA for the w-th possi-
ble solution is summarized as follows: the complexity or-
ders required for the Cholesky decomposition11 of R̄ΦΦ[w]

,
the noise whitening (19) and the SVD12 are O(w3N3

TN
3
R),

O(w2N2
TN

2
R), and O(w3NT ), respectively, in total for NT

Tx streams. Consequently, the complexity order needed for
the w-th PCA is dominated by O(w3N3

TN
3
R). The complexity

order required for the ℓ1 MB is, thereby, dominated by
O(W 2N2

T Ñtd+W 4N3
TN

3
R) = O(W 2N2

T Ñtd+W 3N3
TN

3
R)+

O(
∑W

w=1 w
3N3

TN
3
R).

4) The ℓ2 MB: The ℓ2 MB technique performs the
above-mentioned set of operations for the W -th pos-
sible solution, only once. Hence, the complexity order
needed for the ℓ2 MB channel estimation is dominated by
O(W 2N2

T Ñtd+W 3N3
TN

3
R) = O(W 2N2

T Ñtd+W 3N3
TN

3
R)+

O(
∑W

w=W w3N3
TN

3
R).

5) The hybrid algorithm: The hybrid algorithm performs
the ℓ1 LS and ℓ2 MB techniques at a time. However, its
complexity order is equivalent to that of the ℓ1 LS, since
O({W 2(N2

TNR + N2
R)Ñtd + W 3N3

TN
3
R} + {W 2N2

T Ñtd +
W 3N3

TN
3
R}) = O(W 2(N2

TNR + N2
R)Ñtd + W 3N3

TN
3
R).

The complexity order needed for the BIC of the ℓ2 MB
channel estimate is O((WNTNR + N2

R)Ñtd) and hence it
is very minor. Especially for NAAD = 1, the complexity
order required for the hybrid algorithm is the same as that
of the ℓ2 MB technique, although the number of operations
are increased slightly.

IV. PERFORMANCE ANALYSIS

A. MSE performance of the ℓ1 LS

MSE performance of the ℓ1 LS channel estimation can be
given by the following (24) with the optimal active-set (30).

11We assume that the Cholesky decomposition for an M × M matrix
requires the complexity order O(M3) [30].

12As shown in [12], SVD for the w × w covariance matrices
KLM

l [ ˆ̃GLS
[w],k

(l)] is performed to find the principal components of the CIR

for the k-th TX stream, where ˆ̃GLS
[w],k

(l) = matNR
{ˆ̃gLS

[w],k
(l)}. Hence, the

complexity order becomes O(w3NT ) for NT Tx streams, by assuming that
an SVD operation for an M × M matrix needs O(M3) [30]. Note that
the complexity order needed for the covariance matrix KLM

l [ ˆ̃GLS
[w],k

(l)] is

minor since it can be updated recursively: K
LM
l = (LM · KLM

l−1 + K1
l −

K1
l−LM

)/LM , where we denote K
LM
l = KLM

l [ ˆ̃GLS
[w],k

(l)] by omitting the
subscripts w and k.

1) Analytical MSE: For a given A, an NR ×WNT sparse
channel estimate matrix ĤA = ĜAP

T
A is vectorized as

vec{ĤA} = PA ·ĝA, where the NR×|A| compressed channel
estimate matrix ĜA is obtained via the vectorized channel
estimate ĝA (6). The MSE of the ℓ1 LS channel estimate can,
thereby, be reduced to

MSE(ĤLS
ℓ1 , σ2

z ,A) = E
[
∥vec{ĤLS

ℓ1 (l)−H(l)}∥2
]

= σ2
z tr

{
E[R−1

ΦΦA
(l)]

}
+ E(A), (24)

where we define E(A) = E
[
∥B(A, l) · vec{H⊥

A(l)}∥2
]

with
B(A, l) = PAR

−1
ΦΦA

(l)PT
ARXX(l) − IWNTNR . We note

that, when A = ∅, the MSE of ĤLS
ℓ1 becomes E(A) =

E
[
∥H(l)∥2

]
. The CIR unsupported with the active-set is

denoted by H⊥
A(l) = H(l)J⊥

A, where J⊥
A = IWNT − JA with

JA = PAP
T
A.

2) Optimal active-set: For an active-set A, denote the MSE
residual ∆LS

ℓ1ℓ2(A), as

∆LS
ℓ1ℓ2(A) = MSE(ĤLS

ℓ1 , σ2
z ,A)−MSE(ĤLS

ℓ2 , σ2
z), (25)

where MSE(ĤLS
ℓ2 , σ2

z) = σ2
ztr{E[R−1

XX(l)]}. The optimal
active-set which minimizes the MSE performance (24) may
be reduced via the minimization of (25). This is because
MSE(ĤLS

ℓ2 , σ2
z) is independent of A. However, we notice that,

for any A,

MSE(ĤLS
ℓ2 , σ2

z) =

σ2
z

[
tr
{
E
[
JAR

−1
XX(l)

]}
+ tr

{
E
[
J⊥AR

−1
XX(l)

]}]
, (26)

where we denote JA = JA ⊗ INR
and J⊥A = IWNTNR

− JA.
By Theorem 7.7.8 in [32],

R−1
ΦΦA

(l) ≼ PT
A · R−1

XX(l) · PA (27)

is satisfied for ∀A, where A ≼ B denotes that a residual
B−A is a positive semidefinite matrix. We, hence, have

E
[
tr
{
R−1

ΦΦA
(l)

}
− tr

{
JAR

−1
XX(l)

}]
≤ 0. (28)

Substituting (24), (26) and (28) into (25) yeilds

∆LS
ℓ1ℓ2(A) ≤ E(A)− σ2

z tr
{
E
[
J⊥AR

−1
XX(l)

]}
. (29)

The MSE performance (24) is, thereby, minimized with the
optimal active-set A∗ given by

A∗ = arg min
A

[
E(A)− σ2

z tr
{
E
[
J⊥AR

−1
XX(l)

]}]
. (30)

Obviously, the problem (30) is a combinatorial optimiza-
tion. The solution to (30) can be found from all possible∑WNT

k=0

(
WNT

k

)
active-sets if the delay profile E[dH(l)] =

E[diag{HH(l) ·H(l)}] is known. The operation
(
n
k

)
denotes

the binomial coefficient.

B. MSE performance bound of the ℓ1 MB

Since the ℓ2 MB channel estimation techniques asymptoti-
cally achieve the CRB [9]–[12], MSE performance of the ℓ1
MB algorithm is discussed through the CRB.
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TABLE II
COMPLEXITY ORDER IN ALGORITHM 1

(a) COMPLEXITY ORDER FOR EACH STEP IN ALGORITHM 1
Step Computational complexity order Details

1: O(W 2N2
T Ñtd +WNTNRÑtd +N3

R) (i, ii, iii)
2: O(W 3N3

TN3
R) (iv)

3: O( (WNTNR +N2
R)Ñtd ) (v, vi)

5: O(|A[n]|2NR) (vii)
6: O(WNT )
7: O({|A[n]|2|∆A[n+1]|+ |∆A[n+1]|3}N3

R) (iv), [31]
8: O( (|A[n+1]| NR +N2

R)Ñtd ) (v, vi)

(b) DETAILS IN TABLE II(a)
Symbol Eqn. Computational complexity order

(i) Γ̂ (9) O(WNTN2
R +N3

R)

(ii) RXX (7) O(W 2N2
T Ñtd)

(iii) RYX (8) O(WNTNRÑtd)
(iv) ĝA (6) O(|A|3N3

R + |A|2N2
R)

(v) Lt(ĜA) (22) O({|A|NR +N2
R}Ñt)

(vi) Ld(ĜA) (23) O({|A|NR +N2
R}Ñd +N3

R)

(vii) ĜH
A
ĜA (11) O(|A|2NR)

1) Definition of Unbiased- and Adaptive-Subspace: We
define terminologies unbiased- and adaptive-subspace which
are used to describe the performance bound of the new channel
estimation algorithms. Note that the reference signal length13

N̄ is referred as to tr{XX
H}/M , where the M ×M matrix

X denotes the Toeplitz matrix used in a channel estimator.

Definition 1 (Unbiased-subspace). An unbiased-subspace for
CIRs Gk(j, w) = Hk(j)|1:w, ∀j ∈ JL(l) with L ≥ w/NR, is
a subspace spanned by column vectors of Uk(l, w)|1:rk , where
the unitary matrix Uk(l, w) can be obtained from Uk(l, w) ·
Λk(l, w) · Uk(l, w)

H = svd
{
KL

l [Gk(l, w)]
}

and rk is the
path number of a channel model assumed for the k-th TX
stream.

Definition 2 (Adaptive-subspace). An adaptive-subspace
for CIRs Gk(j, w) is spanned by column vectors of
Uk(l, w)|1:raw,k(σ

2
z,N̄), where the parameter raw,k(σ

2
z , N̄) is

defined as

raw,k(σ
2
z , N̄) =

rk∑
i=1

1
{
λi
k(l, w) > NRσ

2
z/N̄

}
(31)

for the ideally uncorrelated reference signal, the length of
which is N̄ . The i-th largest singular value λi

k(l, w) is ob-
tained from Λk(l, w). The indicator function 1{B} takes 1 if
its argument Boolean B is true, otherwise 0.

It should be noted that the adaptive-subspace is an ap-
proximation of the unbiased-subspace in the noisy covariance
matrix KL

l [Gk(l, w)] + (NRσ
2
z/N̄)Iw. We define another

terminology complemental-subspace as a subspace spanned by
the column vectors of Uk(l, w)|raw,k(σ

2
z,N̄)+1:rk .

2) CRB: The CRB for an unbiased estimator in a MIMO
channel can be derived as a sum of CRBs over NT TX
streams in SIMO channels or their vectorized SISO ver-
sions. This is because (19) is independent of θk. Therefore,
by utilizing the CRB of SISO channel estimation in [10],
the CRB of MIMO channel estimation can be described as
CRBN̄,w(σ

2
z , r) = CRBZ

N̄ (σ2
z , r) + CRBΠ

N̄,w(σ
2
z , r), where

we denote the unbiased-ranks of CIRs by a vector as r =

13The notation N̄ (bar over N ) denotes a reference signal length of a
channel estimation algorithm, in order to distinguish it from an input signal
length Ñ (tilde over N ) for the estimation algorithm.

[r1, ..., rNT
]T and define

CRBZ
N̄ (σ2

z , r) =

NT∑
k=1

NRσ
2
zrk

N̄
(32)

CRBΠ
N̄,w(σ

2
z , r) =

NT∑
k=1

σ2
z

LM N̄
(w rk − r2k) (33)

under the assumption that the length N̄ ideally uncorrelated
sequence is used. The ℓ1 MB channel estimation can decrease
the projection error (33) by assuming a shorter CIR length w
than W , so long as it does not distort the original rk paths to
perform the unbiased channel estimation. However, it should
be noticed that (32) is independent of w. Therefore, the ℓ1
MB can improve the projection error, nevertheless, it does not
improve asymptotic MSE performance (32) when LM tends
to ∞.

3) Adaptive-CRB: We define a new performance bound
adaptive-CRB (aCRB) to describe the performance bound of
an unbiased channel estimation for the adaptive-subspace:

aCRBN̄,w(σ
2
z) = CRBN̄,w(σ

2
z , r

a
w(σ

2
z , N̄)) + ∥Λc(w)∥,

(34)
with raw(σ

2
z , N̄) = [raw,1(σ

2
z , N̄), · · · , raw,NT

(σ2
z , N̄)]T. The

sum of singular values in the complemental-subspace is de-
noted by ∥Λc(w)∥ =

∑NT

k=1 E[∥Λk(l, w)|rak(σ2
z,N̄)+1:rk∥1]. By

the definition, the aCRB has a property that

aCRBN̄,w(σ
2
z) ≤ CRBN̄,w(σ

2
z , r).

The equality holds in a high SNR regime such that σ2
z ≤

E[λrk
k (l, w)] · N̄/NR for ∀k ∈ {1, · · · , NT }.

4) Asymptotic MSE performance of MB techniques:
The MSE performance of the ℓ1 MB is given by
MSE(ĤMB

ℓ1 , σ2
z) = min

w
aCRBN̄,w(σ

2
z). As mentioned above,

however, the asymptotic MSE performance of the ℓ1 MB with
LM → ∞ is independent of the parameter w. The MSE
performances of both the ℓ1 and ℓ2 MB algorithms are, hence,
lower bounded by

aCRBN̄ (σ2
z) = CRBZ

N̄ (σ2
z , r

a
W (σ2

z , N̄)) + ∥Λc(W )∥. (35)

V. NUMERICAL EXAMPLES

After describing simulation setups, first of all, MSE per-
formance of proposed techniques is shown. The NMSE con-
vergence property of the new algorithms is then investigated.
Moreover, tracking performance against channel changes is
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demonstrated to show the robustness of the hybrid algorithm.
BER performance of a MIMO turbo receiver with the new
channel estimation algorithms is also presented at the end of
this section.

A. Simulation Setups

1) Channel models: The CIRs are generated with the
spatial channel model (SCM) [7], [33]. This paper assumes
4 × 4 MIMO channels, where the antenna element spacing
at the base station (BS) and the mobile station (MS) are,
respectively, set at 4 and 0.5 wavelength. Spatial parameters
such as the direction of arrival (DoA) are randomly chosen
per a TX chunk. Moreover, six path fading channel realizations
based on the Pedestrian-B model with a 3 km/h (PB3) mobility
and the Vehicular-A model [7] with a 30 km/h (VA30) mobility
are assumed. The path positions of PB and VA are respectively
at {1 2.4 6.6 9.4 17.1 26.9} and {1 3.2 6 8.6 13.1 18.6} symbol
timings assuming that a transmission bandwidth is 7 MHz with
a carrier frequency of 2 GHz.

The receiver can, however, observe CIRs only in the integer
symbol timings due to the discrete-time signal processing.
In practice, the CIRs are observed as resampled signals so
that the original channel parameters at fractional path tim-
ings can be reconstructed as samples at the integer symbol
timings without distortion. We assume that the resampling is
performed by the matched filter (e.g., [34]) with a parameter
set {α,Novs, Nflt} = {0.3, 8, 6}, where the parameters denote
the roll-off factor of the raised cosine filter, the over-sampling
factor and the filter order in symbol, respectively. As shown
in Fig. 1, the CIR length observed at the receiver can be
around 30 symbols when it follows the PB channel model.
The maximum CIR length is hence set at W = 31 symbols.

2) TX scenarios: As described in Section I, we focus on
intermittent communication scenarios to verify robustness of
ℓ1 regularized channel estimation. A length LC = 100 burst
TX chunk is transmitted continuously. However, as illustrated
in Fig. 7, a TX interruption of arbitrary length is assumed
between the TX chunks. Two scenarios VA-VA and PB-VA
are defined as follows. In the VA-VA scenario, all TX chunks
follow a single channel model VA30. The PB-VA scenario has
a channel model transition {PB3 → VA30 → PB3 → VA30 →
...} in the series of TX chunks. The variations of the two TX
chunks do not always smoothly change due to the interruption,
even in the VA-VA scenario.

3) System parameters: The 4× 4 MIMO system transmits
Ninfo = 2048 information bits. A data frame is encoded by the
Rc = 1/2 convolutional code with the generator polynomials
(g1, g2) = (7, 5)8. The number NB of bursts per a TX stream
in a frame is determined such that NB = Ninfo/(NTNd).
The burst format parameters are set at (Nt, NCP, NG, Nd) =
(127,W,W, 512). The TSs are generated with the pseudo noise
(PN) sequence [35].

B. Normalized MSE Performance with LS channel estimation
techniques

We define a normalized mean squared error (NMSE)
of a channel estimate Ĥ by NMSE(Ĥ, σ2

z) =

��� ��� � �� �� ��

��
����
����
����
����
���
�

�

�

ℓ2 LS
Analytical NMSE of ℓ2 LS

ℓ1 LS, NAAD = 1

ℓ1 LS, NAAD =WNT
ℓ1 LS, known dH
Analytical NMSE of ℓ1 LS

�
�
�
�

��������

���

Fig. 3. NMSE performance with LS channel estimation techniques in the
PB-VA scenario. Nturbo denotes the number of turbo iterations.

MSE(Ĥ, σ2
z)/E[∥H∥2]. Similarly, normalized aCRB

(NaCRB) is denoted as NaCRBN̄td
(σ2

z) =
aCRBN̄td

(σ2
z)/E[∥H∥2] with asymptotic aCRB (35), where

the length N̄td of reference signals composed of TS and data
sequences is defined by N̄td = tr{RXX}/(WNTNR). The
NaCRB for the PB-VA scenario is assumed as the mean of
those for the PB and VA channel models.

1) Comparison between the ℓ1 and ℓ2 LS techniques:
Fig. 3 shows NMSE performance of the ℓ1 LS and ℓ2 LS
channel estimation techniques in the 4×4 MIMO system. The
PB-VA scenario is assumed. The channel estimation results
are obtained after performing the first and the sixth turbo
iteration (Nturbo = 1, 6). The maximum number of iteration in
Algorithm 1 is set at NAAD = 1 or WNT . As observed from
Fig. 3, the ℓ1 LS technique improves the NMSE significantly
compared to the ℓ2 version in a low to moderate SNR regime.
This is because the dominant CIRs above the noise level exist
sparsely in the SNR regime. In a high SNR regime, however,
the CIRs cannot be assumed as sparse channels. Thereby,
in the PB-VA scenario, the ℓ1 LS does not improve NMSE
performance over the ℓ2 version in the high SNR regime,
although enough turbo iterations (Nturbo = 6) are performed.

In a very low SNR regime, the NMSE with the ℓ1 LS de-
viates from the analytical MSE performance. This is because,
even though the NMSE performance is improved by setting
NAAD > 1, the active-set detection (12) can fail in the very
low SNR regime such that NMSE(ĤLS

ℓ2 , σ2
z) ≫ 1 since the

delay profile is approximated with LS estimates. As shown
later, the problem is improved with the hybrid algorithm since
the ℓ2 MB method estimates the path number correctly.

2) Comparison between ℓ1 solvers – AAD vs. OMP /
SP: The following two subsections compare the AAD al-
gorithm with well-known ℓ1 solvers. Before discussing the
comparison, it should be noticed that we can straightfor-
wardly extend ℓ1 solvers such as the OMP and subspace
pursuit (SP) [36] algorithms for MIMO channel estima-
tion by using (6). Although the algorithms are not ex-
plicitly shown due to the page limitation, we briefly de-
scribe a note for the MIMO extension. The active-set in
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the OMP-based algorithms can be constructed by using ei-
ther of the following criteria: 1) arg max

1≤j≤WNTNR

(|vec{Ξ}|)|j ,

or 2) arg max
1≤j≤WNT

diag{ΞHΞ}|j , where the residual correlation

Ξ is defined as Ξ = (Yt − ĤXt)X
H
t + Γ(Yd − ĤX̂d)X̂

H
d for

a possible estimate Ĥ obtained in the OMP-based algorithms.
In Figs. 4, the OMP algorithms with criteria 1) and 2) are
referred to as vec-OMP and OMP, respectively. As observed
from Figs. 4(a) and (b), channel estimation with the criterion
2) achieves better NMSE performance than the vec-OMP. This
is because the diversity combining over NR Rx antennas by
the matrix product ΞHΞ improves the accuracy of the active-
set selection. We, hence, focus on the OMP with the criterion
2) hereafter.

Fig. 4(a) shows NMSE performance with the OMP, SP and
AAD algorithms in the VA-VA scenario. Channel estimation
is performed with the TS only. As observed from Fig. 4(a),
the AAD achieves the same NMSE performance as that of the
OMP and SP algorithms, where the degree of sparsity (DoS)
for OMP and SP is given by the cardinality of the estimated
active-set (12). In other words, the NMSE performance is not
improved significantly by combining the AAD with the OMP
and SP algorithms. If the DoS is known, of course, the NMSE
performance with the OMP and SP algorithms is improved.
However, the knowledge of the delay profile is required to
determine the DoS correctly. It should be noted that, as shown
in Figs. 3 and 4, the AAD algorithm achieves the analytical
MSE performance of the ℓ1 LS exactly if the delay profile is
known.

3) Comparison between ℓ1 solvers – AAD vs. ITDSE:
The ITDSE [3] algorithm detects the active-set iteratively by
increasing a threshold with a step-wise maxj d̂

[0]
H,j/NRES ,

where NRES denotes a resolution constant. As observed from
Fig. 4(a), the NMSE with the ITDSE algorithm follows the
analytical MSE performance if the resolution constant is set
large enough. (e.g., NRES = 104 is required in the VA-
VA scenario for SNR ≥ 25 dB.) The original ITDSE has
to perform NRES iterations, although NMSE convergence
performance shown in Fig. 4(c) suggests that the ITDSE may
terminate the process before the NRES-th iteration with a
certain criterion. We note that, even with NAAD = 1, the
AAD algorithm can detect the active-set very accurately since
it decides the threshold adaptively according to the SNR.
Therefore, the computational complexity required for the AAD
algorithm is significantly decreased from that of the ITDSE.

4) Analytical NMSE performance of the ℓ1 LS: As shown
in Figs. 3 and 4(a), the analytical NMSE of the ℓ1 LS channel
estimation does not achieve the performance bound NaCRB
in approximately sparse channels. As an exception, Fig. 4(b)
shows the NMSE performance in sparse-VA channels, the
path positions of which are set at integer symbol timings
{1, 3, 6, 9, 13, 19}. Effect of Tx/Rx filters is also neglected.
As observed from Fig. 4(b), the analytical NMSE of the ℓ1
LS technique coincides with the NaCRB in the sparse-VA
scenario. This is because the eigen domain of the signal of
interest is identical to the temporal domain in the exactly
sparse channels.

C. Normalized MSE Performance with the MB and hybrid
algorithms

Figs. 5 show NMSE with the MB channel estimation in the
VA-VA (a) and PB-VA (b) scenarios. The MB sliding window
length is set at LM = 50 bursts. We note that NRLM = 200
is long enough so that NMSE converges. As shown in Fig.
5(a), both the ℓ1 and ℓ2 MB algorithms achieve the NaCRB
asymptotically. This observation verifies the MSE performance
analysis described in the Section IV-B. Furthermore, it should
be emphasized that the NaCRB saturates at 1 if SNR ≤ -
15 dB. This is because in the very low SNR regime, the
adaptive-rank (31) becomes E[rak(l)] = 0. The NMSEs with
the ℓ1 and ℓ2 MB algorithms also saturate at 1 in the very
low SNR regime, hence, they follow the NaCRB rather than
the ordinary normalized CRB (NCRB). The NMSE with
the hybrid algorithm follows that of the ℓ2 MB, where the
maximum number of iteration in the AAD algorithm is set at
1.

Fig. 5(b) shows the case of PB-VA scenario. The ℓ2 MB
exhibits NMSE deterioration from that in the VA-VA since
the PB-VA scenario has abrupt channel changes. The ℓ1
MB algorithm improves the NMSE in the low SNR regime,
nevertheless, the gain is slight even by using the oracle crite-
rion which minimizes the squared error ∥Ĥ − H∥2 between
a possible channel estimate Ĥ and a known CIR H. The
robustness with the ℓ1 regularization is investigated further in
terms of NMSE convergence properties and BER performance
in the subsequent sections.

D. NMSE Convergence Properties

1) Effect of LLR’s accuracy onto NMSE: Figs. 6 depict
NMSE performance over LLR’s accuracy at SNR = 15 dB in
the VA-VA (a) and PB-VA (b) scenarios. We define the LLR’s
accuracy by the mutual information (MI) IaEQU between the
LLR λa

EQU and the coded bits c at the transmitter, as

IaEQU = I(λa
EQU; c) (36)

=
1

2

∑
m=±1

∫ +∞

−∞
Pr(λ

a
EQU|m) log2

Pr(λ
a
EQU|m)

Pr(λa
EQU)

dλa
EQU,

where Pr(λ
a
EQU|m) is the conditional probability density of

λa
EQU given m = 1− 2c [37].
It is observed from Fig. 6(a) that all channel estimation

techniques improve the NMSE performance as MI increases.
This is because the reference signal length N̄td is proportional
to the MI IaEQU, since N̄td ≈ Nt + γσ̂2

d{Nd − (W − 1)/2}
with γ = σ2

z/(σ
2
z + ∆σ̂2

dNTσ
2
H/NR) holds when RHH ≈

(NTσ
2
H/NR)INR

. The variance of λa
EQU tends to ∞ as

IaEQU converges to 1 [37], which gets ∥x̂d,k∥2/Nd and ∆σ̂2
d

converged to σ2
x and 0, respectively.

The ℓ1 MB algorithm improves the NMSE over the ℓ2
MB channel estimation in the entire MI regime since it can
decrease the projection error as discussed in Section IV-B.
The hybrid algorithm is inferior to the ℓ1 MB in the VA-VA
scenario since it behaves as the ℓ2 MB when CIRs follow a
single channel model. Nevertheless, as shown in Fig. 6(b), the
hybrid algorithm improves NMSE over the ℓ1 MB if there are
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Fig. 4. Comparison between ℓ1 solvers: NMSE performance over SNR with ℓ1 LS channel estimation in the VA-VA (a) and sparse-VA (b) scenarios and
NMSE convergence over iteration (c) in the VA-VA scenario. Channel estimation is performed with the TS only. For the OMP and SP algorithms, known
and estimated DoSs are given by the cardinality of the optimal active-set (30) and the cardinality of the estimated active-set (12), respectively. The numbers
of the maximum iterations for the vec-OMP, OMP, SP and AAD algorithms are set at WNTNR, WNT , WNT , and 1, respectively. The ITDSE in these
figures determines the optimal solution from possible channel estimates by the oracle criterion.
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Fig. 5. NMSE performance with MB channel estimation techniques in the VA-VA (a) and PB-VA (b) scenarios. Normalized CRB is given by NCRBN̄ (σ2
z) =

CRBZ
N̄
(σ2

z , r)/E[∥H∥2] with (32), where all NT entries of the rank vector r are set at 6 for the PB or VA channel models. In the hybrid algorithm, NAAD = 1
is assumed.

abrupt channel changes such as in the PB-VA scenario. The
reason for the improvement is clarified by observing NMSE
tracking performance.

2) Tracking performance : Fig. 7 shows the NMSE tracking
performance in the PB-VA scenario. The ℓ2 MB channel
estimation suffers from the NMSE tracking errors as seriously
as that causes bit errors at the boarders between the TX
chunks. The ℓ1 MB channel estimation also suffers from
the NMSE tracking errors, however, improves bit errors at
the boarders between the TX chunks. This is because, as
described in Section IV-B, the ℓ1 regularization decreases
the projection error. Nevertheless, as observed from Fig. 7,
the ℓ1 MB cannot solve the NMSE tracking error problem
completely. This is because the ℓ1 MB estimate inherits the
past CIRs’ characteristics in the sliding window of the MMSE
formulation.

On the other hand, the ℓ1 LS channel estimation does
not suffer from the NMSE tracking error problem since it
detects the active-set for each burst independently. The hybrid
algorithm can, therefore, avoid the tracking error problem by

utilizing the ℓ1 LS, while achieving the performance bound
aCRB asymptotically by the ℓ2 MB estimate when the tracking
error problem is not observed.

E. BER Performance

The average SNR used in BER simulations is defined in
association with the average energy per bit to noise density
ratio (Eb/N0) as SNR = σ2

x (σ2
H/NR) η · Eb/N0, where we

assume that the variances of a transmitted symbol and CIRs
per a TX stream are σ2

x = 1 and σ2
H = 1, respectively. The

spectrum efficiency η of the frame format structure is defined
as η = Ninfo/Lfrm with a frame length Lfrm = LBNB in
symbol. It is hence reduced to η = 1.4 for the MIMO system
used in the simulations.

Figs. 8 show BER performance with the receiver using the
new channel estimation techniques in the 4×4 MIMO system.
BERs with the receiver assuming known CIRs H(l) are also
shown as the BER performance bound of the system. BER is
obtained after performing the first and sixth turbo iterations.
In the case the VA-VA scenario is assumed, as observed from
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Fig. 7. NMSE tracking performance in the PB-VA scenario. The arbitrary length TX interruptions are omitted in NMSE tracking results. The channel
estimation is performed with the TS only. SNR is set at 15 dB. In the second subfigure, the number (num.) of bit errors in the i-th frame is shown at the
{(i− 1)NB + 1}-th burst timing.

Fig. 8(a), the receiver using the ℓ1 MB achieves the BER
performance bound asymptotically. However, even with the
oracle criterion, the ℓ1 MB does not improve BER significantly
over that of the ℓ2 MB technique.

In the PB-VA scenario, as shown in Fig. 8(b), the BER
performance with the ℓ2 MB deviates from that of known
H by 4 dB at BER = 10−5, even after performing the sixth
turbo iteration. This is because, as shown in Fig. 7, the ℓ2 MB
suffers from the tracking error problem. The receiver with the
ℓ1 MB improves the tracking error problem, however, its BER
performance is still away from the bound by roughly 2.5 dB.

As shown in Fig. 8(b), the ℓ2 MB can, of course, improve
the tracking error problem by resetting the length Lm of
the MMSE sliding window at the start timing of each TX
chunk. Nevertheless, as observed from Fig. 8(a), the ℓ2 MB
with the Lm resetting suffers from BER degradation if there
is no tracking problem. This is because MSE performance
of the ℓ2 MB is unstable for ⌈W/NR⌉ bursts after the Lm

resetting. The proposed hybrid algorithm compensates the
MSE deterioration by utilizing the ℓ1 LS channel estimate for

the unstable duration. Moreover, the hybrid algorithm resets
the sliding window length only when the tracking error is
detected. The receiver with the hybrid algorithm can, therefore,
achieve roughly a 2 dB gain in Eb/N0 at BER = 10−5 over that
of the ℓ2 MB method in the PB-VA scenario, while obtaining
the BER performance bound asymptotically in the VA-VA
scenario.

VI. CONCLUSIONS

This paper has studied the performance of ℓ1 regularized
turbo channel estimation algorithms in broadband MIMO
wireless channels, via theoretical analysis supported with sim-
ulation results. The ℓ1 LS channel estimation does not achieve
MSE performance bound in broadband wireless channels since
the CIRs at the receiver are, in general, not observed as exactly
sparse channels due to the effect of Tx/Rx filters. The MSE
performance of both the ℓ1 MB and ℓ2 MB algorithms are
bounded by the aCRB defined in this paper. Moreover, the ℓ1
MB technique does not improve MSE significantly over the
ℓ2 MB if the following three assumptions are correct: 1) CIRs
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Fig. 8. BER performance with the 4× 4 MIMO system in the VA-VA (a) and PB-VA (b) scenarios.

follow the subspace channel model. 2) The sliding window
length in the MMSE formulation is set long enough. 3) The
reference signals are ideally uncorrelated.

However, the ℓ2 MB technique suffers from deterioration in
the channel estimation performance if the three assumptions
are partially incorrect. By focusing on intermittent TX scenar-
ios which do not always satisfy the first assumption, this paper
has demonstrated robustness with ℓ1 regularization. Simulation
results shows that, due to the tracking error problem, the
receiver with the ℓ2 MB exhibits BER degradation in the
PB-VA scenario although enough number of turbo iterations
are performed. The ℓ1 MB improves the tracking error by
decreasing the projection error, however, it requires a larger
complexity order than the ℓ2 MB.

The hybrid algorithm proposed in this paper solves the
tracking error problem completely. Therefore, the receiver with
the proposed algorithm achieves a significant BER gain over
the ℓ2 MB technique in the PB-VA scenario, while obtaining
the BER performance bound asymptotically in the VA-VA
scenario. It should be noted that the computational complexity
order required for the hybrid algorithm is equivalent to that
of the ℓ2 MB if the number of the maximum iteration of the
AAD algorithm is set at 1.

APPENDIX A

1) Approximation of the MSE (24): For the sake of sim-
plicity, the burst timing index l is omitted hereafter. If both the
training and data signals are ideally uncorrelated sequences,
RXXt/N̄t ≈ IWNT

and R̂XXd
/N̄d ≈ IWNT

, where N̄t = Nt

and N̄d = σ̂2
d{Nd−(W−1)/2}. Hence, RXX/N̄td ≈ IWNTNR

with ∆σ̂2
d ≈ 0. Accordingly, we have approximations

tr{R−1
ΦΦA

} ≈ |A|
WNT

tr{R−1
XX} (37)

and E(A) ≈ E
[
∥H⊥

A∥2
]
. The analytical MSE (24) is, there-

fore, approximated by

MSE(ĤLS
ℓ1 , σ2

z ,A) ≈ |A|MSE(ĤLS
ℓ2 , σ2

z)

WNT
+ E[∥H⊥

A∥2]

(38)

= E[∥H∥2] +
∑
j∈A

{
MSE(ĤLS

ℓ2 , σ2
z)

WNT
− d̄H,j

}
, (39)

since E[∥H⊥
A∥2] = E[∥H∥2] −

∑
j∈A d̄H,j , where d̄H,j

denotes the j-th entry in the delay profile E[dH]. The problem
(30) can also be approximated by

A∗ ≈ arg min
A

∑
j∈A

{
MSE(ĤLS

ℓ2 , σ2
z)

WNT
− d̄H,j

}

=

{
j

∣∣∣∣ d̄H,j > MSE(ĤLS
ℓ2 , σ2

z)/(WNT ),
j = 1, · · · ,WNT

}
.(40)

2) Derivation of the AAD: It is reasonable to assume that
∥ĤLS

ℓ1 −H∥2 ≈ E[∥ĤLS
ℓ1 −H∥2], when the reference signal

length is long enough. Under this assumption, the problem (10)
can be seen as an approximated version of the minimization of
(25). Hence, (10) can be reduced to a solution corresponding
to (40). Accordingly, the AAD algorithm approximates the
delay profile E[dH] by using the channel estimate obtained in
the previous iteration. The approximation error is dominated
by the first term of (38) if the active-set can be selected so
that ∥H⊥

A∥2 is very minor. It should be noticed that

tr{R−1
ΦΦA∗} / |A∗|

|A[n]|
tr{R−1

ΦΦA[n]
} / |A∗|

WNT
tr{R−1

XX} (41)

is satisfied for A∗ ⊆ A[n] ⊆ {1, · · · ,WNT } by (27) and
(37). Thereby, the active-set detection (12) is an extension of
(40) so that it takes account of the delay profile approximation
error. Furthermore, the recursive formula (12) aims to improve
detection accuracy by the inequality (41). However, even with
NAAD = 1, Algorithm 1 can detect the active-set accurately
when ideally uncorrelated reference signals are used. This
is because the equalities in (41) holds when RXX/N̄td =
IWNTNR .
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