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Abstract—Peak to average power ratio (PAPR) constrained
power allocation in single carrier multiuser (MU) single-input
multiple-output (SIMO) systems with iterative frequency do-
main (FD) soft cancelation (SC) minimum mean squared error
(MMSE) equalization is considered in this paper. To obtain
full benefit of the iterative receiver, its convergence properties
need to be taken into account also at the transmitter side.
In this paper, we extend the existing results on the area of
convergence constrained power allocation (CCPA) to consider
the instantaneous PAPR at the transmit antenna of each user. In
other words, we will introduce a constraint that PAPR cannot
exceed a predetermined threshold. By adding the aforementioned
constraint into the CCPA optimization framework, the power
efficiency of a power amplifier (PA) can be significantly enhanced
by enabling it to operate on its linear operation range. Hence,
PAPR constraint is especially beneficial for power limited cell-
edge users. In this paper, we will derive the instantaneous
PAPR constraint as a function of transmit power allocation.
Furthermore, successive convex approximation is derived for
the PAPR constrained problem. Numerical results show that the
proposed method can achieve the objectives described above.

I. INTRODUCTION

Reducing peak to average power ratio (PAPR) in any trans-
mission system is always desirable as it allows use of more
efficient and cheaper amplifiers at the transmitter. Recent work
on minimizing the PAPR in single carrier frequency division
multiple access (FDMA) [1] transmission can be found in [2]–
[4], where they propose different precoding methods for PAPR
reduction. However, these methods do not take into account
the transmit power allocation, the channel nor the receiver.

Due to the problems related to inter-symbol-interference
(ISI) and multi-user interference (MUI) in single carrier
FDMA, efficient low-complexity channel equalization tech-
niques are required. Iterative frequency domain equalization
(FDE) technique can achieve a significant performance gain
as compared to linear FDE in frequency selective channels.
Therefore, it is considered as the most potential candidate
to mitigate ISI and MUI [5]. However, to exploit the full
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Foundation, Ulla Tuominen foundation and KAUTE-foundation. This work
was also in part supported by the Japanese government funding program,
Grant-in-Aid for Scientific Research (B), No. 23360170.

merit of iterative receiver, the convergence properties of
an iterative receiver needs to be taken into account at a
transmitter side. This issue has been thoroughly investigated
in [6] where the power allocation to different channels is
optimized subject to a quality of service (QoS) constraint
taking into account the convergence properties of iterative
frequncy domain (FD) soft cancelation (SC) minimum mean
squared error (MMSE) multiple input multiple output (MIMO)
receiver. The convergence properties were examined by using
extrinsic information transfer (EXIT) charts [7]. The concept
in [6] has been extended for multiuser systems in [8], [9].
In this paper, we will introduce a PAPR constraint for the
convergence constrained power allocation (CCPA) problem
presented in [9]. In other words, we will minimize the total
transmit power in a cell with multiple users while guaranteeing
the desired QoS in terms of bit error probability (BEP) and
keeping the PAPR always below the desired value. This type
of power allocation where PAPR is used as a constraint has
not yet been published anywhere else. Hence, in this paper we
will present our first results on this topic and the development
towards the more practical scenarios will be published in the
near future.

The main contributions of this paper are summarized as
follows: The power of the transmitted waveform is derived as a
function of power allocation and quadrature phase shift keying
(QPSK) modulated symbol sequence. The instantaneous PAPR
constraint is derived and a local convex approximation of the
constraint is formulated via change of variable. The constraint
is plugged in to a CCPA problem and solved by successive
convex approximation (SCA) algorithm.

II. SYSTEM MODEL

Consider a single carrier uplink transmission with U single-
antenna users and a base station with NR antennas as depicted
in Fig. 1. Each user’s data stream is encoded by forward
error correction code (FEC) Cu, u = 1, 2, . . . , U . The encoded
bits are bit interleaved and mapped onto a 2NQ-ary complex
symbol, where NQ denotes the number of bits per modulation
symbol. After the modulation, each user’s data stream is spread
across the subcarriers by performing the discrete Fourier
transform (DFT) and multiplied with its associated power
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(a)

(b)

Fig. 1. The block diagram of (a) the transmitter side (b) the receiver side
of the system model.

allocation matrix. Finally, before transmission, each user’s data
stream is transformed into the time domain by the inverse DFT
(IDFT) and a cyclic prefix is added to mitigate inter block
interference (IBI).

At the receiver side, after the cyclic prefix removal, the
signal can be expressed as

r = HuF
−1P

1
2
uFb

u +
U∑

y=1
y ̸=u

HyF
−1P

1
2
y Fb

y + v, (1)

where Hu = [H1
u,H

2
u, . . . ,H

NR
u ]T ∈ CNRNF×NF is

the space-time channel matrix for user u and Hr
u =

circ{[hr
u,1, h

r
u,2, . . . , h

r
u,NL

,01×NF−NL
]T} ∈ CNF×NF is the

time domain circulant channel matrix for user u at the receive
antenna r. The operator circ{} generates matrix that has a
circulant structure of its argument vector and NL denotes the
length of the channel impulse response. F ∈ CNF×NF denotes
the DFT matrix with elements fm,l = 1√

NF
exp(i2π(m −

1)(l − 1)/NF ). P ∈ RUNF×UNF is the power allocation
matrix denoted as P = diag(P1,P2, . . . ,PU ) with Pu =
diag([Pu,1, Pu,2, . . . , Pu,NF ]

T) ∈ RNF×NF , u = 1, 2, . . . , U ,
and b = [b1T

,b2T
, . . . ,bUT

]T. bu ∈ CNF , u = 1, 2, . . . , U ,
is the modulated complex data vector for the uth user and
v ∈ CNF is white additive independent identically distributed
(i.i.d.) Gaussian noise vector with variance σ2.

III. PROBLEM FORMULATION

In this Section, the characterization of turbo equalizer is
given and the derivation of the power minimization prob-
lem constrained by the convergence of turbo equalizer is
performed. The block diagram of the FD-SC-MMSE turbo
equalizer is depicted in Fig. 2. The frequency domain signal
after the soft cancelation can be written as

r̂ = r̃− ΓP
1
2FU b̃, (2)

where b̃ = [b̃1
T
, b̃2

T
, . . . , b̃U

T
]T ∈ CUNF are the soft symbol

estimates of the modulated complex symbols and FU =
IU ⊗F ∈ CUNF×UNF . IU denotes the U ×U identity matrix

Fig. 2. The block diagram of FD-SC-MMSE turbo equalizer.

and ⊗ is the Kronecker product. Γ = [Γ1,Γ2, . . . ,ΓU ] ∈
CNRNF×UNF and Γu = bdiag{Γu,1,Γu,2, . . . ,Γu,NF } ∈
CNRNF×NF is the space-frequency channel matrix for user
u expressed as

Γu = FNR
HuF

−1. (3)

Γu,m ∈ CNR×NR is the diagonal channel matrix for mth

frequency bin of uth user and bdiag{·} generates block di-
agonal matrix of its arguments. L̂u and L̊u in Fig. 2 denote
the log-likelihood ratios (LLRs) provided by the equalizer and
the channel decoder of user u, respectively, and x̂u denotes
the estimate of xu. The problem formulation follows that
presented in [6], [8], [9]. Let ÎE

u denote the mutual information
(MI) between the transmitted interleaved coded bits c′u and
the LLRs at the output of the equalizer L̂u. Moreover, let
ÎA
u denote the a priori MI at the input of the equalizer and
f̂u() denote a monotonically increasing EXIT function of the
equalizer of the uth user. Now, we can write the following
relationship:

ÎE
u = f̂(ÎA

1 , Î
A
2 , . . . , Î

A
U ). (4)

Similarly, let I̊E
u denote the extrinsic MI at the output of the

decoder and I̊A
u a priori MI at the input of the decoder. We

can write
I̊E
u = f̊u(I̊

A
u ), (5)

where f̊u() is a monotonically increasing and, hence, invertible
EXIT function of the decoder.

Because interleaving has no impact on the MI, i.e., ÎE
u = I̊A

u

and ÎA
u = I̊E

u , we can express the condition for keeping the
convergence tunnel open for each user as

∃{I̊E
i ∈ [0, 1]}Ui=1

i̸=u
: f̂u(I̊

E
1 , . . . , I̊

E
u, . . . , I̊

E
U ) ≥ f̊−1

u (I̊E
u) + ϵu

∀u = 1, 2 . . . , U,
(6)

i.e., for all u, there exists a set of outputs from the decoders
of all the users except u such that the EXIT function of
the equalizer of user u is above the inverse of the EXIT
function of the decoder of user u plus a parameter ϵu. In other
words, the convergence is guaranteed as long as there exists an
open tunnel between the decoder and equalizer EXIT surfaces
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until the convergence point. ϵu is a parameter controlling
the minimum gap between the EXIT surfaces. To make the
problem tractable, continuous convergence condition (6) is
discretized (see [6, Section IV] for more details) and replaced
with

∃
{
I̊E
i,ki

∈ [0, 1] : ki ∈ {1, 2, . . . ,K}
}U

i=1
i ̸=u

:

f̂u(I̊
E
1,k1

, . . . , I̊E
u,ku

, . . . , I̊E
U,kU

) ≥ f̊−1
u (I̊E

u,ku
) + ϵu,ku ,

∀ku = 1, 2, . . . ,K, ∀u = 1, 2 . . . , U, (7)

where ku denotes the index of MI point such that I̊E
u,ku+1 >

I̊E
u,ku

, ∀ku = 1, 2, . . . ,K−1, i.e., the indexing is ordered such
that the MI increases with the index. In this paper, we assume
ϵu,ku = ϵu, ∀ku < K and ϵu,K = 0.

Using the inverse of the J-function [10]1, the constraints can
be written as

∃
{
I̊E
i,ki

∈ [0, 1] : ki ∈ {1, 2, . . . ,K}
}U

i=1
i ̸=u

:

J−1(f̂u(I̊
E
1,k1

, . . . , I̊E
u,ku

, . . . , I̊E
U,kU

)) ≥ J−1(f̊−1
u (I̊E

u,ku
) + ϵu),

∀ku = 1, 2, . . . ,K, ∀u = 1, 2 . . . , U.
(8)

We will use the so called diagonal sampling [9], i.e., we choose
only the points in the U + 1-dimensional EXIT space where
all the decoder’s outputs are equal, i.e., we check the K points
on the line from the origin to the convergence point. Although
this method is suboptimal, a sophisticated guess is that the
active constraints lie on this line due to the smoothness of the
decoder surface. The convergence constraint simplifies to

σ̂2
u,k ≥ σ̊2

u,k,∀u = 1, 2 . . . , U,∀k = 1, 2, . . . ,K. (9)

When Gray-mapped quadrature phase shift keying (QPSK)
modulation is used, the variance of the LLRs at the output
of the equalizer can be expressed as [6, Eq. (17)]

σ̂2
u,k =

4ζu,k
1− ζu,k∆̄u,k

, (10)

where ζu,k is the effective signal-to-interference-plus-noise
power ratio (SINR) for uth user at kth MI index. Plugging
(10) into (9), the convergence constraint power minimization
problem can be expressed as

minimize
Pu,n,ωu,n

tr{P}

subject to 1
NF

∑NF

m=1

Pu,m|ωH
u,mγu,m|2∑U

l=1 Pl,m|ωH
u,mγl,m|2∆̄l+||ωu,m||2σ2

≥ ξu,k, ∀u = 1, 2 . . . , U,∀k = 1, 2, . . . ,K,
Pu,n ≥ 0,
u = 1, 2, . . . , U, n = 1, 2, . . . , NF ,

(11)
where

ξu,k =
(̊σu,k)

2

4 + (̊σu,k)2∆̄u,k
(12)

1J-function assumes that the LLRs are Gaussian distributed with variance
being equal to two times mean.

is constant. γu,m ∈ CNR consists of the diagonal elements of
Γu,m, i.e., γu,m is the channel vector for mth frequency bin
of user u. ωu,m ∈ CNR is the receive beamforming vector for
mth frequency bin of user u and it can be optimally calculated
as [11]

ωu,m =
(
∑U

l=1 Pl,mγl,mγH
l,m∆̄l + σ2INR

)−1γu,mP
1
2
u,m

avg{b̈u}ζu,k + 1
.

(13)
∆̄u,k = avg{1NF

− b̈u} ∈ R is the average resid-
ual interference of the soft symbol estimates and b̈u =
[|b̃u1 |2, |b̃u2 |2, . . . , |b̃uNF

|2]T ∈ CNF . The soft symbol estimate
b̃un is calculated as

b̃un = E{bun} =
∑
bi∈B

bi Pr(b
u
n = bi), (14)

where B is the modulation symbol alphabet, and the symbol
a priori probability can be calculated by

Pr(bun = bi) =

NQ∏
q=1

Pr(cun,q = zi,q)

=
(1
2

)NQ
NQ∏
q=1

(1− z̄i,q tanh(λ
u
n,q/2)), (15)

with z̄i,q = 2zi,q − 1 and zi = [zi,1, zi,2, . . . , zi,NQ
]T is

the binary representation of the symbol bi, depending on the
modulation mapping. λu

n,q is the a priori LLR of the bit cun,q,
provided by the decoder of user u.

A. Successive Convex Approximation via Variable Change

In this Section, we derive a successive convex approxima-
tion for the non-convex power minimization problem (11). Let
αu,m ∈ R, such that Pu,m = eαu,m , ∀u = 1, 2, . . . , U,m =
1, 2, . . . , NF and tku,m ∈ R+, ∀u = 1, 2, . . . , U,m =
1, 2, . . . , NF , k = 1, 2, . . . ,K. Since the active inequality
constraints in (11) hold with equality at the optimal point,
we can express (11) for fixed receive beamformers as

minimize
α,t

∑U
u=1

∑NF

m=1 e
αu,m

subject to 1
NF

∑NF

m=1 t
k
u,m ≥ ξu,k

u = 1, 2, . . . , U, k = 1, 2, . . . ,K,

(∗∗) eαu,n |ωk
u,n

H
γu,n|

2∑U
l=1 eαl,n |ωk

u,n
Hγl,n|2∆̄k+σ2||ωk

u,n||2
≥ tku,n,

k = 1, 2, . . . ,K, u = 1, 2, . . . , U,
n = 1, 2, . . . , NF ,

(16)
where the optimization variables are t = {tku,m : u =
1, 2, . . . , U, k = 1, 2, . . . ,K,m = 1, 2, . . . , NF }, and α =
{αu,m : u = 1, 2, . . . , U,m = 1, 2, . . . , NF }. By taking the
natural logarithm of the constraint (∗∗) yields

αu,n + 2 ln(|ωk
u,n

H
γu,n|)

− ln(

U∑
l=1

eαl,n |ωk
u,n

H
γl,n|2∆̄k + σ2||ωk

u,n||2) ≥ ln tku,n.

(17)
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Since a logarithm of the summation of the exponentials is
convex, the left hand side (LHS) of the constraint (17) is
concave. The RHS of (17) can be locally approximated with its
best convex upper bound, i.e., linear approximation of ln tku,n
at a point t̂ku,n:

Y (tku,n, t̂
k
u,n) = ln t̂ku,n +

(tku,n − t̂ku,n)

t̂ku,n
. (18)

A local convex approximation of (16) can be written as

minimize
α,t

∑U
u=1

∑NF

m=1 e
αu,m

subject to
∑NF

m=1 t
k
u,m ≥ NF ξu,k, u = 1, 2, . . . , U,

k = 1, 2, . . . ,K,

αu,n + 2 ln(|ωk
u,n

H
γu,n|)−

ln(
∑U

l=1 e
αl,n |ωk

u,n
H
γl,n|2∆̄k + σ2||ωk

u,n||2) ≥
Y (tku,n, t̂

k
u,n), u = 1, 2, . . . , U,

k = 1, 2, . . . ,K, n = 1, 2, . . . , NF ,
(19)

and it can be solved efficiently by using standard optimization
tools, e.g., interior-point methods [12].

The SCA algorithm starts by a feasible initialization t̂ku,n =

t̂
k(0)
u,n , ∀u, k, n. After this, (19) is solved yielding a solution
t
k(∗)
u,n which is used as a new point for the linear approximation.

The procedure is repeated until convergence. Algorithm 1
provides the algorithm description for the SCA algorithm.

Algorithm 1 Successive convex approximation algorithm.

1: Set t̂ku,n = t̂
k(0)
u,n ,∀u, k, n.

2: repeat
3: Solve Eq. (19).
4: Update t̂ku,n = t

k(∗)
u,n , ∀u, k, n.

5: until Convergence.

IV. INSTANTANEOUS PAPR CONSTRAINT

In this Section, the PAPR constraint is derived. Because the
PAPR is derived similarly for all the users, the user index is
omitted in this section. Let G = F−1P

1
2F. The entry (m,n)

of G is obtained as

gm,n =
1

NF

NF∑
l=1

√
Ple

j2π(l−1)(n−m)
NF . (20)

Let sm be the mth output of the transmitted waveform after
the IFFT. PAPR can be calculated as

PAPR =
maxm |sm|2

avg[|sm|2]
, (21)

where sm =
∑NF

n=1 gm,nbn.
Assuming |bn| = 1, ∀n and E{bpb∗q} = 0, ∀p ̸= q, where

b∗q denotes the complex conjugate of bq , the average can be
calculated as

avg[|sm|2] = 1

NF

NF∑
m=1

E
{
[|sm|2]

}
=

1

NF

NF∑
l=1

Pl. (22)

The power of the mth transmitted waveform can be calcu-
lated as

|sm|2 =
1

NF

NF∑
l=1

Pl +
1

N2
F

NF∑
q,p=1
p ̸=q

bpb
∗
q

NF∑
l=1

Plalpq+

1

N2
F

NF∑
q,p=1
p ̸=q

bpb
∗
q

NF∑
n,i=1
i ̸=n

√
PnPie

j2π((n−1)(p−m)−(i−1)(q−m))
NF ,

(23)

where alpq = e
j2π(l−1)(p−q)

NF . This can be simplified to

|sm|2 =
1

NF

NF∑
l=1

(1 +
2dl
NF

)Pl +
2

N2
F

NF∑
n,i=1
i>n

ηnim
√
PnPi,

(24)

where

dl =

NF∑
q,p=1
p>q

(
R[alpq](R[bp]R[bq]+

I[bp]I[bq]) + I[alpq](R[bp]I[bq]− I[bp]R[bq])
)
, (25)

and

ηnim =

NF∑
q,p=1
p>q

(
(R[bp]R[bq] + I[bp]I[bq])(R[anpma∗iqm]+

R[anqma∗ipm])− (I[bp]R[bq]−R[bp]I[bq])(I[anpma∗iqm]

− I[anqma∗ipm])
)
. (26)

Operators R and I take the real and imaginary part of a
complex argument, respectively.

A. Successive Convex Approximation via Variable Change

In this Section, we derive a successive convex approxima-
tion for the non-convex PAPR constraint. Due to the nonneg-
ativity of the absolute value, the factor 1 + 2dl

NF
in (24) has

to be nonnegative. However, the factor ηnim can be negative,
depending on the symbol sequence and the power allocation.
Let η+nim = max{0, ηnim} and η−nim = min{ηnim, 0}. The
instantaneous PAPR constraint can be written as

NF∑
l=1

(1 +
2dl
NF

)Pl +
2

NF

NF∑
n,i=1
i>n

η+nim
√
PnPi

≤ δ

NF∑
l=1

Pl −
2

NF

NF∑
n,i=1
i>n

η−nim
√
PnPi, ∀m = 1, 2, . . . , NF ,

(27)

where δ is a user specific parameter controlling the PAPR.
Denoting Pl = eαl , l = 1, 2, . . . , NF , and taking the

logarithm from both sides of (27), the constraint becomes

4



ln
( NF∑

l=1

(1 +
2dl
NF

)eαl +
2

NF

NF∑
n,i=1
i>n

η+nime
1
2 (αn+αi)

)

≤ ln
(
δ

NF∑
l=1

eαl +
2

NF

NF∑
n,i=1
i>n

(−η−nim)e
1
2 (αn+αi)

)
. (28)

Both sides of (28) are convex functions. RHS can be approxi-
mated by a linear function and then using the SCA technique
similarly to (18) and (19), a local solution can be found. Let

Wm(α) = ln
(
δ

NF∑
l=1

eαl +
2

NF

NF∑
n,i=1
i>n

(−η−nim)e
1
2 (αn+αi)

)
.

The best concave approximation of Wm(α) at a point α̂ is
given by

Tm(α, α̂) = Wm(α̂) +

NF∑
k=1

∂Wm

∂αk
(α̂)(αk − α̂k). (29)

The partial derivative ∂Wm

∂αk
is given by (30).

The approximation of the PAPR constrained problem is now
written as

minimize
α,t

∑U
u=1

∑NF

m=1 e
αu,m

subject to
∑NF

m=1 t
k
u,m ≥ NF ξu,k, u = 1, 2, . . . , U,

k = 1, 2, . . . ,K,

αu,n + 2 ln(|ωk
u,n

H
γu,n|)−

ln(
∑U

l=1 e
αl,n |ωk

u,n
H
γl,n|2∆̄k + σ2||ωk

u,n||2) ≥
Y (tku,n, t̂

k
u,n), u = 1, 2, . . . , U,

k = 1, 2, . . . ,K, n = 1, 2, . . . , NF ,

ln
(∑NF

l=1(1 +
2du

l

NF
)eαu,l+

2
NF

∑NF
n,i=1
i>n

η+nim
u
e

1
2 (αu,n+αu,i)

)
≤ Tm(αu, α̂u),

u = 1, 2, . . . , U,m = 1, 2, . . . , NF ,
(31)

where αu = {αu,n : n = 1, 2, . . . , NF }. Now, the SCA
algorithm can be used for problem (31) to find a local
solution of the original problem. The complete algorithm is
shown in Algorithm 2, where the superscript ∗ denotes the
optimal solution of (31). Due to the concavity of the logarithm
function, the linear approximation is always above the original
function2. Hence, Algorithm 2 is guaranteed to monotonically
converge to a local solution.

Algorithm 2 Successive convex approximation algorithm.

1: Set t̂ku,n = t̂
k(0)
u,n ,∀u, k, n and α̂u,n = α̂(0)

u,n,∀u, n.
2: repeat
3: Solve Eq. (31).
4: Update t̂ku,n = t

k(∗)
u,n , ∀u, k, n and α̂u,n = α̂(∗)

u,n, ∀u, n.
5: until Convergence.

2By projecting the optimal solution from the approximated problem (31)
to the original concave function (RHS in (28)) the constraint becomes loose
and thus, the objective can always be reduced.

V. NUMERICAL RESULTS

In this section, numerical results will be shown to demon-
strate the performance of the proposed algorithm. SCAs pre-
sented in previous sections were derived for fixed receiver. The
joint optimum can be achieved via alternating optimization [9]
which means that the problem is split to the optimization of
transmit power for fixed receiver and optimization of receiver
for fixed power allocation. Alternating between these two
optimization steps converges to a local solution.

The following parameters is used in simulations: U = 2,
NR = 2, NF = 8, QPSK with Gray mapping, and systematic
repeat accumulate (RA) code [13] with a code rate 1/3 and
8 internal iterations are used. The signal-to-noise ratio per
receiver antenna averaged over frequency bins is defined by
SNR= tr{P}/(NRNFσ

2). The channel we consider is a
quasi-static Rayleigh fading 5-path average equal gain channel.
The EXIT curve of the decoder is obtained by using 200 blocks
for each a priori value with the size of a block being 6000
bits. The EXIT curves for the equalizer shown in Figs. 3 and
4 are obtained by averaging over 200 channel realizations.
We will consider three different transmission strategies: power
allocation with PAPR constraint, i.e., Algorithm 2, CCPA
without PAPR constraint, i.e., Algorithm 1, and amplitude
clipping [14] applied to CCPA precoded transmission.

EXIT chart for the system with PAPR threshold being 6 dB
and the MI targets being (I̊E,target

u , ÎE,target
u ) = (0.9998, 0.7892),

u = 1, 2 is depicted in Fig. 3. MI target can be converted to
bit error probability (BEP) by using the equation [7]

Pb ≈
1

2
erfc

(√
J−1(ÎA,target

1 ) + J−1(ÎE,target
1 )

2
√
2

)
. (32)

Hence, (I̊E,target
u , ÎE,target

u ) = (0.9998, 0.7892) corresponds to
BEP 10−5. It can be seen from Fig. 3 that there is not
much difference between the PAPR constrained result and the
one without PAPR constraint when the threshold is 6 dB.
Furthermore, clipping the signal when the power is higher
than 6 dB from the average power do not have significant
impact on the results. The convergence point for algorithms
with and without the PAPR constraint is indeed the preset
target point. PAPRs without PAPR constraint are 6.16 dB and
7.12 dB for user 1 and user 2, respectively. PAPRs with PAPR
constraint are at most 6 dB for both users. However, with
PAPR constraint the SNR required to achieve the target point
is 0.32 dB larger. After clipping the convergence points are
(0.9998,0.7892) and (0.9998,0.7868) corresponding the BEPs
10−5 and 1.01 · 10−5 for user 1 and user 2, respectively.

EXIT chart for the system with PAPR threshold being 3 dB
and the MI targets being (I̊E,target

u , ÎE,target
u ) = (0.9998, 0.7892),

u = 1, 2 is depicted in Fig. 4. Now, we can see the impact of
PAPR constraint which causes 0.79 dB increase of required
SNR. However, the PAPR never exceeds 3 dB and the conver-
gence point is still guaranteed to be the preset target point. The
EXIT curves for clipping intersect the decoder curve at a low
MI value, and the convergence points are (0.5142,0.3576) and
(0.4629,0.3393) corresponding to BEPs 0.0933 and 0.1072.
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Fig. 3. EXIT chart for turbo equalizer with 6 dB PAPR threshold. U = 2,
NF = 8, NR = 2, ÎE,target

u = 0.7892, u = 1, 2, I̊E,target
u = 0.9998, ∀u,

ϵu = 0.01, ∀u, NL = 5.

Fig. 4. EXIT chart for turbo equalizer with 3 dB PAPR threshold. U = 2,
NF = 8, NR = 2, ÎE,target

u = 0.7892, u = 1, 2, I̊E,target
u = 0.9998, ∀u,

ϵu = 0.01, ∀u, NL = 5.

This was expected due to the fact that amplitude clipping
causes distortion and hence, reduces the SNR and therefore
MI after detection.

CCPA performs the power allocation such that the gap
between the EXIT curves is larger than or equal to ϵu. If
we decrease ϵu, the power consumption is reduced while the
number of iterations in the equalizer increases [9]. If clipping
is used and ϵu is small, the EXIT curves of the equalizer and
the decoder may intersect already at very low MI point which
results in very high BEP. Therefore, PAPR constraint is crucial
when CCPA is used with small ϵu.

VI. CONCLUSIONS

In this paper, we have derived the peak-to-average power
ratio (PAPR) constrained power allocation problem for itera-
tive FD-SC-MMSE multiuser SIMO detector. We derived an

analytical expression of PAPR as a function of transmit power
allocation and QPSK modulated symbol sequence. Moreover,
a successive convex approximation for PAPR constrained
problem was derived. Numerical results indicate that PAPR
constraint is of crucial importance to guarantee the conver-
gence of the iterative equalizer. The constraint derived in this
paper is especially beneficial for the users on the cell edge
due to the power limited transmission.

In this paper, we have presented our first results considering
PAPR constrained power allocation and the aim of this paper is
to provide more insight into the problem. This type of power
loading requires centralized design, i.e., the base station re-
ports the power allocations to each user. Development towards
distributed solution is left as future work.
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