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Abstract-
Most of real world problems contain complex

and various constraints, and this goes for the
sewerage system control problem, our target.
For handling them, the penalty depending on
the degree of violation is often used. However,
additive penalty method (APM) often leads the
fatal compromise to a local optimum, in this pa-
per we introduce independent constraint satis-
faction (ICS). Another difficulty of this problem
is the inaccuracy of inflow forecasting, we show
the eager re-scheduling is superior to the lazy
one.

1 Introduction

It is frequently employed for decision making to con-
sider the future aspect and arrange a schedule to de-
cide the action. As ”scheduling” is a classic optimiza-
tion problem and numerous approaches has been de-
veloped, evolutionary computation including Genetic
Algorithms (GAs) is one of the most promising way
[Yamada 96].

In this paper, we challenge the sewerage system con-
trol problem. Briefly, the purpose is to minimize the
fluctuation of water flowing into the sewerage treat-
ment plant. For this goal, future inflows into each
hookup ponds are estimated, and future (f.g. half a
day’ s) pump discharges of every ponds are scheduled
carefully.

One of the most important characteristics of this
problem is that the estimation of inflows is not enough
accurate though scheduling is based on the estimation.
Against this difficulty, a great deal of effort has been
made to insure accurate estimation. However, as the

estimation of sewerage inflows is much harder than of
water supply demands, in many cases front-line opera-
tors of each ponds must regulate their control to pre-
vent ponds from overflowing. On the other hand, the
approach to re-schedule frequently in order to adjust
the schedule to the current condition, is also possi-
ble. For this approach, the process of estimating and
scheduling must be done enough fast.

Generally scheduling problems contain multiple and
complex constraints. In our problem, the water level
of a pond is forbidden to run over a certain range.
For satisfying these constraints, in a case a problem-
dependent heuristic logic is used, and in another case
a penalty function related to the degree of violation is
introduced. In this paper, we discuss the defect of addi-
tive penalty method and propose a solution to handle
constraints adequately. Eminent performance of the
proposal methods are shown on experiments using a
simulator and certain actual data.

2 Constraint Handling by Independent
Constraint Satisfaction

It is very important issue how to handle constraints
when we solve some sort of optimization problems. Es-
pecially, real world problems contain multiple and com-
plex constraints in many cases. At first, frequently used
methods for constraint handling are grouped as follows.
From here, without loss of generality, the discussion is
specified to minimization problems for simplicity.

1. Discard
Drop invalid solutions. This is easily mounted,
but is limited to the case that valid (with no vi-
olation) solution is easily gained.



2. Repairing Operation
Modify the violated solution to valid one using a
heuristic procedure [Giffler 60]. This procedure
likely sacrifices the primary quality of the solu-
tion to the purpose to modify it to valid one.
Furthermore, the more constraints are imposed,
the more difficult to compose the procedure.

3. Penalty
Measure the degree of violation as the penalty,
and minimize it gradually in order to make the
solution satisfy constraints. In most cases, the
penalty is used additively to the primary objec-
tive function (Additive Penalty Method, APM:
[Francisco 2000]), two optimizations to minimize
the primary objective function and to minimize
the penalty are done at once.

4. Multi-Objective Optimization
Consider the problem as 2-objective optimiza-
tion, to minimize the primary and the penalty.
Then algorithms developed in the MOOP field
can be employed [Deb 2000].

In this section we discuss the defect of APM, and
present a solution to using penalty adequately.

Consider a simple graph coloring problem, to color
all nodes s.t. both ends of each edge are differently
colored. It is the number of used colors c(x) to be
minimized, and the penalty p(x) can be introduced by
counting the number of edges whose ends have a same
color. The objective function is calculated as f(x) =
c(x) + 2p(x). It is very easy to reduce the penalty by
using new color on a violating node, but to iterate this
procedure results in the facile solution.

Now let S be the whole search space, and Sn ∈ S
be the subspace (whose graph is) using n colors. As-
sume just 4 colors are required for a graph. Though
S4 contains the optimal solution, almost all solutions
of S4 violate constraints seriously; so the average of
f(x), x ∈ S4 may be bigger than of S5 (Fig. 1). In
such cases, i.e. the subspace which includes the optimal
is averagely worse, GAs often fail to find the optimal
and prematurely converge to a local optimal which is
included in an averagely better subspace [Ikeda 2000].

The factor responsible for this phenomenon is to use
penalty additively and to search whole space at once,
whence optimizers search hopeful subspace intensively.
For the graph coloring problem, a technique for this
difficulty was introduced, i.e. to search each subspaces
independently. One trial is only for S3 in which the
number of colors is never changed and only the penalty
is minimized, and another is only for S4, or S5. By this
separation from other subspaces using different number

Figure 1: A part of the fitness landscape of a graph
coloring problem, separated to subspaces according to
its number of colors being used. Sn is the subspace of
solution with n colors: S4 includes the optimum (a),
but almost all solutions are awfully violating and have
bad value like (b). On the other hand, although S5

and S6 have only the local optima such as (c), the av-
erage fitness is better than S4. In such case, called
UV-structure, the intensive search is done not on
S4(V-valley) but on S5 or S6(U-valley), therefore often
converge to a local optima like (c). Such undesirable
behavior is called as UV-phenomenon [Ikeda 2000].

of colors, the premature convergence to an easygoing
solution is prevented.

This technique can be generalized for extensive
problems with constraints. As the whole space is
separated to some subspaces and valid solutions are
searched independently, we call this Independent Con-
straint Satisfaction, ICS. The framework of ICS is as
follows.

Independent Constraint Satisfaction� �
1. Let S be the search space, x ∈ S be a so-

lution, o(x) ∈ R be the primary objective
function to be minimized, and p(x) ∈ R be
the penalty.

2. Separate S to some subspaces S1, S2, ..., SN ,
s.t. bi ≤ o(x) ≤ bi+1 for all x ∈ Si. That is
to say, all members of a subspace hold similar
values. S1 is the most desirable but most
difficult to find a valid solution, and SN is
the opposite.

3. From each Si, minimize o(x)+p(x) for a cer-
tain period, under the condition o(x) ≤ bi+1.
The condition bi ≤ o(x) is not necessary be-
cause the purpose of ICS is to guarantee the
upper bound of o(x).

4. Select the best solution from all valid ones.
� �



Figure 2: A sewerage system formed by 5 ponds; circled ’P’ shows a pump.

For the separation of S at step 2. and for the re-
striction of o(x) at step 3, though generally they can
be executed by the generate-and-select method, a sim-
ple device would help the computing efficiency if it can
be introduced. As the generate-and-select method uses
only the primary value o(x) and solutions are compared
by using only the penalty function p(x), even if a large
number of variables and many constraints were given,
a search with ICS would not be technically harder.

This ICS strategy is essentially the same to the
ε-constraint method (we call ECM here) for multi-
objective optimization [Bhaskar 2000]. ECM selects
one objective fi, sets upper-bound εj for other objec-
tive fj �=i, and minimize fi as a single-objective opti-
mization under the condition fj �=i ≤ εj .

By considering the primary objective function o(x)
and the penalty p(x) as 2-objectives to be minimized,
ECM can be used for this 2-objective optimization,
p(x) is minimized under the condition o(x) ≤ ε. This is
one trial of ICS on a subspace o(x) ≤ ε. So, as with the
ECM, it is left to the solver how to fix N , separate S,
i.e. how to fix b1...bN+1, and in which order subspaces
are optimized.

Another form of ICS is as follows. At first an upper
bound UB is fixed, and one search is done under the
condition o(x) ≤ UB. Next UB is decreased if all
constraints are satisfied (or is increased if not), and a
new population is optimized again. By repeating such
trials, UB is controlled to an adequate value. We call
this form ’adaptive ICS’.

ICS requires multiple independent trials, some of
users may consider it is not efficient. However, the
clash between the minimization of the primary objec-
tive function and the satisfaction of constraints is fre-
quently serious. We insist that, ICS will greatly help to
tackle real-world problems with multiple constraints.

3 Sewerage System Control

In modern life sewerage system is one of the most im-
portant lifelines, being absolutely necessary especially
in urban area. Recently, the automatic/support control
of operation such as the pumping control, is considered
and partly introduced on grounds of the wide spread
of sewerage service and the need for cost saving. How-
ever, most sewerage plants are controlled by experts
in fact, more effective automatic controller using latest
optimizers is desired. Our approach is also available in
the field of the water supply control.

3.1 Overview

A sewerage system consists of one final treatment plant
and several hookup pumping plants, and they are con-
nected in one direction (Fig. 2). Each plant equips a
storing pond and some pumps, and how much water it
pumps up is decided in every time-step. The sewerage
system control in the format of optimization problem
is organized as follows:

• The primary purpose: stable sewerage
treatment
The precipitation process and some biochemistry
processes are necessary for purifying sewerage wa-
ter in the final treatment plant. As these pro-
cesses are long haul, it costs much to change the
plenty of medicine or organic matter. Therefore,
the primary purpose is to minimize the fluctua-
tion of water processed in the final plant, and the
fluctuation is measured by counting the number
of pumping switches.

• Constraints: bounds of water level
The water level of each pond must be bounded in
a range not to be damaged (so, as it were, really



the primal purpose is to accept all sewerage wa-
ters safely). Of course, the bigger the pond is, the
easier the smooth control is. However, in reality,
by the locational consideration and maintenance
cost, hard restriction is imposed.

• State Input to the decision maker
We assume that scattered plants are centrally
controlled by a point, and there is no time lag
about the water level information. The decision
maker designs the schedule of operations with the
use of the current time, current water level, cur-
rent pumping volume, and additionally the esti-
mation of future inflows into each hookup ponds.
It is impossible to estimate them exactly, because
every house drain water out arbitrarily, but it is
possible to catch the rough pattern of them (Fig.
3). As the sewerage system we deal in this paper
is split-flow type, no rainwater enters to sewerage
drains.

Figure 3: Time series data of the sewerage inflows from
houses to the hookup plants-4 ; of 14days ; each solid
line is of each day, two broken lines are of the maximum
and the minimum volume in each hour.

• Action Output from the decision maker
A plant has several pumps, and controls the wa-
ter pumping volume by the discrete combination
of their activation. At every time-step, the deci-
sion maker must decide the pumping volume of
every plant. Or, it is required in some cases to
decide not only pumping volumes but also the
combination of their activation in consideration
of their driving costs.

• Secondary purposes
Real-life problems generally involve many sec-
ondary purposes, also the sewerage control prob-
lem does. For example, to save the electric cost
by taking advantage of night rates, or to minimize

the fluctuation of water processed not only in the
final plant but also in hookup ponds. In this pa-
per, we regard them only if they have no adverse
affect on the primary value and the penalty.

3.2 Conventional methods

Up to now, for the sewerage (or water supply) system
control problem, based on taking them as an integer
programming problem, linear programming (LP), dy-
namic programming (DP), branch and bound method
(BAB) and so on have been researched. However, as
the integer programming problem is so-called NP-hard,
there is the danger that these methods can not solve in
a practical period when challenging against large scale
problems. Therefore several ways, multistage LP with
some heuristic ([Kurisu 1994]) or planning by stochas-
tic optimization, are also employed in order to gain
satisfying solutions fast.

Another, distributed reinforcement learning is at-
tended as the method to control connected plants un-
der the ill-informed situation; it was applied to sewer-
age control also, and learned enough favorable policy
to be used actually [Aoki 2003]. By using past sewer-
age inflows as the learning data, the learner gains its
policy in advance. When the coming data has similar
pattern to the learning data, the learner can make the
decision immediately. On the other hand, when the cir-
cumstance changed by ’the peculiar day’ or the failure
of pumps, the learner must learn again using such data
or breakdown.

3.3 Control by Genetic Algorithms

A genetic algorithm had been already applied to the
water supply problem [Sakamoto 2000]. An individ-
ual represents the pumping schedule of all plants, of
a day. To calculate the fitness value of a individual, a
computational simulation is run using the estimation of
water supply demands and the pumping schedule. In
[Sakamoto 2000], invalid solutions violating water level
constraints are repaired by a problem-dependent back-
track logic, or simply discarded. Though the repairing
operation contributes to finding valid solutions, it con-
flicts with the primary purpose, control stability, be-
cause it changes the pumping volume with short sight,
at the time the violation is predicted.

For applying this approach to the sewerage control,
in addition to the difficulty of constraint handling, the
deterioration of the estimation becomes a serious prob-
lem. Though very accurate estimation is being done at
the field of water supply because the supply deficiency
must be avoided at any price, the accuracy of sewer-
age water estimation is comparatively low. Practically



even if the schedule of a day is made by GAs, as the es-
timation error is accumulated at latter of the day, the
system never work well unless experts of each plants
correct the schedule as the occasion may demand.

3.4 Proposal approach

In this paper, thinking about the aspect of the sewer-
age system control and the defect of current GAs, we
propose an approach for better control. Main two ideas
are follows:

• Re-scheduling at every time-step
In the conventional planning method, a schedule
is of a whole day, made at the early morning,
and plants follow the schedule all the day unless
it breaks down. However, as already mentioned,
the estimation of sewerage inflows is not enough
accurate, then makeshift controls are frequently
done on account of the mismatch between the
estimated water level and actual one. In our ap-
proach, the schedule is reconsidered every time-
step on the ground of the latest water level and
the latest estimation of inflows. That is to say, a
schedule of a long period (in this paper 12 hours)
is used only for the next time-step (say 20 min-
utes), not for the future use. Herewith, the deci-
sion making based on the latest information and
the adequate control even under the rough esti-
mation become possible.

• Separation of the stable control and the vi-
olation rejection
Using the repairing operation or APM for the
constraint satisfaction is considered as the rea-
son of producing a lot of easygoing solutions only
satisfy the constraints but are flopping. In our
approach ICS is employed; the number of pump-
ing switches, the primary objective, is constant
on one GA and only the penalty is minimized.
After several GA with variant numbers of pump-
ing switches, the best schedule is selected. In this
procedure, no operation for constraint satisfac-
tion sacrifice the primary objective, it is expected
that better schedules are gained.

In association with the graph coloring problem
stated at Section 2, the number of pumping is
as the number of used colors. Although they
are to be minimized, the smaller they are, the
more likely constraints are violated. Therefore,
we believe, constraints should be satisfied inde-
pendently in each subspace which has same num-
ber of used colors, or pumping.

4 Experiments

4.1 Formulation and Experimental settings

In this paper, the model of a sewerage system consist-
ing of 5 plants is used [Aoki 2003]. Each plants Pi

equips a storing pond whose area of base Bi[m2], the
highest water level hi

MAX [m], the lowest hi
MIN [m], and

ni-pumps whose pumping volume P i
1..ni [m3/h]. They

are connected as Figure 2, and these actual values are
shown in Table 1.

The behavior of our simulator employed is as follows.
This simulator is used both cases, (1) when the GA
evaluate the fitness of an individual, and (2) when per-
formances of candidate algorithms are measured and
compared each other. The computation of the simu-
lator is done once each time-step Tstep[min]. When
Tstep ≥ 5, the simulator behaves enough analogously
like as a real sewerage system.

Simulator behavior� �
1. Initialize the time, water levels, pumping

states.

2. Observe the state input of time-step t : time
Tt, water levels hi(t), last pumping volumes
ai(t − 1).

3. Calculate practical/estimated inflows of one
time-step oi(t) led from Tt.

4. (Pumping volumes ai(t) are decided in a cer-
tain manner outsize.)

5. Update water levels: let f i(t) be the inflow
from upstream plants,
hi(t + 1) := hi(t) + oi(t)+f i(t)−ai(t)

Bi .

6. If t < tMAX , the number of steps the sim-
ulation runs, update the time-step to t + 1
and continue from 2.

7. Return two values, the number of switches
of pumping volumes of the final treatment
plant and the degree of water level violation.

� �
4.2 Overview of compared algorithms

All algorithms compared in this paper plan a schedule
up to HSC hours by considering current water levels,
pumping states, and estimated sewerage inflows. The
schedule is optimized by GA so that the number of
switching is minimized and no violation of water level
is predicted to the extent of estimation.

GAlazy
APM makes a schedule once by using GA with



Table 1: Constant values of the target sewerage system
no. plant flows into base water level pumping volume

Bi[m2] hi
MAX ∼ hi

MIN [m] P i[m3/h]× equips
P1 final plant - 2000 0.8 ∼ −2.5 980 × 2, 2000 × 2
P2 hookup plant 1 final plant 1000 0.8 ∼ −2.5 500 × 2, 1000 × 2
P3 hookup plant 2 final plant 1000 0.8 ∼ −2.5 300 × 2, 500 × 2
P4 hookup plant 3 final plant 300 0.8 ∼ −2.5 150 × 2, 400 × 2
P5 hookup plant 4 hookup plant 1 600 0.8 ∼ −2.5 300 × 2, 500 × 2

APM, and follows it over steps until HSC hours pass
or a future overflow is predicted by the simulator. This
algorithm is fairly analogous to the actual operation.

GAAPM makes a schedule by using GA with APM
also, but follows only the first step of it. Next step this
algorithm re-schedules based on the latest state inputs.

GAlazy
ICS makes a schedule once by using GA with

ICS, and follows it over steps as GAlazy
APM . The GA

with ICS at first tries to find the valid schedule in the
subspace that the number of switches of the final plant
equals to zero. When no valid schedule is found, next it
searches in the subspace of one switch, and next twice
until the valid schedule is found or it runs past the time
limit.

GAICS makes a schedule by using GA with ICS,
and follows only the first step of it. This is our final
proposal.

When no valid schedule is found within the time
limit, the schedule with the minimum penalty is
adopted resignedly. By comparing their performance,
we insist that our proposal (1) re-scheduling at every
time-step and (2) separation of the stable control and
the violation rejection, are actually helpful.

4.3 Operators and Parameters

Configurations of the GA employed are as follows.

• (Gene Coding) One individual S represents a
schedule up to HSC hours, i.e. S=[s1, ..., sHSC

]
where st = (a1

t , ..., a
5
t ) is pumping volume of

plants after t−1 hours to t hours. It is a point to
notice that, in the phase of planning, pumps are
scheduled an hourly, independent on the time-
step scale Tstep. Hence, the search space of this
problem is 5HSC−dimensional.

• (Objective Function) The primary objective
function of an individual S to be minimized is,
o(S)=

∑HSC

t=1 {1 − δ(a1
t − a1

t−1)}, i.e. the number
of switches of pumping volume at the final plant
P1. In addition, when | a1

t −a1
t−1 |≥ 1500 [m3/h],

the switch is counted twice, o(S)+ = 2.

• (Constraint Violation) For each individual S,
one simulation on the schedule is done up to HSC

hours. When a water level violation is observed
on Pi at the time after t hours, 2t is added to the
penalty p(S).

• (Secondary Objective) When two individu-
als are equivalent in the sense of penalty p and
primary objective o, the winner is decided by
comparing these control latitude. By writing
the expected water level of Pi after t hours as
hi

t, and by defining the local latitude mi
t be

min(hi
MAX −hi

t, h
i
t−hi

MIN ), we calculate the lat-
itude of a schedule S as m(S) = mini,t(mi

t). The
bigger m(S) is , the easier the adaptation against
the distortion of the estimation.

• (Crossover Operator) Let one parent S∗

be [s∗1, ..., s
∗
HSC

], and another parent S+ be
[s+

1 , ..., s+
HSC

], the crossover operator employed
is the 2-point crossover for this representation.
That is to say, at first select 1 ≤ t1 ≤ t2 ≤
HSC randomly, then the child Sc is produced as
[s∗1, ..., s

∗
t1−1, s

+
t1 , ..., s

+
t2 , s

∗
t2+1, ..., s

∗
HSC

].

• (Mutation Operator) At first select 1 ≤ t′ ≤
HSC randomly, then for all ai

t under the condition
t′ < t, change the state of pumps, working to rest
or opposite, with the probability of pmute.

• (Alternation) Let the population size be Npop.
For the pair of parents S1, S2, at first Nchild chil-
dren are produced by Nchild crossovers, and next
the mutation operation is applied to all children.
Finally, the best one among S1 and children is se-
lected, the best one is introduced instead of S1.

4.4 Margin as a safeguard

Our GA optimizes its population not to violate the
water level restriction through the utilization of the es-
timation of inflows. However, saying the same thing
again and again, the estimation is not enough accu-
rate. So, if the schedule is made in the full-range of the



limit water level, the actual water level often violates
its constraints. There, as a safeguard, rmgn% margin
of the water level is imposed. That is to say, GA runs
not under the actual limit hi

MIN to hi
MAX but under

the narrowed limit hi
MIN + hr to hi

MAX − hr, where
hr=(hi

MAX − hi
MIN ) × rmgn

100 .
The more serious the violation damages and the less

accurate the estimation is, the larger margin rmgn is
required. The larger margin is employed, the harder
constraint is imposed upon the control, and the more
difficult the stable control is.

4.5 Re-scheduling Frequency

If the decision maker follows a schedule longer after
the schedule is made, the mismatch between the esti-
mated water level and actual one is accumulated. On
the other hand if the schedule is frequently revised, the
mismatch is minimized as possible, then smaller mar-
gin can be employed with remote risk. That is to say,
as GAAPM and GAICS re-schedule every Tstep min-
utes, the shorter the time-step is, the better control is
expected. Comparative experiments about the effect
of the margin level and the re-scheduling frequency are
shown at subsection 4.7.

4.6 Experiments on 4 algorithms

In this subsection, 4 algorithms GAlazy
APM , GAAPM ,

GAlazy
ICS , GAICS are compared under two conditions,

(A) if the estimation were perfect, and (B) when the
estimation is done by averaging past inflows at the time
instant. We set parameters as, the scheduling range
HSC = 12[h], re-scheduling frequency Tstep = 20[min],
mutation rate pmute=0.03, population size Npop = 50,
the number of children Nchild = 2, and the margin rmgn

is, 0% at (A) because of no estimation mismatch, 4% at
(B). One scheduling is up to 3000, 10000, 30000 evalu-
ations; for these optimizations, about 1, 3, 10 seconds
are required respectively using a 1GHz CPU.

Actual inflows into plants of 14 days are used for
experiments, and the performance of an algorithm is
measured by the number of switches of the final plant
per a day, and by the number of violations per a day. 20
trials are done for each pair of algorithms and case (A)
and (B), they are averaged and summarized in Table
2.

By these results, we can conclude as follows:

• By introducing the margin as safeguards, the
overflow is controlled within the acceptable level.
The effect according to the margin size is de-
scribed at the next subsection.

Table 2: The comparison of 4 algorithms in 2 cases:
The averaged number of switches and violations per a
day
algotirhm cpu time (A)no mismatch (B)rough estimation

(sec) switches overflows switches overflows

1 3.08 - 3.85 0.17

GAlazy
APM 3 3.24 - 4.25 0.085

10 2.99 - 4.07 0.14

1 3.04 - 3.68 0.18

GAlazy
ICS 3 2.59 - 3.31 0.21

10 2.64 - 3.29 0.24

1 2.20 - 2.84 0

GAAPM 3 1.83 - 2.69 0.007

10 2.00 - 2.57 0

1 1.45 - 1.92 0.028

GAICS 3 1.37 - 1.71 0.050

10 1.25 - 1.67 0.021

• Though the same algorithm APM is used on
GAlazy

APM and GAAPM , or ICS is used on GAlazy
ICS

and GAICS respectively, their performances dif-
fer by from 1.5 to 2 times, it is shown that the
re-scheduling strategy contributes to the perfor-
mance improvement.

• GAICS is 30−50% better than GAAPM . At least
in this problem the Independent Constraint Sat-
isfaction is superior to Additive Penalty Method.
In addition, especially in GAICS, the longer time
is given to the algorithm, the better performance
is presented.

• Of course the assumption of (A), the estimation is
perfect, is unrealistic. However, it is shown that
a little improvement is expected if the estimation
would be more accurate.

4.7 The dependency of the margin and the re-
scheduling frequency

At the previous experiment in the case of (B), only
the margin rmgn = 4% is used for the time-step
Tstep = 20[min], experientially known as the most ad-
equate value. In this subsection, we examine the in-
fluence of this two parameters on the performance, the
algorithm is fixed to GAICS and the computation time
to 10 seconds. Here, rmgn vary from 1% to 8% , and
Tstep vary from 10 minutes to 1 hour. Table 3 shows
the result of 20 trials.

It is clear that, the smaller margin is employed, the
fewer switches are required but the more overflows are
observed. Further, by re-scheduling enough frequently,
the risk of overflows is enough minimized. The best
performance, 1.52 switches with 0.7% overflow rate, is



Table 3: The comparison of performance with various
Tstep and rmgn : measured by the number of switches
(Swt.) and the number of overflows (Ovf.)

Tstep rmgn = 1% rmgn = 2% rmgn = 4% rmgn = 8%

[min] Swt. Ovf. Swt. Ovf. Swt. Ovf. Swt. Ovf.

60 1.84 2.21 1.87 1.60 2.09 0.92 2.34 0.20

30 1.74 0.98 1.62 0.55 1.68 0.15 1.82 0.007

20 1.55 0.65 1.55 0.23 1.67 0.021 1.77 0

10 1.48 0.09 1.52 0.007 1.64 0 1.80 0

about 15% superior to the former research using the
equivalent environment [Aoki 2003].

5 Conclusion and Future work

Scheduling problems, especially real world problems,
often consist of multiple and complex constraints. For
handling these constraints, it is promising way to intro-
duce the notion ”penalty”. Conventionally this is used
additively to the primary objective (APM), in this pa-
per we discussed the defect of APM, i.e. the premature
convergence to a easygoing solution.

We introduced independent constraint satisfaction
(ICS) for constraint handling. From a view, ICS is
a parallel search strategy among subspaces divided to
each primary values, and from another view ICS is the
ε-constraint method for multi-objective optimizations.

The sewerage system control problem is an actual
scheduling problem consisting of strong constraints. In
addition to the difficulty of the constraint handling,
the most important characteristic of this problem is
that the scheduling is based on the rough estimation.
Though conventional controllers follow the schedule
once made as long as possible, we recommended the
eager re-scheduling in order to minimize the mismatch
between estimated inflows and actual ones.

The eminent effectivity of our two main ideas was
confirmed by experiments using an actual data. We
insist that these ideas, especially ICS, broaden the ap-
plicability of computational optimization commencing
with GAs for real-world scheduling problems consisting
of hard constraints.

For the ICS, the methodology how to divide the
whole space to subspaces and in which order they are
searched, is desired. On the other hand for the sew-
erage system control, considering actual use, how to
treat secondary (4 or more) objectives is also the fu-
ture work.
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