
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Exemplar-Based Direct Policy Search with

Evolutionary Optimization

Author(s) IKEDA, Kokolo

Citation
The 2005 IEEE Congress on Evolutionary

Computation, 3: 2357-2364

Issue Date 2005

Type Conference Paper

Text version author

URL http://hdl.handle.net/10119/12960

Rights

This is the author's version of the work.

Copyright (C) 2005 IEEE. The 2005 IEEE Congress

on Evolutionary Computation, 3, 2005, 2357-2364.

Personal use of this material is permitted.

Permission from IEEE must be obtained for all

other uses, in any current or future media,

including reprinting/republishing this material

for advertising or promotional purposes, creating

new collective works, for resale or

redistribution to servers or lists, or reuse of

any copyrighted component of this work in other

works.

Description

Exemplar-Based Direct Policy Search with Evolutionary
Optimization

Kokolo IKEDA
Academic Center for Computing and Media Studies, Kyoto University

Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto-city, Japan
kokolo@media.kyoto-u.ac.jp

Abstract- In this paper, an exemplar-based pol-
icy optimization framework for direct policy
search is presented. In this exemplar-based
approach, the policy to be optimized is com-
posed of a set of exemplars and a case-based
action selector. An implementation of this ap-
proach using a state-action-based policy repre-
sentation and an evolutionary algorithm opti-
mizer is shown to provide favorable search per-
formance for two higher-dimensional problems.

1 Introduction

Hard learning problems involving the acquisition of a
sequence of actions through trial-and-error and evalu-
ation have been studied extensively in the context of
reinforcement learning as one of the most important
problems in machine learning. Such problems are usu-
ally formulated as Markov Decision Processes (MDPs)
[van der Wal, 1981], in which a learning agent develops
a policy, that is, a mapping from a set of states to a set
of actions.

The most common approach to such problems is
the learning of a value function, typically by the tem-
poral difference method [Sutton, 1988]. In this ap-
proach, a policy is derived from the value-function
and the explicit representation is not required to
maintain. The policy-space approach, which in-
volves searching for policies that optimize an appro-
priate objective function, has also been widely studied
[Moriarty et al., 1999]. In direct policy search (DPS),
the core process of the policy-space approach, a pol-
icy is represented by a model with parameters, and the
parameters are optimized so as to maximize the evalu-
ation function by applying the parameterized policy to
the problem.

The key point of DPS is the selection of a model
to parameterize the policy. At a primitive level, the
policy is represented by the complete table of con-
crete state-action pairs. However, in difficult prob-
lems with large state space, some generalization is re-
quired to reduce the size of the search space. In a DPS
system such as SAMUEL [Grefenstette, et al., 1990],
a policy is represented by a set of condition-action
rules or if-then rules. In simple terms, when the cur-
rent state satisfies a condition, the associated action
is employed. Alternatively, as is the case in GENI-
TOR [Whitley and Kauth, 1988], a policy may be rep-
resented by an artificial neural network (ANN) that

outputs an action given the current state as an input.

The approach adopted in the present research in-
volves separating the set of referred information and
the action decision function. In the weightlift prob-
lem [Rosenstein and Barto, 2001], where the task is
to swing a weight up over the head, the via-point is
the only search target, and the action is decided by
a proportional-derivative controller from the current
state to the via-point or the goal state. The present
algorithm focuses on the difference between informa-
tion such as the via-point, the condition-action rules,
and parameters with no explicit meaning such as the
weights of the ANN. The purpose is to make the condi-
tion for information referral vary adaptively depending
on the relationships between other information, and to
make it possible to utilize free-style representation of
information such as “a state s1 is better than s2”.

The framework of DPS algorithms for machine
learning problems is introduced in this study consider-
ing a case-based policy representation with parameter
optimization. The framework itself, a typical imple-
mentation, and application of the scheme to two prob-
lems are presented in this paper.

2 Exemplar-based policy optimization

Exemplar-based policy (EBP) optimization is a frame-
work for direct policy search where the policy to be
optimized is composed of a set of exemplars and a case-
based action selector. The definition of EBP is consid-
ered here for a target problem limited to the domain of
MDPs, where S is the state space and A is the action
space. A policy is defined as a mapping from S to A
such that the procedure selects an action a ∈ A for a
state s ∈ S.

For the purpose of selecting an action, the policy
is defined as having two components: a set of exem-
plars and an action selector. An exemplar is specific
information, while the action selector is a reasoner ap-
plied to the set of exemplars. Although a clear defini-
tion of exemplar is not given here, the notion is distin-
guished from explicit rules with prescribed invocation
condition, and from cryptic parameters with no explicit
meaning. The typical styles of EBP are as follows.

Via-points style
An exemplar is defined as a pair (j, sj) meaning “follow
sj in order”, and the action selector decides the action
to achieve the next sj or the goal state.

State-action style
An exemplar is defined as a pair (sj , aj) meaning “take
action aj at sj”. The nearest-neighbor classification
can be used as the action selector [Sheppard, 1997],
that is, when the current state is s, the nearest state sj∗
is selected from the set of exemplars, and the associated
action aj∗ is taken.

State-value style
An exemplar is defined as a pair (sj , vj) with vj ∈ R,
meaning “the desirability of sj is vj”. If the state tran-
sition is deterministic and the agent at a state knows
the following state si after the action ai ∈ A, the action
selector estimates the desirability of each si by a func-
tion generalization method, selects the best si∗, and
finally takes the action ai∗. State-state style where an
exemplar is defined as a pair (s1

j , s
2
j), meaning “s1

j is
better than s2

j”, is also considered.

State-action-value style
An exemplar is defined as a pair (sj , aj , vj) with vj ∈ R,
meaning “the desirability of aj at sj is vj”. The action
selector estimates the desirability of each aj ∈ A by a
function generalization, and then takes the best action
aj∗. This style is analogous to the Q-value and the
greedy selection.

For a given action selector, the performance of an
EBP depends only on its exemplars. Regarding the
exemplars as parameters, and assuming that the eval-
uated value of the parameters can be calculated by ap-
plying the policy to the given problem, optimization al-
gorithms can be utilized to obtain better policies. This
procedure, referred to as EBP optimization, does not
necessarily require an initial set of positive exemplars
because the exemplars are selected and evolved.

One advantage of EBP optimization is that both the
introduction of prior knowledge and the extraction of
knowledge after optimization are relatively straightfor-
ward. For example, if a∗ is known to be the best action
at a particular state s, the state-action pair (s, a∗) can
be introduced directly as an exemplar. In contrast, if
the condition-action rule is required, the condition in-
cluding s must be fixed properly. This is even more
so for the type of prior knowledge “a state s1 is better
than s2”.

Another advantage is the power of policy expression.
In contrast to neural networks or regular tile coding,
EBP optimization can express a policy that with pre-
cise control for states and rough control in other parts
naturally since the condition for exemplar referral is
varied adaptively depending on the relationships be-
tween exemplars.

DPS is also advantageous over value-based reinforce-
ment learning in that multi-objective optimization can
be performed easily due to the ability of the DPS agent
to act depending not on any objective values but on
only its policy.

The proposal framework is more suitable for of-
fline simulation-based optimization applications than
for real-time solutions. And, one of the major challenge
in DPS is that its optimization is higher-dimensional,
nonlinear and no gradient method can be applied.
Therefore powerful optimization algorithm is required
for this scheme to obtain the satisfactory policy.

3 A practical implementation of EBP op-
timization

The implementation of EBP optimization requires the
type of exemplar, the action selector and the opti-
mization procedure to be fixed. In the present algo-
rithm, the state-action style with nearest-neighbor ac-
tion selector is employed as the most simple and general
case, although other types may be required in some in-
stances.

A genetic algorithm (GA) is employed for optimiza-
tion. The GA is a powerful search technique that relies
on parallels with nature [Nagata, 1997], maintaining
and evolving a population of individuals. In the DPS,
an individual is a policy consisting of a set of exem-
plars and an action selector. Although the initial set
of exemplars is a dirty mixture of positive and nega-
tive exemplars, the evolutionary procedure leads to a
refined favorable set of exemplars.

The implementation of EBP optimization with
state-action policy representation and GA search is
called the SAP-GA method for convenience. The no-
tation employed is listed in Table 1.

Table 1: Notation
s, S A state, and the state space.
d(s1, s2) A distance measure between two states s1 and

s2.
a, A An action, and the action space.
pa(s, s′) The transition probability to state s′ when ac-

tion a is taken at state s.
Ra(s, s′) The expected reward when action a is taken at

state s and the agent transitions to state s′.
Nstep The maximum number of steps in one episode.
D A case-based action selector.
Ei The set of exemplars of the ith policy.
ei
j The jth exemplar of Ei, with the state-action

pair (si
j , ai

j)

|Ei| The number of exemplars in Ei

Lmin, Lmax The minimum/maximum number of exemplars
in one policy.

πi(Ei, D) The ith policy of a population, a mapping from
S to A, composed of exemplars Ei and action
selector D.

f(π) The evaluation function of policy π.
Npop The number of solutions (policies) in the popu-

lation.
Nchild The number of children produced in the repro-

duction phase.

The main procedure is defined as follows (see Fig.
1).

Main procedure

1. The problem, MDP environments S, A, p, and

R, and the criteria for policy evaluation f, Nstep

are given.

2. The optimization operators, such as the action
selector D or the crossover operator, are fixed.

3. The parameters that specify the search space,
such as Npop, Nchild, Lmin, and Lmax are fixed.

4. The population (i.e., the set of solutions {Ei})
is initialized. The number of exemplars Lmin ≤
|Ei| ≤ Lmax is usually fixed randomly, and one
exemplar ei

j ∈ Ei (i.e., one state-action pair
(si

j , a
i
j) ∈ (S, A)) is also generated randomly.

5. Npop solutions are randomly coupled into Npop/2
pairs. All pairs are passed to the alternation
procedure.

6. Repeat step (5) until the termination conditions
are satisfied.

7. The final result is obtained and utilized in the
next phase.

The alternation procedure is based on a standard
family alternation model. However, other refined mod-
els may also be employed.

Alternation procedure

1. The parent solutions πp1 and πp2 are given.

2. Nchild solutions are reproduced by applying the
crossover operator Nchild times.

3. The evaluated value of f(π) for each member of
the family (i.e., parents and children) is calcu-
lated by the evaluation procedure.

4. The best policy π∗ in the family is selected.

5. π∗ is cloned, and the refresh operator is applied
to the clone.

6. π∗ and the refreshed clone are introduced into the
population instead of the parents.

Although the performance of a policy is usually mea-
sured by the discounted expected reward, the accumu-
lated reward for one episode is employed in the present
scheme. If the state transition or the action selection
is not deterministic, the performance gain is not static,
and some averaging may be required.

Evaluation procedure

1. The policy πi(Ei, D) is given.

2. The state s and the accumulated reward are ini-
tialized.

3. An action a is selected by the action selector D.

4. The state is transitioned, and the reward is accu-
mulated.

5. Repeat from step (3) until the goal condition is
satisfied or the number of steps reaches Nstep.

6. The accumulated reward of an episode is calcu-
lated and returned as f(πi).

The implementations of the remaining procedures,
that is, the crossover operator, the refresh operator
and the action selector, are shown below. Note that
these implementations are examples and are exchange-
able depending on the problem.

Nearest-neighbor action selector

1. The current state s and exemplars {ej} (i.e.,
state-action pairs {(sj , aj)}) are given.

2. For each sj , the distance d(s, sj) is measured.

3. The nearest state sj∗ is selected.

4. The action aj∗ is selected and taken.

5. The referred exemplar ej∗ is marked for the re-
fresh operator.

Uniform exemplar crossover operator

1. Parent solutions πp1(Ep1, D) and πp2(Ep2, D) are
given.

2. The selection rate 0.3 ≤ r ≤ 0.7 is fixed (value
not critical).

3. Ec is initialized as an empty set.

4. Each element ep1
i ∈ Ep1 is added to Ec with prob-

ability r.

5. Each element ep2
i ∈ Ep2 is added to Ec with prob-

ability 1 − r.

6. If any two elements of Ec are identical, one is
removed.

7. Return to step (2) if the condition Lmin ≤ |Ec| ≤
Lmax is not satisfied.

8. The child policy πc(Ec, D) is returned.

Refresh operator

1. The policy π and its set of exemplars {ej} are
given (it is assumed that π has been evaluated
once).

2. The selection rate 0.0 ≤ r ≤ 0.5 is fixed (value
not critical).

3. Elazy ∈ {ej} is defined as the set of exemplars
that were not referred in the previous evaluation.

4. Every member of Elazy is re-initialized randomly
with probability r.

This operator is specific for the EBP optimization do-
main. This is employed to remove “lazy” exemplars
that are rarely referenced, and to provide new exem-
plars to the population.

population

policy

family

parents

(3) crossover

children

(9) the best policy
 is selected

(2) p
icku

p

 parents

(11) altern
ate

(12) optimized

(1) initialize (each policy has
 its own exemplars) environment

 (MDP)(4) p
oli

cy

(8
)
ev

al
ua

te
d

va
lu
e

policy

action selector

exemplars

(5
) sta

te
 s

(7
) a

ctio
n
 a

*

(6) search the
nearest exemplar
e*(s* : a*)

-20 -15

-30 -10

-5 -15

(10) cloned and
 refreshed

Figure 1: Basic procedure of the SAP-GA method. (1) Given a problem, the population is initialized. (2) In a
generation, two solutions (parents) are picked for alternation. (3) Several children are produced by the crossover
operator. (4) A policy, a solution in the family, is evaluated in the environment of the target problem. (5) For
each step, the observation of state s is sent to the action selector of the policy. (6) The nearest exemplar (s∗, a∗)
to s is selected. (7) The action a∗ is taken. (8) At the end of the MDP, the evaluated value of the policy is
calculated and returned. (9) The best policy in the family is selected. (10) The best policy is cloned and the
refresh operator is applied. (11) Two solutions, the best solution and the refreshed solution, are sent back to the
population instead of the parents. (12) The policy is optimized.

4 Experiments

The performance of the SAP-GA was evaluated in two
problem domains; the Acrobot [Spong, 1994] and the
parallel-type double inverted pendulum (PDIP). Meth-
ods based on control theories and physical models are
often used to solve such problem. In this paper, the
physical model is used only for simulation; the agent
makes its decision depending only on the state obser-
vation and its policy.

4.1 Acrobot problem

The Acrobot task involves swinging a tandem double
pendulum. Two links are connected by a hinge joint,
and a single motor exerts torque between the links (see
Fig. 2).

• The state is defined by the link angles θ1, θ2 and
their velocities θ̇1 and θ̇2, which are normalized
to [0, 2π]. θ̇1 is bounded by [−4π, 4π], and θ̇2 is
bounded by [−9π, 9π].

• The initial state is fixed at (θ1, θ2, θ̇1, θ̇2) =
(3π/2, 0, 0, 0).

• The action (torque) space is defined as A =
{−2, 0, 2}. (Note: SI units are used in this pa-
per)

• The state transition follows the physical
law (the code in C is available at http://www.
cmap.polytechnique.fr/˜ munos/variable/acrobot
.html). In this paper, a single timestep for the
MDP is defined as 0.05 s, and the simulation
timestep dt is set to 0.01 s.

• The reward is sin(θ1)+sin(θ1 +θ2)−3, defined in
relation to the altitude of the tip of the pendulum.

• The best state is (θ1, θ2, θ̇1, θ̇2) = (π/2, 0, 0, 0).
The goal area Sδ is defined by (π/2 ±
2πδ, ±2πδ, ±8πδ, ±18πδ), where δ is a diffi-
culty parameter. When δ = 0.05, the goal area is
0.01% of the entire area S. The episode is termi-
nated if s ∈ Sδ.

• Nstep is set to 400.

4.2 Parallel-type double inverted pendulum
problem

The PDIP task involves swinging two inverted pendu-
lums linked to a car on a rail. The torque is applied
not to the links but to the car (see Fig. 2).

• The state is defined by the position of the car x,
its velocity v, the link angles θ1, θ2, and their
velocities θ̇1, θ̇2.

θ1

θ2

gravity

torque applied here

the best state (if stopped)

the initial state (stopped)

gravity

The parallel double
 inverted pendulumThe Acrobot

θ1

θ2

the initial state (stopped)

the best state (if stopped)

limited rail

torque applied to the car

Figure 2: The Acrobot (left) and the PDIP (right)

• x is bounded by [−2.5, 2.5] and v is bounded by
[−16, 16]. θ1 and θ2 is normalized to [0, 2π], θ̇1

and θ̇2 are bounded by [−4π, 4π].

• The initial state is fixed at (x, v, θ1, θ2, θ̇1, θ̇2) =
(0, 0, 3π/2, 3π/2, 0, 0).

• The action (torque) space is defined as A =
{−40, 0, 40}.

• The state transition follows the physical law. Let
g = 9.8, m0 be the weight of the car, mi be
the weight of the ith pole, li be the length,
si = sin(θi), and ci = cos(θi). When a torque
T is applied, the acceleration of the car a and the
update procedures are as follows.

a =
g(m1s1c1+m2s2c2)− 4

3
(T +m1l1θ̇

2
1c1+m2l2θ̇

2
2c2)

m1s2
1 + m2s2

2 − 4
3
(m0 + m1 + m2)

θ̇i +=
asi − gci

4
3 li

dt, θi += θ̇idt

v += adt, x += vdt

• the simulation timestep dt is set to 0.01s.

• The reward is sin(θ1) + sin(θ1 + θ2) − 3. When
the position restriction is broken, −100 reward is
added.

• The best state is (x, v, θ1, θ2, θ̇1, θ̇2) =
(0, 0, π/2, π/2, 0, 0). The goal area Sδ is
defined by (±2, ±16δ, π/2 ± 2πδ, π/2 ±
2πδ, ±8πδ, ±8πδ), where δ is a difficulty param-
eter. When δ = 0.05, the goal area is 0.0008% of
the entire area S. The episode is terminated if
s ∈ Sδ.

• Nstep is set to 400.

• (m0, m1, m2, l1, l2) = (1.0, 0.2, 0.1, 1.0, 0.5) by
default. When l2 = l1, this problem is equivalent
to the single inverted pendulum problem.

4.3 Learner settings

The following parameters were used in the experiments:

• The number of solutions Npop = 100, and the
number of children Nchild = 10.

• The range of the number of exemplars Lmin = 50,
and Lmax = 100.

• The distance d(s1, s2) is defined by the normal-
ized Euclidian distance.

Q-learning [Watkins, 1992] using an ε-greedy search
was also tested for comparison using the following
parameters: exploration rate ε = 0.02, 0.01 (for Ac-
robot,PDIP respectively), learning rate η = 0.02, 0.01,
discount factor γ = 1, 1. Square tiling is employed
to quantize the continuous space into discrete states,
where Ntile is the number of tiles.

Although the state of PDIP is six-dimensional by
default, l2 = 1.0 is used for Q-learning, resulting in
four dimensions. Ntile = 204 is used for both problems.

4.4 Experimental results

The method and parameters for the four problems are
summarized in Table 2. Each experiment was per-
formed 20 times using different random seeds, and
the average performance and standard deviation were
recorded. The performance measures are as follows:
the best evaluated values in a period, the minimum δ∗

for ∃s in all achieved states through the period such
that s ∈ Sδ∗ (i.e., how a closer state to the best goal
is obtained), and whether δ∗ is under the given δ (i.e.,
whether any agent achieved the goal).

-2000

-1800

-1600

-1400

-1200

-1000

-800

0 20000 40000 60000 80000 100000
0

0.2

0.4

0.6

0.8

1

e
v
a
lu

a
te

d
 v

a
lu

e
 (

a
cc

u
m

u
la

te
d
 r

e
w

a
rd

)

g
a
p
 t

o
 t

h
e
 b

e
st

 g
o
a
l
/

g
o
a
l
a
ch

ie
v
e
m

e
n
t

ra
te

total transition steps

best evaluated value in a period
gap to the best goal (right)

probability of goal achievement (right)

#1 : Q-Learning
Acrobot (delta=0.1)

-2000

-1800

-1600

-1400

-1200

-1000

-800

0 5000 10000 15000 20000 25000 30000
0

0.2

0.4

0.6

0.8

1

e
v
a
lu

a
te

d
 v

a
lu

e
 (

a
cc

u
m

u
la

te
d
 r

e
w

a
rd

)

g
a
p
 t

o
 t

h
e
 b

e
st

 g
o
a
l
/

g
o
a
l
a
ch

ie
v
e
m

e
n
t

ra
te

total transition steps

best evaluated value
gap to the best goal (right)

probability of goal achievement (right)

#2 : SAP-GA
Acrobot (delta=0.02)

Figure 3: Results for Acrobot

Table 2: Experimental settings
No. Problem Method Total steps
#1 Acrobot, δ = 0.1 QL 100 × 106

#2 Acrobot, δ = 0.02 SAP-GA 30 × 106

#3 PDIP, l2 = 1.0, δ = 0.01 QL 30 × 106

#4 PDIP, δ = 0.01 SAP-GA 30 × 106

Figures 3 and 4 show the experimental results for
these two problems. In both problems, the performance
of SAP-GA is better than that of QL, even though the
goal of QL (δ = 0.1) is not strict and a longer learning
time is provided (#1, #2), and though the single in-
verted pendulum problem is quite easier to the double
one (#3, #4). The superiority of SAP-GA for these
two problems, and the fact that six-dimensional prob-
lem was solved as well as four-dimensional one, sug-
gests that the case-based representation is more pow-
erful than tile-based coding in cases of high dimension-
ality. The power of policy expression in EBP is also
richer than that for tile-coding QL (see Fig. 5).

The Acrobot control trajectory for a policy derived
by SAP-GA is shown in Fig. 6, and the two PDIP
control trajectories for two policies determined by SAP-
GA are shown in Fig. 7. One of the desirable properties
of the SAP-GA method is that various policies with
comparable qualities are obtained.

-2000

-1800

-1600

-1400

-1200

-1000

-800

-600

-400

0 5000 10000 15000 20000 25000 30000
0

0.2

0.4

0.6

0.8

1

e
v
a
lu

a
te

d
 v

a
lu

e
 (

a
cc

u
m

u
la

te
d
 r

e
w

a
rd

)

g
a
p
 t

o
 t

h
e
 b

e
st

 g
o
a
l
/

g
o
a
l
a
ch

ie
v
e
m

e
n
t

ra
te

total transition steps

best evaluated value
gap to the best goal (right)

probability of goal achievement (right)

#3 : Q-Learning
PDIP (single, delta=0.01)

-2000

-1800

-1600

-1400

-1200

-1000

-800

-600

-400

0 5000 10000 15000 20000 25000 30000
0

0.2

0.4

0.6

0.8

1

e
v
a
lu

a
te

d
 v

a
lu

e
 (

a
cc

u
m

u
la

te
d
 r

e
w

a
rd

)

g
a
p
 t

o
 t

h
e
 b

e
st

 g
o
a
l
/

g
o
a
l
a
ch

ie
v
e
m

e
n
t

ra
te

total transition steps

best evaluated value
gap to the best goal (right)

probability of goal achievement (right)

#4 : SAP-GA
PDIP (delta=0.01)

Figure 4: Results for PDIP:).

5 Conclusion

The framework for exemplar-based policy optimization
was presented as a novel approach to reinforcement
learning. This framework defines a policy as being com-
posed of a set of exemplars and an action selector, with
parameter optimized directly by the evaluated value. A
simple implementation of this framework using a state-
action based representation and a GA was also pre-
sented, and the excellent performance of the scheme
was demonstrated in two problem domains. The ac-
curate control and robustness of the exemplar-based
method for higher-dimensional problems originate from
the adaptive definition of the conditions for exemplar
referral, which vary depending on the relationships be-
tween exemplars.

In the context of direct policy search, many common
difficulties such as the fluctuation of evaluations or lack
of optimality has been widely discussed. Although they
are still problems which to be solved with the present
approach also, the new possibility this study suggested
should be discovered. It is expected that other types
of exemplars, such as a state-state style are also quite
promising for certain problem domains.

EBP
Q-learning 20*20

car position [-1.2, 0.6]

ca
r

v
e
lo

ci
ty

[-
0
.0

7,
 0

.0
7
]

car position [-1.2, 0.6]

ca
r

v
e
lo

ci
ty

[-
0
.0

7,
 0

.0
7
]

Figure 5: EBP (left) and QL policy (right) for a two-dimensional problem (modified mountain car problem). The
action 1 (to move right) is taken in the dark gray area, and the action −1 is taken in the white area. Triangles
and squares denote exemplars, the solid line denotes a trajectory.

-2

+2

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250

to
rq

u
e

 /

 n

o
rm

a
liz

e
d
 s

ta
te

step

theta_1 (normalized)
theta_2 (normalized)

torque +2/0/-2

Figure 6: Control trajectory of a policy derived by the SAP-GA method for the Acrobot problem. The double
pendulum swings 12 times and stands upright at step 240.

-40

+40

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350

to
rq

u
e

/

 n

o
rm

a
liz

e
d
 s

ta
te

step

car position (normalized)
theta_1 (normalized)
theta_2 (normalized)

torque +40/0/-40

-40

+40

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350

to
rq

u
e

 /

n
o
rm

a
liz

e
d
 s

ta
te

step

car position (normalized)
theta_1 (normalized)
theta_2 (normalized)

torque +40/0/-40

Figure 7: Control trajectories for two policies deter-
mined for the PDIP problem by the SAP-GA method.
Both solutions provide good control but differ remark-
ably.

Bibliography

[Grefenstette, et al., 1990] Grefenstette, J.J., Ramsey,
C.L. and Shultz, A.C. (1990). Learning sequential
decision rules using simulation models and competi-
tion. Machine Learning, 5, pp. 355-381.

[Moriarty et al., 1999] David E. Moriarty, Alan C.
Schultz, and John J. Grefenstette. (1999). Evolution-
ary algorithms for reinforcement learning. Journal of
Artificial Intelligence Research 11, pp. 241-276.

[Nagata, 1997] Nagata, Y. and Kobayashi, S. (1997).
Edge assembly crossover: A high-power genetic al-
gorithm for the traveling salesman problem. Proceed-
ings of the 7th International Conference on Genetic
Algorithms, pp. 450-457.

[Rosenstein and Barto, 2001] Rosenstein, M.T. and
Barto, A.G. (2001). Robot weightlifting by direct
policy search. Proceedings of the 17th International
Joint Conference on Artificial Intelligence, vol. 2, pp.
839-844.

[Sheppard, 1997] Sheppard, J.W. and Salzberg, S.L.
(1997). A teaching strategy for memory-based con-
trol. Artificial Intelligence Review 11, pp. 343-370.

[Spong, 1994] Spong, M.W. (1994). Swing up control
of the acrobot. Proceedings of the 1994 IEEE Con-
ference on Robotics and Automation, San Diego, CA.

[Sutton, 1988] Sutton, R.S. (1988). Learning to predict
my methods of temporal differences. Machine Learn-
ing 3. pp. 9-44.

[van der Wal, 1981] van der Wal, J. (1981). Stochastic
dynamic programming. Amsterdam: Morgan Kauf-
mann.

[Watkins, 1992] Watkins, C.J.C.H., Dayan, P. (1992).
Q-learning. Machine Learning, 8, pp. 179-292.

[Whitley and Kauth, 1988] Whitley, D. and Kauth, J.
(1988). GENITOR: A different genetic algorithm.
Proceedings of the Rocky Mountain Conference on
Artificial Intelligence pp 116-121.

