
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
State Evaluation Strategy for Exemplar-Based

Policy Optimization of Dynamic Decision Problems

Author(s) Ikeda, Kokolo; Kita, Hajime

Citation
2007 IEEE Congress on Evolutionary Computation

(CEC 2007): 3685-3691

Issue Date 2007

Type Conference Paper

Text version author

URL http://hdl.handle.net/10119/12961

Rights

This is the author's version of the work.

Copyright (C) 2007 IEEE. 2007 IEEE Congress on

Evolutionary Computation (CEC 2007), 2007, 3685-

3691. Personal use of this material is permitted.

Permission from IEEE must be obtained for all

other uses, in any current or future media,

including reprinting/republishing this material

for advertising or promotional purposes, creating

new collective works, for resale or

redistribution to servers or lists, or reuse of

any copyrighted component of this work in other

works.

Description

State Evaluation Strategy for Exemplar-Based Policy Optimization
of Dynamic Decision Problems

Kokolo IKEDA and Hajime KITA

Abstract— Direct policy search (DPS) that optimizes the
parameters of a decision making model, combined with evo-
lutionary algorithms which enable robust optimization, is a
promising approach to dynamic decision problems. Exemplar-
based policy (EBP) optimization is a novel framework for DPS
in which the policy is composed of a set of exemplars and a case-
based action selector, with the set of exemplars being refined
and evolved using a GA. In this paper, state evaluation type
EBP representations are proposed for the problem class whose
state transition can be predicted. For example, the vector-real
representation defines pairs of feature vector and its desirability
as exemplars, and evaluate the predicted next states using the
exemplars. The state evaluation type EBP-based optimization
procedures are shown to be superior to conventional state-action
type EBP optimization through application to the Tetris game.

I. INTRODUCTION

Markov Decision Processes (MDPs) are a typical class
of formulation for dynamic decision-making problems such
as control, economy, or game problems. In such problems,
the learning agent develops a policy, representing a mapping
from a set of states to a set of actions, through trial-and-errors
and evaluations.

A common approach that has been studied extensively
for the training of MDPs is reinforcement learning, such as
the temporal difference (TD) method [12]. Another common
approach is direct policy search (DPS), in which a policy is
represented by a model with parameters, such as an artificial
neural network [13], and the parameters are optimized so as
to maximize the evaluation function by applying the param-
eterized policy to the problem. DPS approach is expected as
a more robust method applicable to broad problem classes,
compared with the TD method, for its flexibility of the model
selection and its power of direct search method such as
genetic algorithms (GAs). To tackle more difficult problems
by the DPS approach, several properties are considered to be
important; generalization and localization ability, flexibility,
and the possibility of introducing prior knowledge.

Exemplar-based policy (EBP) optimization is a novel
framework for DPS [1][2]. In EBP, the policy is composed
of a set of exemplars and a case-based action selector. In the
present context, an exemplar represents specific information,
such as the pair (sj , aj) meaning “the best action on a state
sj is aj”. In this example, when the current state s is given,
the nearest sj∗ is selected and the associated action aj∗ is
taken. An implementation using this style of EBP and a

The authors are with the Academic Center for Computing and Me-
dia Studies, Kyoto University, Yoshida-Nihonmatsu, Sakyo, Kyoto, Japan
(email: kokolo@media.kyoto-u.ac.jp, kita@media.kyoto-u.ac.jp).

GA has been shown to provide favorable search performance
for two higher-dimensional problems, and the generalization
and localization ability of the derivation process has been
shown [1]. Further, it has been shown that the combination
of EBP and GAs for selecting sets of exemplars significantly
improves performance.

Considering more practical problems, the present paper
discusses the two extensions for EBP-based optimization.
One extension is the new style of EBP for evaluating states
of MDP. When the transition of an MDP is predictable,
it is standard and often effective approach to predict the
all subsequent states corresponding to the possible actions
and evaluate them, to select the best action [6]. For this
approach, a vector-vector style EBP and a vector-real style
EBP are presented. For example, in the vector-real EBP
representation, an exemplar is given by the pair (vj , rj)
meaning “the desirability of vj is rj”, and the evaluation
of states is done using the set of exemplars.

The other extension is the way for the introduction of prior
knowledge. In many problems, the expert’s decision records
are available as the prior knowledge. For accelerating the
optimization process, the way to introduce such records as
the initial sets of GA solutions is presented. The effectiveness
of the proposed methods is demonstrated through a search
for automatic players of the Tetris game.

II. TRANSITION-PREDICTABLE MDP
In this paper, the learning policy is discussed with re-

spect to a subclass of MDP in which the state transition
is predictable before an action is taken, and the trial is
episodic (i.e., there is a beginning and an end of the trial).
In other words, the transition function is given as part of the
problem statement. This subclass is referred to as a transition-
predictable MDP. Solitaire games are a typical example of
this subclass.

Theoretically the optimal policy for a transition-
predictable MDP can be obtained by search with the dynamic
programming (DP) technique. However, practical problems
require search with policy having generalization (though
DP methods also can generalize), due to the cost of such
enumerative search in large state spaces.

A transition-predictable MDP is composed of a set of
states S, a set of actions A, a public transition function
T (s, a) : S×A→S and a reward function R(s, a) : S×A→
R. When the state space is too large to deal with effectively,
the feature values of the space are often used instead, such
as the n-dimensional feature function F(s) : S →V = R

n.
The performance of a trial given a prescribed policy can be

Fig. 1. Selection of most preferable vector from candidates. When the set of exemplars and candidate vectors are given, a binary tournament is created.
For judging which vector is better, the localized (near to focused vectors) set of exemplars are used.

evaluated by the total reward, i.e. the summation of rewards
from the beginning to the end.

III. EXEMPLAR-BASED POLICY OPTIMIZATION

The combination of GA and case-based methods is one of
the most promising approaches for difficult problems, vari-
ous methods have been studied [9]. Exemplar-based policy
optimization using a GA (EBP-GA) is a novel optimization
framework in which the policy is composed of a set of
exemplars and a case-based action selector, with the set
of exemplars being refined and evolved using a GA. This
approach has been shown to provide favorable performance
by balancing generalization ability with localization ability
[1][2].

In a state-action style EBP (SAP), as used in [1], an
exemplar is defined as the pair (sj , aj)∈ S × A meaning
“the best action on a state sj is aj”. The nearest-neighbor
classification is used as the action selector [8], that is, when
the current state is s, the nearest state sj∗ is selected from
the set of exemplars, and the associated action aj∗ is taken
(in fact, feature vectors F are used instead of states in this
paper). The state following the action is not considered in
this approach.

A. State Evaluation Strategy for EBP
In a transition-predictable MDP, the state transition func-

tion T is public. Therefore, when there are |A| actions {aj}
available on a state s∈S, the next states {T (s, aj)} or the
corresponding feature vectors {F(T (s, aj))} are predictable.
If a state evaluation function is given, the best next state and
the corresponding action can be selected. Such a scheme is
termed a “state evaluation strategy”, and is often used in
artificial intelligence algorithms for game playing [4] [6].

A vector-real style EBP (VRP) can be introduced to
realize a state evaluation strategy. In VRP, an exemplar is
represented as the pair of a feature vector vj ∈ V = R

n

and the corresponding evaluation value r∈R. When a next
state (or feature vector) is given, it is evaluated from the set
of exemplars and a function generalization method. In this

paper, the weighted averaging is employed as the function
generalization, and the procedure for decision making is as
follows.

1) Exemplars E = {ej}j = {(vj , rj)}j are given, where
vj ∈V=R

n and rj ∈R.
2) The next states corresponding to possible actions

are predicted, and their feature vectors {wca} =
{F(T (s, a)) | a ∈ A}, | A | candidates, are given to
be evaluated.

3) For each feature vector wca , the weighted average
value g(wca) is calculated as the following equations.

g(wca)=

P

ej∈E
rjd(vj , wca)

P

ej∈E
d(vj , wca)

, d(vj , wca)=
1

1+ ||vj−wca ||

4) The action a∗=argmaxa∈Ag(wca) is taken.

A vector-vector style EBP (VVP) can also be derived from
the state evaluation strategy. In VVP, an exemplar is defined
as the pair (v1

j , v2
j)∈V×V meaning “v1

j is better than v2
j ”.

When the feature vectors {wca}= {F(T (s, a)) | a∈A} are
given, a tournament is created and | A | −1 competitions
based on the set of exemplars are conducted, yielding a
winning vector wca∗ with a corresponding action a∗. One
implementation for conducting such competitions has been
proposed in [2] as follows.

1) Exemplars E = {(v1
j , v2

j)}j are given, where v1
j , v2

j ∈
V=R

n.
2) The next states corresponding to possible actions

are predicted, and their feature vectors {wca} =
{F(T (s, a)) | a ∈ A}, | A | candidates, are given to
be evaluated.

3) An unbiased tournament for candidates is randomly
created (the transitive law may not necessarily hold in
this competition procedure).

4) A pair of competitors wc1 ∈V and wc2 ∈V are taken
by following the tournament.

5) For each exemplar (v1
j , v2

j) ∈ E, the distance to the
competitors distj =|

w
c1

+w
c2

2
−

v1

j +v2

j

2
| is calculated,

Fig. 2. The tetrominoes (upper) and the state transition (lower) of Tetris: (1) the field and tetromino, (2) move, rotate and drop, (3) a line is filled then
deleted, (4) the blocks over the deleted line fall, and the next tetromino is given.

and Elocal ∈ E, the top kNN exemplars nearest within
distj , are selected (kNN is the localization parameter).

6) For each exemplar (v1
j , v2

j) ∈ Elocal, the direction
−−−−→
v2

j −v1
j and the inner product IPj =

−−−−→
v2

j −v1
j · −−−−−−→wc2−wc1

are calculated. When IPj > 0, the exemplar suggests
that “wc1 is better than wc2”.

7) The number of exemplars in Elocal for which IPj > 0,
i.e. | {(v1

j , v2
j) ∈ Elocal, IPj > 0} | is counted. If

the number is larger than |Elocal|/2, wc1 survives
the competition (otherwise the opposite judgment is
obtained).

8) After | A | −1 competitions have been completed, the
winner is obtained.

B. Knowledge introduction using expert records
There are many approaches for introducing prior knowl-

edge into optimization methods, including definition of fea-
ture values for a state, fixation of a policy model, and
adjustment of parameters. In this paper, the records made
by experts are introduced as the initial set of exemplars. In
actual control problems or decision-making problems, it is
likely to be easier for an expert to demonstrate actions rather
than extract appropriate rules under the actions. Especially
in many games, such as chess or go, many expert records
are publicly available. Such records are usually given in the
form of sequences of “the action aj was selected at the state
sj”. As such records are state-action exemplars, they are
directly applicable to the GA for SAP optimization (SAP-
GA) procedure as initial exemplars.

In this paper, the way to introduce such records for VVP
is presented. A record “the action ai∗ ∈A was selected by
the expert at the state s” means that “other actions ai ∈
A \ {ai∗} are judged to be inferior (or even) to ai∗”. Let
wi =F(T (s, ai))∈V represent the predicted feature vector
of the next state after action ai. This record also suggests
“vectors wi(ai ∈ A \ {ai∗}) are inferior (or even) to wi∗”.
Then these |A|−1 suggestions “wi∗ is better than wi” can be
introduced into the GA for VVP optimization (VVP-GA) as
initial exemplars. On the other hand, introduction of records

into vector-real EBP is not straightforward, requiring extra
learning, since no specific value of a feature vector is written
in the records.

IV. TETRIS GAME

Tetris is a popular puzzle game developed by Aleksey
Pazhitnov as a real-time game. Substantial research , espe-
cially by the reinforcement learning community, has been
conducted on the generation of automatic Tetris players
[10]. For example, in [3], a real robot was developed to
play the game using a camera to recognize the display and
fingers to push the keyboard. A MDP version of Tetris
has also been considered. In [11], an elaborate learner for
Tetris was developed, in which state evaluation function
adaptation using many heuristic features and neural networks
was adopted.

The main components of Tetris are the tetrominoes (see
Fig. 2(a)) and the field, which consists of Cwidth × Cheight

squares. The field is normally initialized such that all squares
are empty. In each turn, a random tetromino is given and the
player decides where to drop it, and whether to rotate it or
not. When the tetromino is dropped, if there exist horizontal
lines fully filled with blocks, the lines are deleted and blocks
above the lines fall by corresponding squares. The purpose of
Tetris is to delete Cnorm lines, and if the player has no space
to drop the given tetromino, the game is over. Figure 2 shows
a brief sample of the game. In this paper, the parameters are
set at (Cwidth , Cheight, Cnorm)=(6, 12, 10).

A. Tetris as a transition-predictable MDP
In this paper, very simplified version of Tetris is used as a

MDP problem. The state space S for Tetris is defined by the
kind of tetromino and the field matrix Mxy, where Mxy =1
when a square of position (x, y) is filled, and Mxy =0 when
empty. As the full set of information for a state s∈S is too
large (ca. 26×12) to deal with effectively, the feature vector
F(s) is employed for artificial players. The feature values
are calculated as follows. Such values are comparatively
primitive.

1) The first feature f0 is the ID of the current tetromino.
This feature is ignored in VRP/VVP because the tetro-
mino of the next step is not predictable.

2) The latter feature fx is the height of vertical lines, i.e.,
fx = max(y |Mxy = 1). When there are no blocks in
the vertical line, fx =0.

3) Totally Cwidth+1 features are given. In the optimization
phase, such feature values are independently normal-
ized to [0, 1] and Euclidean distance is used as a metric.

The action set A is defined by the left/right movements
and rotations. There are Cwidth movements and 4 rotations at
max, so we consider there are 4Cwidth actions in this MDP
though the definition is a little redundant. The state transition
T is defined by the rule, and the reward R is defined as
follows: If lines are deleted, a reward of 1.0 is given for each
line deleted, otherwise 0.0. When the game ends successfully,
10 lines are deleted, totally reward 10.0 is given.

B. Heuristic automatic player for Tetris
In this section, a well-considered heuristic Tetris player

is introduced, to define the standards for evaluating the
optimization methods, to show the sensitivity of this game,
and to provide game records to be utilized in EBP-GA
optimization.

In Tetris, the next state after an action is predictable for
players, except the kind of next tetromino given randomly.
The heuristic player is therefore based on a state evaluation
strategy. When a feature vector (f0, f1, ..., fCwidth

) is given,
the squared height gh =

∑Cwidth

x=1 f2
x and the roughness

gr =
∑Cwidth

x=2 (fx+fx−1) |fx−fx−1| are regarded. Each next
state is evaluated by g=gh+gr, and the state with the lowest
score is selected. This heuristic player tends to minimize the
height and the roughness of the surface, because roughness
often results in harmful empty spaces. The performance of
the player is evaluated for comparison, the average reward is
9.80 and the probability of a successful game end is 93.5%.

C. Sensitivity of Tetris
The sensitivity of the playing policy in this game can

be demonstrated by intermixing random actions with the
heuristic player at a probability of ε. Figure 3 shows the
number of successful games in 1000 trials for various values
of ε. By intermixing random actions only 1/10 times, even
the heuristic player wins only 2/3 of games. The result
suggests that Tetris is a sensitive game in which even a few
mistakes can have a substantial detrimental effect.

V. EXPERIMENTS

In this section, positive game records are prepared, the
particular implementations of EBP-GA are introduced, and
the performance of them with and without initial positive
records are determined through numerical simulation. The
aims of the experiments are to show the effectiveness of
introducing the initial positive records, and to compare the
performance of conventional EBP (SAP) and the proposed
methods with the state evaluation strategy (VVP, VRP).

Fig. 3. Performance variation for the heuristic player by mixing random
actions at probability ε

TABLE II
PERFORMANCE OF SAP AND VVP WITH RESPECT TO THE NUMBER OF

EXEMPLARS

SAP All policies
Nexemplars Npolicy Av. rwd. Std. dev. Successful

300 3000 1.890 0.517 0.13%
1000 900 3.060 0.708 1.50%
3000 300 4.538 0.874 6.30%

VVP All policies
Nexemplars kNN Npolicy Av. rwd. Std. dev. Successful

300 75 3000 6.926 1.153 39.82%
1000 251 900 7.626 0.981 49.70%
3000 751 300 7.973 0.959 53.80%

A. Artificial game records for Tetris
When a set of positive records of games is given, it can be

introduced as the set of exemplars of SAP and VVP. In this
section, we prepare many positive exemplars and evaluate
them.

Here, records produced by the heuristic player are utilized.
Over 24,000 games were carried out by the player, and
900,000 state-action exemplars were prepared. Note that only
the first 1,100 games were required for preparation of the
same number of vector-vector exemplars.

At first the initial set of exemplars were evaluated without
evolution. The 900,000 exemplars were divided into Npolicy

policies such that each policy consists of Nexemplars exem-
plars. Table II shows the average rewards and the average
probabilities of successful game end for the policies. The
results reveal that the performance of a policy increases with
the number of exemplars employed, and that the performance
of VVP is superior to that of SAP.

In the following experiments, Nexemplars is limited to
300, and the collection of useful exemplars by the GA is
confirmed.

B. GA for EBP optimization
The procedure for the evolution of the set of exemplars

using a GA is common to SAP-GA, VRP-GA, and VVP-
GA. The procedure is as follows (see Fig. 4).

TABLE I
NOTATION AND VALUES OF THE PARAMETERS OF EBP-GA

Symbol Explanation Value
Nexemplars Number of exemplars in a policy 100
kNN Localization parameter (the smaller, the more localized) 25
Npop Number of solutions (policies) in a population 100
Nchildren Number of children produced in a reproduction 10
Nsamples Number of games for one evaluation 10
Ngenerations Number of generations for a GA 100
Ei The ith solution (policy), the set of exemplars of the ith policy -
ei,j The jth exemplar of Ei -

Fig. 4. EBP-GA process. (1) Population initialization using (1a) random exemplars or (1b) heuristic game records. (2) Parents selection. (3) Children
production. (4) Policy evaluation. (5-SAP) The current state is given, (6-SAP) the exemplar nearest to it is selected, and the associated action is taken. Or,
(5-VVP/VRP) feature vectors for all actions are given, (6-VVP/VRP) the best feature vector is selected by the exemplars, and the corresponding action is
taken. (7) Total rewards is obtained. (8) Two good policies are sent back to the population instead of the parents.

1) The parameters such as Npop are fixed (see Table I).
2) As the population, Npop sets of exemplars {Ei}i are

initialized. Each solution has Nexemplars exemplars.
• If positive game records are available, the records

are divided into initial solutions. (30 trials × 100
solutions×300 exemplars per a solution=900,000
exemplars are used)

• If no prior knowledge is given:
– A state-action exemplar ei,j =(si,j , ai,j)∈Ei is

generated such that si,j ∈ [0, 1]n and ai,j ∈A.
(n is the number of features, in this case 7.)

– A vector-real exemplar ei,j =(vi,j , ri,j) ∈ Ei is
generated such that vi,j ∈ [0, 1]n and ri,j ∈ [0, 1].

– A vector-vector exemplar ei,j =(v1
i,j , v

2
i,j) ∈ Ei

is generated such that v1
i,j + v2

i,j ∈ [0, 2]n and
v2

i,j − v1
i,j ∈ [−1, 1]n.

3) The parent solutions Ep1 and Ep2 are randomly se-
lected from the population, Npop solutions.

4) Children are reproduced by applying the crossover
operator Nchildren times. The crossover we employ is
performed by mixing the exemplars of the parents.

a) The set of exemplars of a child Ec is initialized
as an empty set.

b) An exemplar e ∈ Ep1∪Ep2 is randomly selected.
If e /∈ Ec, e is added to Ec.

c) Step (b) is repeated until |Ec|=Nexemplars.
5) The evaluation values of them are calculated by ap-

plying a policy to the Tetris game. To reduce random

Fig. 5. EBP-GA results, showing the rewards (upper) and the probabilities of success (lower). VRP-GA and VVP-GA perform better than state-action
methods (ANN, SAP). Further, introducing positive records to the initial set of exemplars improves the performance in early stage of GA.

fluctuation in the evaluation value, Nsamples games are
performed independently, and the average of rewards
is used.

6) The best evaluated policy E∗ in the family is selected,
and one more policy E∗∗ is selected based on a ranking
selection [7].

7) The parents in the population are replaced by E∗ and
E∗∗.

8) Step 3 is repeated Ngenerations×Npop times.

C. GA for Artificial Neural Network
As one of other DPSs, we employ the combination of an

artificial neural network (ANN) and a GA. In this approach,
three-layered ANN is used as the decision making mapping
from the observed state to an action (see Figure 6), and its
connection weights w are optimized by a real-coded GA
using MGG alternation model [7] and UNDX-m crossover
[5]. Parameters such as Npop and Nchildren are same to EBP’s,
and the number of hidden-layer units is fixed to 20.

D. Optimization Results
For comparison, 6 series of GAs were performed. Table

III shows the summary of the GAs.
As a performance measure, the reward and the probability

of successful game end were used. All series were repeated
30 times. Figure 5 shows the average performance of the
population, and the re-evaluated performance of the elite
policy.

The results demonstrate that the VRP-GA and the VVP-
GA performed well, with the final elite policy achieving
over 9.0 rewards (#3, #4, #5). The well-trained policy from
the raw heuristic records (#5) is superior to the policy
consisting of 3000 raw records reported in section V-A, and

Fig. 6. Three-layered perceptron as a decision maker

TABLE III
THE LIST OF GAS COMPARED

No. Name Decision making Using records
#1 SAPrandom State-Action EBP no
#2 SAPrecords State-Action EBP yes
#3 VRPrandom Vector-Real EBP no
#4 VVPrandom Vector-Vector EBP no
#5 VVPrecords Vector-Vector EBP yes
#6 ANN State-Action ANN no

the progress from the initial populations (rewards 6.926) is
clear. Therefore, it is suggested that useful exemplars were
correctly collected by the GA.

The performances of the SAP-GA and the ANN (rewards
about 1.5 − 3.0) were worse, despite exhibiting some evo-
lution in GA processing. The reason why they were worse
than the VRP-GA and the VVP-GA is considered in the next

Fig. 7. Typical failure of state-action EBP

section.
Finally, the introduction of records to the initial population

can be seen to assist in the early stage of GA evolution, and
is considered to be useful especially in the problems whose
evaluation costs are very expensive.

E. Discussion
To examine the poor performance of the SAP-GA, the

typical example shown in Figure 7 can be considered. Given
the exemplar (s0, a0) (1), the next state following the action
is good (1’). However, if another state snow is given to an
SAP player and snow is similar to s0, the associated action a0

is taken (2). Unfortunately, the slight difference between the
two states causes a great difference between the next states
(2’). Also, the reason of the poor performance of ANN is
the difficulty of dividing the state space enough finely to
distinguish the slight differences. Such transition structure
of MDPs and such failure of the state-action approaches are
expected to be observed not only in Tetris game. VRP and
VVP approaches in which the decision is made after the next
states are predicted, are promising in such cases.

At last an interesting ability of VRP and VVP is con-
sidered: VRP/VVP player can respond to the case of illegal
blocks (see Fig. 2(c)) inserted among the regular tetrominoes.
This is attributable to their focus not on the current state and
actions but on the next states. In contrast, the state-action
approaches give up in this situation.

VI. CONCLUSION

Exemplar-based policy optimization is a novel approach
for learning problems, which uses evolutionary optimization
for selecting sets of exemplars. In this paper, two advanced
usages of exemplar-based policy (EBP) optimization were
proposed. A vector-vector style EBP and a vector-real style
EBP were presented as novel representations of a policy,
which ensures that if the transition of a MDP is predictable,
all the subsequent states are predictable and can be evaluated
using the set of exemplars, allowing the best next state and
corresponding action to be taken. The introduction of expert
records into EBP optimization was also shown to accelerate
the early stage of optimization. The effectiveness of these
methods was demonstrated through search of automatic
players for the Tetris game.

REFERENCES

[1] K. Ikeda. Exemplar-based direct policy search with evolutionary
optimization. Congress on Evolutionary Computation, pages 2357–
2364, 2005.

[2] K. Ikeda, H. Suzuki, S. Markon, and H. Kita. Evolutionary opti-
mization of a controller for multi-car elevators. IEEE International
Conference on Industrial Technology, 2006.

[3] M. Jun. Game playing intelligent robot with logical and intuitive infor-
mation processing architecture. 13th SICE symposium on decentralized
Autonomous system, pages 363–366, 2001.

[4] G. Kendall and G. Whitwell. An evolutionary approach for the tuning
of a chess evaluation function using population dynamics. Proceedings
of the Genetic and Evolutionary Computation Conference, pages 995–
1002, 2001.

[5] H. Kita, I. Ono, and S. Kobayashi. Multi-parental extension of
the unimodal normal distribution crossover for real-coded genetic
algorithms. Congress on Evolutionary Computation, pages 1581–1587,
1999.

[6] A. Samuel. Some studies in machine learning using the game of
checkers. IBM Journal, 3(3).

[7] H. Satoh, M. Yamamura, and S. Kobayashi. Minimal generation gap
model for gas considering both exploration and exploitation. Proc. of
IIZUKA.

[8] J. Sheppard and S. Salzberg. A teaching strategy for memory-based
control. Artificial Intelligence Review 11, pages 343–370, 1997.

[9] Sushil J. Louis and John McDonnell. Learning with case injected
genetic algorithms. IEEE Transactions on Evolutionary Computations,
8(4), pages 316–328, 2004.

[10] Szita, I. and Lorincz, A. Learning Tetris Using the Noisy Cross-
Entropy Method. Neural Computation 18, pages 2936–2941, 2006.

[11] N. Sotaro and Y. Kazuo. Application of evolutionary reinforcement
to learning of tetris game. 13th SICE symposium on decentralized
Autonomous system, pages 265–270, 2001.

[12] R. Sutton. Learning to predict by the methods of temporal differences.
Machine Learning 3, pages 9–44, 1988.

[13] D. Whitley and J. Kauth. Genitor: A different genetic algorithm. Pro-
ceedings of the Rocky Mountain Conference on Artificial Intelligence,
pages 116–121, 1988.

